4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
41 * FIXME: remove all knowledge of the buffer layer from the core VM
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_lock (truncate_pagecache)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * ->i_alloc_sem (various)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 * Delete a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __delete_from_page_cache(struct page
*page
)
120 struct address_space
*mapping
= page
->mapping
;
123 * if we're uptodate, flush out into the cleancache, otherwise
124 * invalidate any existing cleancache entries. We can't leave
125 * stale data around in the cleancache once our page is gone
127 if (PageUptodate(page
) && PageMappedToDisk(page
))
128 cleancache_put_page(page
);
130 cleancache_flush_page(mapping
, page
);
132 radix_tree_delete(&mapping
->page_tree
, page
->index
);
133 page
->mapping
= NULL
;
135 __dec_zone_page_state(page
, NR_FILE_PAGES
);
136 if (PageSwapBacked(page
))
137 __dec_zone_page_state(page
, NR_SHMEM
);
138 BUG_ON(page_mapped(page
));
141 * Some filesystems seem to re-dirty the page even after
142 * the VM has canceled the dirty bit (eg ext3 journaling).
144 * Fix it up by doing a final dirty accounting check after
145 * having removed the page entirely.
147 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
148 dec_zone_page_state(page
, NR_FILE_DIRTY
);
149 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
154 * delete_from_page_cache - delete page from page cache
155 * @page: the page which the kernel is trying to remove from page cache
157 * This must be called only on pages that have been verified to be in the page
158 * cache and locked. It will never put the page into the free list, the caller
159 * has a reference on the page.
161 void delete_from_page_cache(struct page
*page
)
163 struct address_space
*mapping
= page
->mapping
;
164 void (*freepage
)(struct page
*);
166 BUG_ON(!PageLocked(page
));
168 freepage
= mapping
->a_ops
->freepage
;
169 spin_lock_irq(&mapping
->tree_lock
);
170 __delete_from_page_cache(page
);
171 spin_unlock_irq(&mapping
->tree_lock
);
172 mem_cgroup_uncharge_cache_page(page
);
176 page_cache_release(page
);
178 EXPORT_SYMBOL(delete_from_page_cache
);
180 static int sleep_on_page(void *word
)
186 static int sleep_on_page_killable(void *word
)
189 return fatal_signal_pending(current
) ? -EINTR
: 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
208 loff_t end
, int sync_mode
)
211 struct writeback_control wbc
= {
212 .sync_mode
= sync_mode
,
213 .nr_to_write
= LONG_MAX
,
214 .range_start
= start
,
218 if (!mapping_cap_writeback_dirty(mapping
))
221 ret
= do_writepages(mapping
, &wbc
);
225 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
228 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
231 int filemap_fdatawrite(struct address_space
*mapping
)
233 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
235 EXPORT_SYMBOL(filemap_fdatawrite
);
237 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
240 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
242 EXPORT_SYMBOL(filemap_fdatawrite_range
);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space
*mapping
)
253 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
255 EXPORT_SYMBOL(filemap_flush
);
258 * filemap_fdatawait_range - wait for writeback to complete
259 * @mapping: address space structure to wait for
260 * @start_byte: offset in bytes where the range starts
261 * @end_byte: offset in bytes where the range ends (inclusive)
263 * Walk the list of under-writeback pages of the given address space
264 * in the given range and wait for all of them.
266 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
269 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
270 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
275 if (end_byte
< start_byte
)
278 pagevec_init(&pvec
, 0);
279 while ((index
<= end
) &&
280 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
281 PAGECACHE_TAG_WRITEBACK
,
282 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
285 for (i
= 0; i
< nr_pages
; i
++) {
286 struct page
*page
= pvec
.pages
[i
];
288 /* until radix tree lookup accepts end_index */
289 if (page
->index
> end
)
292 wait_on_page_writeback(page
);
293 if (TestClearPageError(page
))
296 pagevec_release(&pvec
);
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
303 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
308 EXPORT_SYMBOL(filemap_fdatawait_range
);
311 * filemap_fdatawait - wait for all under-writeback pages to complete
312 * @mapping: address space structure to wait for
314 * Walk the list of under-writeback pages of the given address space
315 * and wait for all of them.
317 int filemap_fdatawait(struct address_space
*mapping
)
319 loff_t i_size
= i_size_read(mapping
->host
);
324 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
326 EXPORT_SYMBOL(filemap_fdatawait
);
328 int filemap_write_and_wait(struct address_space
*mapping
)
332 if (mapping
->nrpages
) {
333 err
= filemap_fdatawrite(mapping
);
335 * Even if the above returned error, the pages may be
336 * written partially (e.g. -ENOSPC), so we wait for it.
337 * But the -EIO is special case, it may indicate the worst
338 * thing (e.g. bug) happened, so we avoid waiting for it.
341 int err2
= filemap_fdatawait(mapping
);
348 EXPORT_SYMBOL(filemap_write_and_wait
);
351 * filemap_write_and_wait_range - write out & wait on a file range
352 * @mapping: the address_space for the pages
353 * @lstart: offset in bytes where the range starts
354 * @lend: offset in bytes where the range ends (inclusive)
356 * Write out and wait upon file offsets lstart->lend, inclusive.
358 * Note that `lend' is inclusive (describes the last byte to be written) so
359 * that this function can be used to write to the very end-of-file (end = -1).
361 int filemap_write_and_wait_range(struct address_space
*mapping
,
362 loff_t lstart
, loff_t lend
)
366 if (mapping
->nrpages
) {
367 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
369 /* See comment of filemap_write_and_wait() */
371 int err2
= filemap_fdatawait_range(mapping
,
379 EXPORT_SYMBOL(filemap_write_and_wait_range
);
382 * replace_page_cache_page - replace a pagecache page with a new one
383 * @old: page to be replaced
384 * @new: page to replace with
385 * @gfp_mask: allocation mode
387 * This function replaces a page in the pagecache with a new one. On
388 * success it acquires the pagecache reference for the new page and
389 * drops it for the old page. Both the old and new pages must be
390 * locked. This function does not add the new page to the LRU, the
391 * caller must do that.
393 * The remove + add is atomic. The only way this function can fail is
394 * memory allocation failure.
396 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
399 struct mem_cgroup
*memcg
= NULL
;
401 VM_BUG_ON(!PageLocked(old
));
402 VM_BUG_ON(!PageLocked(new));
403 VM_BUG_ON(new->mapping
);
406 * This is not page migration, but prepare_migration and
407 * end_migration does enough work for charge replacement.
