1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
47 #define DRV_VERSION "1.0.8-k0"
48 char igbvf_driver_name
[] = "igbvf";
49 const char igbvf_driver_version
[] = DRV_VERSION
;
50 static const char igbvf_driver_string
[] =
51 "Intel(R) Virtual Function Network Driver";
52 static const char igbvf_copyright
[] =
53 "Copyright (c) 2009 - 2010 Intel Corporation.";
55 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
56 static void igbvf_reset(struct igbvf_adapter
*);
57 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
58 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
60 static struct igbvf_info igbvf_vf_info
= {
64 .init_ops
= e1000_init_function_pointers_vf
,
67 static struct igbvf_info igbvf_i350_vf_info
= {
68 .mac
= e1000_vfadapt_i350
,
71 .init_ops
= e1000_init_function_pointers_vf
,
74 static const struct igbvf_info
*igbvf_info_tbl
[] = {
75 [board_vf
] = &igbvf_vf_info
,
76 [board_i350_vf
] = &igbvf_i350_vf_info
,
80 * igbvf_desc_unused - calculate if we have unused descriptors
82 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
84 if (ring
->next_to_clean
> ring
->next_to_use
)
85 return ring
->next_to_clean
- ring
->next_to_use
- 1;
87 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
91 * igbvf_receive_skb - helper function to handle Rx indications
92 * @adapter: board private structure
93 * @status: descriptor status field as written by hardware
94 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
95 * @skb: pointer to sk_buff to be indicated to stack
97 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
98 struct net_device
*netdev
,
100 u32 status
, u16 vlan
)
102 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
103 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
105 E1000_RXD_SPC_VLAN_MASK
);
107 netif_receive_skb(skb
);
110 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
111 u32 status_err
, struct sk_buff
*skb
)
113 skb_checksum_none_assert(skb
);
115 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
116 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
117 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
120 /* TCP/UDP checksum error bit is set */
122 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
123 /* let the stack verify checksum errors */
124 adapter
->hw_csum_err
++;
128 /* It must be a TCP or UDP packet with a valid checksum */
129 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
130 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
132 adapter
->hw_csum_good
++;
136 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
137 * @rx_ring: address of ring structure to repopulate
138 * @cleaned_count: number of buffers to repopulate
140 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
143 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
144 struct net_device
*netdev
= adapter
->netdev
;
145 struct pci_dev
*pdev
= adapter
->pdev
;
146 union e1000_adv_rx_desc
*rx_desc
;
147 struct igbvf_buffer
*buffer_info
;
152 i
= rx_ring
->next_to_use
;
153 buffer_info
= &rx_ring
->buffer_info
[i
];
155 if (adapter
->rx_ps_hdr_size
)
156 bufsz
= adapter
->rx_ps_hdr_size
;
158 bufsz
= adapter
->rx_buffer_len
;
160 while (cleaned_count
--) {
161 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
163 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
164 if (!buffer_info
->page
) {
165 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
166 if (!buffer_info
->page
) {
167 adapter
->alloc_rx_buff_failed
++;
170 buffer_info
->page_offset
= 0;
172 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
174 buffer_info
->page_dma
=
175 dma_map_page(&pdev
->dev
, buffer_info
->page
,
176 buffer_info
->page_offset
,
181 if (!buffer_info
->skb
) {
182 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
184 adapter
->alloc_rx_buff_failed
++;
188 buffer_info
->skb
= skb
;
189 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
193 /* Refresh the desc even if buffer_addrs didn't change because
194 * each write-back erases this info. */
195 if (adapter
->rx_ps_hdr_size
) {
196 rx_desc
->read
.pkt_addr
=
197 cpu_to_le64(buffer_info
->page_dma
);
198 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
200 rx_desc
->read
.pkt_addr
=
201 cpu_to_le64(buffer_info
->dma
);
202 rx_desc
->read
.hdr_addr
= 0;
206 if (i
== rx_ring
->count
)
208 buffer_info
= &rx_ring
->buffer_info
[i
];
212 if (rx_ring
->next_to_use
!= i
) {
213 rx_ring
->next_to_use
= i
;
215 i
= (rx_ring
->count
- 1);
219 /* Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
224 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
229 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
230 * @adapter: board private structure
232 * the return value indicates whether actual cleaning was done, there
233 * is no guarantee that everything was cleaned
235 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
236 int *work_done
, int work_to_do
)
238 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
239 struct net_device
*netdev
= adapter
->netdev
;
240 struct pci_dev
*pdev
= adapter
->pdev
;
241 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
242 struct igbvf_buffer
*buffer_info
, *next_buffer
;
244 bool cleaned
= false;
245 int cleaned_count
= 0;
246 unsigned int total_bytes
= 0, total_packets
= 0;
248 u32 length
, hlen
, staterr
;
250 i
= rx_ring
->next_to_clean
;
251 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
252 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
254 while (staterr
& E1000_RXD_STAT_DD
) {
255 if (*work_done
>= work_to_do
)
258 rmb(); /* read descriptor and rx_buffer_info after status DD */
260 buffer_info
= &rx_ring
->buffer_info
[i
];
262 /* HW will not DMA in data larger than the given buffer, even
263 * if it parses the (NFS, of course) header to be larger. In
264 * that case, it fills the header buffer and spills the rest
267 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
) &
268 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
269 if (hlen
> adapter
->rx_ps_hdr_size
)
270 hlen
= adapter
->rx_ps_hdr_size
;
272 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
276 skb
= buffer_info
->skb
;
277 prefetch(skb
->data
- NET_IP_ALIGN
);
278 buffer_info
->skb
= NULL
;
279 if (!adapter
->rx_ps_hdr_size
) {
280 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
281 adapter
->rx_buffer_len
,
283 buffer_info
->dma
= 0;
284 skb_put(skb
, length
);
288 if (!skb_shinfo(skb
)->nr_frags
) {
289 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
290 adapter
->rx_ps_hdr_size
,
296 dma_unmap_page(&pdev
->dev
, buffer_info
->page_dma
,
299 buffer_info
->page_dma
= 0;
301 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
303 buffer_info
->page_offset
,
306 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
307 (page_count(buffer_info
->page
) != 1))
308 buffer_info
->page
= NULL
;
310 get_page(buffer_info
->page
);
313 skb
->data_len
+= length
;
314 skb
->truesize
+= length
;
318 if (i
== rx_ring
->count
)
320 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
322 next_buffer
= &rx_ring
->buffer_info
[i
];
324 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
325 buffer_info
->skb
= next_buffer
->skb
;
326 buffer_info
->dma
= next_buffer
->dma
;
327 next_buffer
->skb
= skb
;
328 next_buffer
->dma
= 0;
332 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
333 dev_kfree_skb_irq(skb
);
337 total_bytes
+= skb
->len
;
340 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
342 skb
->protocol
= eth_type_trans(skb
, netdev
);
344 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
345 rx_desc
->wb
.upper
.vlan
);
348 rx_desc
->wb
.upper
.status_error
= 0;
350 /* return some buffers to hardware, one at a time is too slow */
351 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
352 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
356 /* use prefetched values */
358 buffer_info
= next_buffer
;
360 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
363 rx_ring
->next_to_clean
= i
;
364 cleaned_count
= igbvf_desc_unused(rx_ring
);
367 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
369 adapter
->total_rx_packets
+= total_packets
;
370 adapter
->total_rx_bytes
+= total_bytes
;
371 adapter
->net_stats
.rx_bytes
+= total_bytes
;
372 adapter
->net_stats
.rx_packets
+= total_packets
;
376 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
