4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
61 * dentry->d_inode->i_lock
64 * dcache_hash_bucket lock
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
70 * dentry->d_parent->d_lock
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
78 int sysctl_vfs_cache_pressure __read_mostly
= 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
81 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
84 EXPORT_SYMBOL(rename_lock
);
86 static struct kmem_cache
*dentry_cache __read_mostly
;
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
99 static unsigned int d_hash_mask __read_mostly
;
100 static unsigned int d_hash_shift __read_mostly
;
102 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
104 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
107 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
108 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
109 return dentry_hashtable
+ (hash
& D_HASHMASK
);
112 static inline void spin_lock_bucket(struct hlist_bl_head
*b
)
114 bit_spin_lock(0, (unsigned long *)&b
->first
);
117 static inline void spin_unlock_bucket(struct hlist_bl_head
*b
)
119 __bit_spin_unlock(0, (unsigned long *)&b
->first
);
122 /* Statistics gathering. */
123 struct dentry_stat_t dentry_stat
= {
127 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
129 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
130 static int get_nr_dentry(void)
134 for_each_possible_cpu(i
)
135 sum
+= per_cpu(nr_dentry
, i
);
136 return sum
< 0 ? 0 : sum
;
139 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
140 size_t *lenp
, loff_t
*ppos
)
142 dentry_stat
.nr_dentry
= get_nr_dentry();
143 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
147 static void __d_free(struct rcu_head
*head
)
149 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
151 WARN_ON(!list_empty(&dentry
->d_alias
));
152 if (dname_external(dentry
))
153 kfree(dentry
->d_name
.name
);
154 kmem_cache_free(dentry_cache
, dentry
);
160 static void d_free(struct dentry
*dentry
)
162 BUG_ON(dentry
->d_count
);
163 this_cpu_dec(nr_dentry
);
164 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
165 dentry
->d_op
->d_release(dentry
);
167 /* if dentry was never visible to RCU, immediate free is OK */
168 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
169 __d_free(&dentry
->d_u
.d_rcu
);
171 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
175 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
176 * @dentry: the target dentry
177 * After this call, in-progress rcu-walk path lookup will fail. This
178 * should be called after unhashing, and after changing d_inode (if
179 * the dentry has not already been unhashed).
181 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
183 assert_spin_locked(&dentry
->d_lock
);
184 /* Go through a barrier */
185 write_seqcount_barrier(&dentry
->d_seq
);
189 * Release the dentry's inode, using the filesystem
190 * d_iput() operation if defined. Dentry has no refcount
193 static void dentry_iput(struct dentry
* dentry
)
194 __releases(dentry
->d_lock
)
195 __releases(dentry
->d_inode
->i_lock
)
197 struct inode
*inode
= dentry
->d_inode
;
199 dentry
->d_inode
= NULL
;
200 list_del_init(&dentry
->d_alias
);
201 spin_unlock(&dentry
->d_lock
);
202 spin_unlock(&inode
->i_lock
);
204 fsnotify_inoderemove(inode
);
205 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
206 dentry
->d_op
->d_iput(dentry
, inode
);
210 spin_unlock(&dentry
->d_lock
);
215 * Release the dentry's inode, using the filesystem
216 * d_iput() operation if defined. dentry remains in-use.
218 static void dentry_unlink_inode(struct dentry
* dentry
)
219 __releases(dentry
->d_lock
)
220 __releases(dentry
->d_inode
->i_lock
)
222 struct inode
*inode
= dentry
->d_inode
;
223 dentry
->d_inode
= NULL
;
224 list_del_init(&dentry
->d_alias
);
225 dentry_rcuwalk_barrier(dentry
);
226 spin_unlock(&dentry
->d_lock
);
227 spin_unlock(&inode
->i_lock
);
229 fsnotify_inoderemove(inode
);
230 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
231 dentry
->d_op
->d_iput(dentry
, inode
);
237 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
239 static void dentry_lru_add(struct dentry
*dentry
)
241 if (list_empty(&dentry
->d_lru
)) {
242 spin_lock(&dcache_lru_lock
);
243 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
244 dentry
->d_sb
->s_nr_dentry_unused
++;
245 dentry_stat
.nr_unused
++;
246 spin_unlock(&dcache_lru_lock
);
250 static void __dentry_lru_del(struct dentry
*dentry
)
252 list_del_init(&dentry
->d_lru
);
253 dentry
->d_sb
->s_nr_dentry_unused
--;
254 dentry_stat
.nr_unused
--;
257 static void dentry_lru_del(struct dentry
*dentry
)
259 if (!list_empty(&dentry
->d_lru
)) {
260 spin_lock(&dcache_lru_lock
);
261 __dentry_lru_del(dentry
);
262 spin_unlock(&dcache_lru_lock
);
266 static void dentry_lru_move_tail(struct dentry
*dentry
)
268 spin_lock(&dcache_lru_lock
);
269 if (list_empty(&dentry
->d_lru
)) {
270 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
271 dentry
->d_sb
->s_nr_dentry_unused
++;
272 dentry_stat
.nr_unused
++;
274 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
276 spin_unlock(&dcache_lru_lock
);
280 * d_kill - kill dentry and return parent
281 * @dentry: dentry to kill
282 * @parent: parent dentry
284 * The dentry must already be unhashed and removed from the LRU.
286 * If this is the root of the dentry tree, return NULL.
288 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
291 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
292 __releases(dentry
->d_lock
)
293 __releases(parent
->d_lock
)
294 __releases(dentry
->d_inode
->i_lock
)
296 list_del(&dentry
->d_u
.d_child
);
298 * Inform try_to_ascend() that we are no longer attached to the
301 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
303 spin_unlock(&parent
->d_lock
);
306 * dentry_iput drops the locks, at which point nobody (except
307 * transient RCU lookups) can reach this dentry.
314 * d_drop - drop a dentry
315 * @dentry: dentry to drop
317 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
318 * be found through a VFS lookup any more. Note that this is different from
319 * deleting the dentry - d_delete will try to mark the dentry negative if
320 * possible, giving a successful _negative_ lookup, while d_drop will
321 * just make the cache lookup fail.
323 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
324 * reason (NFS timeouts or autofs deletes).
326 * __d_drop requires dentry->d_lock.
328 void __d_drop(struct dentry
*dentry
)
330 if (!d_unhashed(dentry
)) {
331 struct hlist_bl_head
*b
;
332 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
333 b
= &dentry
->d_sb
->s_anon
;
335 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
338 __hlist_bl_del(&dentry
->d_hash
);
339 dentry
->d_hash
.pprev
= NULL
;
340 spin_unlock_bucket(b
);
342 dentry_rcuwalk_barrier(dentry
);
345 EXPORT_SYMBOL(__d_drop
);
347 void d_drop(struct dentry
*dentry
)
349 spin_lock(&dentry
->d_lock
);
351 spin_unlock(&dentry
->d_lock
);
353 EXPORT_SYMBOL(d_drop
);
356 * Finish off a dentry we've decided to kill.
357 * dentry->d_lock must be held, returns with it unlocked.
358 * If ref is non-zero, then decrement the refcount too.
359 * Returns dentry requiring refcount drop, or NULL if we're done.
361 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
362 __releases(dentry
->d_lock
)
365 struct dentry
*parent
;
367 inode
= dentry
->d_inode
;
368 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
370 spin_unlock(&dentry
->d_lock
);
372 return dentry
; /* try again with same dentry */
377 parent
= dentry
->d_parent
;
378 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
380 spin_unlock(&inode
->i_lock
);
386 /* if dentry was on the d_lru list delete it from there */
387 dentry_lru_del(dentry
);
388 /* if it was on the hash then remove it */
390 return d_kill(dentry
, parent
);
396 * This is complicated by the fact that we do not want to put
397 * dentries that are no longer on any hash chain on the unused
398 * list: we'd much rather just get rid of them immediately.
400 * However, that implies that we have to traverse the dentry
401 * tree upwards to the parents which might _also_ now be
402 * scheduled for deletion (it may have been only waiting for
403 * its last child to go away).
405 * This tail recursion is done by hand as we don't want to depend
406 * on the compiler to always get this right (gcc generally doesn't).
407 * Real recursion would eat up our stack space.
411 * dput - release a dentry
412 * @dentry: dentry to release
414 * Release a dentry. This will drop the usage count and if appropriate
415 * call the dentry unlink method as well as removing it from the queues and
416 * releasing its resources. If the parent dentries were scheduled for release
417 * they too may now get deleted.
