Add linux-next specific files for 20110426
[linux-2.6/next.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
blob8cf9890cafaf702289a7397613ce160ebe75d626
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
36 #include <linux/version.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/debugfs.h>
45 #include <linux/ethtool.h>
47 #include "t4vf_common.h"
48 #include "t4vf_defs.h"
50 #include "../cxgb4/t4_regs.h"
51 #include "../cxgb4/t4_msg.h"
54 * Generic information about the driver.
56 #define DRV_VERSION "1.0.0"
57 #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
60 * Module Parameters.
61 * ==================
65 * Default ethtool "message level" for adapters.
67 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71 static int dflt_msg_enable = DFLT_MSG_ENABLE;
73 module_param(dflt_msg_enable, int, 0644);
74 MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
89 #define MSI_MSIX 2
90 #define MSI_MSI 1
91 #define MSI_DEFAULT MSI_MSIX
93 static int msi = MSI_DEFAULT;
95 module_param(msi, int, 0644);
96 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
99 * Fundamental constants.
100 * ======================
103 enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
128 * Global driver state.
129 * ====================
132 static struct dentry *cxgb4vf_debugfs_root;
135 * OS "Callback" functions.
136 * ========================
140 * The link status has changed on the indicated "port" (Virtual Interface).
142 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
144 struct net_device *dev = adapter->port[pidx];
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
162 netif_carrier_on(dev);
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
173 case SPEED_100:
174 s = "100Mbps";
175 break;
177 default:
178 s = "unknown";
179 break;
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
187 case PAUSE_TX:
188 fc = "TX";
189 break;
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
195 default:
196 fc = "no";
197 break;
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
209 * Net device operations.
210 * ======================
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
217 static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
220 struct port_info *pi = netdev_priv(dev);
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
230 static int link_start(struct net_device *dev)
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
261 * Name the MSI-X interrupts.
263 static void name_msix_vecs(struct adapter *adapter)
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
269 * Firmware events.
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
276 * Ethernet queues.
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
283 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
284 snprintf(adapter->msix_info[msi].desc, namelen,
285 "%s-%d", dev->name, qs);
286 adapter->msix_info[msi].desc[namelen] = 0;
292 * Request all of our MSI-X resources.
294 static int request_msix_queue_irqs(struct adapter *adapter)
296 struct sge *s = &adapter->sge;
297 int rxq, msi, err;
300 * Firmware events.
302 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
303 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
304 if (err)
305 return err;
308 * Ethernet queues.
310 msi = MSIX_IQFLINT;
311 for_each_ethrxq(s, rxq) {
312 err = request_irq(adapter->msix_info[msi].vec,
313 t4vf_sge_intr_msix, 0,
314 adapter->msix_info[msi].desc,
315 &s->ethrxq[rxq].rspq);
316 if (err)
317 goto err_free_irqs;
318 msi++;
320 return 0;
322 err_free_irqs:
323 while (--rxq >= 0)
324 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
325 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
326 return err;
330 * Free our MSI-X resources.
332 static void free_msix_queue_irqs(struct adapter *adapter)
334 struct sge *s = &adapter->sge;
335 int rxq, msi;
337 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
338 msi = MSIX_IQFLINT;
339 for_each_ethrxq(s, rxq)
340 free_irq(adapter->msix_info[msi++].vec,
341 &s->ethrxq[rxq].rspq);
345 * Turn on NAPI and start up interrupts on a response queue.
347 static void qenable(struct sge_rspq *rspq)
349 napi_enable(&rspq->napi);
352 * 0-increment the Going To Sleep register to start the timer and
353 * enable interrupts.
355 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
356 CIDXINC(0) |
357 SEINTARM(rspq->intr_params) |
358 INGRESSQID(rspq->cntxt_id));
362 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
364 static void enable_rx(struct adapter *adapter)
366 int rxq;
367 struct sge *s = &adapter->sge;
369 for_each_ethrxq(s, rxq)
370 qenable(&s->ethrxq[rxq].rspq);
371 qenable(&s->fw_evtq);
374 * The interrupt queue doesn't use NAPI so we do the 0-increment of
375 * its Going To Sleep register here to get it started.
377 if (adapter->flags & USING_MSI)
378 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
379 CIDXINC(0) |
380 SEINTARM(s->intrq.intr_params) |
381 INGRESSQID(s->intrq.cntxt_id));
386 * Wait until all NAPI handlers are descheduled.
388 static void quiesce_rx(struct adapter *adapter)
390 struct sge *s = &adapter->sge;
391 int rxq;
393 for_each_ethrxq(s, rxq)
394 napi_disable(&s->ethrxq[rxq].rspq.napi);
395 napi_disable(&s->fw_evtq.napi);
399 * Response queue handler for the firmware event queue.
401 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
402 const struct pkt_gl *gl)
405 * Extract response opcode and get pointer to CPL message body.
407 struct adapter *adapter = rspq->adapter;
408 u8 opcode = ((const struct rss_header *)rsp)->opcode;
409 void *cpl = (void *)(rsp + 1);
411 switch (opcode) {
412 case CPL_FW6_MSG: {
414 * We've received an asynchronous message from the firmware.
416 const struct cpl_fw6_msg *fw_msg = cpl;
417 if (fw_msg->type == FW6_TYPE_CMD_RPL)
418 t4vf_handle_fw_rpl(adapter, fw_msg->data);
419 break;
422 case CPL_SGE_EGR_UPDATE: {
424 * We've received an Egress Queue Status Update message. We
425 * get these, if the SGE is configured to send these when the
426 * firmware passes certain points in processing our TX
427 * Ethernet Queue or if we make an explicit request for one.
428 * We use these updates to determine when we may need to
429 * restart a TX Ethernet Queue which was stopped for lack of
430 * free TX Queue Descriptors ...
432 const struct cpl_sge_egr_update *p = (void *)cpl;
433 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
434 struct sge *s = &adapter->sge;
435 struct sge_txq *tq;
436 struct sge_eth_txq *txq;
437 unsigned int eq_idx;
440 * Perform sanity checking on the Queue ID to make sure it
441 * really refers to one of our TX Ethernet Egress Queues which
442 * is active and matches the queue's ID. None of these error
443 * conditions should ever happen so we may want to either make
444 * them fatal and/or conditionalized under DEBUG.
446 eq_idx = EQ_IDX(s, qid);
447 if (unlikely(eq_idx >= MAX_EGRQ)) {
448 dev_err(adapter->pdev_dev,
449 "Egress Update QID %d out of range\n", qid);
450 break;
452 tq = s->egr_map[eq_idx];
453 if (unlikely(tq == NULL)) {
454 dev_err(adapter->pdev_dev,
455 "Egress Update QID %d TXQ=NULL\n", qid);
456 break;
458 txq = container_of(tq, struct sge_eth_txq, q);
459 if (unlikely(tq->abs_id != qid)) {
460 dev_err(adapter->pdev_dev,
461 "Egress Update QID %d refers to TXQ %d\n",
462 qid, tq->abs_id);
463 break;
467 * Restart a stopped TX Queue which has less than half of its
468 * TX ring in use ...
470 txq->q.restarts++;
471 netif_tx_wake_queue(txq->txq);
472 break;
475 default:
476 dev_err(adapter->pdev_dev,
477 "unexpected CPL %#x on FW event queue\n", opcode);
480 return 0;
484 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
485 * to use and initializes them. We support multiple "Queue Sets" per port if
486 * we have MSI-X, otherwise just one queue set per port.
488 static int setup_sge_queues(struct adapter *adapter)
490 struct sge *s = &adapter->sge;
491 int err, pidx, msix;
494 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
495 * state.
497 bitmap_zero(s->starving_fl, MAX_EGRQ);
500 * If we're using MSI interrupt mode we need to set up a "forwarded
501 * interrupt" queue which we'll set up with our MSI vector. The rest
502 * of the ingress queues will be set up to forward their interrupts to
503 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
504 * the intrq's queue ID as the interrupt forwarding queue for the
505 * subsequent calls ...
507 if (adapter->flags & USING_MSI) {
508 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
509 adapter->port[0], 0, NULL, NULL);
510 if (err)
511 goto err_free_queues;
515 * Allocate our ingress queue for asynchronous firmware messages.
517 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
518 MSIX_FW, NULL, fwevtq_handler);
519 if (err)
520 goto err_free_queues;
523 * Allocate each "port"'s initial Queue Sets. These can be changed
524 * later on ... up to the point where any interface on the adapter is
525 * brought up at which point lots of things get nailed down
526 * permanently ...
528 msix = MSIX_IQFLINT;
529 for_each_port(adapter, pidx) {
530 struct net_device *dev = adapter->port[pidx];
531 struct port_info *pi = netdev_priv(dev);
532 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
533 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
534 int qs;
536 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
537 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
538 dev, msix++,
539 &rxq->fl, t4vf_ethrx_handler);
540 if (err)
541 goto err_free_queues;
543 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
544 netdev_get_tx_queue(dev, qs),
545 s->fw_evtq.cntxt_id);
546 if (err)
547 goto err_free_queues;
549 rxq->rspq.idx = qs;
550 memset(&rxq->stats, 0, sizeof(rxq->stats));
555 * Create the reverse mappings for the queues.
