1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version
[] = DRV_VERSION
;
36 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl
[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
88 int e1000_up(struct e1000_adapter
*adapter
);
89 void e1000_down(struct e1000_adapter
*adapter
);
90 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
91 void e1000_reset(struct e1000_adapter
*adapter
);
92 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
93 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
94 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
95 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
96 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
97 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
98 struct e1000_tx_ring
*txdr
);
99 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
100 struct e1000_rx_ring
*rxdr
);
101 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*tx_ring
);
103 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rx_ring
);
105 void e1000_update_stats(struct e1000_adapter
*adapter
);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
110 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
111 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
112 static int e1000_sw_init(struct e1000_adapter
*adapter
);
113 static int e1000_open(struct net_device
*netdev
);
114 static int e1000_close(struct net_device
*netdev
);
115 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
116 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
117 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
120 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
121 struct e1000_tx_ring
*tx_ring
);
122 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
123 struct e1000_rx_ring
*rx_ring
);
124 static void e1000_set_rx_mode(struct net_device
*netdev
);
125 static void e1000_update_phy_info(unsigned long data
);
126 static void e1000_watchdog(unsigned long data
);
127 static void e1000_82547_tx_fifo_stall(unsigned long data
);
128 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
129 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
130 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
131 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
132 static irqreturn_t
e1000_intr(int irq
, void *data
);
133 static irqreturn_t
e1000_intr_msi(int irq
, void *data
);
134 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
135 struct e1000_tx_ring
*tx_ring
);
136 static int e1000_clean(struct napi_struct
*napi
, int budget
);
137 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
138 struct e1000_rx_ring
*rx_ring
,
139 int *work_done
, int work_to_do
);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
141 struct e1000_rx_ring
*rx_ring
,
142 int *work_done
, int work_to_do
);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
144 struct e1000_rx_ring
*rx_ring
,
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
147 struct e1000_rx_ring
*rx_ring
,
149 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
150 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
152 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
153 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
154 static void e1000_tx_timeout(struct net_device
*dev
);
155 static void e1000_reset_task(struct work_struct
*work
);
156 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
158 struct sk_buff
*skb
);
160 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
161 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
162 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
163 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
166 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
167 static int e1000_resume(struct pci_dev
*pdev
);
169 static void e1000_shutdown(struct pci_dev
*pdev
);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device
*netdev
);
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
178 module_param(copybreak
, uint
, 0644);
179 MODULE_PARM_DESC(copybreak
,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
183 pci_channel_state_t state
);
184 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
185 static void e1000_io_resume(struct pci_dev
*pdev
);
187 static struct pci_error_handlers e1000_err_handler
= {
188 .error_detected
= e1000_io_error_detected
,
189 .slot_reset
= e1000_io_slot_reset
,
190 .resume
= e1000_io_resume
,
193 static struct pci_driver e1000_driver
= {
194 .name
= e1000_driver_name
,
195 .id_table
= e1000_pci_tbl
,
196 .probe
= e1000_probe
,
197 .remove
= __devexit_p(e1000_remove
),
199 /* Power Managment Hooks */
200 .suspend
= e1000_suspend
,
201 .resume
= e1000_resume
,
203 .shutdown
= e1000_shutdown
,
204 .err_handler
= &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION
);
212 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
213 module_param(debug
, int, 0);
214 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
217 * e1000_init_module - Driver Registration Routine
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
223 static int __init
e1000_init_module(void)
226 printk(KERN_INFO
"%s - version %s\n",
227 e1000_driver_string
, e1000_driver_version
);
229 printk(KERN_INFO
"%s\n", e1000_copyright
);
231 ret
= pci_register_driver(&e1000_driver
);
232 if (copybreak
!= COPYBREAK_DEFAULT
) {
234 printk(KERN_INFO
"e1000: copybreak disabled\n");
236 printk(KERN_INFO
"e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak
);
242 module_init(e1000_init_module
);
245 * e1000_exit_module - Driver Exit Cleanup Routine
247 * e1000_exit_module is called just before the driver is removed
251 static void __exit
e1000_exit_module(void)
253 pci_unregister_driver(&e1000_driver
);
256 module_exit(e1000_exit_module
);
258 static int e1000_request_irq(struct e1000_adapter
*adapter
)
260 struct e1000_hw
*hw
= &adapter
->hw
;
261 struct net_device
*netdev
= adapter
->netdev
;
262 irq_handler_t handler
= e1000_intr
;
263 int irq_flags
= IRQF_SHARED
;
266 if (hw
->mac_type
>= e1000_82571
) {
267 adapter
->have_msi
= !pci_enable_msi(adapter
->pdev
);
268 if (adapter
->have_msi
) {
269 handler
= e1000_intr_msi
;
274 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
277 if (adapter
->have_msi
)
278 pci_disable_msi(adapter
->pdev
);
280 "Unable to allocate interrupt Error: %d\n", err
);
286 static void e1000_free_irq(struct e1000_adapter
*adapter
)
288 struct net_device
*netdev
= adapter
->netdev
;
290 free_irq(adapter
->pdev
->irq
, netdev
);
292 if (adapter
->have_msi
)
293 pci_disable_msi(adapter
->pdev
);
297 * e1000_irq_disable - Mask off interrupt generation on the NIC
298 * @adapter: board private structure
301 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
303 struct e1000_hw
*hw
= &adapter
->hw
;
307 synchronize_irq(adapter
->pdev
->irq
);
311 * e1000_irq_enable - Enable default interrupt generation settings
312 * @adapter: board private structure
315 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
317 struct e1000_hw
*hw
= &adapter
->hw
;
319 ew32(IMS
, IMS_ENABLE_MASK
);
323 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
325 struct e1000_hw
*hw
= &adapter
->hw
;
326 struct net_device
*netdev
= adapter
->netdev
;
327 u16 vid
= hw
->mng_cookie
.vlan_id
;
328 u16 old_vid
= adapter
->mng_vlan_id
;
329 if (adapter
->vlgrp
) {
330 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
331 if (hw
->mng_cookie
.status
&
332 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
333 e1000_vlan_rx_add_vid(netdev
, vid
);
334 adapter
->mng_vlan_id
= vid
;
336 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
338 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
340 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
341 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
343 adapter
->mng_vlan_id
= vid
;
348 * e1000_release_hw_control - release control of the h/w to f/w
349 * @adapter: address of board private structure
351 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
352 * For ASF and Pass Through versions of f/w this means that the
353 * driver is no longer loaded. For AMT version (only with 82573) i
354 * of the f/w this means that the network i/f is closed.
358 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
362 struct e1000_hw
*hw
= &adapter
->hw
;
364 /* Let firmware taken over control of h/w */
365 switch (hw
->mac_type
) {
368 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
372 case e1000_80003es2lan
:
374 ctrl_ext
= er32(CTRL_EXT
);
375 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
383 * e1000_get_hw_control - get control of the h/w from f/w
384 * @adapter: address of board private structure
386 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
387 * For ASF and Pass Through versions of f/w this means that
388 * the driver is loaded. For AMT version (only with 82573)
389 * of the f/w this means that the network i/f is open.