419 void dput(struct dentry
*dentry
)
425 if (dentry
->d_count
== 1)
427 spin_lock(&dentry
->d_lock
);
428 BUG_ON(!dentry
->d_count
);
429 if (dentry
->d_count
> 1) {
431 spin_unlock(&dentry
->d_lock
);
435 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
436 if (dentry
->d_op
->d_delete(dentry
))
440 /* Unreachable? Get rid of it */
441 if (d_unhashed(dentry
))
444 /* Otherwise leave it cached and ensure it's on the LRU */
445 dentry
->d_flags
|= DCACHE_REFERENCED
;
446 dentry_lru_add(dentry
);
449 spin_unlock(&dentry
->d_lock
);
453 dentry
= dentry_kill(dentry
, 1);
460 * d_invalidate - invalidate a dentry
461 * @dentry: dentry to invalidate
463 * Try to invalidate the dentry if it turns out to be
464 * possible. If there are other dentries that can be
465 * reached through this one we can't delete it and we
466 * return -EBUSY. On success we return 0.
471 int d_invalidate(struct dentry
* dentry
)
474 * If it's already been dropped, return OK.
476 spin_lock(&dentry
->d_lock
);
477 if (d_unhashed(dentry
)) {
478 spin_unlock(&dentry
->d_lock
);
482 * Check whether to do a partial shrink_dcache
483 * to get rid of unused child entries.
485 if (!list_empty(&dentry
->d_subdirs
)) {
486 spin_unlock(&dentry
->d_lock
);
487 shrink_dcache_parent(dentry
);
488 spin_lock(&dentry
->d_lock
);
492 * Somebody else still using it?
494 * If it's a directory, we can't drop it
495 * for fear of somebody re-populating it
496 * with children (even though dropping it
497 * would make it unreachable from the root,
498 * we might still populate it if it was a
499 * working directory or similar).
501 if (dentry
->d_count
> 1) {
502 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
503 spin_unlock(&dentry
->d_lock
);
509 spin_unlock(&dentry
->d_lock
);
512 EXPORT_SYMBOL(d_invalidate
);
514 /* This must be called with d_lock held */
515 static inline void __dget_dlock(struct dentry
*dentry
)
520 static inline void __dget(struct dentry
*dentry
)
522 spin_lock(&dentry
->d_lock
);
523 __dget_dlock(dentry
);
524 spin_unlock(&dentry
->d_lock
);
527 struct dentry
*dget_parent(struct dentry
*dentry
)
533 * Don't need rcu_dereference because we re-check it was correct under
537 ret
= dentry
->d_parent
;
542 spin_lock(&ret
->d_lock
);
543 if (unlikely(ret
!= dentry
->d_parent
)) {
544 spin_unlock(&ret
->d_lock
);
549 BUG_ON(!ret
->d_count
);
551 spin_unlock(&ret
->d_lock
);
555 EXPORT_SYMBOL(dget_parent
);
558 * d_find_alias - grab a hashed alias of inode
559 * @inode: inode in question
560 * @want_discon: flag, used by d_splice_alias, to request
561 * that only a DISCONNECTED alias be returned.
563 * If inode has a hashed alias, or is a directory and has any alias,
564 * acquire the reference to alias and return it. Otherwise return NULL.
565 * Notice that if inode is a directory there can be only one alias and
566 * it can be unhashed only if it has no children, or if it is the root
569 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
570 * any other hashed alias over that one unless @want_discon is set,
571 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
573 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
575 struct dentry
*alias
, *discon_alias
;
579 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
580 spin_lock(&alias
->d_lock
);
581 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
582 if (IS_ROOT(alias
) &&
583 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
584 discon_alias
= alias
;
585 } else if (!want_discon
) {
587 spin_unlock(&alias
->d_lock
);
591 spin_unlock(&alias
->d_lock
);
594 alias
= discon_alias
;
595 spin_lock(&alias
->d_lock
);
596 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
597 if (IS_ROOT(alias
) &&
598 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
600 spin_unlock(&alias
->d_lock
);
604 spin_unlock(&alias
->d_lock
);
610 struct dentry
*d_find_alias(struct inode
*inode
)
612 struct dentry
*de
= NULL
;
614 if (!list_empty(&inode
->i_dentry
)) {
615 spin_lock(&inode
->i_lock
);
616 de
= __d_find_alias(inode
, 0);
617 spin_unlock(&inode
->i_lock
);
621 EXPORT_SYMBOL(d_find_alias
);
624 * Try to kill dentries associated with this inode.
625 * WARNING: you must own a reference to inode.
627 void d_prune_aliases(struct inode
*inode
)
629 struct dentry
*dentry
;
631 spin_lock(&inode
->i_lock
);
632 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
633 spin_lock(&dentry
->d_lock
);
634 if (!dentry
->d_count
) {
635 __dget_dlock(dentry
);
637 spin_unlock(&dentry
->d_lock
);
638 spin_unlock(&inode
->i_lock
);
642 spin_unlock(&dentry
->d_lock
);
644 spin_unlock(&inode
->i_lock
);
646 EXPORT_SYMBOL(d_prune_aliases
);
649 * Try to throw away a dentry - free the inode, dput the parent.
650 * Requires dentry->d_lock is held, and dentry->d_count == 0.
651 * Releases dentry->d_lock.
653 * This may fail if locks cannot be acquired no problem, just try again.
655 static void try_prune_one_dentry(struct dentry
*dentry
)
656 __releases(dentry
->d_lock
)
658 struct dentry
*parent
;
660 parent
= dentry_kill(dentry
, 0);
662 * If dentry_kill returns NULL, we have nothing more to do.
663 * if it returns the same dentry, trylocks failed. In either
664 * case, just loop again.
666 * Otherwise, we need to prune ancestors too. This is necessary
667 * to prevent quadratic behavior of shrink_dcache_parent(), but
668 * is also expected to be beneficial in reducing dentry cache
673 if (parent
== dentry
)
676 /* Prune ancestors. */
679 spin_lock(&dentry
->d_lock
);
680 if (dentry
->d_count
> 1) {
682 spin_unlock(&dentry
->d_lock
);
685 dentry
= dentry_kill(dentry
, 1);
689 static void shrink_dentry_list(struct list_head
*list
)
691 struct dentry
*dentry
;
695 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
696 if (&dentry
->d_lru
== list
)
698 spin_lock(&dentry
->d_lock
);
699 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
700 spin_unlock(&dentry
->d_lock
);
705 * We found an inuse dentry which was not removed from
706 * the LRU because of laziness during lookup. Do not free
707 * it - just keep it off the LRU list.
709 if (dentry
->d_count
) {
710 dentry_lru_del(dentry
);
711 spin_unlock(&dentry
->d_lock
);
717 try_prune_one_dentry(dentry
);
725 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
726 * @sb: superblock to shrink dentry LRU.
727 * @count: number of entries to prune
728 * @flags: flags to control the dentry processing
730 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
732 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
734 /* called from prune_dcache() and shrink_dcache_parent() */
735 struct dentry
*dentry
;
736 LIST_HEAD(referenced
);
741 spin_lock(&dcache_lru_lock
);
742 while (!list_empty(&sb
->s_dentry_lru
)) {
743 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
744 struct dentry
, d_lru
);
745 BUG_ON(dentry
->d_sb
!= sb
);
747 if (!spin_trylock(&dentry
->d_lock
)) {
748 spin_unlock(&dcache_lru_lock
);
754 * If we are honouring the DCACHE_REFERENCED flag and the
755 * dentry has this flag set, don't free it. Clear the flag
756 * and put it back on the LRU.
758 if (flags
& DCACHE_REFERENCED
&&
759 dentry
->d_flags
& DCACHE_REFERENCED
) {
760 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
761 list_move(&dentry
->d_lru
, &referenced
);
762 spin_unlock(&dentry
->d_lock
);
764 list_move_tail(&dentry
->d_lru
, &tmp
);
765 spin_unlock(&dentry
->d_lock
);
769 cond_resched_lock(&dcache_lru_lock
);
771 if (!list_empty(&referenced
))
772 list_splice(&referenced
, &sb
->s_dentry_lru
);
773 spin_unlock(&dcache_lru_lock
);
775 shrink_dentry_list(&tmp
);
781 * prune_dcache - shrink the dcache
782 * @count: number of entries to try to free
784 * Shrink the dcache. This is done when we need more memory, or simply when we
785 * need to unmount something (at which point we need to unuse all dentries).
787 * This function may fail to free any resources if all the dentries are in use.
789 static void prune_dcache(int count
)
791 struct super_block
*sb
, *p
= NULL
;
793 int unused
= dentry_stat
.nr_unused
;
797 if (unused
== 0 || count
== 0)
802 prune_ratio
= unused
/ count
;
804 list_for_each_entry(sb
, &super_blocks
, s_list
) {
805 if (list_empty(&sb
->s_instances
))
807 if (sb
->s_nr_dentry_unused
== 0)
810 /* Now, we reclaim unused dentrins with fairness.
811 * We reclaim them same percentage from each superblock.