409 * In the longer term we probably want a specialized function
410 * for moving the charge from old to new in a more efficient
413 error
= mem_cgroup_prepare_migration(old
, new, &memcg
, gfp_mask
);
417 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
419 struct address_space
*mapping
= old
->mapping
;
420 void (*freepage
)(struct page
*);
422 pgoff_t offset
= old
->index
;
423 freepage
= mapping
->a_ops
->freepage
;
426 new->mapping
= mapping
;
429 spin_lock_irq(&mapping
->tree_lock
);
430 __delete_from_page_cache(old
);
431 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
434 __inc_zone_page_state(new, NR_FILE_PAGES
);
435 if (PageSwapBacked(new))
436 __inc_zone_page_state(new, NR_SHMEM
);
437 spin_unlock_irq(&mapping
->tree_lock
);
438 radix_tree_preload_end();
441 page_cache_release(old
);
442 mem_cgroup_end_migration(memcg
, old
, new, true);
444 mem_cgroup_end_migration(memcg
, old
, new, false);
449 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
452 * add_to_page_cache_locked - add a locked page to the pagecache
454 * @mapping: the page's address_space
455 * @offset: page index
456 * @gfp_mask: page allocation mode
458 * This function is used to add a page to the pagecache. It must be locked.
459 * This function does not add the page to the LRU. The caller must do that.
461 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
462 pgoff_t offset
, gfp_t gfp_mask
)
466 VM_BUG_ON(!PageLocked(page
));
468 error
= mem_cgroup_cache_charge(page
, current
->mm
,
469 gfp_mask
& GFP_RECLAIM_MASK
);
473 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
475 page_cache_get(page
);
476 page
->mapping
= mapping
;
477 page
->index
= offset
;
479 spin_lock_irq(&mapping
->tree_lock
);
480 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
481 if (likely(!error
)) {
483 __inc_zone_page_state(page
, NR_FILE_PAGES
);
484 if (PageSwapBacked(page
))
485 __inc_zone_page_state(page
, NR_SHMEM
);
486 spin_unlock_irq(&mapping
->tree_lock
);
488 page
->mapping
= NULL
;
489 spin_unlock_irq(&mapping
->tree_lock
);
490 mem_cgroup_uncharge_cache_page(page
);
491 page_cache_release(page
);
493 radix_tree_preload_end();
495 mem_cgroup_uncharge_cache_page(page
);
499 EXPORT_SYMBOL(add_to_page_cache_locked
);
501 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
502 pgoff_t offset
, gfp_t gfp_mask
)
507 * Splice_read and readahead add shmem/tmpfs pages into the page cache
508 * before shmem_readpage has a chance to mark them as SwapBacked: they
509 * need to go on the anon lru below, and mem_cgroup_cache_charge
510 * (called in add_to_page_cache) needs to know where they're going too.
512 if (mapping_cap_swap_backed(mapping
))
513 SetPageSwapBacked(page
);
515 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
517 if (page_is_file_cache(page
))
518 lru_cache_add_file(page
);
520 lru_cache_add_anon(page
);
524 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
527 struct page
*__page_cache_alloc(gfp_t gfp
)
532 if (cpuset_do_page_mem_spread()) {
534 n
= cpuset_mem_spread_node();
535 page
= alloc_pages_exact_node(n
, gfp
, 0);
539 return alloc_pages(gfp
, 0);
541 EXPORT_SYMBOL(__page_cache_alloc
);
545 * In order to wait for pages to become available there must be
546 * waitqueues associated with pages. By using a hash table of
547 * waitqueues where the bucket discipline is to maintain all
548 * waiters on the same queue and wake all when any of the pages
549 * become available, and for the woken contexts to check to be
550 * sure the appropriate page became available, this saves space
551 * at a cost of "thundering herd" phenomena during rare hash
554 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
556 const struct zone
*zone
= page_zone(page
);
558 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
561 static inline void wake_up_page(struct page
*page
, int bit
)
563 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
566 void wait_on_page_bit(struct page
*page
, int bit_nr
)
568 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
570 if (test_bit(bit_nr
, &page
->flags
))
571 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
572 TASK_UNINTERRUPTIBLE
);
574 EXPORT_SYMBOL(wait_on_page_bit
);
577 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578 * @page: Page defining the wait queue of interest
579 * @waiter: Waiter to add to the queue
581 * Add an arbitrary @waiter to the wait queue for the nominated @page.
583 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
585 wait_queue_head_t
*q
= page_waitqueue(page
);
588 spin_lock_irqsave(&q
->lock
, flags
);
589 __add_wait_queue(q
, waiter
);
590 spin_unlock_irqrestore(&q
->lock
, flags
);
592 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
595 * unlock_page - unlock a locked page
598 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600 * mechananism between PageLocked pages and PageWriteback pages is shared.
601 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
603 * The mb is necessary to enforce ordering between the clear_bit and the read
604 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
606 void unlock_page(struct page
*page
)
608 VM_BUG_ON(!PageLocked(page
));
609 clear_bit_unlock(PG_locked
, &page
->flags
);
610 smp_mb__after_clear_bit();
611 wake_up_page(page
, PG_locked
);
613 EXPORT_SYMBOL(unlock_page
);
616 * end_page_writeback - end writeback against a page
619 void end_page_writeback(struct page
*page
)
621 if (TestClearPageReclaim(page
))
622 rotate_reclaimable_page(page
);
624 if (!test_clear_page_writeback(page
))
627 smp_mb__after_clear_bit();
628 wake_up_page(page
, PG_writeback
);
630 EXPORT_SYMBOL(end_page_writeback
);
633 * __lock_page - get a lock on the page, assuming we need to sleep to get it
634 * @page: the page to lock
636 void __lock_page(struct page
*page
)
638 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
640 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
641 TASK_UNINTERRUPTIBLE
);
643 EXPORT_SYMBOL(__lock_page
);
645 int __lock_page_killable(struct page
*page
)
647 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
649 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
650 sleep_on_page_killable
, TASK_KILLABLE
);
652 EXPORT_SYMBOL_GPL(__lock_page_killable
);
654 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
657 if (!(flags
& FAULT_FLAG_ALLOW_RETRY
)) {
661 if (!(flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
662 up_read(&mm
->mmap_sem
);
663 wait_on_page_locked(page
);
670 * find_get_page - find and get a page reference
671 * @mapping: the address_space to search
672 * @offset: the page index
674 * Is there a pagecache struct page at the given (mapping, offset) tuple?
675 * If yes, increment its refcount and return it; if no, return NULL.
677 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
685 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
687 page
= radix_tree_deref_slot(pagep
);
690 if (radix_tree_deref_retry(page
))
693 if (!page_cache_get_speculative(page
))
697 * Has the page moved?
698 * This is part of the lockless pagecache protocol. See
699 * include/linux/pagemap.h for details.
701 if (unlikely(page
!= *pagep
)) {
702 page_cache_release(page
);
711 EXPORT_SYMBOL(find_get_page
);
714 * find_lock_page - locate, pin and lock a pagecache page
715 * @mapping: the address_space to search
716 * @offset: the page index
718 * Locates the desired pagecache page, locks it, increments its reference
719 * count and returns its address.