557 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
558 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
559 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
560 for_each_port(adapter, pidx) {
561 struct net_device *dev = adapter->port[pidx];
562 struct port_info *pi = netdev_priv(dev);
563 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
564 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
565 int qs;
567 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
568 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
569 EQ_MAP(s, txq->q.abs_id) = &txq->q;
572 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
573 * for Free Lists but since all of the Egress Queues
574 * (including Free Lists) have Relative Queue IDs
575 * which are computed as Absolute - Base Queue ID, we
576 * can synthesize the Absolute Queue IDs for the Free
577 * Lists. This is useful for debugging purposes when
578 * we want to dump Queue Contexts via the PF Driver.
580 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
581 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
584 return 0;
586 err_free_queues:
587 t4vf_free_sge_resources(adapter);
588 return err;
592 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
593 * queues. We configure the RSS CPU lookup table to distribute to the number
594 * of HW receive queues, and the response queue lookup table to narrow that
595 * down to the response queues actually configured for each "port" (Virtual
596 * Interface). We always configure the RSS mapping for all ports since the
597 * mapping table has plenty of entries.
599 static int setup_rss(struct adapter *adapter)
601 int pidx;
603 for_each_port(adapter, pidx) {
604 struct port_info *pi = adap2pinfo(adapter, pidx);
605 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
606 u16 rss[MAX_PORT_QSETS];
607 int qs, err;
609 for (qs = 0; qs < pi->nqsets; qs++)
610 rss[qs] = rxq[qs].rspq.abs_id;
612 err = t4vf_config_rss_range(adapter, pi->viid,
613 0, pi->rss_size, rss, pi->nqsets);
614 if (err)
615 return err;
618 * Perform Global RSS Mode-specific initialization.
620 switch (adapter->params.rss.mode) {
621 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
623 * If Tunnel All Lookup isn't specified in the global
624 * RSS Configuration, then we need to specify a
625 * default Ingress Queue for any ingress packets which
626 * aren't hashed. We'll use our first ingress queue
627 * ...
629 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
630 union rss_vi_config config;
631 err = t4vf_read_rss_vi_config(adapter,
632 pi->viid,
633 &config);
634 if (err)
635 return err;
636 config.basicvirtual.defaultq =
637 rxq[0].rspq.abs_id;
638 err = t4vf_write_rss_vi_config(adapter,
639 pi->viid,
640 &config);
641 if (err)
642 return err;
644 break;
648 return 0;
652 * Bring the adapter up. Called whenever we go from no "ports" open to having
653 * one open. This function performs the actions necessary to make an adapter
654 * operational, such as completing the initialization of HW modules, and
655 * enabling interrupts. Must be called with the rtnl lock held. (Note that
656 * this is called "cxgb_up" in the PF Driver.)
658 static int adapter_up(struct adapter *adapter)
660 int err;
663 * If this is the first time we've been called, perform basic
664 * adapter setup. Once we've done this, many of our adapter
665 * parameters can no longer be changed ...
667 if ((adapter->flags & FULL_INIT_DONE) == 0) {
668 err = setup_sge_queues(adapter);
669 if (err)
670 return err;
671 err = setup_rss(adapter);
672 if (err) {
673 t4vf_free_sge_resources(adapter);
674 return err;
677 if (adapter->flags & USING_MSIX)
678 name_msix_vecs(adapter);
679 adapter->flags |= FULL_INIT_DONE;
683 * Acquire our interrupt resources. We only support MSI-X and MSI.
685 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
686 if (adapter->flags & USING_MSIX)
687 err = request_msix_queue_irqs(adapter);
688 else
689 err = request_irq(adapter->pdev->irq,
690 t4vf_intr_handler(adapter), 0,
691 adapter->name, adapter);
692 if (err) {
693 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
694 err);
695 return err;
699 * Enable NAPI ingress processing and return success.
701 enable_rx(adapter);
702 t4vf_sge_start(adapter);
703 return 0;
707 * Bring the adapter down. Called whenever the last "port" (Virtual
708 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
709 * Driver.)
711 static void adapter_down(struct adapter *adapter)
714 * Free interrupt resources.
716 if (adapter->flags & USING_MSIX)
717 free_msix_queue_irqs(adapter);
718 else
719 free_irq(adapter->pdev->irq, adapter);
722 * Wait for NAPI handlers to finish.
724 quiesce_rx(adapter);
728 * Start up a net device.
730 static int cxgb4vf_open(struct net_device *dev)
732 int err;
733 struct port_info *pi = netdev_priv(dev);
734 struct adapter *adapter = pi->adapter;
737 * If this is the first interface that we're opening on the "adapter",
738 * bring the "adapter" up now.
740 if (adapter->open_device_map == 0) {
741 err = adapter_up(adapter);
742 if (err)
743 return err;
747 * Note that this interface is up and start everything up ...
749 netif_set_real_num_tx_queues(dev, pi->nqsets);
750 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
751 if (err)
752 goto err_unwind;
753 err = link_start(dev);
754 if (err)
755 goto err_unwind;
757 netif_tx_start_all_queues(dev);
758 set_bit(pi->port_id, &adapter->open_device_map);
759 return 0;
761 err_unwind:
762 if (adapter->open_device_map == 0)
763 adapter_down(adapter);
764 return err;
768 * Shut down a net device. This routine is called "cxgb_close" in the PF
769 * Driver ...
771 static int cxgb4vf_stop(struct net_device *dev)
773 struct port_info *pi = netdev_priv(dev);
774 struct adapter *adapter = pi->adapter;
776 netif_tx_stop_all_queues(dev);
777 netif_carrier_off(dev);
778 t4vf_enable_vi(adapter, pi->viid, false, false);
779 pi->link_cfg.link_ok = 0;
781 clear_bit(pi->port_id, &adapter->open_device_map);
782 if (adapter->open_device_map == 0)
783 adapter_down(adapter);
784 return 0;
788 * Translate our basic statistics into the standard "ifconfig" statistics.
790 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
792 struct t4vf_port_stats stats;
793 struct port_info *pi = netdev2pinfo(dev);
794 struct adapter *adapter = pi->adapter;
795 struct net_device_stats *ns = &dev->stats;
796 int err;
798 spin_lock(&adapter->stats_lock);
799 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
800 spin_unlock(&adapter->stats_lock);
802 memset(ns, 0, sizeof(*ns));
803 if (err)
804 return ns;
806 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
807 stats.tx_ucast_bytes + stats.tx_offload_bytes);
808 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
809 stats.tx_ucast_frames + stats.tx_offload_frames);
810 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
811 stats.rx_ucast_bytes);
812 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
813 stats.rx_ucast_frames);
814 ns->multicast = stats.rx_mcast_frames;
815 ns->tx_errors = stats.tx_drop_frames;
816 ns->rx_errors = stats.rx_err_frames;
818 return ns;
822 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
823 * at a specified offset within the list, into an array of addrss pointers and
824 * return the number collected.
826 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
827 const u8 **addr,
828 unsigned int offset,
829 unsigned int maxaddrs)
831 unsigned int index = 0;
832 unsigned int naddr = 0;
833 const struct netdev_hw_addr *ha;
835 for_each_dev_addr(dev, ha)
836 if (index++ >= offset) {
837 addr[naddr++] = ha->addr;
838 if (naddr >= maxaddrs)
839 break;
841 return naddr;
845 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
846 * at a specified offset within the list, into an array of addrss pointers and
847 * return the number collected.
849 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
850 const u8 **addr,
851 unsigned int offset,
852 unsigned int maxaddrs)
854 unsigned int index = 0;
855 unsigned int naddr = 0;
856 const struct netdev_hw_addr *ha;
858 netdev_for_each_mc_addr(ha, dev)
859 if (index++ >= offset) {
860 addr[naddr++] = ha->addr;
861 if (naddr >= maxaddrs)
862 break;
864 return naddr;
868 * Configure the exact and hash address filters to handle a port's multicast
869 * and secondary unicast MAC addresses.
871 static int set_addr_filters(const struct net_device *dev, bool sleep)
873 u64 mhash = 0;
874 u64 uhash = 0;
875 bool free = true;
876 unsigned int offset, naddr;
877 const u8 *addr[7];
878 int ret;
879 const struct port_info *pi = netdev_priv(dev);
881 /* first do the secondary unicast addresses */
882 for (offset = 0; ; offset += naddr) {
883 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
884 ARRAY_SIZE(addr));
885 if (naddr == 0)
886 break;
888 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
889 naddr, addr, NULL, &uhash, sleep);
890 if (ret < 0)
891 return ret;
893 free = false;
896 /* next set up the multicast addresses */
897 for (offset = 0; ; offset += naddr) {
898 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
899 ARRAY_SIZE(addr));
900 if (naddr == 0)
901 break;
903 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
904 naddr, addr, NULL, &mhash, sleep);
905 if (ret < 0)
906 return ret;
907 free = false;
910 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
911 uhash | mhash, sleep);
915 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
916 * If @mtu is -1 it is left unchanged.