812 * We calculate number of dentries to scan on this sb
813 * as follows, but the implementation is arranged to avoid
815 * number of dentries to scan on this sb =
816 * count * (number of dentries on this sb /
817 * number of dentries in the machine)
819 spin_unlock(&sb_lock
);
820 if (prune_ratio
!= 1)
821 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
823 w_count
= sb
->s_nr_dentry_unused
;
826 * We need to be sure this filesystem isn't being unmounted,
827 * otherwise we could race with generic_shutdown_super(), and
828 * end up holding a reference to an inode while the filesystem
829 * is unmounted. So we try to get s_umount, and make sure
832 if (down_read_trylock(&sb
->s_umount
)) {
833 if ((sb
->s_root
!= NULL
) &&
834 (!list_empty(&sb
->s_dentry_lru
))) {
835 __shrink_dcache_sb(sb
, &w_count
,
839 up_read(&sb
->s_umount
);
846 /* more work left to do? */
852 spin_unlock(&sb_lock
);
856 * shrink_dcache_sb - shrink dcache for a superblock
859 * Shrink the dcache for the specified super block. This is used to free
860 * the dcache before unmounting a file system.
862 void shrink_dcache_sb(struct super_block
*sb
)
866 spin_lock(&dcache_lru_lock
);
867 while (!list_empty(&sb
->s_dentry_lru
)) {
868 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
869 spin_unlock(&dcache_lru_lock
);
870 shrink_dentry_list(&tmp
);
871 spin_lock(&dcache_lru_lock
);
873 spin_unlock(&dcache_lru_lock
);
875 EXPORT_SYMBOL(shrink_dcache_sb
);
878 * destroy a single subtree of dentries for unmount
879 * - see the comments on shrink_dcache_for_umount() for a description of the
882 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
884 struct dentry
*parent
;
885 unsigned detached
= 0;
887 BUG_ON(!IS_ROOT(dentry
));
889 /* detach this root from the system */
890 spin_lock(&dentry
->d_lock
);
891 dentry_lru_del(dentry
);
893 spin_unlock(&dentry
->d_lock
);
896 /* descend to the first leaf in the current subtree */
897 while (!list_empty(&dentry
->d_subdirs
)) {
900 /* this is a branch with children - detach all of them
901 * from the system in one go */
902 spin_lock(&dentry
->d_lock
);
903 list_for_each_entry(loop
, &dentry
->d_subdirs
,
905 spin_lock_nested(&loop
->d_lock
,
906 DENTRY_D_LOCK_NESTED
);
907 dentry_lru_del(loop
);
909 spin_unlock(&loop
->d_lock
);
911 spin_unlock(&dentry
->d_lock
);
913 /* move to the first child */
914 dentry
= list_entry(dentry
->d_subdirs
.next
,
915 struct dentry
, d_u
.d_child
);
918 /* consume the dentries from this leaf up through its parents
919 * until we find one with children or run out altogether */
923 if (dentry
->d_count
!= 0) {
925 "BUG: Dentry %p{i=%lx,n=%s}"
927 " [unmount of %s %s]\n",
930 dentry
->d_inode
->i_ino
: 0UL,
933 dentry
->d_sb
->s_type
->name
,
938 if (IS_ROOT(dentry
)) {
940 list_del(&dentry
->d_u
.d_child
);
942 parent
= dentry
->d_parent
;
943 spin_lock(&parent
->d_lock
);
945 list_del(&dentry
->d_u
.d_child
);
946 spin_unlock(&parent
->d_lock
);
951 inode
= dentry
->d_inode
;
953 dentry
->d_inode
= NULL
;
954 list_del_init(&dentry
->d_alias
);
955 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
956 dentry
->d_op
->d_iput(dentry
, inode
);
963 /* finished when we fall off the top of the tree,
964 * otherwise we ascend to the parent and move to the
965 * next sibling if there is one */
969 } while (list_empty(&dentry
->d_subdirs
));
971 dentry
= list_entry(dentry
->d_subdirs
.next
,
972 struct dentry
, d_u
.d_child
);
977 * destroy the dentries attached to a superblock on unmounting
978 * - we don't need to use dentry->d_lock because:
979 * - the superblock is detached from all mountings and open files, so the
980 * dentry trees will not be rearranged by the VFS
981 * - s_umount is write-locked, so the memory pressure shrinker will ignore
982 * any dentries belonging to this superblock that it comes across
983 * - the filesystem itself is no longer permitted to rearrange the dentries
986 void shrink_dcache_for_umount(struct super_block
*sb
)
988 struct dentry
*dentry
;
990 if (down_read_trylock(&sb
->s_umount
))
995 spin_lock(&dentry
->d_lock
);
997 spin_unlock(&dentry
->d_lock
);
998 shrink_dcache_for_umount_subtree(dentry
);
1000 while (!hlist_bl_empty(&sb
->s_anon
)) {
1001 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
1002 shrink_dcache_for_umount_subtree(dentry
);
1007 * This tries to ascend one level of parenthood, but
1008 * we can race with renaming, so we need to re-check
1009 * the parenthood after dropping the lock and check
1010 * that the sequence number still matches.
1012 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1014 struct dentry
*new = old
->d_parent
;
1017 spin_unlock(&old
->d_lock
);
1018 spin_lock(&new->d_lock
);
1021 * might go back up the wrong parent if we have had a rename
1024 if (new != old
->d_parent
||
1025 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
1026 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1027 spin_unlock(&new->d_lock
);
1036 * Search for at least 1 mount point in the dentry's subdirs.
1037 * We descend to the next level whenever the d_subdirs
1038 * list is non-empty and continue searching.
1042 * have_submounts - check for mounts over a dentry
1043 * @parent: dentry to check.
1045 * Return true if the parent or its subdirectories contain
1048 int have_submounts(struct dentry
*parent
)
1050 struct dentry
*this_parent
;
1051 struct list_head
*next
;
1055 seq
= read_seqbegin(&rename_lock
);
1057 this_parent
= parent
;
1059 if (d_mountpoint(parent
))
1061 spin_lock(&this_parent
->d_lock
);
1063 next
= this_parent
->d_subdirs
.next
;
1065 while (next
!= &this_parent
->d_subdirs
) {
1066 struct list_head
*tmp
= next
;
1067 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1070 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1071 /* Have we found a mount point ? */
1072 if (d_mountpoint(dentry
)) {
1073 spin_unlock(&dentry
->d_lock
);
1074 spin_unlock(&this_parent
->d_lock
);
1077 if (!list_empty(&dentry
->d_subdirs
)) {
1078 spin_unlock(&this_parent
->d_lock
);
1079 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1080 this_parent
= dentry
;
1081 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1084 spin_unlock(&dentry
->d_lock
);
1087 * All done at this level ... ascend and resume the search.
1089 if (this_parent
!= parent
) {
1090 struct dentry
*child
= this_parent
;
1091 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1094 next
= child
->d_u
.d_child
.next
;
1097 spin_unlock(&this_parent
->d_lock
);
1098 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1101 write_sequnlock(&rename_lock
);
1102 return 0; /* No mount points found in tree */
1104 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1107 write_sequnlock(&rename_lock
);
1112 write_seqlock(&rename_lock
);
1115 EXPORT_SYMBOL(have_submounts
);
1118 * Search the dentry child list for the specified parent,
1119 * and move any unused dentries to the end of the unused
1120 * list for prune_dcache(). We descend to the next level
1121 * whenever the d_subdirs list is non-empty and continue
1124 * It returns zero iff there are no unused children,
1125 * otherwise it returns the number of children moved to
1126 * the end of the unused list. This may not be the total
1127 * number of unused children, because select_parent can
1128 * drop the lock and return early due to latency
1131 static int select_parent(struct dentry
* parent
)
1133 struct dentry
*this_parent
;
1134 struct list_head
*next
;
1139 seq
= read_seqbegin(&rename_lock
);
1141 this_parent
= parent
;
1142 spin_lock(&this_parent
->d_lock
);
1144 next
= this_parent
->d_subdirs
.next
;
1146 while (next
!= &this_parent
->d_subdirs
) {
1147 struct list_head
*tmp
= next
;
1148 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1151 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1154 * move only zero ref count dentries to the end
1155 * of the unused list for prune_dcache
1157 if (!dentry
->d_count
) {
1158 dentry_lru_move_tail(dentry
);
1161 dentry_lru_del(dentry
);
1165 * We can return to the caller if we have found some (this
1166 * ensures forward progress). We'll be coming back to find
1169 if (found
&& need_resched()) {
1170 spin_unlock(&dentry
->d_lock
);
1175 * Descend a level if the d_subdirs list is non-empty.