377 struct igbvf_buffer
*buffer_info
)
379 if (buffer_info
->dma
) {
380 if (buffer_info
->mapped_as_page
)
381 dma_unmap_page(&adapter
->pdev
->dev
,
386 dma_unmap_single(&adapter
->pdev
->dev
,
390 buffer_info
->dma
= 0;
392 if (buffer_info
->skb
) {
393 dev_kfree_skb_any(buffer_info
->skb
);
394 buffer_info
->skb
= NULL
;
396 buffer_info
->time_stamp
= 0;
400 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
401 * @adapter: board private structure
403 * Return 0 on success, negative on failure
405 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
406 struct igbvf_ring
*tx_ring
)
408 struct pci_dev
*pdev
= adapter
->pdev
;
411 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
412 tx_ring
->buffer_info
= vzalloc(size
);
413 if (!tx_ring
->buffer_info
)
416 /* round up to nearest 4K */
417 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
418 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
420 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
421 &tx_ring
->dma
, GFP_KERNEL
);
426 tx_ring
->adapter
= adapter
;
427 tx_ring
->next_to_use
= 0;
428 tx_ring
->next_to_clean
= 0;
432 vfree(tx_ring
->buffer_info
);
433 dev_err(&adapter
->pdev
->dev
,
434 "Unable to allocate memory for the transmit descriptor ring\n");
439 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
440 * @adapter: board private structure
442 * Returns 0 on success, negative on failure
444 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
445 struct igbvf_ring
*rx_ring
)
447 struct pci_dev
*pdev
= adapter
->pdev
;
450 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
451 rx_ring
->buffer_info
= vzalloc(size
);
452 if (!rx_ring
->buffer_info
)
455 desc_len
= sizeof(union e1000_adv_rx_desc
);
457 /* Round up to nearest 4K */
458 rx_ring
->size
= rx_ring
->count
* desc_len
;
459 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
461 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
462 &rx_ring
->dma
, GFP_KERNEL
);
467 rx_ring
->next_to_clean
= 0;
468 rx_ring
->next_to_use
= 0;
470 rx_ring
->adapter
= adapter
;
475 vfree(rx_ring
->buffer_info
);
476 rx_ring
->buffer_info
= NULL
;
477 dev_err(&adapter
->pdev
->dev
,
478 "Unable to allocate memory for the receive descriptor ring\n");
483 * igbvf_clean_tx_ring - Free Tx Buffers
484 * @tx_ring: ring to be cleaned
486 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
488 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
489 struct igbvf_buffer
*buffer_info
;
493 if (!tx_ring
->buffer_info
)
496 /* Free all the Tx ring sk_buffs */
497 for (i
= 0; i
< tx_ring
->count
; i
++) {
498 buffer_info
= &tx_ring
->buffer_info
[i
];
499 igbvf_put_txbuf(adapter
, buffer_info
);
502 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
503 memset(tx_ring
->buffer_info
, 0, size
);
505 /* Zero out the descriptor ring */
506 memset(tx_ring
->desc
, 0, tx_ring
->size
);
508 tx_ring
->next_to_use
= 0;
509 tx_ring
->next_to_clean
= 0;
511 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
512 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
516 * igbvf_free_tx_resources - Free Tx Resources per Queue
517 * @tx_ring: ring to free resources from
519 * Free all transmit software resources
521 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
523 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
525 igbvf_clean_tx_ring(tx_ring
);
527 vfree(tx_ring
->buffer_info
);
528 tx_ring
->buffer_info
= NULL
;
530 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
533 tx_ring
->desc
= NULL
;
537 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
538 * @adapter: board private structure
540 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
542 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
543 struct igbvf_buffer
*buffer_info
;
544 struct pci_dev
*pdev
= adapter
->pdev
;
548 if (!rx_ring
->buffer_info
)
551 /* Free all the Rx ring sk_buffs */
552 for (i
= 0; i
< rx_ring
->count
; i
++) {
553 buffer_info
= &rx_ring
->buffer_info
[i
];
554 if (buffer_info
->dma
) {
555 if (adapter
->rx_ps_hdr_size
){
556 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
557 adapter
->rx_ps_hdr_size
,
560 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
561 adapter
->rx_buffer_len
,
564 buffer_info
->dma
= 0;
567 if (buffer_info
->skb
) {
568 dev_kfree_skb(buffer_info
->skb
);
569 buffer_info
->skb
= NULL
;
572 if (buffer_info
->page
) {
573 if (buffer_info
->page_dma
)
574 dma_unmap_page(&pdev
->dev
,
575 buffer_info
->page_dma
,
578 put_page(buffer_info
->page
);
579 buffer_info
->page
= NULL
;
580 buffer_info
->page_dma
= 0;
581 buffer_info
->page_offset
= 0;
585 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
586 memset(rx_ring
->buffer_info
, 0, size
);
588 /* Zero out the descriptor ring */
589 memset(rx_ring
->desc
, 0, rx_ring
->size
);
591 rx_ring
->next_to_clean
= 0;
592 rx_ring
->next_to_use
= 0;
594 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
595 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
599 * igbvf_free_rx_resources - Free Rx Resources
600 * @rx_ring: ring to clean the resources from
602 * Free all receive software resources
605 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
607 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
609 igbvf_clean_rx_ring(rx_ring
);
611 vfree(rx_ring
->buffer_info
);
612 rx_ring
->buffer_info
= NULL
;
614 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
616 rx_ring
->desc
= NULL
;
620 * igbvf_update_itr - update the dynamic ITR value based on statistics
621 * @adapter: pointer to adapter
622 * @itr_setting: current adapter->itr
623 * @packets: the number of packets during this measurement interval
624 * @bytes: the number of bytes during this measurement interval
626 * Stores a new ITR value based on packets and byte
627 * counts during the last interrupt. The advantage of per interrupt
628 * computation is faster updates and more accurate ITR for the current
629 * traffic pattern. Constants in this function were computed
630 * based on theoretical maximum wire speed and thresholds were set based
631 * on testing data as well as attempting to minimize response time
632 * while increasing bulk throughput. This functionality is controlled
633 * by the InterruptThrottleRate module parameter.
635 static unsigned int igbvf_update_itr(struct igbvf_adapter
*adapter
,
636 u16 itr_setting
, int packets
,
639 unsigned int retval
= itr_setting
;
642 goto update_itr_done
;
644 switch (itr_setting
) {
646 /* handle TSO and jumbo frames */
647 if (bytes
/packets
> 8000)
648 retval
= bulk_latency
;
649 else if ((packets
< 5) && (bytes
> 512))
650 retval
= low_latency
;
652 case low_latency
: /* 50 usec aka 20000 ints/s */
654 /* this if handles the TSO accounting */
655 if (bytes
/packets
> 8000)
656 retval
= bulk_latency
;
657 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
658 retval
= bulk_latency
;
659 else if ((packets
> 35))
660 retval
= lowest_latency
;
661 } else if (bytes
/packets
> 2000) {
662 retval
= bulk_latency
;
663 } else if (packets
<= 2 && bytes
< 512) {
664 retval
= lowest_latency
;
667 case bulk_latency
: /* 250 usec aka 4000 ints/s */
670 retval
= low_latency
;
671 } else if (bytes
< 6000) {
672 retval
= low_latency
;
681 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
683 struct e1000_hw
*hw
= &adapter
->hw
;
685 u32 new_itr
= adapter
->itr
;
687 adapter
->tx_itr
= igbvf_update_itr(adapter
, adapter
->tx_itr
,
688 adapter
->total_tx_packets
,
689 adapter
->total_tx_bytes
);
690 /* conservative mode (itr 3) eliminates the lowest_latency setting */
691 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
692 adapter
->tx_itr
= low_latency
;
694 adapter
->rx_itr
= igbvf_update_itr(adapter
, adapter
->rx_itr
,
695 adapter
->total_rx_packets
,
696 adapter
->total_rx_bytes
);
697 /* conservative mode (itr 3) eliminates the lowest_latency setting */
698 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
699 adapter
->rx_itr
= low_latency
;
701 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
703 switch (current_itr
) {
704 /* counts and packets in update_itr are dependent on these numbers */
709 new_itr
= 20000; /* aka hwitr = ~200 */
718 if (new_itr
!= adapter
->itr
) {
720 * this attempts to bias the interrupt rate towards Bulk
721 * by adding intermediate steps when interrupt rate is
724 new_itr
= new_itr
> adapter
->itr
?