721 * Returns zero if the page was not present. find_lock_page() may sleep.
723 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
728 page
= find_get_page(mapping
, offset
);
731 /* Has the page been truncated? */
732 if (unlikely(page
->mapping
!= mapping
)) {
734 page_cache_release(page
);
737 VM_BUG_ON(page
->index
!= offset
);
741 EXPORT_SYMBOL(find_lock_page
);
744 * find_or_create_page - locate or add a pagecache page
745 * @mapping: the page's address_space
746 * @index: the page's index into the mapping
747 * @gfp_mask: page allocation mode
749 * Locates a page in the pagecache. If the page is not present, a new page
750 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
751 * LRU list. The returned page is locked and has its reference count
754 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
757 * find_or_create_page() returns the desired page's address, or zero on
760 struct page
*find_or_create_page(struct address_space
*mapping
,
761 pgoff_t index
, gfp_t gfp_mask
)
766 page
= find_lock_page(mapping
, index
);
768 page
= __page_cache_alloc(gfp_mask
);
772 * We want a regular kernel memory (not highmem or DMA etc)
773 * allocation for the radix tree nodes, but we need to honour
774 * the context-specific requirements the caller has asked for.
775 * GFP_RECLAIM_MASK collects those requirements.
777 err
= add_to_page_cache_lru(page
, mapping
, index
,
778 (gfp_mask
& GFP_RECLAIM_MASK
));
780 page_cache_release(page
);
788 EXPORT_SYMBOL(find_or_create_page
);
791 * find_get_pages - gang pagecache lookup
792 * @mapping: The address_space to search
793 * @start: The starting page index
794 * @nr_pages: The maximum number of pages
795 * @pages: Where the resulting pages are placed
797 * find_get_pages() will search for and return a group of up to
798 * @nr_pages pages in the mapping. The pages are placed at @pages.
799 * find_get_pages() takes a reference against the returned pages.
801 * The search returns a group of mapping-contiguous pages with ascending
802 * indexes. There may be holes in the indices due to not-present pages.
804 * find_get_pages() returns the number of pages which were found.
806 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
807 unsigned int nr_pages
, struct page
**pages
)
811 unsigned int nr_found
;
815 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
816 (void ***)pages
, start
, nr_pages
);
818 for (i
= 0; i
< nr_found
; i
++) {
821 page
= radix_tree_deref_slot((void **)pages
[i
]);
826 * This can only trigger when the entry at index 0 moves out
827 * of or back to the root: none yet gotten, safe to restart.
829 if (radix_tree_deref_retry(page
)) {
834 if (!page_cache_get_speculative(page
))
837 /* Has the page moved? */
838 if (unlikely(page
!= *((void **)pages
[i
]))) {
839 page_cache_release(page
);
848 * If all entries were removed before we could secure them,
849 * try again, because callers stop trying once 0 is returned.
851 if (unlikely(!ret
&& nr_found
))
858 * find_get_pages_contig - gang contiguous pagecache lookup
859 * @mapping: The address_space to search
860 * @index: The starting page index
861 * @nr_pages: The maximum number of pages
862 * @pages: Where the resulting pages are placed
864 * find_get_pages_contig() works exactly like find_get_pages(), except
865 * that the returned number of pages are guaranteed to be contiguous.
867 * find_get_pages_contig() returns the number of pages which were found.
869 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
870 unsigned int nr_pages
, struct page
**pages
)
874 unsigned int nr_found
;
878 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
879 (void ***)pages
, index
, nr_pages
);
881 for (i
= 0; i
< nr_found
; i
++) {
884 page
= radix_tree_deref_slot((void **)pages
[i
]);
889 * This can only trigger when the entry at index 0 moves out
890 * of or back to the root: none yet gotten, safe to restart.
892 if (radix_tree_deref_retry(page
))
895 if (!page_cache_get_speculative(page
))
898 /* Has the page moved? */
899 if (unlikely(page
!= *((void **)pages
[i
]))) {
900 page_cache_release(page
);
905 * must check mapping and index after taking the ref.
906 * otherwise we can get both false positives and false
907 * negatives, which is just confusing to the caller.
909 if (page
->mapping
== NULL
|| page
->index
!= index
) {
910 page_cache_release(page
);
921 EXPORT_SYMBOL(find_get_pages_contig
);
924 * find_get_pages_tag - find and return pages that match @tag
925 * @mapping: the address_space to search
926 * @index: the starting page index
927 * @tag: the tag index
928 * @nr_pages: the maximum number of pages
929 * @pages: where the resulting pages are placed
931 * Like find_get_pages, except we only return pages which are tagged with
932 * @tag. We update @index to index the next page for the traversal.
934 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
935 int tag
, unsigned int nr_pages
, struct page
**pages
)
939 unsigned int nr_found
;
943 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
944 (void ***)pages
, *index
, nr_pages
, tag
);
946 for (i
= 0; i
< nr_found
; i
++) {
949 page
= radix_tree_deref_slot((void **)pages
[i
]);
954 * This can only trigger when the entry at index 0 moves out
955 * of or back to the root: none yet gotten, safe to restart.
957 if (radix_tree_deref_retry(page
))
960 if (!page_cache_get_speculative(page
))
963 /* Has the page moved? */
964 if (unlikely(page
!= *((void **)pages
[i
]))) {
965 page_cache_release(page
);
974 * If all entries were removed before we could secure them,
975 * try again, because callers stop trying once 0 is returned.
977 if (unlikely(!ret
&& nr_found
))
982 *index
= pages
[ret
- 1]->index
+ 1;
986 EXPORT_SYMBOL(find_get_pages_tag
);
989 * grab_cache_page_nowait - returns locked page at given index in given cache
990 * @mapping: target address_space
991 * @index: the page index
993 * Same as grab_cache_page(), but do not wait if the page is unavailable.
994 * This is intended for speculative data generators, where the data can
995 * be regenerated if the page couldn't be grabbed. This routine should
996 * be safe to call while holding the lock for another page.
998 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
999 * and deadlock against the caller's locked page.
1002 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
1004 struct page
*page
= find_get_page(mapping
, index
);
1007 if (trylock_page(page
))
1009 page_cache_release(page
);
1012 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
1013 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
1014 page_cache_release(page
);
1019 EXPORT_SYMBOL(grab_cache_page_nowait
);
1022 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1023 * a _large_ part of the i/o request. Imagine the worst scenario:
1025 * ---R__________________________________________B__________
1026 * ^ reading here ^ bad block(assume 4k)
1028 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1029 * => failing the whole request => read(R) => read(R+1) =>
1030 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1031 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1032 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1034 * It is going insane. Fix it by quickly scaling down the readahead size.