1177 if (!list_empty(&dentry
->d_subdirs
)) {
1178 spin_unlock(&this_parent
->d_lock
);
1179 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1180 this_parent
= dentry
;
1181 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1185 spin_unlock(&dentry
->d_lock
);
1188 * All done at this level ... ascend and resume the search.
1190 if (this_parent
!= parent
) {
1191 struct dentry
*child
= this_parent
;
1192 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1195 next
= child
->d_u
.d_child
.next
;
1199 spin_unlock(&this_parent
->d_lock
);
1200 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1203 write_sequnlock(&rename_lock
);
1210 write_seqlock(&rename_lock
);
1215 * shrink_dcache_parent - prune dcache
1216 * @parent: parent of entries to prune
1218 * Prune the dcache to remove unused children of the parent dentry.
1221 void shrink_dcache_parent(struct dentry
* parent
)
1223 struct super_block
*sb
= parent
->d_sb
;
1226 while ((found
= select_parent(parent
)) != 0)
1227 __shrink_dcache_sb(sb
, &found
, 0);
1229 EXPORT_SYMBOL(shrink_dcache_parent
);
1232 * Scan `nr' dentries and return the number which remain.
1234 * We need to avoid reentering the filesystem if the caller is performing a
1235 * GFP_NOFS allocation attempt. One example deadlock is:
1237 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1238 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1239 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1241 * In this case we return -1 to tell the caller that we baled.
1243 static int shrink_dcache_memory(struct shrinker
*shrink
, int nr
, gfp_t gfp_mask
)
1246 if (!(gfp_mask
& __GFP_FS
))
1251 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
1254 static struct shrinker dcache_shrinker
= {
1255 .shrink
= shrink_dcache_memory
,
1256 .seeks
= DEFAULT_SEEKS
,
1260 * d_alloc - allocate a dcache entry
1261 * @parent: parent of entry to allocate
1262 * @name: qstr of the name
1264 * Allocates a dentry. It returns %NULL if there is insufficient memory
1265 * available. On a success the dentry is returned. The name passed in is
1266 * copied and the copy passed in may be reused after this call.
1269 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1271 struct dentry
*dentry
;
1274 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1278 if (name
->len
> DNAME_INLINE_LEN
-1) {
1279 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1281 kmem_cache_free(dentry_cache
, dentry
);
1285 dname
= dentry
->d_iname
;
1287 dentry
->d_name
.name
= dname
;
1289 dentry
->d_name
.len
= name
->len
;
1290 dentry
->d_name
.hash
= name
->hash
;
1291 memcpy(dname
, name
->name
, name
->len
);
1292 dname
[name
->len
] = 0;
1294 dentry
->d_count
= 1;
1295 dentry
->d_flags
= 0;
1296 spin_lock_init(&dentry
->d_lock
);
1297 seqcount_init(&dentry
->d_seq
);
1298 dentry
->d_inode
= NULL
;
1299 dentry
->d_parent
= NULL
;
1300 dentry
->d_sb
= NULL
;
1301 dentry
->d_op
= NULL
;
1302 dentry
->d_fsdata
= NULL
;
1303 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1304 INIT_LIST_HEAD(&dentry
->d_lru
);
1305 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1306 INIT_LIST_HEAD(&dentry
->d_alias
);
1307 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1310 spin_lock(&parent
->d_lock
);
1312 * don't need child lock because it is not subject
1313 * to concurrency here
1315 __dget_dlock(parent
);
1316 dentry
->d_parent
= parent
;
1317 dentry
->d_sb
= parent
->d_sb
;
1318 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1319 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1320 spin_unlock(&parent
->d_lock
);
1323 this_cpu_inc(nr_dentry
);
1327 EXPORT_SYMBOL(d_alloc
);
1329 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1331 struct dentry
*dentry
= d_alloc(NULL
, name
);
1334 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1335 dentry
->d_parent
= dentry
;
1336 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1340 EXPORT_SYMBOL(d_alloc_pseudo
);
1342 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1347 q
.len
= strlen(name
);
1348 q
.hash
= full_name_hash(q
.name
, q
.len
);
1349 return d_alloc(parent
, &q
);
1351 EXPORT_SYMBOL(d_alloc_name
);
1353 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1355 WARN_ON_ONCE(dentry
->d_op
);
1356 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1358 DCACHE_OP_REVALIDATE
|
1359 DCACHE_OP_DELETE
));
1364 dentry
->d_flags
|= DCACHE_OP_HASH
;
1366 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1367 if (op
->d_revalidate
)
1368 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1370 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1373 EXPORT_SYMBOL(d_set_d_op
);
1375 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1377 spin_lock(&dentry
->d_lock
);
1379 if (unlikely(IS_AUTOMOUNT(inode
)))
1380 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1381 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1383 dentry
->d_inode
= inode
;
1384 dentry_rcuwalk_barrier(dentry
);
1385 spin_unlock(&dentry
->d_lock
);
1386 fsnotify_d_instantiate(dentry
, inode
);
1390 * d_instantiate - fill in inode information for a dentry
1391 * @entry: dentry to complete
1392 * @inode: inode to attach to this dentry
1394 * Fill in inode information in the entry.
1396 * This turns negative dentries into productive full members
1399 * NOTE! This assumes that the inode count has been incremented
1400 * (or otherwise set) by the caller to indicate that it is now
1401 * in use by the dcache.
1404 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1406 BUG_ON(!list_empty(&entry
->d_alias
));
1408 spin_lock(&inode
->i_lock
);
1409 __d_instantiate(entry
, inode
);
1411 spin_unlock(&inode
->i_lock
);
1412 security_d_instantiate(entry
, inode
);
1414 EXPORT_SYMBOL(d_instantiate
);
1417 * d_instantiate_unique - instantiate a non-aliased dentry
1418 * @entry: dentry to instantiate
1419 * @inode: inode to attach to this dentry
1421 * Fill in inode information in the entry. On success, it returns NULL.
1422 * If an unhashed alias of "entry" already exists, then we return the
1423 * aliased dentry instead and drop one reference to inode.
1425 * Note that in order to avoid conflicts with rename() etc, the caller
1426 * had better be holding the parent directory semaphore.
1428 * This also assumes that the inode count has been incremented
1429 * (or otherwise set) by the caller to indicate that it is now
1430 * in use by the dcache.
1432 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1433 struct inode
*inode
)
1435 struct dentry
*alias
;
1436 int len
= entry
->d_name
.len
;
1437 const char *name
= entry
->d_name
.name
;
1438 unsigned int hash
= entry
->d_name
.hash
;
1441 __d_instantiate(entry
, NULL
);
1445 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1446 struct qstr
*qstr
= &alias
->d_name
;
1449 * Don't need alias->d_lock here, because aliases with
1450 * d_parent == entry->d_parent are not subject to name or
1451 * parent changes, because the parent inode i_mutex is held.
1453 if (qstr
->hash
!= hash
)
1455 if (alias
->d_parent
!= entry
->d_parent
)
1457 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1463 __d_instantiate(entry
, inode
);
1467 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1469 struct dentry
*result
;
1471 BUG_ON(!list_empty(&entry
->d_alias
));
1474 spin_lock(&inode
->i_lock
);
1475 result
= __d_instantiate_unique(entry
, inode
);
1477 spin_unlock(&inode
->i_lock
);
1480 security_d_instantiate(entry
, inode
);
1484 BUG_ON(!d_unhashed(result
));
1489 EXPORT_SYMBOL(d_instantiate_unique
);
1492 * d_alloc_root - allocate root dentry
1493 * @root_inode: inode to allocate the root for
1495 * Allocate a root ("/") dentry for the inode given. The inode is
1496 * instantiated and returned. %NULL is returned if there is insufficient
1497 * memory or the inode passed is %NULL.
1500 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1502 struct dentry
*res
= NULL
;
1505 static const struct qstr name
= { .name
= "/", .len
= 1 };
1507 res
= d_alloc(NULL
, &name
);
1509 res
->d_sb
= root_inode
->i_sb
;
1510 d_set_d_op(res
, res
->d_sb
->s_d_op
);
1511 res
->d_parent
= res
;
1512 d_instantiate(res
, root_inode
);
1517 EXPORT_SYMBOL(d_alloc_root
);
1519 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1521 struct dentry
*alias
;
1523 if (list_empty(&inode
->i_dentry
))
1525 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1530 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1534 spin_lock(&inode
->i_lock
);
1535 de
= __d_find_any_alias(inode
);
1536 spin_unlock(&inode
->i_lock
);
1542 * d_obtain_alias - find or allocate a dentry for a given inode
1543 * @inode: inode to allocate the dentry for
1545 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1546 * similar open by handle operations. The returned dentry may be anonymous,
1547 * or may have a full name (if the inode was already in the cache).
1549 * When called on a directory inode, we must ensure that the inode only ever
1550 * has one dentry. If a dentry is found, that is returned instead of
1551 * allocating a new one.
