2 * linux/arch/unicore32/mm/mmu.c
4 * Code specific to PKUnity SoC and UniCore ISA
6 * Copyright (C) 2001-2010 GUAN Xue-tao
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/memblock.h>
20 #include <linux/bootmem.h>
23 #include <asm/cputype.h>
24 #include <asm/sections.h>
25 #include <asm/setup.h>
26 #include <asm/sizes.h>
33 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
39 struct page
*empty_zero_page
;
40 EXPORT_SYMBOL(empty_zero_page
);
43 * The pmd table for the upper-most set of pages.
48 EXPORT_SYMBOL(pgprot_user
);
50 pgprot_t pgprot_kernel
;
51 EXPORT_SYMBOL(pgprot_kernel
);
53 static int __init
noalign_setup(char *__unused
)
55 cr_alignment
&= ~CR_A
;
56 cr_no_alignment
&= ~CR_A
;
60 __setup("noalign", noalign_setup
);
62 void adjust_cr(unsigned long mask
, unsigned long set
)
70 local_irq_save(flags
);
72 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
73 cr_alignment
= (cr_alignment
& ~mask
) | set
;
75 set_cr((get_cr() & ~mask
) | set
);
77 local_irq_restore(flags
);
81 unsigned long virtual;
87 #define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
88 PTE_DIRTY | PTE_READ | PTE_WRITE)
89 #define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
90 PMD_SECT_READ | PMD_SECT_WRITE)
92 static struct mem_type mem_types
[] = {
93 [MT_DEVICE
] = { /* Strongly ordered */
94 .prot_pte
= PROT_PTE_DEVICE
,
95 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
96 .prot_sect
= PROT_SECT_DEVICE
,
99 * MT_KUSER: pte for vecpage -- cacheable,
100 * and sect for unigfx mmap -- noncacheable
103 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
104 PTE_CACHEABLE
| PTE_READ
| PTE_EXEC
,
105 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
106 .prot_sect
= PROT_SECT_DEVICE
,
108 [MT_HIGH_VECTORS
] = {
109 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
110 PTE_CACHEABLE
| PTE_READ
| PTE_WRITE
|
112 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
115 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
116 PTE_WRITE
| PTE_EXEC
,
117 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
118 .prot_sect
= PMD_TYPE_SECT
| PMD_PRESENT
| PMD_SECT_CACHEABLE
|
119 PMD_SECT_READ
| PMD_SECT_WRITE
| PMD_SECT_EXEC
,
122 .prot_sect
= PMD_TYPE_SECT
| PMD_PRESENT
| PMD_SECT_CACHEABLE
|
127 const struct mem_type
*get_mem_type(unsigned int type
)
129 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
131 EXPORT_SYMBOL(get_mem_type
);
134 * Adjust the PMD section entries according to the CPU in use.
136 static void __init
build_mem_type_table(void)
138 pgprot_user
= __pgprot(PTE_PRESENT
| PTE_YOUNG
| PTE_CACHEABLE
);
139 pgprot_kernel
= __pgprot(PTE_PRESENT
| PTE_YOUNG
|
140 PTE_DIRTY
| PTE_READ
| PTE_WRITE
|
141 PTE_EXEC
| PTE_CACHEABLE
);
144 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
146 static void __init
*early_alloc(unsigned long sz
)
148 void *ptr
= __va(memblock_alloc(sz
, sz
));
153 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
156 if (pmd_none(*pmd
)) {
157 pte_t
*pte
= early_alloc(PTRS_PER_PTE
* sizeof(pte_t
));
158 __pmd_populate(pmd
, __pa(pte
) | prot
);
160 BUG_ON(pmd_bad(*pmd
));
161 return pte_offset_kernel(pmd
, addr
);
164 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
165 unsigned long end
, unsigned long pfn
,
166 const struct mem_type
*type
)
168 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
170 set_pte(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)));
172 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
175 static void __init
alloc_init_section(pgd_t
*pgd
, unsigned long addr
,
176 unsigned long end
, unsigned long phys
,
177 const struct mem_type
*type
)
179 pmd_t
*pmd
= pmd_offset((pud_t
*)pgd
, addr
);
182 * Try a section mapping - end, addr and phys must all be aligned
183 * to a section boundary.