725 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
727 adapter
->itr
= new_itr
;
728 adapter
->rx_ring
->itr_val
= 1952;
730 if (adapter
->msix_entries
)
731 adapter
->rx_ring
->set_itr
= 1;
738 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
739 * @adapter: board private structure
740 * returns true if ring is completely cleaned
742 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
744 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
745 struct net_device
*netdev
= adapter
->netdev
;
746 struct igbvf_buffer
*buffer_info
;
748 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
749 unsigned int total_bytes
= 0, total_packets
= 0;
750 unsigned int i
, eop
, count
= 0;
751 bool cleaned
= false;
753 i
= tx_ring
->next_to_clean
;
754 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
755 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
757 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
758 (count
< tx_ring
->count
)) {
759 rmb(); /* read buffer_info after eop_desc status */
760 for (cleaned
= false; !cleaned
; count
++) {
761 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
762 buffer_info
= &tx_ring
->buffer_info
[i
];
763 cleaned
= (i
== eop
);
764 skb
= buffer_info
->skb
;
767 unsigned int segs
, bytecount
;
769 /* gso_segs is currently only valid for tcp */
770 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
771 /* multiply data chunks by size of headers */
772 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
774 total_packets
+= segs
;
775 total_bytes
+= bytecount
;
778 igbvf_put_txbuf(adapter
, buffer_info
);
779 tx_desc
->wb
.status
= 0;
782 if (i
== tx_ring
->count
)
785 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
786 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
789 tx_ring
->next_to_clean
= i
;
791 if (unlikely(count
&&
792 netif_carrier_ok(netdev
) &&
793 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
794 /* Make sure that anybody stopping the queue after this
795 * sees the new next_to_clean.
798 if (netif_queue_stopped(netdev
) &&
799 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
800 netif_wake_queue(netdev
);
801 ++adapter
->restart_queue
;
805 adapter
->net_stats
.tx_bytes
+= total_bytes
;
806 adapter
->net_stats
.tx_packets
+= total_packets
;
807 return count
< tx_ring
->count
;
810 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
812 struct net_device
*netdev
= data
;
813 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
814 struct e1000_hw
*hw
= &adapter
->hw
;
816 adapter
->int_counter1
++;
818 netif_carrier_off(netdev
);
819 hw
->mac
.get_link_status
= 1;
820 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
821 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
823 ew32(EIMS
, adapter
->eims_other
);
828 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
830 struct net_device
*netdev
= data
;
831 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
832 struct e1000_hw
*hw
= &adapter
->hw
;
833 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
836 adapter
->total_tx_bytes
= 0;
837 adapter
->total_tx_packets
= 0;
839 /* auto mask will automatically reenable the interrupt when we write
841 if (!igbvf_clean_tx_irq(tx_ring
))
842 /* Ring was not completely cleaned, so fire another interrupt */
843 ew32(EICS
, tx_ring
->eims_value
);
845 ew32(EIMS
, tx_ring
->eims_value
);
850 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
852 struct net_device
*netdev
= data
;
853 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
855 adapter
->int_counter0
++;
857 /* Write the ITR value calculated at the end of the
858 * previous interrupt.
860 if (adapter
->rx_ring
->set_itr
) {
861 writel(adapter
->rx_ring
->itr_val
,
862 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
863 adapter
->rx_ring
->set_itr
= 0;
866 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
867 adapter
->total_rx_bytes
= 0;
868 adapter
->total_rx_packets
= 0;
869 __napi_schedule(&adapter
->rx_ring
->napi
);
875 #define IGBVF_NO_QUEUE -1
877 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
878 int tx_queue
, int msix_vector
)
880 struct e1000_hw
*hw
= &adapter
->hw
;
883 /* 82576 uses a table-based method for assigning vectors.
884 Each queue has a single entry in the table to which we write
885 a vector number along with a "valid" bit. Sadly, the layout
886 of the table is somewhat counterintuitive. */
887 if (rx_queue
> IGBVF_NO_QUEUE
) {
888 index
= (rx_queue
>> 1);
889 ivar
= array_er32(IVAR0
, index
);
890 if (rx_queue
& 0x1) {
891 /* vector goes into third byte of register */
892 ivar
= ivar
& 0xFF00FFFF;
893 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
895 /* vector goes into low byte of register */
896 ivar
= ivar
& 0xFFFFFF00;
897 ivar
|= msix_vector
| E1000_IVAR_VALID
;
899 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
900 array_ew32(IVAR0
, index
, ivar
);
902 if (tx_queue
> IGBVF_NO_QUEUE
) {
903 index
= (tx_queue
>> 1);
904 ivar
= array_er32(IVAR0
, index
);
905 if (tx_queue
& 0x1) {
906 /* vector goes into high byte of register */
907 ivar
= ivar
& 0x00FFFFFF;
908 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
910 /* vector goes into second byte of register */
911 ivar
= ivar
& 0xFFFF00FF;
912 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
914 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
915 array_ew32(IVAR0
, index
, ivar
);
920 * igbvf_configure_msix - Configure MSI-X hardware
922 * igbvf_configure_msix sets up the hardware to properly
923 * generate MSI-X interrupts.
925 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
928 struct e1000_hw
*hw
= &adapter
->hw
;
929 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
930 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
933 adapter
->eims_enable_mask
= 0;
935 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
936 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
937 if (tx_ring
->itr_val
)
938 writel(tx_ring
->itr_val
,
939 hw
->hw_addr
+ tx_ring
->itr_register
);
941 writel(1952, hw
->hw_addr
+ tx_ring
->itr_register
);
943 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
944 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
945 if (rx_ring
->itr_val
)
946 writel(rx_ring
->itr_val
,
947 hw
->hw_addr
+ rx_ring
->itr_register
);
949 writel(1952, hw
->hw_addr
+ rx_ring
->itr_register
);
951 /* set vector for other causes, i.e. link changes */
953 tmp
= (vector
++ | E1000_IVAR_VALID
);
955 ew32(IVAR_MISC
, tmp
);
957 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
958 adapter
->eims_other
= 1 << (vector
- 1);
962 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
964 if (adapter
->msix_entries
) {
965 pci_disable_msix(adapter
->pdev
);
966 kfree(adapter
->msix_entries
);
967 adapter
->msix_entries
= NULL
;
972 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
974 * Attempt to configure interrupts using the best available
975 * capabilities of the hardware and kernel.
977 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
982 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
983 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
985 if (adapter
->msix_entries
) {
986 for (i
= 0; i
< 3; i
++)
987 adapter
->msix_entries
[i
].entry
= i
;
989 err
= pci_enable_msix(adapter
->pdev
,
990 adapter
->msix_entries
, 3);
995 dev_err(&adapter
->pdev
->dev
,
996 "Failed to initialize MSI-X interrupts.\n");
997 igbvf_reset_interrupt_capability(adapter
);
1002 * igbvf_request_msix - Initialize MSI-X interrupts
1004 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1007 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1009 struct net_device
*netdev
= adapter
->netdev
;
1010 int err
= 0, vector
= 0;
1012 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1013 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1014 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1016 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1017 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1020 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1021 igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1026 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1027 adapter
->tx_ring
->itr_val
= 1952;
1030 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1031 igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1036 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1037 adapter
->rx_ring
->itr_val
= 1952;
1040 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1041 igbvf_msix_other
, 0, netdev
->name
, netdev
);
1045 igbvf_configure_msix(adapter
);
1052 * igbvf_alloc_queues - Allocate memory for all rings
1053 * @adapter: board private structure to initialize
1055 static int __devinit
igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1057 struct net_device
*netdev
= adapter
->netdev
;
1059 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1060 if (!adapter
->tx_ring
)
1063 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1064 if (!adapter
->rx_ring
) {
1065 kfree(adapter
->tx_ring
);
1069 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1075 * igbvf_request_irq - initialize interrupts
1077 * Attempts to configure interrupts using the best available
1078 * capabilities of the hardware and kernel.