1036 static void shrink_readahead_size_eio(struct file
*filp
,
1037 struct file_ra_state
*ra
)
1043 * do_generic_file_read - generic file read routine
1044 * @filp: the file to read
1045 * @ppos: current file position
1046 * @desc: read_descriptor
1047 * @actor: read method
1049 * This is a generic file read routine, and uses the
1050 * mapping->a_ops->readpage() function for the actual low-level stuff.
1052 * This is really ugly. But the goto's actually try to clarify some
1053 * of the logic when it comes to error handling etc.
1055 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1056 read_descriptor_t
*desc
, read_actor_t actor
)
1058 struct address_space
*mapping
= filp
->f_mapping
;
1059 struct inode
*inode
= mapping
->host
;
1060 struct file_ra_state
*ra
= &filp
->f_ra
;
1064 unsigned long offset
; /* offset into pagecache page */
1065 unsigned int prev_offset
;
1068 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1069 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1070 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1071 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1072 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1078 unsigned long nr
, ret
;
1082 page
= find_get_page(mapping
, index
);
1084 page_cache_sync_readahead(mapping
,
1086 index
, last_index
- index
);
1087 page
= find_get_page(mapping
, index
);
1088 if (unlikely(page
== NULL
))
1089 goto no_cached_page
;
1091 if (PageReadahead(page
)) {
1092 page_cache_async_readahead(mapping
,
1094 index
, last_index
- index
);
1096 if (!PageUptodate(page
)) {
1097 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1098 !mapping
->a_ops
->is_partially_uptodate
)
1099 goto page_not_up_to_date
;
1100 if (!trylock_page(page
))
1101 goto page_not_up_to_date
;
1102 /* Did it get truncated before we got the lock? */
1104 goto page_not_up_to_date_locked
;
1105 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1107 goto page_not_up_to_date_locked
;
1112 * i_size must be checked after we know the page is Uptodate.
1114 * Checking i_size after the check allows us to calculate
1115 * the correct value for "nr", which means the zero-filled
1116 * part of the page is not copied back to userspace (unless
1117 * another truncate extends the file - this is desired though).
1120 isize
= i_size_read(inode
);
1121 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1122 if (unlikely(!isize
|| index
> end_index
)) {
1123 page_cache_release(page
);
1127 /* nr is the maximum number of bytes to copy from this page */
1128 nr
= PAGE_CACHE_SIZE
;
1129 if (index
== end_index
) {
1130 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1132 page_cache_release(page
);
1138 /* If users can be writing to this page using arbitrary
1139 * virtual addresses, take care about potential aliasing
1140 * before reading the page on the kernel side.
1142 if (mapping_writably_mapped(mapping
))
1143 flush_dcache_page(page
);
1146 * When a sequential read accesses a page several times,
1147 * only mark it as accessed the first time.
1149 if (prev_index
!= index
|| offset
!= prev_offset
)
1150 mark_page_accessed(page
);
1154 * Ok, we have the page, and it's up-to-date, so
1155 * now we can copy it to user space...
1157 * The actor routine returns how many bytes were actually used..
1158 * NOTE! This may not be the same as how much of a user buffer
1159 * we filled up (we may be padding etc), so we can only update
1160 * "pos" here (the actor routine has to update the user buffer
1161 * pointers and the remaining count).
1163 ret
= actor(desc
, page
, offset
, nr
);
1165 index
+= offset
>> PAGE_CACHE_SHIFT
;
1166 offset
&= ~PAGE_CACHE_MASK
;
1167 prev_offset
= offset
;
1169 page_cache_release(page
);
1170 if (ret
== nr
&& desc
->count
)
1174 page_not_up_to_date
:
1175 /* Get exclusive access to the page ... */
1176 error
= lock_page_killable(page
);
1177 if (unlikely(error
))
1178 goto readpage_error
;
1180 page_not_up_to_date_locked
:
1181 /* Did it get truncated before we got the lock? */
1182 if (!page
->mapping
) {
1184 page_cache_release(page
);
1188 /* Did somebody else fill it already? */
1189 if (PageUptodate(page
)) {
1196 * A previous I/O error may have been due to temporary
1197 * failures, eg. multipath errors.
1198 * PG_error will be set again if readpage fails.
1200 ClearPageError(page
);
1201 /* Start the actual read. The read will unlock the page. */
1202 error
= mapping
->a_ops
->readpage(filp
, page
);
1204 if (unlikely(error
)) {
1205 if (error
== AOP_TRUNCATED_PAGE
) {
1206 page_cache_release(page
);
1209 goto readpage_error
;
1212 if (!PageUptodate(page
)) {
1213 error
= lock_page_killable(page
);
1214 if (unlikely(error
))
1215 goto readpage_error
;
1216 if (!PageUptodate(page
)) {
1217 if (page
->mapping
== NULL
) {
1219 * invalidate_mapping_pages got it
1222 page_cache_release(page
);
1226 shrink_readahead_size_eio(filp
, ra
);
1228 goto readpage_error
;
1236 /* UHHUH! A synchronous read error occurred. Report it */
1237 desc
->error
= error
;
1238 page_cache_release(page
);
1243 * Ok, it wasn't cached, so we need to create a new
1246 page
= page_cache_alloc_cold(mapping
);
1248 desc
->error
= -ENOMEM
;
1251 error
= add_to_page_cache_lru(page
, mapping
,
1254 page_cache_release(page
);
1255 if (error
== -EEXIST
)
1257 desc
->error
= error
;
1264 ra
->prev_pos
= prev_index
;
1265 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1266 ra
->prev_pos
|= prev_offset
;
1268 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1269 file_accessed(filp
);
1272 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1273 unsigned long offset
, unsigned long size
)
1276 unsigned long left
, count
= desc
->count
;
1282 * Faults on the destination of a read are common, so do it before
1285 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1286 kaddr
= kmap_atomic(page
, KM_USER0
);
1287 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1288 kaddr
+ offset
, size
);
1289 kunmap_atomic(kaddr
, KM_USER0
);
1294 /* Do it the slow way */
1296 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1301 desc
->error
= -EFAULT
;
1304 desc
->count
= count
- size
;
1305 desc
->written
+= size
;
1306 desc
->arg
.buf
+= size
;
1311 * Performs necessary checks before doing a write
1312 * @iov: io vector request
1313 * @nr_segs: number of segments in the iovec
1314 * @count: number of bytes to write
1315 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1317 * Adjust number of segments and amount of bytes to write (nr_segs should be
1318 * properly initialized first). Returns appropriate error code that caller
1319 * should return or zero in case that write should be allowed.
1321 int generic_segment_checks(const struct iovec
*iov
,
1322 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1326 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1327 const struct iovec
*iv
= &iov
[seg
];
1330 * If any segment has a negative length, or the cumulative
1331 * length ever wraps negative then return -EINVAL.