918 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
920 int ret;
921 struct port_info *pi = netdev_priv(dev);
923 ret = set_addr_filters(dev, sleep_ok);
924 if (ret == 0)
925 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
926 (dev->flags & IFF_PROMISC) != 0,
927 (dev->flags & IFF_ALLMULTI) != 0,
928 1, -1, sleep_ok);
929 return ret;
933 * Set the current receive modes on the device.
935 static void cxgb4vf_set_rxmode(struct net_device *dev)
937 /* unfortunately we can't return errors to the stack */
938 set_rxmode(dev, -1, false);
942 * Find the entry in the interrupt holdoff timer value array which comes
943 * closest to the specified interrupt holdoff value.
945 static int closest_timer(const struct sge *s, int us)
947 int i, timer_idx = 0, min_delta = INT_MAX;
949 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
950 int delta = us - s->timer_val[i];
951 if (delta < 0)
952 delta = -delta;
953 if (delta < min_delta) {
954 min_delta = delta;
955 timer_idx = i;
958 return timer_idx;
961 static int closest_thres(const struct sge *s, int thres)
963 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
965 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
966 delta = thres - s->counter_val[i];
967 if (delta < 0)
968 delta = -delta;
969 if (delta < min_delta) {
970 min_delta = delta;
971 pktcnt_idx = i;
974 return pktcnt_idx;
978 * Return a queue's interrupt hold-off time in us. 0 means no timer.
980 static unsigned int qtimer_val(const struct adapter *adapter,
981 const struct sge_rspq *rspq)
983 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
985 return timer_idx < SGE_NTIMERS
986 ? adapter->sge.timer_val[timer_idx]
987 : 0;
991 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
992 * @adapter: the adapter
993 * @rspq: the RX response queue
994 * @us: the hold-off time in us, or 0 to disable timer
995 * @cnt: the hold-off packet count, or 0 to disable counter
997 * Sets an RX response queue's interrupt hold-off time and packet count.
998 * At least one of the two needs to be enabled for the queue to generate
999 * interrupts.
1001 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1002 unsigned int us, unsigned int cnt)
1004 unsigned int timer_idx;
1007 * If both the interrupt holdoff timer and count are specified as
1008 * zero, default to a holdoff count of 1 ...
1010 if ((us | cnt) == 0)
1011 cnt = 1;
1014 * If an interrupt holdoff count has been specified, then find the
1015 * closest configured holdoff count and use that. If the response
1016 * queue has already been created, then update its queue context
1017 * parameters ...
1019 if (cnt) {
1020 int err;
1021 u32 v, pktcnt_idx;
1023 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1024 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1025 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1026 FW_PARAMS_PARAM_X(
1027 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1028 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1029 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1030 if (err)
1031 return err;
1033 rspq->pktcnt_idx = pktcnt_idx;
1037 * Compute the closest holdoff timer index from the supplied holdoff
1038 * timer value.
1040 timer_idx = (us == 0
1041 ? SGE_TIMER_RSTRT_CNTR
1042 : closest_timer(&adapter->sge, us));
1045 * Update the response queue's interrupt coalescing parameters and
1046 * return success.
1048 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1049 (cnt > 0 ? QINTR_CNT_EN : 0));
1050 return 0;
1054 * Return a version number to identify the type of adapter. The scheme is:
1055 * - bits 0..9: chip version
1056 * - bits 10..15: chip revision
1058 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1061 * Chip version 4, revision 0x3f (cxgb4vf).
1063 return 4 | (0x3f << 10);
1067 * Execute the specified ioctl command.
1069 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1071 int ret = 0;
1073 switch (cmd) {
1075 * The VF Driver doesn't have access to any of the other
1076 * common Ethernet device ioctl()'s (like reading/writing
1077 * PHY registers, etc.
1080 default:
1081 ret = -EOPNOTSUPP;
1082 break;
1084 return ret;
1088 * Change the device's MTU.
1090 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1092 int ret;
1093 struct port_info *pi = netdev_priv(dev);
1095 /* accommodate SACK */
1096 if (new_mtu < 81)
1097 return -EINVAL;
1099 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1100 -1, -1, -1, -1, true);
1101 if (!ret)
1102 dev->mtu = new_mtu;
1103 return ret;
1107 * Change the devices MAC address.
1109 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1111 int ret;
1112 struct sockaddr *addr = _addr;
1113 struct port_info *pi = netdev_priv(dev);
1115 if (!is_valid_ether_addr(addr->sa_data))
1116 return -EINVAL;
1118 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1119 addr->sa_data, true);
1120 if (ret < 0)
1121 return ret;
1123 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1124 pi->xact_addr_filt = ret;
1125 return 0;
1128 #ifdef CONFIG_NET_POLL_CONTROLLER
1130 * Poll all of our receive queues. This is called outside of normal interrupt
1131 * context.
1133 static void cxgb4vf_poll_controller(struct net_device *dev)
1135 struct port_info *pi = netdev_priv(dev);
1136 struct adapter *adapter = pi->adapter;
1138 if (adapter->flags & USING_MSIX) {
1139 struct sge_eth_rxq *rxq;
1140 int nqsets;
1142 rxq = &adapter->sge.ethrxq[pi->first_qset];
1143 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1144 t4vf_sge_intr_msix(0, &rxq->rspq);
1145 rxq++;
1147 } else
1148 t4vf_intr_handler(adapter)(0, adapter);
1150 #endif
1153 * Ethtool operations.
1154 * ===================
1156 * Note that we don't support any ethtool operations which change the physical
1157 * state of the port to which we're linked.
1161 * Return current port link settings.
1163 static int cxgb4vf_get_settings(struct net_device *dev,
1164 struct ethtool_cmd *cmd)
1166 const struct port_info *pi = netdev_priv(dev);
1168 cmd->supported = pi->link_cfg.supported;
1169 cmd->advertising = pi->link_cfg.advertising;
1170 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1171 cmd->duplex = DUPLEX_FULL;
1173 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1174 cmd->phy_address = pi->port_id;
1175 cmd->transceiver = XCVR_EXTERNAL;
1176 cmd->autoneg = pi->link_cfg.autoneg;
1177 cmd->maxtxpkt = 0;
1178 cmd->maxrxpkt = 0;
1179 return 0;
1183 * Return our driver information.
1185 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1186 struct ethtool_drvinfo *drvinfo)
1188 struct adapter *adapter = netdev2adap(dev);
1190 strcpy(drvinfo->driver, KBUILD_MODNAME);
1191 strcpy(drvinfo->version, DRV_VERSION);
1192 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1193 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1194 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1195 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1196 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1197 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1198 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1199 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1200 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1201 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1202 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1206 * Return current adapter message level.
1208 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1210 return netdev2adap(dev)->msg_enable;
1214 * Set current adapter message level.
1216 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1218 netdev2adap(dev)->msg_enable = msglevel;
1222 * Return the device's current Queue Set ring size parameters along with the
1223 * allowed maximum values. Since ethtool doesn't understand the concept of
1224 * multi-queue devices, we just return the current values associated with the
1225 * first Queue Set.
1227 static void cxgb4vf_get_ringparam(struct net_device *dev,
1228 struct ethtool_ringparam *rp)
1230 const struct port_info *pi = netdev_priv(dev);
1231 const struct sge *s = &pi->adapter->sge;
1233 rp->rx_max_pending = MAX_RX_BUFFERS;
1234 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1235 rp->rx_jumbo_max_pending = 0;
1236 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1238 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1239 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1240 rp->rx_jumbo_pending = 0;
1241 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1245 * Set the Queue Set ring size parameters for the device. Again, since
1246 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1247 * apply these new values across all of the Queue Sets associated with the
1248 * device -- after vetting them of course!
1250 static int cxgb4vf_set_ringparam(struct net_device *dev,
1251 struct ethtool_ringparam *rp)
1253 const struct port_info *pi = netdev_priv(dev);
1254 struct adapter *adapter = pi->adapter;
1255 struct sge *s = &adapter->sge;
1256 int qs;
1258 if (rp->rx_pending > MAX_RX_BUFFERS ||
1259 rp->rx_jumbo_pending ||
1260 rp->tx_pending > MAX_TXQ_ENTRIES ||
1261 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1262 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1263 rp->rx_pending < MIN_FL_ENTRIES ||
1264 rp->tx_pending < MIN_TXQ_ENTRIES)
1265 return -EINVAL;
1267 if (adapter->flags & FULL_INIT_DONE)
1268 return -EBUSY;
1270 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1271 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1272 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1273 s->ethtxq[qs].q.size = rp->tx_pending;
1275 return 0;
1279 * Return the interrupt holdoff timer and count for the first Queue Set on the
1280 * device. Our extension ioctl() (the cxgbtool interface) allows the
1281 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1283 static int cxgb4vf_get_coalesce(struct net_device *dev,
1284 struct ethtool_coalesce *coalesce)
1286 const struct port_info *pi = netdev_priv(dev);
1287 const struct adapter *adapter = pi->adapter;
1288 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1290 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1291 coalesce->rx_max_coalesced_frames =
1292 ((rspq->intr_params & QINTR_CNT_EN)
1293 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1294 : 0);
1295 return 0;
1299 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1300 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1301 * the interrupt holdoff timer on any of the device's Queue Sets.