1553 * On successful return, the reference to the inode has been transferred
1554 * to the dentry. In case of an error the reference on the inode is released.
1555 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1556 * be passed in and will be the error will be propagate to the return value,
1557 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1559 struct dentry
*d_obtain_alias(struct inode
*inode
)
1561 static const struct qstr anonstring
= { .name
= "" };
1566 return ERR_PTR(-ESTALE
);
1568 return ERR_CAST(inode
);
1570 res
= d_find_any_alias(inode
);
1574 tmp
= d_alloc(NULL
, &anonstring
);
1576 res
= ERR_PTR(-ENOMEM
);
1579 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1582 spin_lock(&inode
->i_lock
);
1583 res
= __d_find_any_alias(inode
);
1585 spin_unlock(&inode
->i_lock
);
1590 /* attach a disconnected dentry */
1591 spin_lock(&tmp
->d_lock
);
1592 tmp
->d_sb
= inode
->i_sb
;
1593 d_set_d_op(tmp
, tmp
->d_sb
->s_d_op
);
1594 tmp
->d_inode
= inode
;
1595 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1596 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1597 spin_lock_bucket(&tmp
->d_sb
->s_anon
);
1598 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1599 spin_unlock_bucket(&tmp
->d_sb
->s_anon
);
1600 spin_unlock(&tmp
->d_lock
);
1601 spin_unlock(&inode
->i_lock
);
1602 security_d_instantiate(tmp
, inode
);
1607 if (res
&& !IS_ERR(res
))
1608 security_d_instantiate(res
, inode
);
1612 EXPORT_SYMBOL(d_obtain_alias
);
1615 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1616 * @inode: the inode which may have a disconnected dentry
1617 * @dentry: a negative dentry which we want to point to the inode.
1619 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1620 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1621 * and return it, else simply d_add the inode to the dentry and return NULL.
1623 * This is needed in the lookup routine of any filesystem that is exportable
1624 * (via knfsd) so that we can build dcache paths to directories effectively.
1626 * If a dentry was found and moved, then it is returned. Otherwise NULL
1627 * is returned. This matches the expected return value of ->lookup.
1630 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1632 struct dentry
*new = NULL
;
1634 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1635 spin_lock(&inode
->i_lock
);
1636 new = __d_find_alias(inode
, 1);
1638 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1639 spin_unlock(&inode
->i_lock
);
1640 security_d_instantiate(new, inode
);
1641 d_move(new, dentry
);
1644 /* already taking inode->i_lock, so d_add() by hand */
1645 __d_instantiate(dentry
, inode
);
1646 spin_unlock(&inode
->i_lock
);
1647 security_d_instantiate(dentry
, inode
);
1651 d_add(dentry
, inode
);
1654 EXPORT_SYMBOL(d_splice_alias
);
1657 * d_add_ci - lookup or allocate new dentry with case-exact name
1658 * @inode: the inode case-insensitive lookup has found
1659 * @dentry: the negative dentry that was passed to the parent's lookup func
1660 * @name: the case-exact name to be associated with the returned dentry
1662 * This is to avoid filling the dcache with case-insensitive names to the
1663 * same inode, only the actual correct case is stored in the dcache for
1664 * case-insensitive filesystems.
1666 * For a case-insensitive lookup match and if the the case-exact dentry
1667 * already exists in in the dcache, use it and return it.
1669 * If no entry exists with the exact case name, allocate new dentry with
1670 * the exact case, and return the spliced entry.
1672 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1676 struct dentry
*found
;
1680 * First check if a dentry matching the name already exists,
1681 * if not go ahead and create it now.
1683 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1685 new = d_alloc(dentry
->d_parent
, name
);
1691 found
= d_splice_alias(inode
, new);
1700 * If a matching dentry exists, and it's not negative use it.
1702 * Decrement the reference count to balance the iget() done
1705 if (found
->d_inode
) {
1706 if (unlikely(found
->d_inode
!= inode
)) {
1707 /* This can't happen because bad inodes are unhashed. */
1708 BUG_ON(!is_bad_inode(inode
));
1709 BUG_ON(!is_bad_inode(found
->d_inode
));
1716 * Negative dentry: instantiate it unless the inode is a directory and
1717 * already has a dentry.
1719 spin_lock(&inode
->i_lock
);
1720 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1721 __d_instantiate(found
, inode
);
1722 spin_unlock(&inode
->i_lock
);
1723 security_d_instantiate(found
, inode
);
1728 * In case a directory already has a (disconnected) entry grab a
1729 * reference to it, move it in place and use it.
1731 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1733 spin_unlock(&inode
->i_lock
);
1734 security_d_instantiate(found
, inode
);
1742 return ERR_PTR(error
);
1744 EXPORT_SYMBOL(d_add_ci
);
1747 * __d_lookup_rcu - search for a dentry (racy, store-free)
1748 * @parent: parent dentry
1749 * @name: qstr of name we wish to find
1750 * @seq: returns d_seq value at the point where the dentry was found
1751 * @inode: returns dentry->d_inode when the inode was found valid.
1752 * Returns: dentry, or NULL
1754 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1755 * resolution (store-free path walking) design described in
1756 * Documentation/filesystems/path-lookup.txt.
1758 * This is not to be used outside core vfs.
1760 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1761 * held, and rcu_read_lock held. The returned dentry must not be stored into
1762 * without taking d_lock and checking d_seq sequence count against @seq
1765 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1768 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1769 * the returned dentry, so long as its parent's seqlock is checked after the
1770 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1771 * is formed, giving integrity down the path walk.
1773 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1774 unsigned *seq
, struct inode
**inode
)
1776 unsigned int len
= name
->len
;
1777 unsigned int hash
= name
->hash
;
1778 const unsigned char *str
= name
->name
;
1779 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1780 struct hlist_bl_node
*node
;
1781 struct dentry
*dentry
;
1784 * Note: There is significant duplication with __d_lookup_rcu which is
1785 * required to prevent single threaded performance regressions
1786 * especially on architectures where smp_rmb (in seqcounts) are costly.
1787 * Keep the two functions in sync.
1791 * The hash list is protected using RCU.
1793 * Carefully use d_seq when comparing a candidate dentry, to avoid
1794 * races with d_move().
1796 * It is possible that concurrent renames can mess up our list
1797 * walk here and result in missing our dentry, resulting in the
1798 * false-negative result. d_lookup() protects against concurrent
1799 * renames using rename_lock seqlock.
1801 * See Documentation/filesystems/path-lookup.txt for more details.
1803 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1808 if (dentry
->d_name
.hash
!= hash
)
1812 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1813 if (dentry
->d_parent
!= parent
)
1815 if (d_unhashed(dentry
))
1817 tlen
= dentry
->d_name
.len
;
1818 tname
= dentry
->d_name
.name
;
1819 i
= dentry
->d_inode
;
1824 * This seqcount check is required to ensure name and
1825 * len are loaded atomically, so as not to walk off the
1826 * edge of memory when walking. If we could load this
1827 * atomically some other way, we could drop this check.
1829 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1831 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1832 if (parent
->d_op
->d_compare(parent
, *inode
,
1837 if (dentry_cmp(tname
, tlen
, str
, len
))
1841 * No extra seqcount check is required after the name
1842 * compare. The caller must perform a seqcount check in
1843 * order to do anything useful with the returned dentry
1853 * d_lookup - search for a dentry
1854 * @parent: parent dentry
1855 * @name: qstr of name we wish to find
1856 * Returns: dentry, or NULL
1858 * d_lookup searches the children of the parent dentry for the name in
1859 * question. If the dentry is found its reference count is incremented and the
1860 * dentry is returned. The caller must use dput to free the entry when it has
1861 * finished using it. %NULL is returned if the dentry does not exist.
1863 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1865 struct dentry
*dentry
;
1869 seq
= read_seqbegin(&rename_lock
);
1870 dentry
= __d_lookup(parent
, name
);
1873 } while (read_seqretry(&rename_lock
, seq
));
1876 EXPORT_SYMBOL(d_lookup
);
1879 * __d_lookup - search for a dentry (racy)
1880 * @parent: parent dentry
1881 * @name: qstr of name we wish to find
1882 * Returns: dentry, or NULL
1884 * __d_lookup is like d_lookup, however it may (rarely) return a
1885 * false-negative result due to unrelated rename activity.
1887 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1888 * however it must be used carefully, eg. with a following d_lookup in
1889 * the case of failure.
1891 * __d_lookup callers must be commented.
1893 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1895 unsigned int len
= name
->len
;
1896 unsigned int hash
= name
->hash
;
1897 const unsigned char *str
= name
->name
;
1898 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1899 struct hlist_bl_node
*node
;
1900 struct dentry
*found
= NULL
;
1901 struct dentry
*dentry
;
1904 * Note: There is significant duplication with __d_lookup_rcu which is
1905 * required to prevent single threaded performance regressions
1906 * especially on architectures where smp_rmb (in seqcounts) are costly.