1334 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1336 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1341 cnt
-= iv
->iov_len
; /* This segment is no good */
1347 EXPORT_SYMBOL(generic_segment_checks
);
1350 * generic_file_aio_read - generic filesystem read routine
1351 * @iocb: kernel I/O control block
1352 * @iov: io vector request
1353 * @nr_segs: number of segments in the iovec
1354 * @pos: current file position
1356 * This is the "read()" routine for all filesystems
1357 * that can use the page cache directly.
1360 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1361 unsigned long nr_segs
, loff_t pos
)
1363 struct file
*filp
= iocb
->ki_filp
;
1365 unsigned long seg
= 0;
1367 loff_t
*ppos
= &iocb
->ki_pos
;
1368 struct blk_plug plug
;
1371 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1375 blk_start_plug(&plug
);
1377 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1378 if (filp
->f_flags
& O_DIRECT
) {
1380 struct address_space
*mapping
;
1381 struct inode
*inode
;
1383 mapping
= filp
->f_mapping
;
1384 inode
= mapping
->host
;
1386 goto out
; /* skip atime */
1387 size
= i_size_read(inode
);
1389 retval
= filemap_write_and_wait_range(mapping
, pos
,
1390 pos
+ iov_length(iov
, nr_segs
) - 1);
1392 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1396 *ppos
= pos
+ retval
;
1401 * Btrfs can have a short DIO read if we encounter
1402 * compressed extents, so if there was an error, or if
1403 * we've already read everything we wanted to, or if
1404 * there was a short read because we hit EOF, go ahead
1405 * and return. Otherwise fallthrough to buffered io for
1406 * the rest of the read.
1408 if (retval
< 0 || !count
|| *ppos
>= size
) {
1409 file_accessed(filp
);
1416 for (seg
= 0; seg
< nr_segs
; seg
++) {
1417 read_descriptor_t desc
;
1421 * If we did a short DIO read we need to skip the section of the
1422 * iov that we've already read data into.
1425 if (count
> iov
[seg
].iov_len
) {
1426 count
-= iov
[seg
].iov_len
;
1434 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1435 desc
.count
= iov
[seg
].iov_len
- offset
;
1436 if (desc
.count
== 0)
1439 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1440 retval
+= desc
.written
;
1442 retval
= retval
?: desc
.error
;
1449 blk_finish_plug(&plug
);
1452 EXPORT_SYMBOL(generic_file_aio_read
);
1455 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1456 pgoff_t index
, unsigned long nr
)
1458 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1461 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1465 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1473 if (file
->f_mode
& FMODE_READ
) {
1474 struct address_space
*mapping
= file
->f_mapping
;
1475 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1476 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1477 unsigned long len
= end
- start
+ 1;
1478 ret
= do_readahead(mapping
, file
, start
, len
);
1484 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1485 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1487 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1489 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1494 * page_cache_read - adds requested page to the page cache if not already there
1495 * @file: file to read
1496 * @offset: page index
1498 * This adds the requested page to the page cache if it isn't already there,
1499 * and schedules an I/O to read in its contents from disk.
1501 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1503 struct address_space
*mapping
= file
->f_mapping
;
1508 page
= page_cache_alloc_cold(mapping
);
1512 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1514 ret
= mapping
->a_ops
->readpage(file
, page
);
1515 else if (ret
== -EEXIST
)
1516 ret
= 0; /* losing race to add is OK */
1518 page_cache_release(page
);
1520 } while (ret
== AOP_TRUNCATED_PAGE
);
1525 #define MMAP_LOTSAMISS (100)
1528 * Synchronous readahead happens when we don't even find
1529 * a page in the page cache at all.
1531 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1532 struct file_ra_state
*ra
,
1536 unsigned long ra_pages
;
1537 struct address_space
*mapping
= file
->f_mapping
;
1539 /* If we don't want any read-ahead, don't bother */
1540 if (VM_RandomReadHint(vma
))
1543 if (VM_SequentialReadHint(vma
) ||
1544 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1545 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1550 if (ra
->mmap_miss
< INT_MAX
)
1554 * Do we miss much more than hit in this file? If so,
1555 * stop bothering with read-ahead. It will only hurt.
1557 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1563 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1565 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1566 ra
->size
= ra_pages
;
1568 ra_submit(ra
, mapping
, file
);
1573 * Asynchronous readahead happens when we find the page and PG_readahead,
1574 * so we want to possibly extend the readahead further..
1576 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1577 struct file_ra_state
*ra
,
1582 struct address_space
*mapping
= file
->f_mapping
;
1584 /* If we don't want any read-ahead, don't bother */
1585 if (VM_RandomReadHint(vma
))
1587 if (ra
->mmap_miss
> 0)
1589 if (PageReadahead(page
))
1590 page_cache_async_readahead(mapping
, ra
, file
,
1591 page
, offset
, ra
->ra_pages
);
1595 * filemap_fault - read in file data for page fault handling
1596 * @vma: vma in which the fault was taken
1597 * @vmf: struct vm_fault containing details of the fault
1599 * filemap_fault() is invoked via the vma operations vector for a
1600 * mapped memory region to read in file data during a page fault.
1602 * The goto's are kind of ugly, but this streamlines the normal case of having
1603 * it in the page cache, and handles the special cases reasonably without
1604 * having a lot of duplicated code.
1606 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1609 struct file
*file
= vma
->vm_file
;
1610 struct address_space
*mapping
= file
->f_mapping
;
1611 struct file_ra_state
*ra
= &file
->f_ra
;
1612 struct inode
*inode
= mapping
->host
;
1613 pgoff_t offset
= vmf
->pgoff
;
1618 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1620 return VM_FAULT_SIGBUS
;
1623 * Do we have something in the page cache already?
1625 page
= find_get_page(mapping
, offset
);
1628 * We found the page, so try async readahead before
1629 * waiting for the lock.
1631 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1633 /* No page in the page cache at all */
1634 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1635 count_vm_event(PGMAJFAULT
);
1636 ret
= VM_FAULT_MAJOR
;
1638 page
= find_get_page(mapping
, offset
);
1640 goto no_cached_page
;
1643 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1644 page_cache_release(page
);
1645 return ret
| VM_FAULT_RETRY
;
1648 /* Did it get truncated? */
1649 if (unlikely(page
->mapping
!= mapping
)) {
1654 VM_BUG_ON(page
->index
!= offset
);
1657 * We have a locked page in the page cache, now we need to check
1658 * that it's up-to-date. If not, it is going to be due to an error.
1660 if (unlikely(!PageUptodate(page
)))
1661 goto page_not_uptodate
;
1664 * Found the page and have a reference on it.
1665 * We must recheck i_size under page lock.
1667 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1668 if (unlikely(offset
>= size
)) {
1670 page_cache_release(page
);
1671 return VM_FAULT_SIGBUS
;
1674 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1676 return ret
| VM_FAULT_LOCKED
;
1680 * We're only likely to ever get here if MADV_RANDOM is in
1683 error
= page_cache_read(file
, offset
);
1686 * The page we want has now been added to the page cache.