1303 static int cxgb4vf_set_coalesce(struct net_device *dev,
1304 struct ethtool_coalesce *coalesce)
1306 const struct port_info *pi = netdev_priv(dev);
1307 struct adapter *adapter = pi->adapter;
1309 return set_rxq_intr_params(adapter,
1310 &adapter->sge.ethrxq[pi->first_qset].rspq,
1311 coalesce->rx_coalesce_usecs,
1312 coalesce->rx_max_coalesced_frames);
1316 * Report current port link pause parameter settings.
1318 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1319 struct ethtool_pauseparam *pauseparam)
1321 struct port_info *pi = netdev_priv(dev);
1323 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1324 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1325 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1329 * Identify the port by blinking the port's LED.
1331 static int cxgb4vf_phys_id(struct net_device *dev,
1332 enum ethtool_phys_id_state state)
1334 unsigned int val;
1335 struct port_info *pi = netdev_priv(dev);
1337 if (state == ETHTOOL_ID_ACTIVE)
1338 val = 0xffff;
1339 else if (state == ETHTOOL_ID_INACTIVE)
1340 val = 0;
1341 else
1342 return -EINVAL;
1344 return t4vf_identify_port(pi->adapter, pi->viid, val);
1348 * Port stats maintained per queue of the port.
1350 struct queue_port_stats {
1351 u64 tso;
1352 u64 tx_csum;
1353 u64 rx_csum;
1354 u64 vlan_ex;
1355 u64 vlan_ins;
1356 u64 lro_pkts;
1357 u64 lro_merged;
1361 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1362 * these need to match the order of statistics returned by
1363 * t4vf_get_port_stats().
1365 static const char stats_strings[][ETH_GSTRING_LEN] = {
1367 * These must match the layout of the t4vf_port_stats structure.
1369 "TxBroadcastBytes ",
1370 "TxBroadcastFrames ",
1371 "TxMulticastBytes ",
1372 "TxMulticastFrames ",
1373 "TxUnicastBytes ",
1374 "TxUnicastFrames ",
1375 "TxDroppedFrames ",
1376 "TxOffloadBytes ",
1377 "TxOffloadFrames ",
1378 "RxBroadcastBytes ",
1379 "RxBroadcastFrames ",
1380 "RxMulticastBytes ",
1381 "RxMulticastFrames ",
1382 "RxUnicastBytes ",
1383 "RxUnicastFrames ",
1384 "RxErrorFrames ",
1387 * These are accumulated per-queue statistics and must match the
1388 * order of the fields in the queue_port_stats structure.
1390 "TSO ",
1391 "TxCsumOffload ",
1392 "RxCsumGood ",
1393 "VLANextractions ",
1394 "VLANinsertions ",
1395 "GROPackets ",
1396 "GROMerged ",
1400 * Return the number of statistics in the specified statistics set.
1402 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1404 switch (sset) {
1405 case ETH_SS_STATS:
1406 return ARRAY_SIZE(stats_strings);
1407 default:
1408 return -EOPNOTSUPP;
1410 /*NOTREACHED*/
1414 * Return the strings for the specified statistics set.
1416 static void cxgb4vf_get_strings(struct net_device *dev,
1417 u32 sset,
1418 u8 *data)
1420 switch (sset) {
1421 case ETH_SS_STATS:
1422 memcpy(data, stats_strings, sizeof(stats_strings));
1423 break;
1428 * Small utility routine to accumulate queue statistics across the queues of
1429 * a "port".
1431 static void collect_sge_port_stats(const struct adapter *adapter,
1432 const struct port_info *pi,
1433 struct queue_port_stats *stats)
1435 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1436 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1437 int qs;
1439 memset(stats, 0, sizeof(*stats));
1440 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1441 stats->tso += txq->tso;
1442 stats->tx_csum += txq->tx_cso;
1443 stats->rx_csum += rxq->stats.rx_cso;
1444 stats->vlan_ex += rxq->stats.vlan_ex;
1445 stats->vlan_ins += txq->vlan_ins;
1446 stats->lro_pkts += rxq->stats.lro_pkts;
1447 stats->lro_merged += rxq->stats.lro_merged;
1452 * Return the ETH_SS_STATS statistics set.
1454 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1455 struct ethtool_stats *stats,
1456 u64 *data)
1458 struct port_info *pi = netdev2pinfo(dev);
1459 struct adapter *adapter = pi->adapter;
1460 int err = t4vf_get_port_stats(adapter, pi->pidx,
1461 (struct t4vf_port_stats *)data);
1462 if (err)
1463 memset(data, 0, sizeof(struct t4vf_port_stats));
1465 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1466 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1470 * Return the size of our register map.
1472 static int cxgb4vf_get_regs_len(struct net_device *dev)
1474 return T4VF_REGMAP_SIZE;
1478 * Dump a block of registers, start to end inclusive, into a buffer.
1480 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1481 unsigned int start, unsigned int end)
1483 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1485 for ( ; start <= end; start += sizeof(u32)) {
1487 * Avoid reading the Mailbox Control register since that
1488 * can trigger a Mailbox Ownership Arbitration cycle and
1489 * interfere with communication with the firmware.
1491 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1492 *bp++ = 0xffff;
1493 else
1494 *bp++ = t4_read_reg(adapter, start);
1499 * Copy our entire register map into the provided buffer.
1501 static void cxgb4vf_get_regs(struct net_device *dev,
1502 struct ethtool_regs *regs,
1503 void *regbuf)
1505 struct adapter *adapter = netdev2adap(dev);
1507 regs->version = mk_adap_vers(adapter);
1510 * Fill in register buffer with our register map.
1512 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1514 reg_block_dump(adapter, regbuf,
1515 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1516 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1517 reg_block_dump(adapter, regbuf,
1518 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1519 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1520 reg_block_dump(adapter, regbuf,
1521 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1522 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1523 reg_block_dump(adapter, regbuf,
1524 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1525 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1527 reg_block_dump(adapter, regbuf,
1528 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1529 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1533 * Report current Wake On LAN settings.
1535 static void cxgb4vf_get_wol(struct net_device *dev,
1536 struct ethtool_wolinfo *wol)
1538 wol->supported = 0;
1539 wol->wolopts = 0;
1540 memset(&wol->sopass, 0, sizeof(wol->sopass));
1544 * TCP Segmentation Offload flags which we support.
1546 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1548 static struct ethtool_ops cxgb4vf_ethtool_ops = {
1549 .get_settings = cxgb4vf_get_settings,
1550 .get_drvinfo = cxgb4vf_get_drvinfo,
1551 .get_msglevel = cxgb4vf_get_msglevel,
1552 .set_msglevel = cxgb4vf_set_msglevel,
1553 .get_ringparam = cxgb4vf_get_ringparam,
1554 .set_ringparam = cxgb4vf_set_ringparam,
1555 .get_coalesce = cxgb4vf_get_coalesce,
1556 .set_coalesce = cxgb4vf_set_coalesce,
1557 .get_pauseparam = cxgb4vf_get_pauseparam,
1558 .get_link = ethtool_op_get_link,
1559 .get_strings = cxgb4vf_get_strings,
1560 .set_phys_id = cxgb4vf_phys_id,
1561 .get_sset_count = cxgb4vf_get_sset_count,
1562 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1563 .get_regs_len = cxgb4vf_get_regs_len,
1564 .get_regs = cxgb4vf_get_regs,
1565 .get_wol = cxgb4vf_get_wol,
1569 * /sys/kernel/debug/cxgb4vf support code and data.