393 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
397 struct e1000_hw
*hw
= &adapter
->hw
;
399 /* Let firmware know the driver has taken over */
400 switch (hw
->mac_type
) {
403 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
407 case e1000_80003es2lan
:
409 ctrl_ext
= er32(CTRL_EXT
);
410 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
417 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
419 struct e1000_hw
*hw
= &adapter
->hw
;
421 if (adapter
->en_mng_pt
) {
422 u32 manc
= er32(MANC
);
424 /* disable hardware interception of ARP */
425 manc
&= ~(E1000_MANC_ARP_EN
);
427 /* enable receiving management packets to the host */
428 /* this will probably generate destination unreachable messages
429 * from the host OS, but the packets will be handled on SMBUS */
430 if (hw
->has_manc2h
) {
431 u32 manc2h
= er32(MANC2H
);
433 manc
|= E1000_MANC_EN_MNG2HOST
;
434 #define E1000_MNG2HOST_PORT_623 (1 << 5)
435 #define E1000_MNG2HOST_PORT_664 (1 << 6)
436 manc2h
|= E1000_MNG2HOST_PORT_623
;
437 manc2h
|= E1000_MNG2HOST_PORT_664
;
438 ew32(MANC2H
, manc2h
);
445 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
447 struct e1000_hw
*hw
= &adapter
->hw
;
449 if (adapter
->en_mng_pt
) {
450 u32 manc
= er32(MANC
);
452 /* re-enable hardware interception of ARP */
453 manc
|= E1000_MANC_ARP_EN
;
456 manc
&= ~E1000_MANC_EN_MNG2HOST
;
458 /* don't explicitly have to mess with MANC2H since
459 * MANC has an enable disable that gates MANC2H */
466 * e1000_configure - configure the hardware for RX and TX
467 * @adapter = private board structure
469 static void e1000_configure(struct e1000_adapter
*adapter
)
471 struct net_device
*netdev
= adapter
->netdev
;
474 e1000_set_rx_mode(netdev
);
476 e1000_restore_vlan(adapter
);
477 e1000_init_manageability(adapter
);
479 e1000_configure_tx(adapter
);
480 e1000_setup_rctl(adapter
);
481 e1000_configure_rx(adapter
);
482 /* call E1000_DESC_UNUSED which always leaves
483 * at least 1 descriptor unused to make sure
484 * next_to_use != next_to_clean */
485 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
486 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
487 adapter
->alloc_rx_buf(adapter
, ring
,
488 E1000_DESC_UNUSED(ring
));
491 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
494 int e1000_up(struct e1000_adapter
*adapter
)
496 struct e1000_hw
*hw
= &adapter
->hw
;
498 /* hardware has been reset, we need to reload some things */
499 e1000_configure(adapter
);
501 clear_bit(__E1000_DOWN
, &adapter
->flags
);
503 napi_enable(&adapter
->napi
);
505 e1000_irq_enable(adapter
);
507 netif_wake_queue(adapter
->netdev
);
509 /* fire a link change interrupt to start the watchdog */
510 ew32(ICS
, E1000_ICS_LSC
);
515 * e1000_power_up_phy - restore link in case the phy was powered down
516 * @adapter: address of board private structure
518 * The phy may be powered down to save power and turn off link when the
519 * driver is unloaded and wake on lan is not enabled (among others)
520 * *** this routine MUST be followed by a call to e1000_reset ***
524 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
526 struct e1000_hw
*hw
= &adapter
->hw
;
529 /* Just clear the power down bit to wake the phy back up */
530 if (hw
->media_type
== e1000_media_type_copper
) {
531 /* according to the manual, the phy will retain its
532 * settings across a power-down/up cycle */
533 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
534 mii_reg
&= ~MII_CR_POWER_DOWN
;
535 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
539 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
541 struct e1000_hw
*hw
= &adapter
->hw
;
543 /* Power down the PHY so no link is implied when interface is down *
544 * The PHY cannot be powered down if any of the following is true *
547 * (c) SoL/IDER session is active */
548 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
549 hw
->media_type
== e1000_media_type_copper
) {
552 switch (hw
->mac_type
) {
555 case e1000_82545_rev_3
:
557 case e1000_82546_rev_3
:
559 case e1000_82541_rev_2
:
561 case e1000_82547_rev_2
:
562 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
568 case e1000_80003es2lan
:
570 if (e1000_check_mng_mode(hw
) ||
571 e1000_check_phy_reset_block(hw
))
577 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
578 mii_reg
|= MII_CR_POWER_DOWN
;
579 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
586 void e1000_down(struct e1000_adapter
*adapter
)
588 struct e1000_hw
*hw
= &adapter
->hw
;
589 struct net_device
*netdev
= adapter
->netdev
;
592 /* signal that we're down so the interrupt handler does not
593 * reschedule our watchdog timer */
594 set_bit(__E1000_DOWN
, &adapter
->flags
);
596 /* disable receives in the hardware */
598 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
599 /* flush and sleep below */
601 /* can be netif_tx_disable when NETIF_F_LLTX is removed */
602 netif_stop_queue(netdev
);
604 /* disable transmits in the hardware */
606 tctl
&= ~E1000_TCTL_EN
;
608 /* flush both disables and wait for them to finish */
612 napi_disable(&adapter
->napi
);
614 e1000_irq_disable(adapter
);
616 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
617 del_timer_sync(&adapter
->watchdog_timer
);
618 del_timer_sync(&adapter
->phy_info_timer
);
620 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
621 adapter
->link_speed
= 0;
622 adapter
->link_duplex
= 0;
623 netif_carrier_off(netdev
);
625 e1000_reset(adapter
);
626 e1000_clean_all_tx_rings(adapter
);
627 e1000_clean_all_rx_rings(adapter
);
630 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
632 WARN_ON(in_interrupt());
633 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
637 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
640 void e1000_reset(struct e1000_adapter
*adapter
)
642 struct e1000_hw
*hw
= &adapter
->hw
;
643 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
644 bool legacy_pba_adjust
= false;
647 /* Repartition Pba for greater than 9k mtu
648 * To take effect CTRL.RST is required.