1687 * In the unlikely event that someone removed it in the
1688 * meantime, we'll just come back here and read it again.
1694 * An error return from page_cache_read can result if the
1695 * system is low on memory, or a problem occurs while trying
1698 if (error
== -ENOMEM
)
1699 return VM_FAULT_OOM
;
1700 return VM_FAULT_SIGBUS
;
1704 * Umm, take care of errors if the page isn't up-to-date.
1705 * Try to re-read it _once_. We do this synchronously,
1706 * because there really aren't any performance issues here
1707 * and we need to check for errors.
1709 ClearPageError(page
);
1710 error
= mapping
->a_ops
->readpage(file
, page
);
1712 wait_on_page_locked(page
);
1713 if (!PageUptodate(page
))
1716 page_cache_release(page
);
1718 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1721 /* Things didn't work out. Return zero to tell the mm layer so. */
1722 shrink_readahead_size_eio(file
, ra
);
1723 return VM_FAULT_SIGBUS
;
1725 EXPORT_SYMBOL(filemap_fault
);
1727 const struct vm_operations_struct generic_file_vm_ops
= {
1728 .fault
= filemap_fault
,
1731 /* This is used for a general mmap of a disk file */
1733 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1735 struct address_space
*mapping
= file
->f_mapping
;
1737 if (!mapping
->a_ops
->readpage
)
1739 file_accessed(file
);
1740 vma
->vm_ops
= &generic_file_vm_ops
;
1741 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1746 * This is for filesystems which do not implement ->writepage.
1748 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1750 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1752 return generic_file_mmap(file
, vma
);
1755 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1759 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1763 #endif /* CONFIG_MMU */
1765 EXPORT_SYMBOL(generic_file_mmap
);
1766 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1768 static struct page
*__read_cache_page(struct address_space
*mapping
,
1770 int (*filler
)(void *,struct page
*),
1777 page
= find_get_page(mapping
, index
);
1779 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1781 return ERR_PTR(-ENOMEM
);
1782 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1783 if (unlikely(err
)) {
1784 page_cache_release(page
);
1787 /* Presumably ENOMEM for radix tree node */
1788 return ERR_PTR(err
);
1790 err
= filler(data
, page
);
1792 page_cache_release(page
);
1793 page
= ERR_PTR(err
);
1799 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1801 int (*filler
)(void *,struct page
*),
1810 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1813 if (PageUptodate(page
))
1817 if (!page
->mapping
) {
1819 page_cache_release(page
);
1822 if (PageUptodate(page
)) {
1826 err
= filler(data
, page
);
1828 page_cache_release(page
);
1829 return ERR_PTR(err
);
1832 mark_page_accessed(page
);
1837 * read_cache_page_async - read into page cache, fill it if needed
1838 * @mapping: the page's address_space
1839 * @index: the page index
1840 * @filler: function to perform the read
1841 * @data: destination for read data
1843 * Same as read_cache_page, but don't wait for page to become unlocked
1844 * after submitting it to the filler.
1846 * Read into the page cache. If a page already exists, and PageUptodate() is
1847 * not set, try to fill the page but don't wait for it to become unlocked.
1849 * If the page does not get brought uptodate, return -EIO.
1851 struct page
*read_cache_page_async(struct address_space
*mapping
,
1853 int (*filler
)(void *,struct page
*),
1856 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1858 EXPORT_SYMBOL(read_cache_page_async
);
1860 static struct page
*wait_on_page_read(struct page
*page
)
1862 if (!IS_ERR(page
)) {
1863 wait_on_page_locked(page
);
1864 if (!PageUptodate(page
)) {
1865 page_cache_release(page
);
1866 page
= ERR_PTR(-EIO
);
1873 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1874 * @mapping: the page's address_space
1875 * @index: the page index
1876 * @gfp: the page allocator flags to use if allocating
1878 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1879 * any new page allocations done using the specified allocation flags. Note
1880 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1881 * expect to do this atomically or anything like that - but you can pass in
1882 * other page requirements.
1884 * If the page does not get brought uptodate, return -EIO.
1886 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1890 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1892 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1894 EXPORT_SYMBOL(read_cache_page_gfp
);
1897 * read_cache_page - read into page cache, fill it if needed
1898 * @mapping: the page's address_space
1899 * @index: the page index
1900 * @filler: function to perform the read
1901 * @data: destination for read data
1903 * Read into the page cache. If a page already exists, and PageUptodate() is
1904 * not set, try to fill the page then wait for it to become unlocked.
1906 * If the page does not get brought uptodate, return -EIO.
1908 struct page
*read_cache_page(struct address_space
*mapping
,
1910 int (*filler
)(void *,struct page
*),
1913 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1915 EXPORT_SYMBOL(read_cache_page
);
1918 * The logic we want is
1920 * if suid or (sgid and xgrp)
1923 int should_remove_suid(struct dentry
*dentry
)
1925 mode_t mode
= dentry
->d_inode
->i_mode
;
1928 /* suid always must be killed */
1929 if (unlikely(mode
& S_ISUID
))
1930 kill
= ATTR_KILL_SUID
;
1933 * sgid without any exec bits is just a mandatory locking mark; leave
1934 * it alone. If some exec bits are set, it's a real sgid; kill it.
1936 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1937 kill
|= ATTR_KILL_SGID
;
1939 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1944 EXPORT_SYMBOL(should_remove_suid
);
1946 static int __remove_suid(struct dentry
*dentry
, int kill
)
1948 struct iattr newattrs
;
1950 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1951 return notify_change(dentry
, &newattrs
);
1954 int file_remove_suid(struct file
*file
)
1956 struct dentry
*dentry
= file
->f_path
.dentry
;
1957 int killsuid
= should_remove_suid(dentry
);
1958 int killpriv
= security_inode_need_killpriv(dentry
);
1964 error
= security_inode_killpriv(dentry
);
1965 if (!error
&& killsuid
)
1966 error
= __remove_suid(dentry
, killsuid
);
1970 EXPORT_SYMBOL(file_remove_suid
);
1972 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1973 const struct iovec
*iov
, size_t base
, size_t bytes
)
1975 size_t copied
= 0, left
= 0;
1978 char __user
*buf
= iov
->iov_base
+ base
;
1979 int copy
= min(bytes
, iov
->iov_len
- base
);
1982 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1991 return copied
- left
;
1995 * Copy as much as we can into the page and return the number of bytes which
1996 * were successfully copied. If a fault is encountered then return the number of
1997 * bytes which were copied.