1080 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1084 /* igbvf supports msi-x only */
1085 if (adapter
->msix_entries
)
1086 err
= igbvf_request_msix(adapter
);
1091 dev_err(&adapter
->pdev
->dev
,
1092 "Unable to allocate interrupt, Error: %d\n", err
);
1097 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1099 struct net_device
*netdev
= adapter
->netdev
;
1102 if (adapter
->msix_entries
) {
1103 for (vector
= 0; vector
< 3; vector
++)
1104 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1109 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1113 struct e1000_hw
*hw
= &adapter
->hw
;
1117 if (adapter
->msix_entries
)
1122 * igbvf_irq_enable - Enable default interrupt generation settings
1124 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1126 struct e1000_hw
*hw
= &adapter
->hw
;
1128 ew32(EIAC
, adapter
->eims_enable_mask
);
1129 ew32(EIAM
, adapter
->eims_enable_mask
);
1130 ew32(EIMS
, adapter
->eims_enable_mask
);
1134 * igbvf_poll - NAPI Rx polling callback
1135 * @napi: struct associated with this polling callback
1136 * @budget: amount of packets driver is allowed to process this poll
1138 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1140 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1141 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1142 struct e1000_hw
*hw
= &adapter
->hw
;
1145 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1147 /* If not enough Rx work done, exit the polling mode */
1148 if (work_done
< budget
) {
1149 napi_complete(napi
);
1151 if (adapter
->itr_setting
& 3)
1152 igbvf_set_itr(adapter
);
1154 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1155 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1162 * igbvf_set_rlpml - set receive large packet maximum length
1163 * @adapter: board private structure
1165 * Configure the maximum size of packets that will be received
1167 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1169 int max_frame_size
= adapter
->max_frame_size
;
1170 struct e1000_hw
*hw
= &adapter
->hw
;
1173 max_frame_size
+= VLAN_TAG_SIZE
;
1175 e1000_rlpml_set_vf(hw
, max_frame_size
);
1178 static void igbvf_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1180 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1181 struct e1000_hw
*hw
= &adapter
->hw
;
1183 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true))
1184 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1187 static void igbvf_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1189 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1190 struct e1000_hw
*hw
= &adapter
->hw
;
1192 igbvf_irq_disable(adapter
);
1193 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1195 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1196 igbvf_irq_enable(adapter
);
1198 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false))
1199 dev_err(&adapter
->pdev
->dev
,
1200 "Failed to remove vlan id %d\n", vid
);
1203 static void igbvf_vlan_rx_register(struct net_device
*netdev
,
1204 struct vlan_group
*grp
)
1206 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1208 adapter
->vlgrp
= grp
;
1211 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1215 if (!adapter
->vlgrp
)
1218 for (vid
= 0; vid
< VLAN_N_VID
; vid
++) {
1219 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1221 igbvf_vlan_rx_add_vid(adapter
->netdev
, vid
);
1224 igbvf_set_rlpml(adapter
);
1228 * igbvf_configure_tx - Configure Transmit Unit after Reset
1229 * @adapter: board private structure
1231 * Configure the Tx unit of the MAC after a reset.
1233 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1235 struct e1000_hw
*hw
= &adapter
->hw
;
1236 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1238 u32 txdctl
, dca_txctrl
;
1240 /* disable transmits */
1241 txdctl
= er32(TXDCTL(0));
1242 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1245 /* Setup the HW Tx Head and Tail descriptor pointers */
1246 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1247 tdba
= tx_ring
->dma
;
1248 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1249 ew32(TDBAH(0), (tdba
>> 32));
1252 tx_ring
->head
= E1000_TDH(0);
1253 tx_ring
->tail
= E1000_TDT(0);
1255 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1256 * MUST be delivered in order or it will completely screw up
1259 dca_txctrl
= er32(DCA_TXCTRL(0));
1260 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1261 ew32(DCA_TXCTRL(0), dca_txctrl
);
1263 /* enable transmits */
1264 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1265 ew32(TXDCTL(0), txdctl
);
1267 /* Setup Transmit Descriptor Settings for eop descriptor */
1268 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1270 /* enable Report Status bit */
1271 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1275 * igbvf_setup_srrctl - configure the receive control registers
1276 * @adapter: Board private structure
1278 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1280 struct e1000_hw
*hw
= &adapter
->hw
;
1283 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1284 E1000_SRRCTL_BSIZEHDR_MASK
|
1285 E1000_SRRCTL_BSIZEPKT_MASK
);
1287 /* Enable queue drop to avoid head of line blocking */
1288 srrctl
|= E1000_SRRCTL_DROP_EN
;
1290 /* Setup buffer sizes */
1291 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1292 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1294 if (adapter
->rx_buffer_len
< 2048) {
1295 adapter
->rx_ps_hdr_size
= 0;
1296 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1298 adapter
->rx_ps_hdr_size
= 128;
1299 srrctl
|= adapter
->rx_ps_hdr_size
<<
1300 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1301 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1304 ew32(SRRCTL(0), srrctl
);
1308 * igbvf_configure_rx - Configure Receive Unit after Reset
1309 * @adapter: board private structure
1311 * Configure the Rx unit of the MAC after a reset.
1313 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1315 struct e1000_hw
*hw
= &adapter
->hw
;
1316 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1320 /* disable receives */
1321 rxdctl
= er32(RXDCTL(0));
1322 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1325 rdlen
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
1328 * Setup the HW Rx Head and Tail Descriptor Pointers and
1329 * the Base and Length of the Rx Descriptor Ring
1331 rdba
= rx_ring
->dma
;
1332 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1333 ew32(RDBAH(0), (rdba
>> 32));
1334 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1335 rx_ring
->head
= E1000_RDH(0);
1336 rx_ring
->tail
= E1000_RDT(0);
1340 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1341 rxdctl
&= 0xFFF00000;
1342 rxdctl
|= IGBVF_RX_PTHRESH
;
1343 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1344 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1346 igbvf_set_rlpml(adapter
);
1348 /* enable receives */
1349 ew32(RXDCTL(0), rxdctl
);
1353 * igbvf_set_multi - Multicast and Promiscuous mode set
1354 * @netdev: network interface device structure
1356 * The set_multi entry point is called whenever the multicast address
1357 * list or the network interface flags are updated. This routine is
1358 * responsible for configuring the hardware for proper multicast,
1359 * promiscuous mode, and all-multi behavior.
1361 static void igbvf_set_multi(struct net_device
*netdev
)
1363 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1364 struct e1000_hw
*hw
= &adapter
->hw
;
1365 struct netdev_hw_addr
*ha
;
1366 u8
*mta_list
= NULL
;
1369 if (!netdev_mc_empty(netdev
)) {
1370 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
1372 dev_err(&adapter
->pdev
->dev
,
1373 "failed to allocate multicast filter list\n");
1378 /* prepare a packed array of only addresses. */
1380 netdev_for_each_mc_addr(ha
, netdev
)
1381 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
1383 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1388 * igbvf_configure - configure the hardware for Rx and Tx
1389 * @adapter: private board structure
1391 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1393 igbvf_set_multi(adapter
->netdev
);
1395 igbvf_restore_vlan(adapter
);
1397 igbvf_configure_tx(adapter
);
1398 igbvf_setup_srrctl(adapter
);
1399 igbvf_configure_rx(adapter
);
1400 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1401 igbvf_desc_unused(adapter
->rx_ring
));
1404 /* igbvf_reset - bring the hardware into a known good state
1406 * This function boots the hardware and enables some settings that
1407 * require a configuration cycle of the hardware - those cannot be
1408 * set/changed during runtime. After reset the device needs to be
1409 * properly configured for Rx, Tx etc.
1411 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1413 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1414 struct net_device
*netdev
= adapter
->netdev
;
1415 struct e1000_hw
*hw
= &adapter
->hw
;
1417 /* Allow time for pending master requests to run */
1418 if (mac
->ops
.reset_hw(hw
))
1419 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1421 mac
->ops
.init_hw(hw
);
1423 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1424 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1426 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1430 adapter
->last_reset
= jiffies
;
1433 int igbvf_up(struct igbvf_adapter
*adapter
)
1435 struct e1000_hw
*hw
= &adapter
->hw
;
1437 /* hardware has been reset, we need to reload some things */
1438 igbvf_configure(adapter
);
1440 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1442 napi_enable(&adapter
->rx_ring
->napi
);
1443 if (adapter
->msix_entries
)
1444 igbvf_configure_msix(adapter
);
1446 /* Clear any pending interrupts. */
1448 igbvf_irq_enable(adapter
);
1450 /* start the watchdog */
1451 hw
->mac
.get_link_status
= 1;
1452 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1458 void igbvf_down(struct igbvf_adapter
*adapter
)
1460 struct net_device
*netdev
= adapter
->netdev
;
1461 struct e1000_hw
*hw
= &adapter
->hw
;
1465 * signal that we're down so the interrupt handler does not
1466 * reschedule our watchdog timer
1468 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1470 /* disable receives in the hardware */
1471 rxdctl
= er32(RXDCTL(0));
1472 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1474 netif_stop_queue(netdev
);
1476 /* disable transmits in the hardware */
1477 txdctl
= er32(TXDCTL(0));
1478 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1480 /* flush both disables and wait for them to finish */
1484 napi_disable(&adapter
->rx_ring
->napi
);
1486 igbvf_irq_disable(adapter
);
1488 del_timer_sync(&adapter
->watchdog_timer
);
1490 netif_carrier_off(netdev
);
1492 /* record the stats before reset*/
1493 igbvf_update_stats(adapter
);
1495 adapter
->link_speed
= 0;
1496 adapter
->link_duplex
= 0;
1498 igbvf_reset(adapter
);
1499 igbvf_clean_tx_ring(adapter
->tx_ring
);
1500 igbvf_clean_rx_ring(adapter
->rx_ring
);
1503 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1506 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1508 igbvf_down(adapter
);
1510 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1514 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1515 * @adapter: board private structure to initialize
1517 * igbvf_sw_init initializes the Adapter private data structure.