1907 * Keep the two functions in sync.
1911 * The hash list is protected using RCU.
1913 * Take d_lock when comparing a candidate dentry, to avoid races
1916 * It is possible that concurrent renames can mess up our list
1917 * walk here and result in missing our dentry, resulting in the
1918 * false-negative result. d_lookup() protects against concurrent
1919 * renames using rename_lock seqlock.
1921 * See Documentation/filesystems/path-lookup.txt for more details.
1925 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1929 if (dentry
->d_name
.hash
!= hash
)
1932 spin_lock(&dentry
->d_lock
);
1933 if (dentry
->d_parent
!= parent
)
1935 if (d_unhashed(dentry
))
1939 * It is safe to compare names since d_move() cannot
1940 * change the qstr (protected by d_lock).
1942 tlen
= dentry
->d_name
.len
;
1943 tname
= dentry
->d_name
.name
;
1944 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1945 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1946 dentry
, dentry
->d_inode
,
1950 if (dentry_cmp(tname
, tlen
, str
, len
))
1956 spin_unlock(&dentry
->d_lock
);
1959 spin_unlock(&dentry
->d_lock
);
1967 * d_hash_and_lookup - hash the qstr then search for a dentry
1968 * @dir: Directory to search in
1969 * @name: qstr of name we wish to find
1971 * On hash failure or on lookup failure NULL is returned.
1973 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1975 struct dentry
*dentry
= NULL
;
1978 * Check for a fs-specific hash function. Note that we must
1979 * calculate the standard hash first, as the d_op->d_hash()
1980 * routine may choose to leave the hash value unchanged.
1982 name
->hash
= full_name_hash(name
->name
, name
->len
);
1983 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1984 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1987 dentry
= d_lookup(dir
, name
);
1993 * d_validate - verify dentry provided from insecure source (deprecated)
1994 * @dentry: The dentry alleged to be valid child of @dparent
1995 * @dparent: The parent dentry (known to be valid)
1997 * An insecure source has sent us a dentry, here we verify it and dget() it.
1998 * This is used by ncpfs in its readdir implementation.
1999 * Zero is returned in the dentry is invalid.
2001 * This function is slow for big directories, and deprecated, do not use it.
2003 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2005 struct dentry
*child
;
2007 spin_lock(&dparent
->d_lock
);
2008 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2009 if (dentry
== child
) {
2010 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2011 __dget_dlock(dentry
);
2012 spin_unlock(&dentry
->d_lock
);
2013 spin_unlock(&dparent
->d_lock
);
2017 spin_unlock(&dparent
->d_lock
);
2021 EXPORT_SYMBOL(d_validate
);
2024 * When a file is deleted, we have two options:
2025 * - turn this dentry into a negative dentry
2026 * - unhash this dentry and free it.
2028 * Usually, we want to just turn this into
2029 * a negative dentry, but if anybody else is
2030 * currently using the dentry or the inode
2031 * we can't do that and we fall back on removing
2032 * it from the hash queues and waiting for
2033 * it to be deleted later when it has no users
2037 * d_delete - delete a dentry
2038 * @dentry: The dentry to delete
2040 * Turn the dentry into a negative dentry if possible, otherwise
2041 * remove it from the hash queues so it can be deleted later
2044 void d_delete(struct dentry
* dentry
)
2046 struct inode
*inode
;
2049 * Are we the only user?
2052 spin_lock(&dentry
->d_lock
);
2053 inode
= dentry
->d_inode
;
2054 isdir
= S_ISDIR(inode
->i_mode
);
2055 if (dentry
->d_count
== 1) {
2056 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
2057 spin_unlock(&dentry
->d_lock
);
2061 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2062 dentry_unlink_inode(dentry
);
2063 fsnotify_nameremove(dentry
, isdir
);
2067 if (!d_unhashed(dentry
))
2070 spin_unlock(&dentry
->d_lock
);
2072 fsnotify_nameremove(dentry
, isdir
);
2074 EXPORT_SYMBOL(d_delete
);
2076 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2078 BUG_ON(!d_unhashed(entry
));
2079 spin_lock_bucket(b
);
2080 entry
->d_flags
|= DCACHE_RCUACCESS
;
2081 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2082 spin_unlock_bucket(b
);
2085 static void _d_rehash(struct dentry
* entry
)
2087 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2091 * d_rehash - add an entry back to the hash
2092 * @entry: dentry to add to the hash
2094 * Adds a dentry to the hash according to its name.
2097 void d_rehash(struct dentry
* entry
)
2099 spin_lock(&entry
->d_lock
);
2101 spin_unlock(&entry
->d_lock
);
2103 EXPORT_SYMBOL(d_rehash
);
2106 * dentry_update_name_case - update case insensitive dentry with a new name
2107 * @dentry: dentry to be updated
2110 * Update a case insensitive dentry with new case of name.
2112 * dentry must have been returned by d_lookup with name @name. Old and new
2113 * name lengths must match (ie. no d_compare which allows mismatched name
2116 * Parent inode i_mutex must be held over d_lookup and into this call (to
2117 * keep renames and concurrent inserts, and readdir(2) away).
2119 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2121 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2122 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2124 spin_lock(&dentry
->d_lock
);
2125 write_seqcount_begin(&dentry
->d_seq
);
2126 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2127 write_seqcount_end(&dentry
->d_seq
);
2128 spin_unlock(&dentry
->d_lock
);
2130 EXPORT_SYMBOL(dentry_update_name_case
);
2132 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2134 if (dname_external(target
)) {
2135 if (dname_external(dentry
)) {
2137 * Both external: swap the pointers
2139 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2142 * dentry:internal, target:external. Steal target's
2143 * storage and make target internal.
2145 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2146 dentry
->d_name
.len
+ 1);
2147 dentry
->d_name
.name
= target
->d_name
.name
;
2148 target
->d_name
.name
= target
->d_iname
;
2151 if (dname_external(dentry
)) {
2153 * dentry:external, target:internal. Give dentry's
2154 * storage to target and make dentry internal
2156 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2157 target
->d_name
.len
+ 1);
2158 target
->d_name
.name
= dentry
->d_name
.name
;
2159 dentry
->d_name
.name
= dentry
->d_iname
;
2162 * Both are internal. Just copy target to dentry
2164 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2165 target
->d_name
.len
+ 1);
2166 dentry
->d_name
.len
= target
->d_name
.len
;
2170 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2173 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2176 * XXXX: do we really need to take target->d_lock?
2178 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2179 spin_lock(&target
->d_parent
->d_lock
);
2181 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2182 spin_lock(&dentry
->d_parent
->d_lock
);
2183 spin_lock_nested(&target
->d_parent
->d_lock
,
2184 DENTRY_D_LOCK_NESTED
);
2186 spin_lock(&target
->d_parent
->d_lock
);
2187 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2188 DENTRY_D_LOCK_NESTED
);
2191 if (target
< dentry
) {
2192 spin_lock_nested(&target
->d_lock
, 2);
2193 spin_lock_nested(&dentry
->d_lock
, 3);
2195 spin_lock_nested(&dentry
->d_lock
, 2);
2196 spin_lock_nested(&target
->d_lock
, 3);
2200 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2201 struct dentry
*target
)
2203 if (target
->d_parent
!= dentry
->d_parent
)
2204 spin_unlock(&dentry
->d_parent
->d_lock
);
2205 if (target
->d_parent
!= target
)
2206 spin_unlock(&target
->d_parent
->d_lock
);
2210 * When switching names, the actual string doesn't strictly have to
2211 * be preserved in the target - because we're dropping the target
2212 * anyway. As such, we can just do a simple memcpy() to copy over
2213 * the new name before we switch.
2215 * Note that we have to be a lot more careful about getting the hash
2216 * switched - we have to switch the hash value properly even if it
2217 * then no longer matches the actual (corrupted) string of the target.
2218 * The hash value has to match the hash queue that the dentry is on..
2221 * d_move - move a dentry
2222 * @dentry: entry to move
2223 * @target: new dentry
2225 * Update the dcache to reflect the move of a file name. Negative
2226 * dcache entries should not be moved in this way.
2228 void d_move(struct dentry
* dentry
, struct dentry
* target
)
2230 if (!dentry
->d_inode
)
2231 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2233 BUG_ON(d_ancestor(dentry
, target
));
2234 BUG_ON(d_ancestor(target
, dentry
));
2236 write_seqlock(&rename_lock
);
2238 dentry_lock_for_move(dentry
, target
);
2240 write_seqcount_begin(&dentry
->d_seq
);
2241 write_seqcount_begin(&target
->d_seq
);
2243 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2246 * Move the dentry to the target hash queue. Don't bother checking
2247 * for the same hash queue because of how unlikely it is.