1999 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
2000 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2005 BUG_ON(!in_atomic());
2006 kaddr
= kmap_atomic(page
, KM_USER0
);
2007 if (likely(i
->nr_segs
== 1)) {
2009 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2010 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
2011 copied
= bytes
- left
;
2013 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2014 i
->iov
, i
->iov_offset
, bytes
);
2016 kunmap_atomic(kaddr
, KM_USER0
);
2020 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
2023 * This has the same sideeffects and return value as
2024 * iov_iter_copy_from_user_atomic().
2025 * The difference is that it attempts to resolve faults.
2026 * Page must not be locked.
2028 size_t iov_iter_copy_from_user(struct page
*page
,
2029 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2035 if (likely(i
->nr_segs
== 1)) {
2037 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2038 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
2039 copied
= bytes
- left
;
2041 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2042 i
->iov
, i
->iov_offset
, bytes
);
2047 EXPORT_SYMBOL(iov_iter_copy_from_user
);
2049 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
2051 BUG_ON(i
->count
< bytes
);
2053 if (likely(i
->nr_segs
== 1)) {
2054 i
->iov_offset
+= bytes
;
2057 const struct iovec
*iov
= i
->iov
;
2058 size_t base
= i
->iov_offset
;
2061 * The !iov->iov_len check ensures we skip over unlikely
2062 * zero-length segments (without overruning the iovec).
2064 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
2067 copy
= min(bytes
, iov
->iov_len
- base
);
2068 BUG_ON(!i
->count
|| i
->count
< copy
);
2072 if (iov
->iov_len
== base
) {
2078 i
->iov_offset
= base
;
2081 EXPORT_SYMBOL(iov_iter_advance
);
2084 * Fault in the first iovec of the given iov_iter, to a maximum length
2085 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2086 * accessed (ie. because it is an invalid address).
2088 * writev-intensive code may want this to prefault several iovecs -- that
2089 * would be possible (callers must not rely on the fact that _only_ the
2090 * first iovec will be faulted with the current implementation).
2092 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2094 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2095 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2096 return fault_in_pages_readable(buf
, bytes
);
2098 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2101 * Return the count of just the current iov_iter segment.
2103 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2105 const struct iovec
*iov
= i
->iov
;
2106 if (i
->nr_segs
== 1)
2109 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2111 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2114 * Performs necessary checks before doing a write
2116 * Can adjust writing position or amount of bytes to write.
2117 * Returns appropriate error code that caller should return or
2118 * zero in case that write should be allowed.
2120 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2122 struct inode
*inode
= file
->f_mapping
->host
;
2123 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2125 if (unlikely(*pos
< 0))
2129 /* FIXME: this is for backwards compatibility with 2.4 */
2130 if (file
->f_flags
& O_APPEND
)
2131 *pos
= i_size_read(inode
);
2133 if (limit
!= RLIM_INFINITY
) {
2134 if (*pos
>= limit
) {
2135 send_sig(SIGXFSZ
, current
, 0);
2138 if (*count
> limit
- (typeof(limit
))*pos
) {
2139 *count
= limit
- (typeof(limit
))*pos
;
2147 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2148 !(file
->f_flags
& O_LARGEFILE
))) {
2149 if (*pos
>= MAX_NON_LFS
) {
2152 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2153 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2158 * Are we about to exceed the fs block limit ?
2160 * If we have written data it becomes a short write. If we have
2161 * exceeded without writing data we send a signal and return EFBIG.
2162 * Linus frestrict idea will clean these up nicely..
2164 if (likely(!isblk
)) {
2165 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2166 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2169 /* zero-length writes at ->s_maxbytes are OK */
2172 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2173 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2177 if (bdev_read_only(I_BDEV(inode
)))
2179 isize
= i_size_read(inode
);
2180 if (*pos
>= isize
) {
2181 if (*count
|| *pos
> isize
)
2185 if (*pos
+ *count
> isize
)
2186 *count
= isize
- *pos
;
2193 EXPORT_SYMBOL(generic_write_checks
);
2195 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2196 loff_t pos
, unsigned len
, unsigned flags
,
2197 struct page
**pagep
, void **fsdata
)
2199 const struct address_space_operations
*aops
= mapping
->a_ops
;
2201 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2204 EXPORT_SYMBOL(pagecache_write_begin
);
2206 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2207 loff_t pos
, unsigned len
, unsigned copied
,
2208 struct page
*page
, void *fsdata
)
2210 const struct address_space_operations
*aops
= mapping
->a_ops
;
2212 mark_page_accessed(page
);
2213 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2215 EXPORT_SYMBOL(pagecache_write_end
);
2218 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2219 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2220 size_t count
, size_t ocount
)
2222 struct file
*file
= iocb
->ki_filp
;
2223 struct address_space
*mapping
= file
->f_mapping
;
2224 struct inode
*inode
= mapping
->host
;
2229 if (count
!= ocount
)
2230 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2232 write_len
= iov_length(iov
, *nr_segs
);
2233 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2235 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2240 * After a write we want buffered reads to be sure to go to disk to get
2241 * the new data. We invalidate clean cached page from the region we're
2242 * about to write. We do this *before* the write so that we can return
2243 * without clobbering -EIOCBQUEUED from ->direct_IO().
2245 if (mapping
->nrpages
) {
2246 written
= invalidate_inode_pages2_range(mapping
,
2247 pos
>> PAGE_CACHE_SHIFT
, end
);
2249 * If a page can not be invalidated, return 0 to fall back
2250 * to buffered write.
2253 if (written
== -EBUSY
)
2259 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2262 * Finally, try again to invalidate clean pages which might have been
2263 * cached by non-direct readahead, or faulted in by get_user_pages()
2264 * if the source of the write was an mmap'ed region of the file
2265 * we're writing. Either one is a pretty crazy thing to do,
2266 * so we don't support it 100%. If this invalidation
2267 * fails, tough, the write still worked...
2269 if (mapping
->nrpages
) {
2270 invalidate_inode_pages2_range(mapping
,
2271 pos
>> PAGE_CACHE_SHIFT
, end
);
2276 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2277 i_size_write(inode
, pos
);
2278 mark_inode_dirty(inode
);
2285 EXPORT_SYMBOL(generic_file_direct_write
);
2288 * Find or create a page at the given pagecache position. Return the locked
2289 * page. This function is specifically for buffered writes.
2291 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2292 pgoff_t index
, unsigned flags
)
2296 gfp_t gfp_notmask
= 0;
2297 if (flags
& AOP_FLAG_NOFS
)
2298 gfp_notmask
= __GFP_FS
;
2300 page
= find_lock_page(mapping
, index
);
2304 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2307 status
= add_to_page_cache_lru(page
, mapping
, index
,
2308 GFP_KERNEL
& ~gfp_notmask
);
2309 if (unlikely(status
)) {
2310 page_cache_release(page
);
2311 if (status
== -EEXIST
)
2317 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2319 static ssize_t
generic_perform_write(struct file
*file
,
2320 struct iov_iter
*i
, loff_t pos
)
2322 struct address_space
*mapping
= file
->f_mapping
;
2323 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2325 ssize_t written
= 0;
2326 unsigned int flags
= 0;
2329 * Copies from kernel address space cannot fail (NFSD is a big user).