1570 * ================================================
1574 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1576 #define QPL 4
1578 static int sge_qinfo_show(struct seq_file *seq, void *v)
1580 struct adapter *adapter = seq->private;
1581 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1582 int qs, r = (uintptr_t)v - 1;
1584 if (r)
1585 seq_putc(seq, '\n');
1587 #define S3(fmt_spec, s, v) \
1588 do {\
1589 seq_printf(seq, "%-12s", s); \
1590 for (qs = 0; qs < n; ++qs) \
1591 seq_printf(seq, " %16" fmt_spec, v); \
1592 seq_putc(seq, '\n'); \
1593 } while (0)
1594 #define S(s, v) S3("s", s, v)
1595 #define T(s, v) S3("u", s, txq[qs].v)
1596 #define R(s, v) S3("u", s, rxq[qs].v)
1598 if (r < eth_entries) {
1599 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1600 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1601 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1603 S("QType:", "Ethernet");
1604 S("Interface:",
1605 (rxq[qs].rspq.netdev
1606 ? rxq[qs].rspq.netdev->name
1607 : "N/A"));
1608 S3("d", "Port:",
1609 (rxq[qs].rspq.netdev
1610 ? ((struct port_info *)
1611 netdev_priv(rxq[qs].rspq.netdev))->port_id
1612 : -1));
1613 T("TxQ ID:", q.abs_id);
1614 T("TxQ size:", q.size);
1615 T("TxQ inuse:", q.in_use);
1616 T("TxQ PIdx:", q.pidx);
1617 T("TxQ CIdx:", q.cidx);
1618 R("RspQ ID:", rspq.abs_id);
1619 R("RspQ size:", rspq.size);
1620 R("RspQE size:", rspq.iqe_len);
1621 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1622 S3("u", "Intr pktcnt:",
1623 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1624 R("RspQ CIdx:", rspq.cidx);
1625 R("RspQ Gen:", rspq.gen);
1626 R("FL ID:", fl.abs_id);
1627 R("FL size:", fl.size - MIN_FL_RESID);
1628 R("FL avail:", fl.avail);
1629 R("FL PIdx:", fl.pidx);
1630 R("FL CIdx:", fl.cidx);
1631 return 0;
1634 r -= eth_entries;
1635 if (r == 0) {
1636 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1638 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1639 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1640 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1641 qtimer_val(adapter, evtq));
1642 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1643 adapter->sge.counter_val[evtq->pktcnt_idx]);
1644 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1645 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1646 } else if (r == 1) {
1647 const struct sge_rspq *intrq = &adapter->sge.intrq;
1649 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1650 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1651 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1652 qtimer_val(adapter, intrq));
1653 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1654 adapter->sge.counter_val[intrq->pktcnt_idx]);
1655 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1656 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1659 #undef R
1660 #undef T
1661 #undef S
1662 #undef S3
1664 return 0;
1668 * Return the number of "entries" in our "file". We group the multi-Queue
1669 * sections with QPL Queue Sets per "entry". The sections of the output are:
1671 * Ethernet RX/TX Queue Sets
1672 * Firmware Event Queue
1673 * Forwarded Interrupt Queue (if in MSI mode)
1675 static int sge_queue_entries(const struct adapter *adapter)
1677 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1678 ((adapter->flags & USING_MSI) != 0);
1681 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1683 int entries = sge_queue_entries(seq->private);
1685 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1688 static void sge_queue_stop(struct seq_file *seq, void *v)
1692 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1694 int entries = sge_queue_entries(seq->private);
1696 ++*pos;
1697 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1700 static const struct seq_operations sge_qinfo_seq_ops = {
1701 .start = sge_queue_start,
1702 .next = sge_queue_next,
1703 .stop = sge_queue_stop,
1704 .show = sge_qinfo_show
1707 static int sge_qinfo_open(struct inode *inode, struct file *file)
1709 int res = seq_open(file, &sge_qinfo_seq_ops);
1711 if (!res) {
1712 struct seq_file *seq = file->private_data;
1713 seq->private = inode->i_private;
1715 return res;
1718 static const struct file_operations sge_qinfo_debugfs_fops = {
1719 .owner = THIS_MODULE,
1720 .open = sge_qinfo_open,
1721 .read = seq_read,
1722 .llseek = seq_lseek,
1723 .release = seq_release,
1727 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1729 #define QPL 4
1731 static int sge_qstats_show(struct seq_file *seq, void *v)
1733 struct adapter *adapter = seq->private;
1734 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1735 int qs, r = (uintptr_t)v - 1;
1737 if (r)
1738 seq_putc(seq, '\n');
1740 #define S3(fmt, s, v) \
1741 do { \
1742 seq_printf(seq, "%-16s", s); \
1743 for (qs = 0; qs < n; ++qs) \
1744 seq_printf(seq, " %8" fmt, v); \
1745 seq_putc(seq, '\n'); \
1746 } while (0)
1747 #define S(s, v) S3("s", s, v)
1749 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1750 #define T(s, v) T3("lu", s, v)
1752 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1753 #define R(s, v) R3("lu", s, v)
1755 if (r < eth_entries) {
1756 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1757 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1758 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1760 S("QType:", "Ethernet");
1761 S("Interface:",
1762 (rxq[qs].rspq.netdev
1763 ? rxq[qs].rspq.netdev->name
1764 : "N/A"));
1765 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1766 R("RxPackets:", stats.pkts);
1767 R("RxCSO:", stats.rx_cso);
1768 R("VLANxtract:", stats.vlan_ex);
1769 R("LROmerged:", stats.lro_merged);
1770 R("LROpackets:", stats.lro_pkts);
1771 R("RxDrops:", stats.rx_drops);
1772 T("TSO:", tso);
1773 T("TxCSO:", tx_cso);
1774 T("VLANins:", vlan_ins);
1775 T("TxQFull:", q.stops);
1776 T("TxQRestarts:", q.restarts);
1777 T("TxMapErr:", mapping_err);
1778 R("FLAllocErr:", fl.alloc_failed);
1779 R("FLLrgAlcErr:", fl.large_alloc_failed);
1780 R("FLStarving:", fl.starving);
1781 return 0;
1784 r -= eth_entries;
1785 if (r == 0) {
1786 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1788 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1789 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1790 evtq->unhandled_irqs);
1791 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1792 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1793 } else if (r == 1) {
1794 const struct sge_rspq *intrq = &adapter->sge.intrq;
1796 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1797 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1798 intrq->unhandled_irqs);
1799 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1800 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1803 #undef R
1804 #undef T
1805 #undef S
1806 #undef R3
1807 #undef T3
1808 #undef S3
1810 return 0;
1814 * Return the number of "entries" in our "file". We group the multi-Queue
1815 * sections with QPL Queue Sets per "entry". The sections of the output are:
1817 * Ethernet RX/TX Queue Sets
1818 * Firmware Event Queue
1819 * Forwarded Interrupt Queue (if in MSI mode)
1821 static int sge_qstats_entries(const struct adapter *adapter)
1823 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1824 ((adapter->flags & USING_MSI) != 0);
1827 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1829 int entries = sge_qstats_entries(seq->private);
1831 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1834 static void sge_qstats_stop(struct seq_file *seq, void *v)
1838 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1840 int entries = sge_qstats_entries(seq->private);
1842 (*pos)++;
1843 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1846 static const struct seq_operations sge_qstats_seq_ops = {
1847 .start = sge_qstats_start,
1848 .next = sge_qstats_next,
1849 .stop = sge_qstats_stop,
1850 .show = sge_qstats_show
1853 static int sge_qstats_open(struct inode *inode, struct file *file)
1855 int res = seq_open(file, &sge_qstats_seq_ops);
1857 if (res == 0) {
1858 struct seq_file *seq = file->private_data;
1859 seq->private = inode->i_private;
1861 return res;
1864 static const struct file_operations sge_qstats_proc_fops = {
1865 .owner = THIS_MODULE,
1866 .open = sge_qstats_open,
1867 .read = seq_read,
1868 .llseek = seq_lseek,
1869 .release = seq_release,
1873 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1875 static int resources_show(struct seq_file *seq, void *v)
1877 struct adapter *adapter = seq->private;
1878 struct vf_resources *vfres = &adapter->params.vfres;
1880 #define S(desc, fmt, var) \
1881 seq_printf(seq, "%-60s " fmt "\n", \
1882 desc " (" #var "):", vfres->var)
1884 S("Virtual Interfaces", "%d", nvi);
1885 S("Egress Queues", "%d", neq);
1886 S("Ethernet Control", "%d", nethctrl);
1887 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1888 S("Ingress Queues", "%d", niq);
1889 S("Traffic Class", "%d", tc);
1890 S("Port Access Rights Mask", "%#x", pmask);
1891 S("MAC Address Filters", "%d", nexactf);
1892 S("Firmware Command Read Capabilities", "%#x", r_caps);
1893 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1895 #undef S
1897 return 0;
1900 static int resources_open(struct inode *inode, struct file *file)
1902 return single_open(file, resources_show, inode->i_private);
1905 static const struct file_operations resources_proc_fops = {
1906 .owner = THIS_MODULE,
1907 .open = resources_open,
1908 .read = seq_read,
1909 .llseek = seq_lseek,
1910 .release = single_release,
1914 * Show Virtual Interfaces.
1916 static int interfaces_show(struct seq_file *seq, void *v)
1918 if (v == SEQ_START_TOKEN) {
1919 seq_puts(seq, "Interface Port VIID\n");
1920 } else {
1921 struct adapter *adapter = seq->private;
1922 int pidx = (uintptr_t)v - 2;
1923 struct net_device *dev = adapter->port[pidx];
1924 struct port_info *pi = netdev_priv(dev);
1926 seq_printf(seq, "%9s %4d %#5x\n",
1927 dev->name, pi->port_id, pi->viid);
1929 return 0;
1932 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1934 return pos <= adapter->params.nports
1935 ? (void *)(uintptr_t)(pos + 1)
1936 : NULL;
1939 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1941 return *pos
1942 ? interfaces_get_idx(seq->private, *pos)
1943 : SEQ_START_TOKEN;
1946 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1948 (*pos)++;
1949 return interfaces_get_idx(seq->private, *pos);
1952 static void interfaces_stop(struct seq_file *seq, void *v)
1956 static const struct seq_operations interfaces_seq_ops = {
1957 .start = interfaces_start,
1958 .next = interfaces_next,
1959 .stop = interfaces_stop,
1960 .show = interfaces_show
1963 static int interfaces_open(struct inode *inode, struct file *file)
1965 int res = seq_open(file, &interfaces_seq_ops);
1967 if (res == 0) {
1968 struct seq_file *seq = file->private_data;
1969 seq->private = inode->i_private;
1971 return res;
1974 static const struct file_operations interfaces_proc_fops = {
1975 .owner = THIS_MODULE,
1976 .open = interfaces_open,
1977 .read = seq_read,
1978 .llseek = seq_lseek,
1979 .release = seq_release,
1983 * /sys/kernel/debugfs/cxgb4vf/ files list.