185 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
189 set_pmd(pmd
, __pmd(phys
| type
->prot_sect
));
190 phys
+= SECTION_SIZE
;
191 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
196 * No need to loop; pte's aren't interested in the
197 * individual L1 entries.
199 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
204 * Create the page directory entries and any necessary
205 * page tables for the mapping specified by `md'. We
206 * are able to cope here with varying sizes and address
207 * offsets, and we take full advantage of sections.
209 static void __init
create_mapping(struct map_desc
*md
)
211 unsigned long phys
, addr
, length
, end
;
212 const struct mem_type
*type
;
215 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
216 printk(KERN_WARNING
"BUG: not creating mapping for "
217 "0x%08llx at 0x%08lx in user region\n",
218 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
222 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
223 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
224 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
225 "overlaps vmalloc space\n",
226 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
229 type
= &mem_types
[md
->type
];
231 addr
= md
->virtual & PAGE_MASK
;
232 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
233 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
235 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
236 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
237 "be mapped using pages, ignoring.\n",
238 __pfn_to_phys(md
->pfn
), addr
);
242 pgd
= pgd_offset_k(addr
);
245 unsigned long next
= pgd_addr_end(addr
, end
);
247 alloc_init_section(pgd
, addr
, next
, phys
, type
);
251 } while (pgd
++, addr
!= end
);
254 static void * __initdata vmalloc_min
= (void *)(VMALLOC_END
- SZ_128M
);
257 * vmalloc=size forces the vmalloc area to be exactly 'size'
258 * bytes. This can be used to increase (or decrease) the vmalloc
259 * area - the default is 128m.
261 static int __init
early_vmalloc(char *arg
)
263 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
265 if (vmalloc_reserve
< SZ_16M
) {
266 vmalloc_reserve
= SZ_16M
;
268 "vmalloc area too small, limiting to %luMB\n",
269 vmalloc_reserve
>> 20);
272 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
273 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
275 "vmalloc area is too big, limiting to %luMB\n",
276 vmalloc_reserve
>> 20);
279 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
282 early_param("vmalloc", early_vmalloc
);
284 static phys_addr_t lowmem_limit __initdata
= SZ_1G
;
286 static void __init
sanity_check_meminfo(void)
290 lowmem_limit
= __pa(vmalloc_min
- 1) + 1;
291 memblock_set_current_limit(lowmem_limit
);
293 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
294 struct membank
*bank
= &meminfo
.bank
[j
];
295 *bank
= meminfo
.bank
[i
];
298 meminfo
.nr_banks
= j
;
301 static inline void prepare_page_table(void)
307 * Clear out all the mappings below the kernel image.
309 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PGDIR_SIZE
)
310 pmd_clear(pmd_off_k(addr
));
312 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
313 pmd_clear(pmd_off_k(addr
));
316 * Find the end of the first block of lowmem.
318 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
319 if (end
>= lowmem_limit
)
323 * Clear out all the kernel space mappings, except for the first
324 * memory bank, up to the end of the vmalloc region.
326 for (addr
= __phys_to_virt(end
);
327 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
328 pmd_clear(pmd_off_k(addr
));
332 * Reserve the special regions of memory
334 void __init
uc32_mm_memblock_reserve(void)
337 * Reserve the page tables. These are already in use,
338 * and can only be in node 0.
340 memblock_reserve(__pa(swapper_pg_dir
), PTRS_PER_PGD
* sizeof(pgd_t
));
344 * Set up device the mappings. Since we clear out the page tables for all
345 * mappings above VMALLOC_END, we will remove any debug device mappings.
346 * This means you have to be careful how you debug this function, or any
347 * called function. This means you can't use any function or debugging
348 * method which may touch any device, otherwise the kernel _will_ crash.