1518 * Fields are initialized based on PCI device information and
1519 * OS network device settings (MTU size).
1521 static int __devinit
igbvf_sw_init(struct igbvf_adapter
*adapter
)
1523 struct net_device
*netdev
= adapter
->netdev
;
1526 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1527 adapter
->rx_ps_hdr_size
= 0;
1528 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1529 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1531 adapter
->tx_int_delay
= 8;
1532 adapter
->tx_abs_int_delay
= 32;
1533 adapter
->rx_int_delay
= 0;
1534 adapter
->rx_abs_int_delay
= 8;
1535 adapter
->itr_setting
= 3;
1536 adapter
->itr
= 20000;
1538 /* Set various function pointers */
1539 adapter
->ei
->init_ops(&adapter
->hw
);
1541 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1545 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1549 igbvf_set_interrupt_capability(adapter
);
1551 if (igbvf_alloc_queues(adapter
))
1554 spin_lock_init(&adapter
->tx_queue_lock
);
1556 /* Explicitly disable IRQ since the NIC can be in any state. */
1557 igbvf_irq_disable(adapter
);
1559 spin_lock_init(&adapter
->stats_lock
);
1561 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1565 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1567 struct e1000_hw
*hw
= &adapter
->hw
;
1569 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1570 adapter
->stats
.last_gorc
= er32(VFGORC
);
1571 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1572 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1573 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1574 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1575 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1576 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1577 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1579 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1580 adapter
->stats
.base_gorc
= er32(VFGORC
);
1581 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1582 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1583 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1584 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1585 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1586 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1587 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1591 * igbvf_open - Called when a network interface is made active
1592 * @netdev: network interface device structure
1594 * Returns 0 on success, negative value on failure
1596 * The open entry point is called when a network interface is made
1597 * active by the system (IFF_UP). At this point all resources needed
1598 * for transmit and receive operations are allocated, the interrupt
1599 * handler is registered with the OS, the watchdog timer is started,
1600 * and the stack is notified that the interface is ready.
1602 static int igbvf_open(struct net_device
*netdev
)
1604 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1605 struct e1000_hw
*hw
= &adapter
->hw
;
1608 /* disallow open during test */
1609 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1612 /* allocate transmit descriptors */
1613 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1617 /* allocate receive descriptors */
1618 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1623 * before we allocate an interrupt, we must be ready to handle it.
1624 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1625 * as soon as we call pci_request_irq, so we have to setup our
1626 * clean_rx handler before we do so.
1628 igbvf_configure(adapter
);
1630 err
= igbvf_request_irq(adapter
);
1634 /* From here on the code is the same as igbvf_up() */
1635 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1637 napi_enable(&adapter
->rx_ring
->napi
);
1639 /* clear any pending interrupts */
1642 igbvf_irq_enable(adapter
);
1644 /* start the watchdog */
1645 hw
->mac
.get_link_status
= 1;
1646 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1651 igbvf_free_rx_resources(adapter
->rx_ring
);
1653 igbvf_free_tx_resources(adapter
->tx_ring
);
1655 igbvf_reset(adapter
);
1661 * igbvf_close - Disables a network interface
1662 * @netdev: network interface device structure
1664 * Returns 0, this is not allowed to fail
1666 * The close entry point is called when an interface is de-activated
1667 * by the OS. The hardware is still under the drivers control, but
1668 * needs to be disabled. A global MAC reset is issued to stop the
1669 * hardware, and all transmit and receive resources are freed.
1671 static int igbvf_close(struct net_device
*netdev
)
1673 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1675 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1676 igbvf_down(adapter
);
1678 igbvf_free_irq(adapter
);
1680 igbvf_free_tx_resources(adapter
->tx_ring
);
1681 igbvf_free_rx_resources(adapter
->rx_ring
);
1686 * igbvf_set_mac - Change the Ethernet Address of the NIC
1687 * @netdev: network interface device structure
1688 * @p: pointer to an address structure
1690 * Returns 0 on success, negative on failure
1692 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1694 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1695 struct e1000_hw
*hw
= &adapter
->hw
;
1696 struct sockaddr
*addr
= p
;
1698 if (!is_valid_ether_addr(addr
->sa_data
))
1699 return -EADDRNOTAVAIL
;
1701 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1703 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1705 if (memcmp(addr
->sa_data
, hw
->mac
.addr
, 6))
1706 return -EADDRNOTAVAIL
;
1708 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1713 #define UPDATE_VF_COUNTER(reg, name) \
1715 u32 current_counter = er32(reg); \
1716 if (current_counter < adapter->stats.last_##name) \
1717 adapter->stats.name += 0x100000000LL; \
1718 adapter->stats.last_##name = current_counter; \
1719 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1720 adapter->stats.name |= current_counter; \
1724 * igbvf_update_stats - Update the board statistics counters
1725 * @adapter: board private structure
1727 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1729 struct e1000_hw
*hw
= &adapter
->hw
;
1730 struct pci_dev
*pdev
= adapter
->pdev
;
1733 * Prevent stats update while adapter is being reset, link is down
1734 * or if the pci connection is down.
1736 if (adapter
->link_speed
== 0)
1739 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1742 if (pci_channel_offline(pdev
))
1745 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1746 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1747 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1748 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1749 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1750 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1751 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1752 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1753 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1755 /* Fill out the OS statistics structure */
1756 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
1759 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1761 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s\n",
1762 adapter
->link_speed
,
1763 ((adapter
->link_duplex
== FULL_DUPLEX
) ?
1764 "Full Duplex" : "Half Duplex"));
1767 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1769 struct e1000_hw
*hw
= &adapter
->hw
;
1770 s32 ret_val
= E1000_SUCCESS
;
1773 /* If interface is down, stay link down */
1774 if (test_bit(__IGBVF_DOWN
, &adapter
->state
))
1777 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1778 link_active
= !hw
->mac
.get_link_status
;
1780 /* if check for link returns error we will need to reset */
1781 if (ret_val
&& time_after(jiffies
, adapter
->last_reset
+ (10 * HZ
)))
1782 schedule_work(&adapter
->reset_task
);
1788 * igbvf_watchdog - Timer Call-back
1789 * @data: pointer to adapter cast into an unsigned long
1791 static void igbvf_watchdog(unsigned long data
)
1793 struct igbvf_adapter
*adapter
= (struct igbvf_adapter
*) data
;
1795 /* Do the rest outside of interrupt context */
1796 schedule_work(&adapter
->watchdog_task
);
1799 static void igbvf_watchdog_task(struct work_struct
*work
)
1801 struct igbvf_adapter
*adapter
= container_of(work
,
1802 struct igbvf_adapter
,
1804 struct net_device
*netdev
= adapter
->netdev
;
1805 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1806 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1807 struct e1000_hw
*hw
= &adapter
->hw
;
1811 link
= igbvf_has_link(adapter
);
1814 if (!netif_carrier_ok(netdev
)) {
1815 mac
->ops
.get_link_up_info(&adapter
->hw
,
1816 &adapter
->link_speed
,
1817 &adapter
->link_duplex
);
1818 igbvf_print_link_info(adapter
);
1820 netif_carrier_on(netdev
);
1821 netif_wake_queue(netdev
);
1824 if (netif_carrier_ok(netdev
)) {
1825 adapter
->link_speed
= 0;
1826 adapter
->link_duplex
= 0;
1827 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1828 netif_carrier_off(netdev
);
1829 netif_stop_queue(netdev
);
1833 if (netif_carrier_ok(netdev
)) {
1834 igbvf_update_stats(adapter
);
1836 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1840 * We've lost link, so the controller stops DMA,
1841 * but we've got queued Tx work that's never going
1842 * to get done, so reset controller to flush Tx.