1985 struct cxgb4vf_debugfs_entry {
1986 const char *name; /* name of debugfs node */
1987 mode_t mode; /* file system mode */
1988 const struct file_operations *fops;
1991 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
1992 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
1993 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
1994 { "resources", S_IRUGO, &resources_proc_fops },
1995 { "interfaces", S_IRUGO, &interfaces_proc_fops },
1999 * Module and device initialization and cleanup code.
2000 * ==================================================
2004 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2005 * directory (debugfs_root) has already been set up.
2007 static int __devinit setup_debugfs(struct adapter *adapter)
2009 int i;
2011 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2014 * Debugfs support is best effort.
2016 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2017 (void)debugfs_create_file(debugfs_files[i].name,
2018 debugfs_files[i].mode,
2019 adapter->debugfs_root,
2020 (void *)adapter,
2021 debugfs_files[i].fops);
2023 return 0;
2027 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2028 * it to our caller to tear down the directory (debugfs_root).
2030 static void cleanup_debugfs(struct adapter *adapter)
2032 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2035 * Unlike our sister routine cleanup_proc(), we don't need to remove
2036 * individual entries because a call will be made to
2037 * debugfs_remove_recursive(). We just need to clean up any ancillary
2038 * persistent state.
2040 /* nothing to do */
2044 * Perform early "adapter" initialization. This is where we discover what
2045 * adapter parameters we're going to be using and initialize basic adapter
2046 * hardware support.
2048 static int __devinit adap_init0(struct adapter *adapter)
2050 struct vf_resources *vfres = &adapter->params.vfres;
2051 struct sge_params *sge_params = &adapter->params.sge;
2052 struct sge *s = &adapter->sge;
2053 unsigned int ethqsets;
2054 int err;
2057 * Wait for the device to become ready before proceeding ...
2059 err = t4vf_wait_dev_ready(adapter);
2060 if (err) {
2061 dev_err(adapter->pdev_dev, "device didn't become ready:"
2062 " err=%d\n", err);
2063 return err;
2067 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2068 * 2.6.31 and later we can't call pci_reset_function() in order to
2069 * issue an FLR because of a self- deadlock on the device semaphore.
2070 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2071 * cases where they're needed -- for instance, some versions of KVM
2072 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2073 * use the firmware based reset in order to reset any per function
2074 * state.
2076 err = t4vf_fw_reset(adapter);
2077 if (err < 0) {
2078 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2079 return err;
2083 * Grab basic operational parameters. These will predominantly have
2084 * been set up by the Physical Function Driver or will be hard coded
2085 * into the adapter. We just have to live with them ... Note that
2086 * we _must_ get our VPD parameters before our SGE parameters because
2087 * we need to know the adapter's core clock from the VPD in order to
2088 * properly decode the SGE Timer Values.
2090 err = t4vf_get_dev_params(adapter);
2091 if (err) {
2092 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2093 " device parameters: err=%d\n", err);
2094 return err;
2096 err = t4vf_get_vpd_params(adapter);
2097 if (err) {
2098 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2099 " VPD parameters: err=%d\n", err);
2100 return err;
2102 err = t4vf_get_sge_params(adapter);
2103 if (err) {
2104 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2105 " SGE parameters: err=%d\n", err);
2106 return err;
2108 err = t4vf_get_rss_glb_config(adapter);
2109 if (err) {
2110 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2111 " RSS parameters: err=%d\n", err);
2112 return err;
2114 if (adapter->params.rss.mode !=
2115 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2116 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2117 " mode %d\n", adapter->params.rss.mode);
2118 return -EINVAL;
2120 err = t4vf_sge_init(adapter);
2121 if (err) {
2122 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2123 " err=%d\n", err);
2124 return err;
2128 * Retrieve our RX interrupt holdoff timer values and counter
2129 * threshold values from the SGE parameters.
2131 s->timer_val[0] = core_ticks_to_us(adapter,
2132 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2133 s->timer_val[1] = core_ticks_to_us(adapter,
2134 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2135 s->timer_val[2] = core_ticks_to_us(adapter,
2136 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2137 s->timer_val[3] = core_ticks_to_us(adapter,
2138 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2139 s->timer_val[4] = core_ticks_to_us(adapter,
2140 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2141 s->timer_val[5] = core_ticks_to_us(adapter,
2142 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2144 s->counter_val[0] =
2145 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2146 s->counter_val[1] =
2147 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2148 s->counter_val[2] =
2149 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2150 s->counter_val[3] =
2151 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2154 * Grab our Virtual Interface resource allocation, extract the
2155 * features that we're interested in and do a bit of sanity testing on
2156 * what we discover.
2158 err = t4vf_get_vfres(adapter);
2159 if (err) {
2160 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2161 " resources: err=%d\n", err);
2162 return err;
2166 * The number of "ports" which we support is equal to the number of
2167 * Virtual Interfaces with which we've been provisioned.
2169 adapter->params.nports = vfres->nvi;
2170 if (adapter->params.nports > MAX_NPORTS) {
2171 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2172 " virtual interfaces\n", MAX_NPORTS,
2173 adapter->params.nports);
2174 adapter->params.nports = MAX_NPORTS;
2178 * We need to reserve a number of the ingress queues with Free List
2179 * and Interrupt capabilities for special interrupt purposes (like
2180 * asynchronous firmware messages, or forwarded interrupts if we're
2181 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2182 * matched up one-for-one with Ethernet/Control egress queues in order
2183 * to form "Queue Sets" which will be aportioned between the "ports".
2184 * For each Queue Set, we'll need the ability to allocate two Egress
2185 * Contexts -- one for the Ingress Queue Free List and one for the TX
2186 * Ethernet Queue.
2188 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2189 if (vfres->nethctrl != ethqsets) {
2190 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2191 " ingress/egress queues (%d/%d); using minimum for"
2192 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2193 ethqsets = min(vfres->nethctrl, ethqsets);
2195 if (vfres->neq < ethqsets*2) {
2196 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2197 " to support Queue Sets (%d); reducing allowed Queue"
2198 " Sets\n", vfres->neq, ethqsets);
2199 ethqsets = vfres->neq/2;
2201 if (ethqsets > MAX_ETH_QSETS) {
2202 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2203 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2204 ethqsets = MAX_ETH_QSETS;
2206 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2207 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2208 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2210 adapter->sge.max_ethqsets = ethqsets;
2213 * Check for various parameter sanity issues. Most checks simply
2214 * result in us using fewer resources than our provissioning but we
2215 * do need at least one "port" with which to work ...
2217 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2218 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2219 " virtual interfaces (too few Queue Sets)\n",
2220 adapter->sge.max_ethqsets, adapter->params.nports);
2221 adapter->params.nports = adapter->sge.max_ethqsets;
2223 if (adapter->params.nports == 0) {
2224 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2225 "usable!\n");
2226 return -EINVAL;
2228 return 0;
2231 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2232 u8 pkt_cnt_idx, unsigned int size,
2233 unsigned int iqe_size)
2235 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2236 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2237 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2238 ? pkt_cnt_idx
2239 : 0);
2240 rspq->iqe_len = iqe_size;
2241 rspq->size = size;
2245 * Perform default configuration of DMA queues depending on the number and
2246 * type of ports we found and the number of available CPUs. Most settings can
2247 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2248 * being brought up for the first time.
2250 static void __devinit cfg_queues(struct adapter *adapter)
2252 struct sge *s = &adapter->sge;
2253 int q10g, n10g, qidx, pidx, qs;
2254 size_t iqe_size;
2257 * We should not be called till we know how many Queue Sets we can
2258 * support. In particular, this means that we need to know what kind
2259 * of interrupts we'll be using ...
2261 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2264 * Count the number of 10GbE Virtual Interfaces that we have.
2266 n10g = 0;
2267 for_each_port(adapter, pidx)
2268 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2271 * We default to 1 queue per non-10G port and up to # of cores queues
2272 * per 10G port.
2274 if (n10g == 0)
2275 q10g = 0;
2276 else {
2277 int n1g = (adapter->params.nports - n10g);
2278 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2279 if (q10g > num_online_cpus())
2280 q10g = num_online_cpus();
2284 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2285 * The layout will be established in setup_sge_queues() when the
2286 * adapter is brough up for the first time.
2288 qidx = 0;
2289 for_each_port(adapter, pidx) {
2290 struct port_info *pi = adap2pinfo(adapter, pidx);
2292 pi->first_qset = qidx;
2293 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2294 qidx += pi->nqsets;
2296 s->ethqsets = qidx;
2299 * The Ingress Queue Entry Size for our various Response Queues needs
2300 * to be big enough to accommodate the largest message we can receive
2301 * from the chip/firmware; which is 64 bytes ...
2303 iqe_size = 64;
2306 * Set up default Queue Set parameters ... Start off with the
2307 * shortest interrupt holdoff timer.