651 switch (hw
->mac_type
) {
652 case e1000_82542_rev2_0
:
653 case e1000_82542_rev2_1
:
658 case e1000_82541_rev_2
:
659 legacy_pba_adjust
= true;
663 case e1000_82545_rev_3
:
665 case e1000_82546_rev_3
:
669 case e1000_82547_rev_2
:
670 legacy_pba_adjust
= true;
675 case e1000_80003es2lan
:
683 case e1000_undefined
:
688 if (legacy_pba_adjust
) {
689 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
690 pba
-= 8; /* allocate more FIFO for Tx */
692 if (hw
->mac_type
== e1000_82547
) {
693 adapter
->tx_fifo_head
= 0;
694 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
695 adapter
->tx_fifo_size
=
696 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
697 atomic_set(&adapter
->tx_fifo_stall
, 0);
699 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
700 /* adjust PBA for jumbo frames */
703 /* To maintain wire speed transmits, the Tx FIFO should be
704 * large enough to accommodate two full transmit packets,
705 * rounded up to the next 1KB and expressed in KB. Likewise,
706 * the Rx FIFO should be large enough to accommodate at least
707 * one full receive packet and is similarly rounded up and
708 * expressed in KB. */
710 /* upper 16 bits has Tx packet buffer allocation size in KB */
711 tx_space
= pba
>> 16;
712 /* lower 16 bits has Rx packet buffer allocation size in KB */
715 * the tx fifo also stores 16 bytes of information about the tx
716 * but don't include ethernet FCS because hardware appends it
718 min_tx_space
= (hw
->max_frame_size
+
719 sizeof(struct e1000_tx_desc
) -
721 min_tx_space
= ALIGN(min_tx_space
, 1024);
723 /* software strips receive CRC, so leave room for it */
724 min_rx_space
= hw
->max_frame_size
;
725 min_rx_space
= ALIGN(min_rx_space
, 1024);
728 /* If current Tx allocation is less than the min Tx FIFO size,
729 * and the min Tx FIFO size is less than the current Rx FIFO
730 * allocation, take space away from current Rx allocation */
731 if (tx_space
< min_tx_space
&&
732 ((min_tx_space
- tx_space
) < pba
)) {
733 pba
= pba
- (min_tx_space
- tx_space
);
735 /* PCI/PCIx hardware has PBA alignment constraints */
736 switch (hw
->mac_type
) {
737 case e1000_82545
... e1000_82546_rev_3
:
738 pba
&= ~(E1000_PBA_8K
- 1);
744 /* if short on rx space, rx wins and must trump tx
745 * adjustment or use Early Receive if available */
746 if (pba
< min_rx_space
) {
747 switch (hw
->mac_type
) {
749 /* ERT enabled in e1000_configure_rx */
762 * flow control settings:
763 * The high water mark must be low enough to fit one full frame
764 * (or the size used for early receive) above it in the Rx FIFO.
765 * Set it to the lower of:
766 * - 90% of the Rx FIFO size, and
767 * - the full Rx FIFO size minus the early receive size (for parts
768 * with ERT support assuming ERT set to E1000_ERT_2048), or
769 * - the full Rx FIFO size minus one full frame
771 hwm
= min(((pba
<< 10) * 9 / 10),
772 ((pba
<< 10) - hw
->max_frame_size
));
774 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
775 hw
->fc_low_water
= hw
->fc_high_water
- 8;
776 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
778 hw
->fc
= hw
->original_fc
;
780 /* Allow time for pending master requests to run */
782 if (hw
->mac_type
>= e1000_82544
)
785 if (e1000_init_hw(hw
))
786 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
787 e1000_update_mng_vlan(adapter
);
789 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
790 if (hw
->mac_type
>= e1000_82544
&&
791 hw
->mac_type
<= e1000_82547_rev_2
&&
793 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
794 u32 ctrl
= er32(CTRL
);
795 /* clear phy power management bit if we are in gig only mode,
796 * which if enabled will attempt negotiation to 100Mb, which
797 * can cause a loss of link at power off or driver unload */
798 ctrl
&= ~E1000_CTRL_SWDPIN3
;
802 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
803 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
805 e1000_reset_adaptive(hw
);
806 e1000_phy_get_info(hw
, &adapter
->phy_info
);
808 if (!adapter
->smart_power_down
&&
809 (hw
->mac_type
== e1000_82571
||
810 hw
->mac_type
== e1000_82572
)) {
812 /* speed up time to link by disabling smart power down, ignore
813 * the return value of this function because there is nothing
814 * different we would do if it failed */
815 e1000_read_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
817 phy_data
&= ~IGP02E1000_PM_SPD
;
818 e1000_write_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
822 e1000_release_manageability(adapter
);
826 * Dump the eeprom for users having checksum issues
828 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
830 struct net_device
*netdev
= adapter
->netdev
;
831 struct ethtool_eeprom eeprom
;
832 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
835 u16 csum_old
, csum_new
= 0;
837 eeprom
.len
= ops
->get_eeprom_len(netdev
);
840 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
842 printk(KERN_ERR
"Unable to allocate memory to dump EEPROM"
847 ops
->get_eeprom(netdev
, &eeprom
, data
);
849 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
850 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
851 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
852 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
853 csum_new
= EEPROM_SUM
- csum_new
;
855 printk(KERN_ERR
"/*********************/\n");
856 printk(KERN_ERR
"Current EEPROM Checksum : 0x%04x\n", csum_old
);
857 printk(KERN_ERR
"Calculated : 0x%04x\n", csum_new
);
859 printk(KERN_ERR
"Offset Values\n");
860 printk(KERN_ERR
"======== ======\n");
861 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
863 printk(KERN_ERR
"Include this output when contacting your support "
865 printk(KERN_ERR
"This is not a software error! Something bad "
866 "happened to your hardware or\n");
867 printk(KERN_ERR
"EEPROM image. Ignoring this "
868 "problem could result in further problems,\n");
869 printk(KERN_ERR
"possibly loss of data, corruption or system hangs!\n");
870 printk(KERN_ERR
"The MAC Address will be reset to 00:00:00:00:00:00, "
871 "which is invalid\n");
872 printk(KERN_ERR
"and requires you to set the proper MAC "
873 "address manually before continuing\n");
874 printk(KERN_ERR
"to enable this network device.\n");
875 printk(KERN_ERR
"Please inspect the EEPROM dump and report the issue "
876 "to your hardware vendor\n");
877 printk(KERN_ERR
"or Intel Customer Support.\n");
878 printk(KERN_ERR
"/*********************/\n");
884 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
885 * @pdev: PCI device information struct
887 * Return true if an adapter needs ioport resources
889 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
891 switch (pdev
->device
) {
892 case E1000_DEV_ID_82540EM
:
893 case E1000_DEV_ID_82540EM_LOM
:
894 case E1000_DEV_ID_82540EP
:
895 case E1000_DEV_ID_82540EP_LOM
:
896 case E1000_DEV_ID_82540EP_LP
:
897 case E1000_DEV_ID_82541EI
:
898 case E1000_DEV_ID_82541EI_MOBILE
:
899 case E1000_DEV_ID_82541ER
:
900 case E1000_DEV_ID_82541ER_LOM
:
901 case E1000_DEV_ID_82541GI
:
902 case E1000_DEV_ID_82541GI_LF
:
903 case E1000_DEV_ID_82541GI_MOBILE
:
904 case E1000_DEV_ID_82544EI_COPPER
:
905 case E1000_DEV_ID_82544EI_FIBER
:
906 case E1000_DEV_ID_82544GC_COPPER
:
907 case E1000_DEV_ID_82544GC_LOM
:
908 case E1000_DEV_ID_82545EM_COPPER
:
909 case E1000_DEV_ID_82545EM_FIBER
:
910 case E1000_DEV_ID_82546EB_COPPER
:
911 case E1000_DEV_ID_82546EB_FIBER
:
912 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
919 static const struct net_device_ops e1000_netdev_ops
= {
920 .ndo_open
= e1000_open
,
921 .ndo_stop
= e1000_close
,
922 .ndo_start_xmit
= e1000_xmit_frame
,
923 .ndo_get_stats
= e1000_get_stats
,
924 .ndo_set_rx_mode
= e1000_set_rx_mode
,
925 .ndo_set_mac_address
= e1000_set_mac
,
926 .ndo_tx_timeout
= e1000_tx_timeout
,
927 .ndo_change_mtu
= e1000_change_mtu
,
928 .ndo_do_ioctl
= e1000_ioctl
,
929 .ndo_validate_addr
= eth_validate_addr
,
931 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
932 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
933 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
934 #ifdef CONFIG_NET_POLL_CONTROLLER
935 .ndo_poll_controller
= e1000_netpoll
,
940 * e1000_probe - Device Initialization Routine
941 * @pdev: PCI device information struct
942 * @ent: entry in e1000_pci_tbl
944 * Returns 0 on success, negative on failure
946 * e1000_probe initializes an adapter identified by a pci_dev structure.