2331 if (segment_eq(get_fs(), KERNEL_DS
))
2332 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2336 unsigned long offset
; /* Offset into pagecache page */
2337 unsigned long bytes
; /* Bytes to write to page */
2338 size_t copied
; /* Bytes copied from user */
2341 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2342 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2348 * Bring in the user page that we will copy from _first_.
2349 * Otherwise there's a nasty deadlock on copying from the
2350 * same page as we're writing to, without it being marked
2353 * Not only is this an optimisation, but it is also required
2354 * to check that the address is actually valid, when atomic
2355 * usercopies are used, below.
2357 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2362 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2364 if (unlikely(status
))
2367 if (mapping_writably_mapped(mapping
))
2368 flush_dcache_page(page
);
2370 pagefault_disable();
2371 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2373 flush_dcache_page(page
);
2375 mark_page_accessed(page
);
2376 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2378 if (unlikely(status
< 0))
2384 iov_iter_advance(i
, copied
);
2385 if (unlikely(copied
== 0)) {
2387 * If we were unable to copy any data at all, we must
2388 * fall back to a single segment length write.
2390 * If we didn't fallback here, we could livelock
2391 * because not all segments in the iov can be copied at
2392 * once without a pagefault.
2394 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2395 iov_iter_single_seg_count(i
));
2401 balance_dirty_pages_ratelimited(mapping
);
2403 } while (iov_iter_count(i
));
2405 return written
? written
: status
;
2409 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2410 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2411 size_t count
, ssize_t written
)
2413 struct file
*file
= iocb
->ki_filp
;
2417 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2418 status
= generic_perform_write(file
, &i
, pos
);
2420 if (likely(status
>= 0)) {
2422 *ppos
= pos
+ status
;
2425 return written
? written
: status
;
2427 EXPORT_SYMBOL(generic_file_buffered_write
);
2430 * __generic_file_aio_write - write data to a file
2431 * @iocb: IO state structure (file, offset, etc.)
2432 * @iov: vector with data to write
2433 * @nr_segs: number of segments in the vector
2434 * @ppos: position where to write
2436 * This function does all the work needed for actually writing data to a
2437 * file. It does all basic checks, removes SUID from the file, updates
2438 * modification times and calls proper subroutines depending on whether we
2439 * do direct IO or a standard buffered write.
2441 * It expects i_mutex to be grabbed unless we work on a block device or similar
2442 * object which does not need locking at all.
2444 * This function does *not* take care of syncing data in case of O_SYNC write.
2445 * A caller has to handle it. This is mainly due to the fact that we want to
2446 * avoid syncing under i_mutex.
2448 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2449 unsigned long nr_segs
, loff_t
*ppos
)
2451 struct file
*file
= iocb
->ki_filp
;
2452 struct address_space
* mapping
= file
->f_mapping
;
2453 size_t ocount
; /* original count */
2454 size_t count
; /* after file limit checks */
2455 struct inode
*inode
= mapping
->host
;
2461 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2468 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2470 /* We can write back this queue in page reclaim */
2471 current
->backing_dev_info
= mapping
->backing_dev_info
;
2474 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2481 err
= file_remove_suid(file
);
2485 file_update_time(file
);
2487 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2488 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2490 ssize_t written_buffered
;
2492 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2493 ppos
, count
, ocount
);
2494 if (written
< 0 || written
== count
)
2497 * direct-io write to a hole: fall through to buffered I/O
2498 * for completing the rest of the request.
2502 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2503 nr_segs
, pos
, ppos
, count
,
2506 * If generic_file_buffered_write() retuned a synchronous error
2507 * then we want to return the number of bytes which were
2508 * direct-written, or the error code if that was zero. Note
2509 * that this differs from normal direct-io semantics, which
2510 * will return -EFOO even if some bytes were written.
2512 if (written_buffered
< 0) {
2513 err
= written_buffered
;
2518 * We need to ensure that the page cache pages are written to
2519 * disk and invalidated to preserve the expected O_DIRECT
2522 endbyte
= pos
+ written_buffered
- written
- 1;
2523 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2525 written
= written_buffered
;
2526 invalidate_mapping_pages(mapping
,
2527 pos
>> PAGE_CACHE_SHIFT
,
2528 endbyte
>> PAGE_CACHE_SHIFT
);
2531 * We don't know how much we wrote, so just return
2532 * the number of bytes which were direct-written
2536 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2537 pos
, ppos
, count
, written
);
2540 current
->backing_dev_info
= NULL
;
2541 return written
? written
: err
;
2543 EXPORT_SYMBOL(__generic_file_aio_write
);
2546 * generic_file_aio_write - write data to a file
2547 * @iocb: IO state structure
2548 * @iov: vector with data to write
2549 * @nr_segs: number of segments in the vector
2550 * @pos: position in file where to write
2552 * This is a wrapper around __generic_file_aio_write() to be used by most
2553 * filesystems. It takes care of syncing the file in case of O_SYNC file
2554 * and acquires i_mutex as needed.
2556 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2557 unsigned long nr_segs
, loff_t pos
)
2559 struct file
*file
= iocb
->ki_filp
;
2560 struct inode
*inode
= file
->f_mapping
->host
;
2561 struct blk_plug plug
;
2564 BUG_ON(iocb
->ki_pos
!= pos
);
2566 mutex_lock(&inode
->i_mutex
);
2567 blk_start_plug(&plug
);
2568 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2569 mutex_unlock(&inode
->i_mutex
);
2571 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2574 err
= generic_write_sync(file
, pos
, ret
);
2575 if (err
< 0 && ret
> 0)
2578 blk_finish_plug(&plug
);
2581 EXPORT_SYMBOL(generic_file_aio_write
);
2584 * try_to_release_page() - release old fs-specific metadata on a page
2586 * @page: the page which the kernel is trying to free
2587 * @gfp_mask: memory allocation flags (and I/O mode)
2589 * The address_space is to try to release any data against the page
2590 * (presumably at page->private). If the release was successful, return `1'.
2591 * Otherwise return zero.
2593 * This may also be called if PG_fscache is set on a page, indicating that the
2594 * page is known to the local caching routines.
2596 * The @gfp_mask argument specifies whether I/O may be performed to release
2597 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2600 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2602 struct address_space
* const mapping
= page
->mapping
;
2604 BUG_ON(!PageLocked(page
));
2605 if (PageWriteback(page
))
2608 if (mapping
&& mapping
->a_ops
->releasepage
)
2609 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2610 return try_to_free_buffers(page
);
2613 EXPORT_SYMBOL(try_to_release_page
);