1843 * (Do the reset outside of interrupt context).
1845 adapter
->tx_timeout_count
++;
1846 schedule_work(&adapter
->reset_task
);
1850 /* Cause software interrupt to ensure Rx ring is cleaned */
1851 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1853 /* Reset the timer */
1854 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1855 mod_timer(&adapter
->watchdog_timer
,
1856 round_jiffies(jiffies
+ (2 * HZ
)));
1859 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1860 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1861 #define IGBVF_TX_FLAGS_TSO 0x00000004
1862 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1863 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1864 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1866 static int igbvf_tso(struct igbvf_adapter
*adapter
,
1867 struct igbvf_ring
*tx_ring
,
1868 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
1870 struct e1000_adv_tx_context_desc
*context_desc
;
1873 struct igbvf_buffer
*buffer_info
;
1874 u32 info
= 0, tu_cmd
= 0;
1875 u32 mss_l4len_idx
, l4len
;
1878 if (skb_header_cloned(skb
)) {
1879 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1881 dev_err(&adapter
->pdev
->dev
,
1882 "igbvf_tso returning an error\n");
1887 l4len
= tcp_hdrlen(skb
);
1890 if (skb
->protocol
== htons(ETH_P_IP
)) {
1891 struct iphdr
*iph
= ip_hdr(skb
);
1894 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
1898 } else if (skb_is_gso_v6(skb
)) {
1899 ipv6_hdr(skb
)->payload_len
= 0;
1900 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1901 &ipv6_hdr(skb
)->daddr
,
1905 i
= tx_ring
->next_to_use
;
1907 buffer_info
= &tx_ring
->buffer_info
[i
];
1908 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1909 /* VLAN MACLEN IPLEN */
1910 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1911 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1912 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1913 *hdr_len
+= skb_network_offset(skb
);
1914 info
|= (skb_transport_header(skb
) - skb_network_header(skb
));
1915 *hdr_len
+= (skb_transport_header(skb
) - skb_network_header(skb
));
1916 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1918 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1919 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1921 if (skb
->protocol
== htons(ETH_P_IP
))
1922 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1923 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1925 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1928 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
1929 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
1931 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1932 context_desc
->seqnum_seed
= 0;
1934 buffer_info
->time_stamp
= jiffies
;
1935 buffer_info
->next_to_watch
= i
;
1936 buffer_info
->dma
= 0;
1938 if (i
== tx_ring
->count
)
1941 tx_ring
->next_to_use
= i
;
1946 static inline bool igbvf_tx_csum(struct igbvf_adapter
*adapter
,
1947 struct igbvf_ring
*tx_ring
,
1948 struct sk_buff
*skb
, u32 tx_flags
)
1950 struct e1000_adv_tx_context_desc
*context_desc
;
1952 struct igbvf_buffer
*buffer_info
;
1953 u32 info
= 0, tu_cmd
= 0;
1955 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1956 (tx_flags
& IGBVF_TX_FLAGS_VLAN
)) {
1957 i
= tx_ring
->next_to_use
;
1958 buffer_info
= &tx_ring
->buffer_info
[i
];
1959 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1961 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1962 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1964 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1965 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1966 info
|= (skb_transport_header(skb
) -
1967 skb_network_header(skb
));
1970 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1972 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1974 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1975 switch (skb
->protocol
) {
1976 case __constant_htons(ETH_P_IP
):
1977 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1978 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
1979 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1981 case __constant_htons(ETH_P_IPV6
):
1982 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
1983 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1990 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1991 context_desc
->seqnum_seed
= 0;
1992 context_desc
->mss_l4len_idx
= 0;
1994 buffer_info
->time_stamp
= jiffies
;
1995 buffer_info
->next_to_watch
= i
;
1996 buffer_info
->dma
= 0;
1998 if (i
== tx_ring
->count
)
2000 tx_ring
->next_to_use
= i
;
2008 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
2010 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2012 /* there is enough descriptors then we don't need to worry */
2013 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2016 netif_stop_queue(netdev
);
2020 /* We need to check again just in case room has been made available */
2021 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2024 netif_wake_queue(netdev
);
2026 ++adapter
->restart_queue
;
2030 #define IGBVF_MAX_TXD_PWR 16
2031 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2033 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2034 struct igbvf_ring
*tx_ring
,
2035 struct sk_buff
*skb
,
2038 struct igbvf_buffer
*buffer_info
;
2039 struct pci_dev
*pdev
= adapter
->pdev
;
2040 unsigned int len
= skb_headlen(skb
);
2041 unsigned int count
= 0, i
;
2044 i
= tx_ring
->next_to_use
;
2046 buffer_info
= &tx_ring
->buffer_info
[i
];
2047 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2048 buffer_info
->length
= len
;
2049 /* set time_stamp *before* dma to help avoid a possible race */
2050 buffer_info
->time_stamp
= jiffies
;
2051 buffer_info
->next_to_watch
= i
;
2052 buffer_info
->mapped_as_page
= false;
2053 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
, len
,
2055 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2059 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2060 struct skb_frag_struct
*frag
;
2064 if (i
== tx_ring
->count
)
2067 frag
= &skb_shinfo(skb
)->frags
[f
];
2070 buffer_info
= &tx_ring
->buffer_info
[i
];
2071 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2072 buffer_info
->length
= len
;
2073 buffer_info
->time_stamp
= jiffies
;
2074 buffer_info
->next_to_watch
= i
;
2075 buffer_info
->mapped_as_page
= true;
2076 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
2081 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2085 tx_ring
->buffer_info
[i
].skb
= skb
;
2086 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2091 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2093 /* clear timestamp and dma mappings for failed buffer_info mapping */
2094 buffer_info
->dma
= 0;
2095 buffer_info
->time_stamp
= 0;
2096 buffer_info
->length
= 0;
2097 buffer_info
->next_to_watch
= 0;
2098 buffer_info
->mapped_as_page
= false;
2102 /* clear timestamp and dma mappings for remaining portion of packet */
2105 i
+= tx_ring
->count
;
2107 buffer_info
= &tx_ring
->buffer_info
[i
];
2108 igbvf_put_txbuf(adapter
, buffer_info
);
2114 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2115 struct igbvf_ring
*tx_ring
,
2116 int tx_flags
, int count
, u32 paylen
,
2119 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2120 struct igbvf_buffer
*buffer_info
;
2121 u32 olinfo_status
= 0, cmd_type_len
;
2124 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2125 E1000_ADVTXD_DCMD_DEXT
);
2127 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2128 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2130 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2131 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2133 /* insert tcp checksum */
2134 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2136 /* insert ip checksum */
2137 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2138 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2140 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2141 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2144 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2146 i
= tx_ring
->next_to_use
;
2148 buffer_info
= &tx_ring
->buffer_info
[i
];
2149 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2150 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2151 tx_desc
->read
.cmd_type_len
=
2152 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2153 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2155 if (i
== tx_ring
->count
)
2159 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2160 /* Force memory writes to complete before letting h/w
2161 * know there are new descriptors to fetch. (Only
2162 * applicable for weak-ordered memory model archs,
2163 * such as IA-64). */
2166 tx_ring
->next_to_use
= i
;
2167 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2168 /* we need this if more than one processor can write to our tail
2169 * at a time, it syncronizes IO on IA64/Altix systems */
2173 static netdev_tx_t
igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2174 struct net_device
*netdev
,
2175 struct igbvf_ring
*tx_ring
)
2177 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2178 unsigned int first
, tx_flags
= 0;
2183 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2184 dev_kfree_skb_any(skb
);
2185 return NETDEV_TX_OK
;
2188 if (skb
->len
<= 0) {
2189 dev_kfree_skb_any(skb
);
2190 return NETDEV_TX_OK
;
2194 * need: count + 4 desc gap to keep tail from touching
2195 * + 2 desc gap to keep tail from touching head,
2196 * + 1 desc for skb->data,
2197 * + 1 desc for context descriptor,
2198 * head, otherwise try next time
2200 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2201 /* this is a hard error */
2202 return NETDEV_TX_BUSY
;
2205 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2206 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2207 tx_flags
|= (vlan_tx_tag_get(skb
) << IGBVF_TX_FLAGS_VLAN_SHIFT
);
2210 if (skb
->protocol
== htons(ETH_P_IP
))
2211 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2213 first
= tx_ring
->next_to_use
;
2215 tso
= skb_is_gso(skb
) ?