947 * The OS initialization, configuring of the adapter private structure,
948 * and a hardware reset occur.
950 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
951 const struct pci_device_id
*ent
)
953 struct net_device
*netdev
;
954 struct e1000_adapter
*adapter
;
957 static int cards_found
= 0;
958 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
959 int i
, err
, pci_using_dac
;
961 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
962 int bars
, need_ioport
;
964 /* do not allocate ioport bars when not needed */
965 need_ioport
= e1000_is_need_ioport(pdev
);
967 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
968 err
= pci_enable_device(pdev
);
970 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
971 err
= pci_enable_device_mem(pdev
);
976 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)) &&
977 !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
980 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
982 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
984 E1000_ERR("No usable DMA configuration, "
992 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
996 pci_set_master(pdev
);
999 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
1001 goto err_alloc_etherdev
;
1003 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1005 pci_set_drvdata(pdev
, netdev
);
1006 adapter
= netdev_priv(netdev
);
1007 adapter
->netdev
= netdev
;
1008 adapter
->pdev
= pdev
;
1009 adapter
->msg_enable
= (1 << debug
) - 1;
1010 adapter
->bars
= bars
;
1011 adapter
->need_ioport
= need_ioport
;
1017 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
1021 if (adapter
->need_ioport
) {
1022 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
1023 if (pci_resource_len(pdev
, i
) == 0)
1025 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1026 hw
->io_base
= pci_resource_start(pdev
, i
);
1032 netdev
->netdev_ops
= &e1000_netdev_ops
;
1033 e1000_set_ethtool_ops(netdev
);
1034 netdev
->watchdog_timeo
= 5 * HZ
;
1035 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1037 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1039 adapter
->bd_number
= cards_found
;
1041 /* setup the private structure */
1043 err
= e1000_sw_init(adapter
);
1048 /* Flash BAR mapping must happen after e1000_sw_init
1049 * because it depends on mac_type */
1050 if ((hw
->mac_type
== e1000_ich8lan
) &&
1051 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
1052 hw
->flash_address
= pci_ioremap_bar(pdev
, 1);
1053 if (!hw
->flash_address
)
1057 if (e1000_check_phy_reset_block(hw
))
1058 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
1060 if (hw
->mac_type
>= e1000_82543
) {
1061 netdev
->features
= NETIF_F_SG
|
1063 NETIF_F_HW_VLAN_TX
|
1064 NETIF_F_HW_VLAN_RX
|
1065 NETIF_F_HW_VLAN_FILTER
;
1066 if (hw
->mac_type
== e1000_ich8lan
)
1067 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
1070 if ((hw
->mac_type
>= e1000_82544
) &&
1071 (hw
->mac_type
!= e1000_82547
))
1072 netdev
->features
|= NETIF_F_TSO
;
1074 if (hw
->mac_type
> e1000_82547_rev_2
)
1075 netdev
->features
|= NETIF_F_TSO6
;
1077 netdev
->features
|= NETIF_F_HIGHDMA
;
1079 netdev
->vlan_features
|= NETIF_F_TSO
;
1080 netdev
->vlan_features
|= NETIF_F_TSO6
;
1081 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1082 netdev
->vlan_features
|= NETIF_F_SG
;
1084 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1086 /* initialize eeprom parameters */
1087 if (e1000_init_eeprom_params(hw
)) {
1088 E1000_ERR("EEPROM initialization failed\n");
1092 /* before reading the EEPROM, reset the controller to
1093 * put the device in a known good starting state */
1097 /* make sure the EEPROM is good */
1098 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1099 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
1100 e1000_dump_eeprom(adapter
);
1102 * set MAC address to all zeroes to invalidate and temporary
1103 * disable this device for the user. This blocks regular
1104 * traffic while still permitting ethtool ioctls from reaching
1105 * the hardware as well as allowing the user to run the
1106 * interface after manually setting a hw addr using
1109 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1111 /* copy the MAC address out of the EEPROM */
1112 if (e1000_read_mac_addr(hw
))
1113 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
1115 /* don't block initalization here due to bad MAC address */
1116 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1117 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1119 if (!is_valid_ether_addr(netdev
->perm_addr
))
1120 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
1122 e1000_get_bus_info(hw
);
1124 init_timer(&adapter
->tx_fifo_stall_timer
);
1125 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
1126 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
1128 init_timer(&adapter
->watchdog_timer
);
1129 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
1130 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1132 init_timer(&adapter
->phy_info_timer
);
1133 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
1134 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
1136 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1138 e1000_check_options(adapter
);
1140 /* Initial Wake on LAN setting
1141 * If APM wake is enabled in the EEPROM,
1142 * enable the ACPI Magic Packet filter
1145 switch (hw
->mac_type
) {
1146 case e1000_82542_rev2_0
:
1147 case e1000_82542_rev2_1
:
1151 e1000_read_eeprom(hw
,
1152 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1153 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1156 e1000_read_eeprom(hw
,
1157 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
1158 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
1161 case e1000_82546_rev_3
:
1163 case e1000_80003es2lan
:
1164 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1165 e1000_read_eeprom(hw
,
1166 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1171 e1000_read_eeprom(hw
,
1172 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1175 if (eeprom_data
& eeprom_apme_mask
)
1176 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1178 /* now that we have the eeprom settings, apply the special cases
1179 * where the eeprom may be wrong or the board simply won't support
1180 * wake on lan on a particular port */
1181 switch (pdev
->device
) {
1182 case E1000_DEV_ID_82546GB_PCIE
:
1183 adapter
->eeprom_wol
= 0;
1185 case E1000_DEV_ID_82546EB_FIBER
:
1186 case E1000_DEV_ID_82546GB_FIBER
:
1187 case E1000_DEV_ID_82571EB_FIBER
:
1188 /* Wake events only supported on port A for dual fiber
1189 * regardless of eeprom setting */
1190 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1191 adapter
->eeprom_wol
= 0;
1193 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1194 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1195 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
1196 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1197 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
1198 /* if quad port adapter, disable WoL on all but port A */
1199 if (global_quad_port_a
!= 0)
1200 adapter
->eeprom_wol
= 0;
1202 adapter
->quad_port_a
= 1;
1203 /* Reset for multiple quad port adapters */
1204 if (++global_quad_port_a
== 4)
1205 global_quad_port_a
= 0;
1209 /* initialize the wol settings based on the eeprom settings */
1210 adapter
->wol
= adapter
->eeprom_wol