2250 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2252 /* Unhash the target: dput() will then get rid of it */
2255 list_del(&dentry
->d_u
.d_child
);
2256 list_del(&target
->d_u
.d_child
);
2258 /* Switch the names.. */
2259 switch_names(dentry
, target
);
2260 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2262 /* ... and switch the parents */
2263 if (IS_ROOT(dentry
)) {
2264 dentry
->d_parent
= target
->d_parent
;
2265 target
->d_parent
= target
;
2266 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2268 swap(dentry
->d_parent
, target
->d_parent
);
2270 /* And add them back to the (new) parent lists */
2271 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2274 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2276 write_seqcount_end(&target
->d_seq
);
2277 write_seqcount_end(&dentry
->d_seq
);
2279 dentry_unlock_parents_for_move(dentry
, target
);
2280 spin_unlock(&target
->d_lock
);
2281 fsnotify_d_move(dentry
);
2282 spin_unlock(&dentry
->d_lock
);
2283 write_sequnlock(&rename_lock
);
2285 EXPORT_SYMBOL(d_move
);
2288 * d_ancestor - search for an ancestor
2289 * @p1: ancestor dentry
2292 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2293 * an ancestor of p2, else NULL.
2295 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2299 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2300 if (p
->d_parent
== p1
)
2307 * This helper attempts to cope with remotely renamed directories
2309 * It assumes that the caller is already holding
2310 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2312 * Note: If ever the locking in lock_rename() changes, then please
2313 * remember to update this too...
2315 static struct dentry
*__d_unalias(struct inode
*inode
,
2316 struct dentry
*dentry
, struct dentry
*alias
)
2318 struct mutex
*m1
= NULL
, *m2
= NULL
;
2321 /* If alias and dentry share a parent, then no extra locks required */
2322 if (alias
->d_parent
== dentry
->d_parent
)
2325 /* Check for loops */
2326 ret
= ERR_PTR(-ELOOP
);
2327 if (d_ancestor(alias
, dentry
))
2330 /* See lock_rename() */
2331 ret
= ERR_PTR(-EBUSY
);
2332 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2334 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2335 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2337 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2339 d_move(alias
, dentry
);
2342 spin_unlock(&inode
->i_lock
);
2351 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2352 * named dentry in place of the dentry to be replaced.
2353 * returns with anon->d_lock held!
2355 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2357 struct dentry
*dparent
, *aparent
;
2359 dentry_lock_for_move(anon
, dentry
);
2361 write_seqcount_begin(&dentry
->d_seq
);
2362 write_seqcount_begin(&anon
->d_seq
);
2364 dparent
= dentry
->d_parent
;
2365 aparent
= anon
->d_parent
;
2367 switch_names(dentry
, anon
);
2368 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2370 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2371 list_del(&dentry
->d_u
.d_child
);
2372 if (!IS_ROOT(dentry
))
2373 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2375 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2377 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2378 list_del(&anon
->d_u
.d_child
);
2380 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2382 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2384 write_seqcount_end(&dentry
->d_seq
);
2385 write_seqcount_end(&anon
->d_seq
);
2387 dentry_unlock_parents_for_move(anon
, dentry
);
2388 spin_unlock(&dentry
->d_lock
);
2390 /* anon->d_lock still locked, returns locked */
2391 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2395 * d_materialise_unique - introduce an inode into the tree
2396 * @dentry: candidate dentry
2397 * @inode: inode to bind to the dentry, to which aliases may be attached
2399 * Introduces an dentry into the tree, substituting an extant disconnected
2400 * root directory alias in its place if there is one
2402 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2404 struct dentry
*actual
;
2406 BUG_ON(!d_unhashed(dentry
));
2410 __d_instantiate(dentry
, NULL
);
2415 spin_lock(&inode
->i_lock
);
2417 if (S_ISDIR(inode
->i_mode
)) {
2418 struct dentry
*alias
;
2420 /* Does an aliased dentry already exist? */
2421 alias
= __d_find_alias(inode
, 0);
2424 /* Is this an anonymous mountpoint that we could splice
2426 if (IS_ROOT(alias
)) {
2427 __d_materialise_dentry(dentry
, alias
);
2431 /* Nope, but we must(!) avoid directory aliasing */
2432 actual
= __d_unalias(inode
, dentry
, alias
);
2439 /* Add a unique reference */
2440 actual
= __d_instantiate_unique(dentry
, inode
);
2444 BUG_ON(!d_unhashed(actual
));
2446 spin_lock(&actual
->d_lock
);
2449 spin_unlock(&actual
->d_lock
);
2450 spin_unlock(&inode
->i_lock
);
2452 if (actual
== dentry
) {
2453 security_d_instantiate(dentry
, inode
);
2460 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2462 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2466 return -ENAMETOOLONG
;
2468 memcpy(*buffer
, str
, namelen
);
2472 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2474 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2478 * prepend_path - Prepend path string to a buffer
2479 * @path: the dentry/vfsmount to report
2480 * @root: root vfsmnt/dentry (may be modified by this function)
2481 * @buffer: pointer to the end of the buffer
2482 * @buflen: pointer to buffer length
2484 * Caller holds the rename_lock.
2486 * If path is not reachable from the supplied root, then the value of
2487 * root is changed (without modifying refcounts).
2489 static int prepend_path(const struct path
*path
, struct path
*root
,
2490 char **buffer
, int *buflen
)
2492 struct dentry
*dentry
= path
->dentry
;
2493 struct vfsmount
*vfsmnt
= path
->mnt
;
2497 br_read_lock(vfsmount_lock
);
2498 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2499 struct dentry
* parent
;
2501 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2503 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2506 dentry
= vfsmnt
->mnt_mountpoint
;
2507 vfsmnt
= vfsmnt
->mnt_parent
;
2510 parent
= dentry
->d_parent
;
2512 spin_lock(&dentry
->d_lock
);
2513 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2514 spin_unlock(&dentry
->d_lock
);
2516 error
= prepend(buffer
, buflen
, "/", 1);
2525 if (!error
&& !slash
)
2526 error
= prepend(buffer
, buflen
, "/", 1);
2528 br_read_unlock(vfsmount_lock
);
2533 * Filesystems needing to implement special "root names"
2534 * should do so with ->d_dname()
2536 if (IS_ROOT(dentry
) &&
2537 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2538 WARN(1, "Root dentry has weird name <%.*s>\n",
2539 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2542 root
->dentry
= dentry
;
2547 * __d_path - return the path of a dentry
2548 * @path: the dentry/vfsmount to report
2549 * @root: root vfsmnt/dentry (may be modified by this function)
2550 * @buf: buffer to return value in
2551 * @buflen: buffer length
2553 * Convert a dentry into an ASCII path name.
2555 * Returns a pointer into the buffer or an error code if the
2556 * path was too long.
2558 * "buflen" should be positive.
2560 * If path is not reachable from the supplied root, then the value of
2561 * root is changed (without modifying refcounts).
2563 char *__d_path(const struct path
*path
, struct path
*root
,
2564 char *buf
, int buflen
)
2566 char *res
= buf
+ buflen
;
2569 prepend(&res
, &buflen
, "\0", 1);
2570 write_seqlock(&rename_lock
);
2571 error
= prepend_path(path
, root
, &res
, &buflen
);
2572 write_sequnlock(&rename_lock
);
2575 return ERR_PTR(error
);
2580 * same as __d_path but appends "(deleted)" for unlinked files.
2582 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2583 char **buf
, int *buflen
)
2585 prepend(buf
, buflen
, "\0", 1);
2586 if (d_unlinked(path
->dentry
)) {
2587 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2592 return prepend_path(path
, root
, buf
, buflen
);
2595 static int prepend_unreachable(char **buffer
, int *buflen
)
2597 return prepend(buffer
, buflen
, "(unreachable)", 13);
2601 * d_path - return the path of a dentry
2602 * @path: path to report
2603 * @buf: buffer to return value in
2604 * @buflen: buffer length
2606 * Convert a dentry into an ASCII path name. If the entry has been deleted
2607 * the string " (deleted)" is appended. Note that this is ambiguous.
2609 * Returns a pointer into the buffer or an error code if the path was
2610 * too long. Note: Callers should use the returned pointer, not the passed
2611 * in buffer, to use the name! The implementation often starts at an offset
2612 * into the buffer, and may leave 0 bytes at the start.
2614 * "buflen" should be positive.