2216 igbvf_tso(adapter
, tx_ring
, skb
, tx_flags
, &hdr_len
) : 0;
2217 if (unlikely(tso
< 0)) {
2218 dev_kfree_skb_any(skb
);
2219 return NETDEV_TX_OK
;
2223 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2224 else if (igbvf_tx_csum(adapter
, tx_ring
, skb
, tx_flags
) &&
2225 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2226 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2229 * count reflects descriptors mapped, if 0 then mapping error
2230 * has occurred and we need to rewind the descriptor queue
2232 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
, first
);
2235 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2237 /* Make sure there is space in the ring for the next send. */
2238 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2240 dev_kfree_skb_any(skb
);
2241 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2242 tx_ring
->next_to_use
= first
;
2245 return NETDEV_TX_OK
;
2248 static netdev_tx_t
igbvf_xmit_frame(struct sk_buff
*skb
,
2249 struct net_device
*netdev
)
2251 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2252 struct igbvf_ring
*tx_ring
;
2254 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2255 dev_kfree_skb_any(skb
);
2256 return NETDEV_TX_OK
;
2259 tx_ring
= &adapter
->tx_ring
[0];
2261 return igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2265 * igbvf_tx_timeout - Respond to a Tx Hang
2266 * @netdev: network interface device structure
2268 static void igbvf_tx_timeout(struct net_device
*netdev
)
2270 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2272 /* Do the reset outside of interrupt context */
2273 adapter
->tx_timeout_count
++;
2274 schedule_work(&adapter
->reset_task
);
2277 static void igbvf_reset_task(struct work_struct
*work
)
2279 struct igbvf_adapter
*adapter
;
2280 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2282 igbvf_reinit_locked(adapter
);
2286 * igbvf_get_stats - Get System Network Statistics
2287 * @netdev: network interface device structure
2289 * Returns the address of the device statistics structure.
2290 * The statistics are actually updated from the timer callback.
2292 static struct net_device_stats
*igbvf_get_stats(struct net_device
*netdev
)
2294 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2296 /* only return the current stats */
2297 return &adapter
->net_stats
;
2301 * igbvf_change_mtu - Change the Maximum Transfer Unit
2302 * @netdev: network interface device structure
2303 * @new_mtu: new value for maximum frame size
2305 * Returns 0 on success, negative on failure
2307 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2309 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2310 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2312 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2313 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2317 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2318 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2319 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2323 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2325 /* igbvf_down has a dependency on max_frame_size */
2326 adapter
->max_frame_size
= max_frame
;
2327 if (netif_running(netdev
))
2328 igbvf_down(adapter
);
2331 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2332 * means we reserve 2 more, this pushes us to allocate from the next
2334 * i.e. RXBUFFER_2048 --> size-4096 slab
2335 * However with the new *_jumbo_rx* routines, jumbo receives will use
2339 if (max_frame
<= 1024)
2340 adapter
->rx_buffer_len
= 1024;
2341 else if (max_frame
<= 2048)
2342 adapter
->rx_buffer_len
= 2048;
2344 #if (PAGE_SIZE / 2) > 16384
2345 adapter
->rx_buffer_len
= 16384;
2347 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2351 /* adjust allocation if LPE protects us, and we aren't using SBP */
2352 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2353 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2354 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2357 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2358 netdev
->mtu
, new_mtu
);
2359 netdev
->mtu
= new_mtu
;
2361 if (netif_running(netdev
))
2364 igbvf_reset(adapter
);
2366 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2371 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2379 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2381 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2382 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2387 netif_device_detach(netdev
);
2389 if (netif_running(netdev
)) {
2390 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2391 igbvf_down(adapter
);
2392 igbvf_free_irq(adapter
);
2396 retval
= pci_save_state(pdev
);
2401 pci_disable_device(pdev
);
2407 static int igbvf_resume(struct pci_dev
*pdev
)
2409 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2410 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2413 pci_restore_state(pdev
);
2414 err
= pci_enable_device_mem(pdev
);
2416 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2420 pci_set_master(pdev
);
2422 if (netif_running(netdev
)) {
2423 err
= igbvf_request_irq(adapter
);
2428 igbvf_reset(adapter
);
2430 if (netif_running(netdev
))
2433 netif_device_attach(netdev
);
2439 static void igbvf_shutdown(struct pci_dev
*pdev
)
2441 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2444 #ifdef CONFIG_NET_POLL_CONTROLLER
2446 * Polling 'interrupt' - used by things like netconsole to send skbs
2447 * without having to re-enable interrupts. It's not called while
2448 * the interrupt routine is executing.
2450 static void igbvf_netpoll(struct net_device
*netdev
)
2452 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2454 disable_irq(adapter
->pdev
->irq
);
2456 igbvf_clean_tx_irq(adapter
->tx_ring
);
2458 enable_irq(adapter
->pdev
->irq
);
2463 * igbvf_io_error_detected - called when PCI error is detected
2464 * @pdev: Pointer to PCI device
2465 * @state: The current pci connection state
2467 * This function is called after a PCI bus error affecting
2468 * this device has been detected.
2470 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2471 pci_channel_state_t state
)
2473 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2474 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2476 netif_device_detach(netdev
);
2478 if (state
== pci_channel_io_perm_failure
)
2479 return PCI_ERS_RESULT_DISCONNECT
;
2481 if (netif_running(netdev
))
2482 igbvf_down(adapter
);
2483 pci_disable_device(pdev
);
2485 /* Request a slot slot reset. */
2486 return PCI_ERS_RESULT_NEED_RESET
;
2490 * igbvf_io_slot_reset - called after the pci bus has been reset.
2491 * @pdev: Pointer to PCI device
2493 * Restart the card from scratch, as if from a cold-boot. Implementation
2494 * resembles the first-half of the igbvf_resume routine.
2496 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2498 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2499 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2501 if (pci_enable_device_mem(pdev
)) {
2503 "Cannot re-enable PCI device after reset.\n");
2504 return PCI_ERS_RESULT_DISCONNECT
;
2506 pci_set_master(pdev
);
2508 igbvf_reset(adapter
);
2510 return PCI_ERS_RESULT_RECOVERED
;
2514 * igbvf_io_resume - called when traffic can start flowing again.
2515 * @pdev: Pointer to PCI device
2517 * This callback is called when the error recovery driver tells us that
2518 * its OK to resume normal operation. Implementation resembles the
2519 * second-half of the igbvf_resume routine.
2521 static void igbvf_io_resume(struct pci_dev
*pdev
)
2523 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2524 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2526 if (netif_running(netdev
)) {
2527 if (igbvf_up(adapter
)) {
2529 "can't bring device back up after reset\n");
2534 netif_device_attach(netdev
);
2537 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2539 struct e1000_hw
*hw
= &adapter
->hw
;
2540 struct net_device
*netdev
= adapter
->netdev
;
2541 struct pci_dev
*pdev
= adapter
->pdev
;
2543 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2544 dev_info(&pdev
->dev
, "Address: %pM\n", netdev
->dev_addr
);
2545 dev_info(&pdev
->dev
, "MAC: %d\n", hw
->mac
.type
);
2548 static const struct net_device_ops igbvf_netdev_ops
= {
2549 .ndo_open
= igbvf_open
,
2550 .ndo_stop
= igbvf_close
,
2551 .ndo_start_xmit
= igbvf_xmit_frame
,
2552 .ndo_get_stats
= igbvf_get_stats
,
2553 .ndo_set_multicast_list
= igbvf_set_multi
,
2554 .ndo_set_mac_address
= igbvf_set_mac
,
2555 .ndo_change_mtu
= igbvf_change_mtu
,
2556 .ndo_do_ioctl
= igbvf_ioctl
,
2557 .ndo_tx_timeout
= igbvf_tx_timeout
,
2558 .ndo_vlan_rx_register
= igbvf_vlan_rx_register
,
2559 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2560 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2561 #ifdef CONFIG_NET_POLL_CONTROLLER
2562 .ndo_poll_controller
= igbvf_netpoll
,
2567 * igbvf_probe - Device Initialization Routine
2568 * @pdev: PCI device information struct
2569 * @ent: entry in igbvf_pci_tbl
2571 * Returns 0 on success, negative on failure
2573 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2574 * The OS initialization, configuring of the adapter private structure,
2575 * and a hardware reset occur.