;
1211 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1213 /* print bus type/speed/width info */
1214 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1215 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
1216 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
1217 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
1218 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1219 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1220 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1221 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1222 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
1223 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
1224 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
1227 printk("%pM\n", netdev
->dev_addr
);
1229 if (hw
->bus_type
== e1000_bus_type_pci_express
) {
1230 DPRINTK(PROBE
, WARNING
, "This device (id %04x:%04x) will no "
1231 "longer be supported by this driver in the future.\n",
1232 pdev
->vendor
, pdev
->device
);
1233 DPRINTK(PROBE
, WARNING
, "please use the \"e1000e\" "
1234 "driver instead.\n");
1237 /* reset the hardware with the new settings */
1238 e1000_reset(adapter
);
1240 /* If the controller is 82573 and f/w is AMT, do not set
1241 * DRV_LOAD until the interface is up. For all other cases,
1242 * let the f/w know that the h/w is now under the control
1244 if (hw
->mac_type
!= e1000_82573
||
1245 !e1000_check_mng_mode(hw
))
1246 e1000_get_hw_control(adapter
);
1248 strcpy(netdev
->name
, "eth%d");
1249 err
= register_netdev(netdev
);
1253 /* carrier off reporting is important to ethtool even BEFORE open */
1254 netif_carrier_off(netdev
);
1256 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1262 e1000_release_hw_control(adapter
);
1264 if (!e1000_check_phy_reset_block(hw
))
1265 e1000_phy_hw_reset(hw
);
1267 if (hw
->flash_address
)
1268 iounmap(hw
->flash_address
);
1270 kfree(adapter
->tx_ring
);
1271 kfree(adapter
->rx_ring
);
1273 iounmap(hw
->hw_addr
);
1275 free_netdev(netdev
);
1277 pci_release_selected_regions(pdev
, bars
);
1280 pci_disable_device(pdev
);
1285 * e1000_remove - Device Removal Routine
1286 * @pdev: PCI device information struct
1288 * e1000_remove is called by the PCI subsystem to alert the driver
1289 * that it should release a PCI device. The could be caused by a
1290 * Hot-Plug event, or because the driver is going to be removed from
1294 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1296 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1297 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1298 struct e1000_hw
*hw
= &adapter
->hw
;
1300 cancel_work_sync(&adapter
->reset_task
);
1302 e1000_release_manageability(adapter
);
1304 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1305 * would have already happened in close and is redundant. */
1306 e1000_release_hw_control(adapter
);
1308 unregister_netdev(netdev
);
1310 if (!e1000_check_phy_reset_block(hw
))
1311 e1000_phy_hw_reset(hw
);
1313 kfree(adapter
->tx_ring
);
1314 kfree(adapter
->rx_ring
);
1316 iounmap(hw
->hw_addr
);
1317 if (hw
->flash_address
)
1318 iounmap(hw
->flash_address
);
1319 pci_release_selected_regions(pdev
, adapter
->bars
);
1321 free_netdev(netdev
);
1323 pci_disable_device(pdev
);
1327 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1328 * @adapter: board private structure to initialize
1330 * e1000_sw_init initializes the Adapter private data structure.
1331 * Fields are initialized based on PCI device information and
1332 * OS network device settings (MTU size).
1335 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1337 struct e1000_hw
*hw
= &adapter
->hw
;
1338 struct net_device
*netdev
= adapter
->netdev
;
1339 struct pci_dev
*pdev
= adapter
->pdev
;
1341 /* PCI config space info */
1343 hw
->vendor_id
= pdev
->vendor
;
1344 hw
->device_id
= pdev
->device
;
1345 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1346 hw
->subsystem_id
= pdev
->subsystem_device
;
1347 hw
->revision_id
= pdev
->revision
;
1349 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1351 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1352 hw
->max_frame_size
= netdev
->mtu
+
1353 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1354 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1356 /* identify the MAC */
1358 if (e1000_set_mac_type(hw
)) {
1359 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1363 switch (hw
->mac_type
) {
1368 case e1000_82541_rev_2
:
1369 case e1000_82547_rev_2
:
1370 hw
->phy_init_script
= 1;
1374 e1000_set_media_type(hw
);
1376 hw
->wait_autoneg_complete
= false;
1377 hw
->tbi_compatibility_en
= true;
1378 hw
->adaptive_ifs
= true;
1380 /* Copper options */
1382 if (hw
->media_type
== e1000_media_type_copper
) {
1383 hw
->mdix
= AUTO_ALL_MODES
;
1384 hw
->disable_polarity_correction
= false;
1385 hw
->master_slave
= E1000_MASTER_SLAVE
;
1388 adapter
->num_tx_queues
= 1;
1389 adapter
->num_rx_queues
= 1;
1391 if (e1000_alloc_queues(adapter
)) {
1392 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1396 /* Explicitly disable IRQ since the NIC can be in any state. */
1397 e1000_irq_disable(adapter
);
1399 spin_lock_init(&adapter
->stats_lock
);
1401 set_bit(__E1000_DOWN
, &adapter
->flags
);
1407 * e1000_alloc_queues - Allocate memory for all rings
1408 * @adapter: board private structure to initialize
1410 * We allocate one ring per queue at run-time since we don't know the
1411 * number of queues at compile-time.
1414 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1416 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1417 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1418 if (!adapter
->tx_ring
)
1421 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1422 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1423 if (!adapter
->rx_ring
) {
1424 kfree(adapter
->tx_ring
);
1428 return E1000_SUCCESS
;
1432 * e1000_open - Called when a network interface is made active
1433 * @netdev: network interface device structure
1435 * Returns 0 on success, negative value on failure
1437 * The open entry point is called when a network interface is made
1438 * active by the system (IFF_UP). At this point all resources needed
1439 * for transmit and receive operations are allocated, the interrupt
1440 * handler is registered with the OS, the watchdog timer is started,
1441 * and the stack is notified that the interface is ready.
1444 static int e1000_open(struct net_device
*netdev
)
1446 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1447 struct e1000_hw
*hw
= &adapter
->hw
;
1450 /* disallow open during test */
1451 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1454 netif_carrier_off(netdev
);
1456 /* allocate transmit descriptors */
1457 err
= e1000_setup_all_tx_resources(adapter
);
1461 /* allocate receive descriptors */
1462 err
= e1000_setup_all_rx_resources(adapter
);
1466 e1000_power_up_phy(adapter
);
1468 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1469 if ((hw
->mng_cookie
.status
&
1470 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1471 e1000_update_mng_vlan(adapter
);
1474 /* If AMT is enabled, let the firmware know that the network
1475 * interface is now open */
1476 if (hw
->mac_type
== e1000_82573
&&
1477 e1000_check_mng_mode(hw
))
1478 e1000_get_hw_control(adapter
);
1480 /* before we allocate an interrupt, we must be ready to handle it.