2616 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2618 char *res
= buf
+ buflen
;
2624 * We have various synthetic filesystems that never get mounted. On
2625 * these filesystems dentries are never used for lookup purposes, and
2626 * thus don't need to be hashed. They also don't need a name until a
2627 * user wants to identify the object in /proc/pid/fd/. The little hack
2628 * below allows us to generate a name for these objects on demand:
2630 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2631 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2633 get_fs_root(current
->fs
, &root
);
2634 write_seqlock(&rename_lock
);
2636 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2638 res
= ERR_PTR(error
);
2639 write_sequnlock(&rename_lock
);
2643 EXPORT_SYMBOL(d_path
);
2646 * d_path_with_unreachable - return the path of a dentry
2647 * @path: path to report
2648 * @buf: buffer to return value in
2649 * @buflen: buffer length
2651 * The difference from d_path() is that this prepends "(unreachable)"
2652 * to paths which are unreachable from the current process' root.
2654 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2656 char *res
= buf
+ buflen
;
2661 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2662 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2664 get_fs_root(current
->fs
, &root
);
2665 write_seqlock(&rename_lock
);
2667 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2668 if (!error
&& !path_equal(&tmp
, &root
))
2669 error
= prepend_unreachable(&res
, &buflen
);
2670 write_sequnlock(&rename_lock
);
2673 res
= ERR_PTR(error
);
2679 * Helper function for dentry_operations.d_dname() members
2681 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2682 const char *fmt
, ...)
2688 va_start(args
, fmt
);
2689 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2692 if (sz
> sizeof(temp
) || sz
> buflen
)
2693 return ERR_PTR(-ENAMETOOLONG
);
2695 buffer
+= buflen
- sz
;
2696 return memcpy(buffer
, temp
, sz
);
2700 * Write full pathname from the root of the filesystem into the buffer.
2702 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2704 char *end
= buf
+ buflen
;
2707 prepend(&end
, &buflen
, "\0", 1);
2714 while (!IS_ROOT(dentry
)) {
2715 struct dentry
*parent
= dentry
->d_parent
;
2719 spin_lock(&dentry
->d_lock
);
2720 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2721 spin_unlock(&dentry
->d_lock
);
2722 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2730 return ERR_PTR(-ENAMETOOLONG
);
2733 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2737 write_seqlock(&rename_lock
);
2738 retval
= __dentry_path(dentry
, buf
, buflen
);
2739 write_sequnlock(&rename_lock
);
2743 EXPORT_SYMBOL(dentry_path_raw
);
2745 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2750 write_seqlock(&rename_lock
);
2751 if (d_unlinked(dentry
)) {
2753 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2757 retval
= __dentry_path(dentry
, buf
, buflen
);
2758 write_sequnlock(&rename_lock
);
2759 if (!IS_ERR(retval
) && p
)
2760 *p
= '/'; /* restore '/' overriden with '\0' */
2763 return ERR_PTR(-ENAMETOOLONG
);
2767 * NOTE! The user-level library version returns a
2768 * character pointer. The kernel system call just
2769 * returns the length of the buffer filled (which
2770 * includes the ending '\0' character), or a negative
2771 * error value. So libc would do something like
2773 * char *getcwd(char * buf, size_t size)
2777 * retval = sys_getcwd(buf, size);
2784 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2787 struct path pwd
, root
;
2788 char *page
= (char *) __get_free_page(GFP_USER
);
2793 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2796 write_seqlock(&rename_lock
);
2797 if (!d_unlinked(pwd
.dentry
)) {
2799 struct path tmp
= root
;
2800 char *cwd
= page
+ PAGE_SIZE
;
2801 int buflen
= PAGE_SIZE
;
2803 prepend(&cwd
, &buflen
, "\0", 1);
2804 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2805 write_sequnlock(&rename_lock
);
2810 /* Unreachable from current root */
2811 if (!path_equal(&tmp
, &root
)) {
2812 error
= prepend_unreachable(&cwd
, &buflen
);
2818 len
= PAGE_SIZE
+ page
- cwd
;
2821 if (copy_to_user(buf
, cwd
, len
))
2825 write_sequnlock(&rename_lock
);
2831 free_page((unsigned long) page
);
2836 * Test whether new_dentry is a subdirectory of old_dentry.
2838 * Trivially implemented using the dcache structure
2842 * is_subdir - is new dentry a subdirectory of old_dentry
2843 * @new_dentry: new dentry
2844 * @old_dentry: old dentry
2846 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2847 * Returns 0 otherwise.
2848 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2851 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2856 if (new_dentry
== old_dentry
)
2860 /* for restarting inner loop in case of seq retry */
2861 seq
= read_seqbegin(&rename_lock
);
2863 * Need rcu_readlock to protect against the d_parent trashing
2867 if (d_ancestor(old_dentry
, new_dentry
))
2872 } while (read_seqretry(&rename_lock
, seq
));
2877 int path_is_under(struct path
*path1
, struct path
*path2
)
2879 struct vfsmount
*mnt
= path1
->mnt
;
2880 struct dentry
*dentry
= path1
->dentry
;
2883 br_read_lock(vfsmount_lock
);
2884 if (mnt
!= path2
->mnt
) {
2886 if (mnt
->mnt_parent
== mnt
) {
2887 br_read_unlock(vfsmount_lock
);
2890 if (mnt
->mnt_parent
== path2
->mnt
)
2892 mnt
= mnt
->mnt_parent
;
2894 dentry
= mnt
->mnt_mountpoint
;
2896 res
= is_subdir(dentry
, path2
->dentry
);
2897 br_read_unlock(vfsmount_lock
);
2900 EXPORT_SYMBOL(path_is_under
);
2902 void d_genocide(struct dentry
*root
)
2904 struct dentry
*this_parent
;
2905 struct list_head
*next
;
2909 seq
= read_seqbegin(&rename_lock
);
2912 spin_lock(&this_parent
->d_lock
);
2914 next
= this_parent
->d_subdirs
.next
;
2916 while (next
!= &this_parent
->d_subdirs
) {
2917 struct list_head
*tmp
= next
;
2918 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2921 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2922 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2923 spin_unlock(&dentry
->d_lock
);
2926 if (!list_empty(&dentry
->d_subdirs
)) {
2927 spin_unlock(&this_parent
->d_lock
);
2928 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2929 this_parent
= dentry
;
2930 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2933 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2934 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2937 spin_unlock(&dentry
->d_lock
);
2939 if (this_parent
!= root
) {
2940 struct dentry
*child
= this_parent
;
2941 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2942 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2943 this_parent
->d_count
--;
2945 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2948 next
= child
->d_u
.d_child
.next
;
2951 spin_unlock(&this_parent
->d_lock
);
2952 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2955 write_sequnlock(&rename_lock
);
2960 write_seqlock(&rename_lock
);
2965 * find_inode_number - check for dentry with name
2966 * @dir: directory to check
2967 * @name: Name to find.
2969 * Check whether a dentry already exists for the given name,
2970 * and return the inode number if it has an inode. Otherwise
2973 * This routine is used to post-process directory listings for
2974 * filesystems using synthetic inode numbers, and is necessary
2975 * to keep getcwd() working.
2978 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2980 struct dentry
* dentry
;
2983 dentry
= d_hash_and_lookup(dir
, name
);
2985 if (dentry
->d_inode
)
2986 ino
= dentry
->d_inode
->i_ino
;
2991 EXPORT_SYMBOL(find_inode_number
);
2993 static __initdata
unsigned long dhash_entries
;
2994 static int __init
set_dhash_entries(char *str
)
2998 dhash_entries
= simple_strtoul(str
, &str
, 0);
3001 __setup("dhash_entries=", set_dhash_entries
);
3003 static void __init
dcache_init_early(void)
3007 /* If hashes are distributed across NUMA nodes, defer
3008 * hash allocation until vmalloc space is available.
3014 alloc_large_system_hash("Dentry cache",
3015 sizeof(struct hlist_bl_head
),
3023 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3024 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3027 static void __init
dcache_init(void)
3032 * A constructor could be added for stable state like the lists,
3033 * but it is probably not worth it because of the cache nature
3036 dentry_cache
= KMEM_CACHE(dentry
,
3037 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3039 register_shrinker(&dcache_shrinker
);
3041 /* Hash may have been set up in dcache_init_early */
3046 alloc_large_system_hash("Dentry cache",
3047 sizeof(struct hlist_bl_head
),
3055 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3056 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3059 /* SLAB cache for __getname() consumers */
3060 struct kmem_cache
*names_cachep __read_mostly
;
3061 EXPORT_SYMBOL(names_cachep
);
3063 EXPORT_SYMBOL(d_genocide
);
3065 void __init
vfs_caches_init_early(void)
3067 dcache_init_early();
3071 void __init
vfs_caches_init(unsigned long mempages
)
3073 unsigned long reserve
;
3075 /* Base hash sizes on available memory, with a reserve equal to
3076 150% of current kernel size */
3078 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3079 mempages
-= reserve
;
3081 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3082 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3086 files_init(mempages
);