2577 static int __devinit
igbvf_probe(struct pci_dev
*pdev
,
2578 const struct pci_device_id
*ent
)
2580 struct net_device
*netdev
;
2581 struct igbvf_adapter
*adapter
;
2582 struct e1000_hw
*hw
;
2583 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2585 static int cards_found
;
2586 int err
, pci_using_dac
;
2588 err
= pci_enable_device_mem(pdev
);
2593 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2595 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2599 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
2601 err
= dma_set_coherent_mask(&pdev
->dev
,
2604 dev_err(&pdev
->dev
, "No usable DMA "
2605 "configuration, aborting\n");
2611 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2615 pci_set_master(pdev
);
2618 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2620 goto err_alloc_etherdev
;
2622 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2624 pci_set_drvdata(pdev
, netdev
);
2625 adapter
= netdev_priv(netdev
);
2627 adapter
->netdev
= netdev
;
2628 adapter
->pdev
= pdev
;
2630 adapter
->pba
= ei
->pba
;
2631 adapter
->flags
= ei
->flags
;
2632 adapter
->hw
.back
= adapter
;
2633 adapter
->hw
.mac
.type
= ei
->mac
;
2634 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
2636 /* PCI config space info */
2638 hw
->vendor_id
= pdev
->vendor
;
2639 hw
->device_id
= pdev
->device
;
2640 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2641 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2642 hw
->revision_id
= pdev
->revision
;
2645 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2646 pci_resource_len(pdev
, 0));
2648 if (!adapter
->hw
.hw_addr
)
2651 if (ei
->get_variants
) {
2652 err
= ei
->get_variants(adapter
);
2657 /* setup adapter struct */
2658 err
= igbvf_sw_init(adapter
);
2662 /* construct the net_device struct */
2663 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2665 igbvf_set_ethtool_ops(netdev
);
2666 netdev
->watchdog_timeo
= 5 * HZ
;
2667 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2669 adapter
->bd_number
= cards_found
++;
2671 netdev
->features
= NETIF_F_SG
|
2673 NETIF_F_HW_VLAN_TX
|
2674 NETIF_F_HW_VLAN_RX
|
2675 NETIF_F_HW_VLAN_FILTER
;
2677 netdev
->features
|= NETIF_F_IPV6_CSUM
;
2678 netdev
->features
|= NETIF_F_TSO
;
2679 netdev
->features
|= NETIF_F_TSO6
;
2682 netdev
->features
|= NETIF_F_HIGHDMA
;
2684 netdev
->vlan_features
|= NETIF_F_TSO
;
2685 netdev
->vlan_features
|= NETIF_F_TSO6
;
2686 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
2687 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
2688 netdev
->vlan_features
|= NETIF_F_SG
;
2690 /*reset the controller to put the device in a known good state */
2691 err
= hw
->mac
.ops
.reset_hw(hw
);
2693 dev_info(&pdev
->dev
,
2694 "PF still in reset state, assigning new address."
2695 " Is the PF interface up?\n");
2696 dev_hw_addr_random(adapter
->netdev
, hw
->mac
.addr
);
2698 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2700 dev_err(&pdev
->dev
, "Error reading MAC address\n");
2705 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2706 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2708 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2709 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
2715 setup_timer(&adapter
->watchdog_timer
, &igbvf_watchdog
,
2716 (unsigned long) adapter
);
2718 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2719 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2721 /* ring size defaults */
2722 adapter
->rx_ring
->count
= 1024;
2723 adapter
->tx_ring
->count
= 1024;
2725 /* reset the hardware with the new settings */
2726 igbvf_reset(adapter
);
2728 strcpy(netdev
->name
, "eth%d");
2729 err
= register_netdev(netdev
);
2733 /* tell the stack to leave us alone until igbvf_open() is called */
2734 netif_carrier_off(netdev
);
2735 netif_stop_queue(netdev
);
2737 igbvf_print_device_info(adapter
);
2739 igbvf_initialize_last_counter_stats(adapter
);
2744 kfree(adapter
->tx_ring
);
2745 kfree(adapter
->rx_ring
);
2747 igbvf_reset_interrupt_capability(adapter
);
2748 iounmap(adapter
->hw
.hw_addr
);
2750 free_netdev(netdev
);
2752 pci_release_regions(pdev
);
2755 pci_disable_device(pdev
);
2760 * igbvf_remove - Device Removal Routine
2761 * @pdev: PCI device information struct
2763 * igbvf_remove is called by the PCI subsystem to alert the driver
2764 * that it should release a PCI device. The could be caused by a
2765 * Hot-Plug event, or because the driver is going to be removed from
2768 static void __devexit
igbvf_remove(struct pci_dev
*pdev
)
2770 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2771 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2772 struct e1000_hw
*hw
= &adapter
->hw
;
2775 * The watchdog timer may be rescheduled, so explicitly
2776 * disable it from being rescheduled.
2778 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2779 del_timer_sync(&adapter
->watchdog_timer
);
2781 cancel_work_sync(&adapter
->reset_task
);
2782 cancel_work_sync(&adapter
->watchdog_task
);
2784 unregister_netdev(netdev
);
2786 igbvf_reset_interrupt_capability(adapter
);
2789 * it is important to delete the napi struct prior to freeing the
2790 * rx ring so that you do not end up with null pointer refs
2792 netif_napi_del(&adapter
->rx_ring
->napi
);
2793 kfree(adapter
->tx_ring
);
2794 kfree(adapter
->rx_ring
);
2796 iounmap(hw
->hw_addr
);
2797 if (hw
->flash_address
)
2798 iounmap(hw
->flash_address
);
2799 pci_release_regions(pdev
);
2801 free_netdev(netdev
);
2803 pci_disable_device(pdev
);
2806 /* PCI Error Recovery (ERS) */
2807 static struct pci_error_handlers igbvf_err_handler
= {
2808 .error_detected
= igbvf_io_error_detected
,
2809 .slot_reset
= igbvf_io_slot_reset
,
2810 .resume
= igbvf_io_resume
,
2813 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl
) = {
2814 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2815 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_VF
), board_i350_vf
},
2816 { } /* terminate list */
2818 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2820 /* PCI Device API Driver */
2821 static struct pci_driver igbvf_driver
= {
2822 .name
= igbvf_driver_name
,
2823 .id_table
= igbvf_pci_tbl
,
2824 .probe
= igbvf_probe
,
2825 .remove
= __devexit_p(igbvf_remove
),
2827 /* Power Management Hooks */
2828 .suspend
= igbvf_suspend
,
2829 .resume
= igbvf_resume
,
2831 .shutdown
= igbvf_shutdown
,
2832 .err_handler
= &igbvf_err_handler
2836 * igbvf_init_module - Driver Registration Routine
2838 * igbvf_init_module is the first routine called when the driver is
2839 * loaded. All it does is register with the PCI subsystem.
2841 static int __init
igbvf_init_module(void)
2844 printk(KERN_INFO
"%s - version %s\n",
2845 igbvf_driver_string
, igbvf_driver_version
);
2846 printk(KERN_INFO
"%s\n", igbvf_copyright
);
2848 ret
= pci_register_driver(&igbvf_driver
);
2852 module_init(igbvf_init_module
);
2855 * igbvf_exit_module - Driver Exit Cleanup Routine
2857 * igbvf_exit_module is called just before the driver is removed
2860 static void __exit
igbvf_exit_module(void)
2862 pci_unregister_driver(&igbvf_driver
);
2864 module_exit(igbvf_exit_module
);
2867 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2868 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2869 MODULE_LICENSE("GPL");
2870 MODULE_VERSION(DRV_VERSION
);