2309 for (qs = 0; qs < s->max_ethqsets; qs++) {
2310 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2311 struct sge_eth_txq *txq = &s->ethtxq[qs];
2313 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2314 rxq->fl.size = 72;
2315 txq->q.size = 1024;
2319 * The firmware event queue is used for link state changes and
2320 * notifications of TX DMA completions.
2322 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2325 * The forwarded interrupt queue is used when we're in MSI interrupt
2326 * mode. In this mode all interrupts associated with RX queues will
2327 * be forwarded to a single queue which we'll associate with our MSI
2328 * interrupt vector. The messages dropped in the forwarded interrupt
2329 * queue will indicate which ingress queue needs servicing ... This
2330 * queue needs to be large enough to accommodate all of the ingress
2331 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2332 * from equalling the CIDX if every ingress queue has an outstanding
2333 * interrupt). The queue doesn't need to be any larger because no
2334 * ingress queue will ever have more than one outstanding interrupt at
2335 * any time ...
2337 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2338 iqe_size);
2342 * Reduce the number of Ethernet queues across all ports to at most n.
2343 * n provides at least one queue per port.
2345 static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2347 int i;
2348 struct port_info *pi;
2351 * While we have too many active Ether Queue Sets, interate across the
2352 * "ports" and reduce their individual Queue Set allocations.
2354 BUG_ON(n < adapter->params.nports);
2355 while (n < adapter->sge.ethqsets)
2356 for_each_port(adapter, i) {
2357 pi = adap2pinfo(adapter, i);
2358 if (pi->nqsets > 1) {
2359 pi->nqsets--;
2360 adapter->sge.ethqsets--;
2361 if (adapter->sge.ethqsets <= n)
2362 break;
2367 * Reassign the starting Queue Sets for each of the "ports" ...
2369 n = 0;
2370 for_each_port(adapter, i) {
2371 pi = adap2pinfo(adapter, i);
2372 pi->first_qset = n;
2373 n += pi->nqsets;
2378 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2379 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2380 * need. Minimally we need one for every Virtual Interface plus those needed
2381 * for our "extras". Note that this process may lower the maximum number of
2382 * allowed Queue Sets ...
2384 static int __devinit enable_msix(struct adapter *adapter)
2386 int i, err, want, need;
2387 struct msix_entry entries[MSIX_ENTRIES];
2388 struct sge *s = &adapter->sge;
2390 for (i = 0; i < MSIX_ENTRIES; ++i)
2391 entries[i].entry = i;
2394 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2395 * plus those needed for our "extras" (for example, the firmware
2396 * message queue). We _need_ at least one "Queue Set" per Virtual
2397 * Interface plus those needed for our "extras". So now we get to see
2398 * if the song is right ...
2400 want = s->max_ethqsets + MSIX_EXTRAS;
2401 need = adapter->params.nports + MSIX_EXTRAS;
2402 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2403 want = err;
2405 if (err == 0) {
2406 int nqsets = want - MSIX_EXTRAS;
2407 if (nqsets < s->max_ethqsets) {
2408 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2409 " for %d Queue Sets\n", nqsets);
2410 s->max_ethqsets = nqsets;
2411 if (nqsets < s->ethqsets)
2412 reduce_ethqs(adapter, nqsets);
2414 for (i = 0; i < want; ++i)
2415 adapter->msix_info[i].vec = entries[i].vector;
2416 } else if (err > 0) {
2417 pci_disable_msix(adapter->pdev);
2418 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2419 " not using MSI-X\n", err);
2421 return err;
2424 #ifdef HAVE_NET_DEVICE_OPS
2425 static const struct net_device_ops cxgb4vf_netdev_ops = {
2426 .ndo_open = cxgb4vf_open,
2427 .ndo_stop = cxgb4vf_stop,
2428 .ndo_start_xmit = t4vf_eth_xmit,
2429 .ndo_get_stats = cxgb4vf_get_stats,
2430 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2431 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2432 .ndo_validate_addr = eth_validate_addr,
2433 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2434 .ndo_change_mtu = cxgb4vf_change_mtu,
2435 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2436 #ifdef CONFIG_NET_POLL_CONTROLLER
2437 .ndo_poll_controller = cxgb4vf_poll_controller,
2438 #endif
2440 #endif
2443 * "Probe" a device: initialize a device and construct all kernel and driver
2444 * state needed to manage the device. This routine is called "init_one" in
2445 * the PF Driver ...
2447 static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2448 const struct pci_device_id *ent)
2450 static int version_printed;
2452 int pci_using_dac;
2453 int err, pidx;
2454 unsigned int pmask;
2455 struct adapter *adapter;
2456 struct port_info *pi;
2457 struct net_device *netdev;
2460 * Print our driver banner the first time we're called to initialize a
2461 * device.
2463 if (version_printed == 0) {
2464 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2465 version_printed = 1;
2469 * Initialize generic PCI device state.
2471 err = pci_enable_device(pdev);
2472 if (err) {
2473 dev_err(&pdev->dev, "cannot enable PCI device\n");
2474 return err;
2478 * Reserve PCI resources for the device. If we can't get them some
2479 * other driver may have already claimed the device ...
2481 err = pci_request_regions(pdev, KBUILD_MODNAME);
2482 if (err) {
2483 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2484 goto err_disable_device;
2488 * Set up our DMA mask: try for 64-bit address masking first and
2489 * fall back to 32-bit if we can't get 64 bits ...
2491 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2492 if (err == 0) {
2493 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2494 if (err) {
2495 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2496 " coherent allocations\n");
2497 goto err_release_regions;
2499 pci_using_dac = 1;
2500 } else {
2501 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2502 if (err != 0) {
2503 dev_err(&pdev->dev, "no usable DMA configuration\n");
2504 goto err_release_regions;
2506 pci_using_dac = 0;
2510 * Enable bus mastering for the device ...
2512 pci_set_master(pdev);
2515 * Allocate our adapter data structure and attach it to the device.
2517 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2518 if (!adapter) {
2519 err = -ENOMEM;
2520 goto err_release_regions;
2522 pci_set_drvdata(pdev, adapter);
2523 adapter->pdev = pdev;
2524 adapter->pdev_dev = &pdev->dev;
2527 * Initialize SMP data synchronization resources.
2529 spin_lock_init(&adapter->stats_lock);
2532 * Map our I/O registers in BAR0.
2534 adapter->regs = pci_ioremap_bar(pdev, 0);
2535 if (!adapter->regs) {
2536 dev_err(&pdev->dev, "cannot map device registers\n");
2537 err = -ENOMEM;
2538 goto err_free_adapter;
2542 * Initialize adapter level features.
2544 adapter->name = pci_name(pdev);
2545 adapter->msg_enable = dflt_msg_enable;
2546 err = adap_init0(adapter);
2547 if (err)
2548 goto err_unmap_bar;
2551 * Allocate our "adapter ports" and stitch everything together.
2553 pmask = adapter->params.vfres.pmask;
2554 for_each_port(adapter, pidx) {
2555 int port_id, viid;
2558 * We simplistically allocate our virtual interfaces
2559 * sequentially across the port numbers to which we have
2560 * access rights. This should be configurable in some manner
2561 * ...
2563 if (pmask == 0)
2564 break;
2565 port_id = ffs(pmask) - 1;
2566 pmask &= ~(1 << port_id);
2567 viid = t4vf_alloc_vi(adapter, port_id);
2568 if (viid < 0) {
2569 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2570 " err=%d\n", port_id, viid);
2571 err = viid;
2572 goto err_free_dev;
2576 * Allocate our network device and stitch things together.
2578 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2579 MAX_PORT_QSETS);
2580 if (netdev == NULL) {
2581 dev_err(&pdev->dev, "cannot allocate netdev for"
2582 " port %d\n", port_id);
2583 t4vf_free_vi(adapter, viid);
2584 err = -ENOMEM;
2585 goto err_free_dev;
2587 adapter->port[pidx] = netdev;
2588 SET_NETDEV_DEV(netdev, &pdev->dev);
2589 pi = netdev_priv(netdev);
2590 pi->adapter = adapter;
2591 pi->pidx = pidx;
2592 pi->port_id = port_id;
2593 pi->viid = viid;
2596 * Initialize the starting state of our "port" and register
2597 * it.
2599 pi->xact_addr_filt = -1;
2600 netif_carrier_off(netdev);
2601 netdev->irq = pdev->irq;
2603 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2604 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2605 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
2606 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2607 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2608 NETIF_F_HIGHDMA;
2609 netdev->features = netdev->hw_features |
2610 NETIF_F_HW_VLAN_RX;
2611 if (pci_using_dac)
2612 netdev->features |= NETIF_F_HIGHDMA;
2614 #ifdef HAVE_NET_DEVICE_OPS
2615 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2616 #else
2617 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2618 netdev->open = cxgb4vf_open;
2619 netdev->stop = cxgb4vf_stop;
2620 netdev->hard_start_xmit = t4vf_eth_xmit;
2621 netdev->get_stats = cxgb4vf_get_stats;
2622 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2623 netdev->do_ioctl = cxgb4vf_do_ioctl;
2624 netdev->change_mtu = cxgb4vf_change_mtu;
2625 netdev->set_mac_address = cxgb4vf_set_mac_addr;
2626 #ifdef CONFIG_NET_POLL_CONTROLLER
2627 netdev->poll_controller = cxgb4vf_poll_controller;
2628 #endif
2629 #endif
2630 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2633 * Initialize the hardware/software state for the port.