350 static void __init
devicemaps_init(void)
357 * Allocate the vector page early.
359 vectors
= early_alloc(PAGE_SIZE
);
361 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
362 pmd_clear(pmd_off_k(addr
));
365 * Create a mapping for the machine vectors at the high-vectors
366 * location (0xffff0000). If we aren't using high-vectors, also
367 * create a mapping at the low-vectors virtual address.
369 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
370 map
.virtual = VECTORS_BASE
;
371 map
.length
= PAGE_SIZE
;
372 map
.type
= MT_HIGH_VECTORS
;
373 create_mapping(&map
);
376 * Create a mapping for the kuser page at the special
377 * location (0xbfff0000) to the same vectors location.
379 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
380 map
.virtual = KUSER_VECPAGE_BASE
;
381 map
.length
= PAGE_SIZE
;
383 create_mapping(&map
);
386 * Finally flush the caches and tlb to ensure that we're in a
387 * consistent state wrt the writebuffer. This also ensures that
388 * any write-allocated cache lines in the vector page are written
389 * back. After this point, we can start to touch devices again.
391 local_flush_tlb_all();
395 static void __init
map_lowmem(void)
397 struct memblock_region
*reg
;
399 /* Map all the lowmem memory banks. */
400 for_each_memblock(memory
, reg
) {
401 phys_addr_t start
= reg
->base
;
402 phys_addr_t end
= start
+ reg
->size
;
405 if (end
> lowmem_limit
)
410 map
.pfn
= __phys_to_pfn(start
);
411 map
.virtual = __phys_to_virt(start
);
412 map
.length
= end
- start
;
413 map
.type
= MT_MEMORY
;
415 create_mapping(&map
);
420 * paging_init() sets up the page tables, initialises the zone memory
421 * maps, and sets up the zero page, bad page and bad page tables.
423 void __init
paging_init(void)
427 build_mem_type_table();
428 sanity_check_meminfo();
429 prepare_page_table();
433 top_pmd
= pmd_off_k(0xffff0000);
435 /* allocate the zero page. */
436 zero_page
= early_alloc(PAGE_SIZE
);
440 empty_zero_page
= virt_to_page(zero_page
);
441 __flush_dcache_page(NULL
, empty_zero_page
);
445 * In order to soft-boot, we need to insert a 1:1 mapping in place of
446 * the user-mode pages. This will then ensure that we have predictable
447 * results when turning the mmu off
449 void setup_mm_for_reboot(char mode
)
451 unsigned long base_pmdval
;
456 * We need to access to user-mode page tables here. For kernel threads
457 * we don't have any user-mode mappings so we use the context that we
460 pgd
= current
->active_mm
->pgd
;
462 base_pmdval
= PMD_SECT_WRITE
| PMD_SECT_READ
| PMD_TYPE_SECT
;
464 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
465 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
468 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
469 set_pmd(pmd
, __pmd(pmdval
));
470 flush_pmd_entry(pmd
);
473 local_flush_tlb_all();
477 * Take care of architecture specific things when placing a new PTE into
478 * a page table, or changing an existing PTE. Basically, there are two
479 * things that we need to take care of:
481 * 1. If PG_dcache_clean is not set for the page, we need to ensure
482 * that any cache entries for the kernels virtual memory
483 * range are written back to the page.
484 * 2. If we have multiple shared mappings of the same space in
485 * an object, we need to deal with the cache aliasing issues.
487 * Note that the pte lock will be held.
489 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long addr
,
492 unsigned long pfn
= pte_pfn(*ptep
);
493 struct address_space
*mapping
;
500 * The zero page is never written to, so never has any dirty
501 * cache lines, and therefore never needs to be flushed.
503 page
= pfn_to_page(pfn
);
504 if (page
== ZERO_PAGE(0))
507 mapping
= page_mapping(page
);
508 if (!test_and_set_bit(PG_dcache_clean
, &page
->flags
))
509 __flush_dcache_page(mapping
, page
);
511 if (vma
->vm_flags
& VM_EXEC
)
512 __flush_icache_all();