1481 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1482 * as soon as we call pci_request_irq, so we have to setup our
1483 * clean_rx handler before we do so. */
1484 e1000_configure(adapter
);
1486 err
= e1000_request_irq(adapter
);
1490 /* From here on the code is the same as e1000_up() */
1491 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1493 napi_enable(&adapter
->napi
);
1495 e1000_irq_enable(adapter
);
1497 netif_start_queue(netdev
);
1499 /* fire a link status change interrupt to start the watchdog */
1500 ew32(ICS
, E1000_ICS_LSC
);
1502 return E1000_SUCCESS
;
1505 e1000_release_hw_control(adapter
);
1506 e1000_power_down_phy(adapter
);
1507 e1000_free_all_rx_resources(adapter
);
1509 e1000_free_all_tx_resources(adapter
);
1511 e1000_reset(adapter
);
1517 * e1000_close - Disables a network interface
1518 * @netdev: network interface device structure
1520 * Returns 0, this is not allowed to fail
1522 * The close entry point is called when an interface is de-activated
1523 * by the OS. The hardware is still under the drivers control, but
1524 * needs to be disabled. A global MAC reset is issued to stop the
1525 * hardware, and all transmit and receive resources are freed.
1528 static int e1000_close(struct net_device
*netdev
)
1530 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1531 struct e1000_hw
*hw
= &adapter
->hw
;
1533 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1534 e1000_down(adapter
);
1535 e1000_power_down_phy(adapter
);
1536 e1000_free_irq(adapter
);
1538 e1000_free_all_tx_resources(adapter
);
1539 e1000_free_all_rx_resources(adapter
);
1541 /* kill manageability vlan ID if supported, but not if a vlan with
1542 * the same ID is registered on the host OS (let 8021q kill it) */
1543 if ((hw
->mng_cookie
.status
&
1544 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1546 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1547 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1550 /* If AMT is enabled, let the firmware know that the network
1551 * interface is now closed */
1552 if (hw
->mac_type
== e1000_82573
&&
1553 e1000_check_mng_mode(hw
))
1554 e1000_release_hw_control(adapter
);
1560 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1561 * @adapter: address of board private structure
1562 * @start: address of beginning of memory
1563 * @len: length of memory
1565 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1568 struct e1000_hw
*hw
= &adapter
->hw
;
1569 unsigned long begin
= (unsigned long)start
;
1570 unsigned long end
= begin
+ len
;
1572 /* First rev 82545 and 82546 need to not allow any memory
1573 * write location to cross 64k boundary due to errata 23 */
1574 if (hw
->mac_type
== e1000_82545
||
1575 hw
->mac_type
== e1000_82546
) {
1576 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1583 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1584 * @adapter: board private structure
1585 * @txdr: tx descriptor ring (for a specific queue) to setup
1587 * Return 0 on success, negative on failure
1590 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1591 struct e1000_tx_ring
*txdr
)
1593 struct pci_dev
*pdev
= adapter
->pdev
;
1596 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1597 txdr
->buffer_info
= vmalloc(size
);
1598 if (!txdr
->buffer_info
) {
1600 "Unable to allocate memory for the transmit descriptor ring\n");
1603 memset(txdr
->buffer_info
, 0, size
);
1605 /* round up to nearest 4K */
1607 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1608 txdr
->size
= ALIGN(txdr
->size
, 4096);
1610 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1613 vfree(txdr
->buffer_info
);
1615 "Unable to allocate memory for the transmit descriptor ring\n");
1619 /* Fix for errata 23, can't cross 64kB boundary */
1620 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1621 void *olddesc
= txdr
->desc
;
1622 dma_addr_t olddma
= txdr
->dma
;
1623 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1624 "at %p\n", txdr
->size
, txdr
->desc
);
1625 /* Try again, without freeing the previous */
1626 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1627 /* Failed allocation, critical failure */
1629 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1630 goto setup_tx_desc_die
;
1633 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1635 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1637 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1639 "Unable to allocate aligned memory "
1640 "for the transmit descriptor ring\n");
1641 vfree(txdr
->buffer_info
);
1644 /* Free old allocation, new allocation was successful */
1645 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1648 memset(txdr
->desc
, 0, txdr
->size
);
1650 txdr
->next_to_use
= 0;
1651 txdr
->next_to_clean
= 0;
1657 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1658 * (Descriptors) for all queues
1659 * @adapter: board private structure
1661 * Return 0 on success, negative on failure
1664 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1668 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1669 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1672 "Allocation for Tx Queue %u failed\n", i
);
1673 for (i
-- ; i
>= 0; i
--)
1674 e1000_free_tx_resources(adapter
,
1675 &adapter
->tx_ring
[i
]);
1684 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1685 * @adapter: board private structure
1687 * Configure the Tx unit of the MAC after a reset.