2635 err = t4vf_port_init(adapter, pidx);
2636 if (err) {
2637 dev_err(&pdev->dev, "cannot initialize port %d\n",
2638 pidx);
2639 goto err_free_dev;
2644 * The "card" is now ready to go. If any errors occur during device
2645 * registration we do not fail the whole "card" but rather proceed
2646 * only with the ports we manage to register successfully. However we
2647 * must register at least one net device.
2649 for_each_port(adapter, pidx) {
2650 netdev = adapter->port[pidx];
2651 if (netdev == NULL)
2652 continue;
2654 err = register_netdev(netdev);
2655 if (err) {
2656 dev_warn(&pdev->dev, "cannot register net device %s,"
2657 " skipping\n", netdev->name);
2658 continue;
2661 set_bit(pidx, &adapter->registered_device_map);
2663 if (adapter->registered_device_map == 0) {
2664 dev_err(&pdev->dev, "could not register any net devices\n");
2665 goto err_free_dev;
2669 * Set up our debugfs entries.
2671 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2672 adapter->debugfs_root =
2673 debugfs_create_dir(pci_name(pdev),
2674 cxgb4vf_debugfs_root);
2675 if (IS_ERR_OR_NULL(adapter->debugfs_root))
2676 dev_warn(&pdev->dev, "could not create debugfs"
2677 " directory");
2678 else
2679 setup_debugfs(adapter);
2683 * See what interrupts we'll be using. If we've been configured to
2684 * use MSI-X interrupts, try to enable them but fall back to using
2685 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2686 * get MSI interrupts we bail with the error.
2688 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2689 adapter->flags |= USING_MSIX;
2690 else {
2691 err = pci_enable_msi(pdev);
2692 if (err) {
2693 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2694 " err=%d\n",
2695 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2696 goto err_free_debugfs;
2698 adapter->flags |= USING_MSI;
2702 * Now that we know how many "ports" we have and what their types are,
2703 * and how many Queue Sets we can support, we can configure our queue
2704 * resources.
2706 cfg_queues(adapter);
2709 * Print a short notice on the existence and configuration of the new
2710 * VF network device ...
2712 for_each_port(adapter, pidx) {
2713 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2714 adapter->port[pidx]->name,
2715 (adapter->flags & USING_MSIX) ? "MSI-X" :
2716 (adapter->flags & USING_MSI) ? "MSI" : "");
2720 * Return success!
2722 return 0;
2725 * Error recovery and exit code. Unwind state that's been created
2726 * so far and return the error.
2729 err_free_debugfs:
2730 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2731 cleanup_debugfs(adapter);
2732 debugfs_remove_recursive(adapter->debugfs_root);
2735 err_free_dev:
2736 for_each_port(adapter, pidx) {
2737 netdev = adapter->port[pidx];
2738 if (netdev == NULL)
2739 continue;
2740 pi = netdev_priv(netdev);
2741 t4vf_free_vi(adapter, pi->viid);
2742 if (test_bit(pidx, &adapter->registered_device_map))
2743 unregister_netdev(netdev);
2744 free_netdev(netdev);
2747 err_unmap_bar:
2748 iounmap(adapter->regs);
2750 err_free_adapter:
2751 kfree(adapter);
2752 pci_set_drvdata(pdev, NULL);
2754 err_release_regions:
2755 pci_release_regions(pdev);
2756 pci_set_drvdata(pdev, NULL);
2757 pci_clear_master(pdev);
2759 err_disable_device:
2760 pci_disable_device(pdev);
2762 return err;
2766 * "Remove" a device: tear down all kernel and driver state created in the
2767 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2768 * that this is called "remove_one" in the PF Driver.)
2770 static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2772 struct adapter *adapter = pci_get_drvdata(pdev);
2775 * Tear down driver state associated with device.
2777 if (adapter) {
2778 int pidx;
2781 * Stop all of our activity. Unregister network port,
2782 * disable interrupts, etc.
2784 for_each_port(adapter, pidx)
2785 if (test_bit(pidx, &adapter->registered_device_map))
2786 unregister_netdev(adapter->port[pidx]);
2787 t4vf_sge_stop(adapter);
2788 if (adapter->flags & USING_MSIX) {
2789 pci_disable_msix(adapter->pdev);
2790 adapter->flags &= ~USING_MSIX;
2791 } else if (adapter->flags & USING_MSI) {
2792 pci_disable_msi(adapter->pdev);
2793 adapter->flags &= ~USING_MSI;
2797 * Tear down our debugfs entries.
2799 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2800 cleanup_debugfs(adapter);
2801 debugfs_remove_recursive(adapter->debugfs_root);
2805 * Free all of the various resources which we've acquired ...
2807 t4vf_free_sge_resources(adapter);
2808 for_each_port(adapter, pidx) {
2809 struct net_device *netdev = adapter->port[pidx];
2810 struct port_info *pi;
2812 if (netdev == NULL)
2813 continue;
2815 pi = netdev_priv(netdev);
2816 t4vf_free_vi(adapter, pi->viid);
2817 free_netdev(netdev);
2819 iounmap(adapter->regs);
2820 kfree(adapter);
2821 pci_set_drvdata(pdev, NULL);
2825 * Disable the device and release its PCI resources.
2827 pci_disable_device(pdev);
2828 pci_clear_master(pdev);
2829 pci_release_regions(pdev);
2833 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2834 * delivery.
2836 static void __devexit cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2838 struct adapter *adapter;
2839 int pidx;
2841 adapter = pci_get_drvdata(pdev);
2842 if (!adapter)
2843 return;
2846 * Disable all Virtual Interfaces. This will shut down the
2847 * delivery of all ingress packets into the chip for these
2848 * Virtual Interfaces.
2850 for_each_port(adapter, pidx) {
2851 struct net_device *netdev;
2852 struct port_info *pi;
2854 if (!test_bit(pidx, &adapter->registered_device_map))
2855 continue;
2857 netdev = adapter->port[pidx];
2858 if (!netdev)
2859 continue;
2861 pi = netdev_priv(netdev);
2862 t4vf_enable_vi(adapter, pi->viid, false, false);
2866 * Free up all Queues which will prevent further DMA and
2867 * Interrupts allowing various internal pathways to drain.
2869 t4vf_free_sge_resources(adapter);
2873 * PCI Device registration data structures.
2875 #define CH_DEVICE(devid, idx) \
2876 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2878 static struct pci_device_id cxgb4vf_pci_tbl[] = {
2879 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2880 CH_DEVICE(0x4800, 0), /* T440-dbg */
2881 CH_DEVICE(0x4801, 0), /* T420-cr */
2882 CH_DEVICE(0x4802, 0), /* T422-cr */
2883 CH_DEVICE(0x4803, 0), /* T440-cr */
2884 CH_DEVICE(0x4804, 0), /* T420-bch */
2885 CH_DEVICE(0x4805, 0), /* T440-bch */
2886 CH_DEVICE(0x4806, 0), /* T460-ch */
2887 CH_DEVICE(0x4807, 0), /* T420-so */
2888 CH_DEVICE(0x4808, 0), /* T420-cx */
2889 CH_DEVICE(0x4809, 0), /* T420-bt */
2890 CH_DEVICE(0x480a, 0), /* T404-bt */
2891 { 0, }
2894 MODULE_DESCRIPTION(DRV_DESC);
2895 MODULE_AUTHOR("Chelsio Communications");
2896 MODULE_LICENSE("Dual BSD/GPL");
2897 MODULE_VERSION(DRV_VERSION);
2898 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2900 static struct pci_driver cxgb4vf_driver = {
2901 .name = KBUILD_MODNAME,
2902 .id_table = cxgb4vf_pci_tbl,
2903 .probe = cxgb4vf_pci_probe,
2904 .remove = __devexit_p(cxgb4vf_pci_remove),
2905 .shutdown = __devexit_p(cxgb4vf_pci_shutdown),
2909 * Initialize global driver state.
2911 static int __init cxgb4vf_module_init(void)
2913 int ret;
2916 * Vet our module parameters.
2918 if (msi != MSI_MSIX && msi != MSI_MSI) {
2919 printk(KERN_WARNING KBUILD_MODNAME
2920 ": bad module parameter msi=%d; must be %d"
2921 " (MSI-X or MSI) or %d (MSI)\n",
2922 msi, MSI_MSIX, MSI_MSI);
2923 return -EINVAL;
2926 /* Debugfs support is optional, just warn if this fails */
2927 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2928 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2929 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2930 " debugfs entry, continuing\n");
2932 ret = pci_register_driver(&cxgb4vf_driver);
2933 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2934 debugfs_remove(cxgb4vf_debugfs_root);
2935 return ret;
2939 * Tear down global driver state.
2941 static void __exit cxgb4vf_module_exit(void)
2943 pci_unregister_driver(&cxgb4vf_driver);
2944 debugfs_remove(cxgb4vf_debugfs_root);
2947 module_init(cxgb4vf_module_init);
2948 module_exit(cxgb4vf_module_exit);