1690 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1693 struct e1000_hw
*hw
= &adapter
->hw
;
1694 u32 tdlen
, tctl
, tipg
, tarc
;
1697 /* Setup the HW Tx Head and Tail descriptor pointers */
1699 switch (adapter
->num_tx_queues
) {
1702 tdba
= adapter
->tx_ring
[0].dma
;
1703 tdlen
= adapter
->tx_ring
[0].count
*
1704 sizeof(struct e1000_tx_desc
);
1706 ew32(TDBAH
, (tdba
>> 32));
1707 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1710 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1711 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1715 /* Set the default values for the Tx Inter Packet Gap timer */
1716 if (hw
->mac_type
<= e1000_82547_rev_2
&&
1717 (hw
->media_type
== e1000_media_type_fiber
||
1718 hw
->media_type
== e1000_media_type_internal_serdes
))
1719 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1721 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1723 switch (hw
->mac_type
) {
1724 case e1000_82542_rev2_0
:
1725 case e1000_82542_rev2_1
:
1726 tipg
= DEFAULT_82542_TIPG_IPGT
;
1727 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1728 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1730 case e1000_80003es2lan
:
1731 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1732 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1735 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1736 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1739 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1740 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1743 /* Set the Tx Interrupt Delay register */
1745 ew32(TIDV
, adapter
->tx_int_delay
);
1746 if (hw
->mac_type
>= e1000_82540
)
1747 ew32(TADV
, adapter
->tx_abs_int_delay
);
1749 /* Program the Transmit Control Register */
1752 tctl
&= ~E1000_TCTL_CT
;
1753 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1754 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1756 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1758 /* set the speed mode bit, we'll clear it if we're not at
1759 * gigabit link later */
1762 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1771 e1000_config_collision_dist(hw
);
1773 /* Setup Transmit Descriptor Settings for eop descriptor */
1774 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1776 /* only set IDE if we are delaying interrupts using the timers */
1777 if (adapter
->tx_int_delay
)
1778 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1780 if (hw
->mac_type
< e1000_82543
)
1781 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1783 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1785 /* Cache if we're 82544 running in PCI-X because we'll
1786 * need this to apply a workaround later in the send path. */
1787 if (hw
->mac_type
== e1000_82544
&&
1788 hw
->bus_type
== e1000_bus_type_pcix
)
1789 adapter
->pcix_82544
= 1;
1796 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1797 * @adapter: board private structure
1798 * @rxdr: rx descriptor ring (for a specific queue) to setup
1800 * Returns 0 on success, negative on failure
1803 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1804 struct e1000_rx_ring
*rxdr
)
1806 struct e1000_hw
*hw
= &adapter
->hw
;
1807 struct pci_dev
*pdev
= adapter
->pdev
;
1810 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1811 rxdr
->buffer_info
= vmalloc(size
);
1812 if (!rxdr
->buffer_info
) {
1814 "Unable to allocate memory for the receive descriptor ring\n");
1817 memset(rxdr
->buffer_info
, 0, size
);
1819 if (hw
->mac_type
<= e1000_82547_rev_2
)
1820 desc_len
= sizeof(struct e1000_rx_desc
);
1822 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1824 /* Round up to nearest 4K */
1826 rxdr
->size
= rxdr
->count
* desc_len
;
1827 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1829 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1833 "Unable to allocate memory for the receive descriptor ring\n");
1835 vfree(rxdr
->buffer_info
);
1839 /* Fix for errata 23, can't cross 64kB boundary */
1840 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1841 void *olddesc
= rxdr
->desc
;
1842 dma_addr_t olddma
= rxdr
->dma
;
1843 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1844 "at %p\n", rxdr
->size
, rxdr
->desc
);
1845 /* Try again, without freeing the previous */
1846 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1847 /* Failed allocation, critical failure */
1849 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1851 "Unable to allocate memory "
1852 "for the receive descriptor ring\n");
1853 goto setup_rx_desc_die
;
1856 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1858 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1860 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1862 "Unable to allocate aligned memory "
1863 "for the receive descriptor ring\n");
1864 goto setup_rx_desc_die
;
1866 /* Free old allocation, new allocation was successful */
1867 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1870 memset(rxdr
->desc
, 0, rxdr
->size
);
1872 rxdr
->next_to_clean
= 0;
1873 rxdr
->next_to_use
= 0;
1874 rxdr
->rx_skb_top
= NULL
;
1880 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1881 * (Descriptors) for all queues
1882 * @adapter: board private structure
1884 * Return 0 on success, negative on failure
1887 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1891 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1892 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1895 "Allocation for Rx Queue %u failed\n", i
);
1896 for (i
-- ; i
>= 0; i
--)
1897 e1000_free_rx_resources(adapter
,
1898 &adapter
->rx_ring
[i
]);
1907 * e1000_setup_rctl - configure the receive control registers
1908 * @adapter: Board private structure
1910 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1912 struct e1000_hw
*hw
= &adapter
->hw
;
1917 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1919 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1920 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1921 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1923 if (hw
->tbi_compatibility_on
== 1)
1924 rctl
|= E1000_RCTL_SBP
;
1926 rctl
&= ~E1000_RCTL_SBP
;
1928 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1929 rctl
&= ~E1000_RCTL_LPE
;
1931 rctl
|= E1000_RCTL_LPE
;
1933 /* Setup buffer sizes */
1934 rctl
&= ~E1000_RCTL_SZ_4096
;
1935 rctl
|= E1000_RCTL_BSEX
;
1936 switch (adapter
->rx_buffer_len
) {
1937 case E1000_RXBUFFER_256
:
1938 rctl
|= E1000_RCTL_SZ_256
;
1939 rctl
&= ~E1000_RCTL_BSEX
;
1941 case E1000_RXBUFFER_512
:
1942 rctl
|= E1000_RCTL_SZ_512
;
1943 rctl
&= ~E1000_RCTL_BSEX
;
1945 case E1000_RXBUFFER_1024
:
1946 rctl
|= E1000_RCTL_SZ_1024
;
1947 rctl
&= ~E1000_RCTL_BSEX
;
1949 case E1000_RXBUFFER_2048
:
1951 rctl
|= E1000_RCTL_SZ_2048
;
1952 rctl
&= ~E1000_RCTL_BSEX
;
1954 case E1000_RXBUFFER_4096
:
1955 rctl
|= E1000_RCTL_SZ_4096
;
1957 case E1000_RXBUFFER_8192
:
1958 rctl
|= E1000_RCTL_SZ_8192
;
1960 case E1000_RXBUFFER_16384
:
1961 rctl
|= E1000_RCTL_SZ_16384
;
1969 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1970 * @adapter: board private structure
1972 * Configure the Rx unit of the MAC after a reset.
1975 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1978 struct e1000_hw
*hw
= &adapter
->hw
;
1979 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
1981 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1982 rdlen
= adapter
->rx_ring
[0].count
*
1983 sizeof(struct e1000_rx_desc
);
1984 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1985 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1987 rdlen
= adapter
->rx_ring
[0].count
*
1988 sizeof(struct e1000_rx_desc
);
1989 adapter
->clean_rx
= e1000_clean_rx_irq
;
1990 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1993 /* disable receives while setting up the descriptors */
1995 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1997 /* set the Receive Delay Timer Register */
1998 ew32(RDTR
, adapter
->rx_int_delay
);
2000 if (hw
->mac_type
>= e1000_82540
) {
2001 ew32(RADV
, adapter
->rx_abs_int_delay
);
2002 if (adapter
->itr_setting
!= 0)
2003 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2006 if (hw
->mac_type
>= e1000_82571
) {
2007 ctrl_ext
= er32(CTRL_EXT
);
2008 /* Reset delay timers after every interrupt */
2009 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2010 /* Auto-Mask interrupts upon ICR access */
2011 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2012 ew32(IAM
, 0xffffffff);
2013 ew32(CTRL_EXT
, ctrl_ext
);
2014 E1000_WRITE_FLUSH();
2017 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2018 * the Base and Length of the Rx Descriptor Ring */
2019 switch (adapter
->num_rx_queues
) {
2022 rdba
= adapter
->rx_ring
[0].dma
;
2024 ew32(RDBAH
, (rdba
>> 32));
2025 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
2028 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
2029 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
2033 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2034 if (hw
->mac_type
>= e1000_82543
) {
2035 rxcsum
= er32(RXCSUM
);
2036 if (adapter
->rx_csum
)
2037 rxcsum
|= E1000_RXCSUM_TUOFL
;
2039 /* don't need to clear IPPCSE as it defaults to 0 */
2040 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2041 ew32(RXCSUM
, rxcsum
);
2044 /* Enable Receives */
2049 * e1000_free_tx_resources - Free Tx Resources per Queue
2050 * @adapter: board private structure
2051 * @tx_ring: Tx descriptor ring for a specific queue
2053 * Free all transmit software resources
2056 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
2057 struct e1000_tx_ring
*tx_ring
)
2059 struct pci_dev
*pdev
= adapter
->pdev
;
2061 e1000_clean_tx_ring(adapter
, tx_ring
);
2063 vfree(tx_ring
->buffer_info
);
2064 tx_ring
->buffer_info
= NULL
;
2066 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2068 tx_ring
->desc
= NULL
;
2072 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2073 * @adapter: board private structure
2075 * Free all transmit software resources
2078 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
2082 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2083 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
2086 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
2087 struct e1000_buffer
*buffer_info
)
2089 buffer_info
->dma
= 0;
2090 if (buffer_info
->skb
) {
2091 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
2093 dev_kfree_skb_any(buffer_info
->skb
);
2094 buffer_info
->skb
= NULL
;
2096 buffer_info
->time_stamp
= 0;
2097 /* buffer_info must be completely set up in the transmit path */
2101 * e1000_clean_tx_ring - Free Tx Buffers
2102 * @adapter: board private structure
2103 * @tx_ring: ring to be cleaned
2106 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
2107 struct e1000_tx_ring
*tx_ring
)
2109 struct e1000_hw
*hw
= &adapter
->hw
;
2110 struct e1000_buffer
*buffer_info
;
2114 /* Free all the Tx ring sk_buffs */
2116 for (i
= 0; i
< tx_ring
->count
; i
++) {
2117 buffer_info
= &tx_ring
->buffer_info
[i
];
2118 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2121 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2122 memset(tx_ring
->buffer_info
, 0, size
);
2124 /* Zero out the descriptor ring */
2126 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2128 tx_ring
->next_to_use
= 0;
2129 tx_ring
->next_to_clean
= 0;
2130 tx_ring
->last_tx_tso
= 0;
2132 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2133 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2137 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2138 * @adapter: board private structure
2141 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2145 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2146 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2150 * e1000_free_rx_resources - Free Rx Resources
2151 * @adapter: board private structure
2152 * @rx_ring: ring to clean the resources from
2154 * Free all receive software resources
2157 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2158 struct e1000_rx_ring
*rx_ring
)
2160 struct pci_dev
*pdev
= adapter
->pdev
;
2162 e1000_clean_rx_ring(adapter
, rx_ring
);
2164 vfree(rx_ring
->buffer_info
);
2165 rx_ring
->buffer_info
= NULL
;
2167 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2169 rx_ring
->desc
= NULL
;
2173 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2174 * @adapter: board private structure
2176 * Free all receive software resources
2179 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2183 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2184 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2188 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2189 * @adapter: board private structure
2190 * @rx_ring: ring to free buffers from
2193 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2194 struct e1000_rx_ring
*rx_ring
)
2196 struct e1000_hw
*hw
= &adapter
->hw
;
2197 struct e1000_buffer
*buffer_info
;
2198 struct pci_dev
*pdev
= adapter
->pdev
;
2202 /* Free all the Rx ring sk_buffs */
2203 for (i
= 0; i
< rx_ring
->count
; i
++) {
2204 buffer_info
= &rx_ring
->buffer_info
[i
];
2205 if (buffer_info
->dma
&&
2206 adapter
->clean_rx
== e1000_clean_rx_irq
) {
2207 pci_unmap_single(pdev
, buffer_info
->dma
,
2208 buffer_info
->length
,
2209 PCI_DMA_FROMDEVICE
);
2210 } else if (buffer_info
->dma
&&
2211 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2212 pci_unmap_page(pdev
, buffer_info
->dma
,
2213 buffer_info
->length
,
2214 PCI_DMA_FROMDEVICE
);
2217 buffer_info
->dma
= 0;
2218 if (buffer_info
->page
) {
2219 put_page(buffer_info
->page
);
2220 buffer_info
->page
= NULL
;
2222 if (buffer_info
->skb
) {
2223 dev_kfree_skb(buffer_info
->skb
);
2224 buffer_info
->skb
= NULL
;
2228 /* there also may be some cached data from a chained receive */
2229 if (rx_ring
->rx_skb_top
) {
2230 dev_kfree_skb(rx_ring
->rx_skb_top
);
2231 rx_ring
->rx_skb_top
= NULL
;
2234 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2235 memset(rx_ring
->buffer_info
, 0, size
);
2237 /* Zero out the descriptor ring */
2238 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2240 rx_ring
->next_to_clean
= 0;
2241 rx_ring
->next_to_use
= 0;
2243 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2244 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2248 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2249 * @adapter: board private structure
2252 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2256 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2257 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2260 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2261 * and memory write and invalidate disabled for certain operations
2263 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2265 struct e1000_hw
*hw
= &adapter
->hw
;
2266 struct net_device
*netdev
= adapter
->netdev
;
2269 e1000_pci_clear_mwi(hw
);
2272 rctl
|= E1000_RCTL_RST
;
2274 E1000_WRITE_FLUSH();
2277 if (netif_running(netdev
))
2278 e1000_clean_all_rx_rings(adapter
);
2281 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2283 struct e1000_hw
*hw
= &adapter
->hw
;
2284 struct net_device
*netdev
= adapter
->netdev
;
2288 rctl
&= ~E1000_RCTL_RST
;
2290 E1000_WRITE_FLUSH();
2293 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2294 e1000_pci_set_mwi(hw
);
2296 if (netif_running(netdev
)) {
2297 /* No need to loop, because 82542 supports only 1 queue */
2298 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2299 e1000_configure_rx(adapter
);
2300 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2305 * e1000_set_mac - Change the Ethernet Address of the NIC
2306 * @netdev: network interface device structure
2307 * @p: pointer to an address structure
2309 * Returns 0 on success, negative on failure
2312 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2314 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2315 struct e1000_hw
*hw
= &adapter
->hw
;
2316 struct sockaddr
*addr
= p
;
2318 if (!is_valid_ether_addr(addr
->sa_data
))
2319 return -EADDRNOTAVAIL
;
2321 /* 82542 2.0 needs to be in reset to write receive address registers */
2323 if (hw
->mac_type
== e1000_82542_rev2_0
)
2324 e1000_enter_82542_rst(adapter
);
2326 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2327 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2329 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2331 /* With 82571 controllers, LAA may be overwritten (with the default)
2332 * due to controller reset from the other port. */
2333 if (hw
->mac_type
== e1000_82571
) {
2334 /* activate the work around */
2335 hw
->laa_is_present
= 1;
2337 /* Hold a copy of the LAA in RAR[14] This is done so that
2338 * between the time RAR[0] gets clobbered and the time it
2339 * gets fixed (in e1000_watchdog), the actual LAA is in one
2340 * of the RARs and no incoming packets directed to this port
2341 * are dropped. Eventaully the LAA will be in RAR[0] and
2343 e1000_rar_set(hw
, hw
->mac_addr
,
2344 E1000_RAR_ENTRIES
- 1);
2347 if (hw
->mac_type
== e1000_82542_rev2_0
)
2348 e1000_leave_82542_rst(adapter
);
2354 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2355 * @netdev: network interface device structure
2357 * The set_rx_mode entry point is called whenever the unicast or multicast
2358 * address lists or the network interface flags are updated. This routine is
2359 * responsible for configuring the hardware for proper unicast, multicast,
2360 * promiscuous mode, and all-multi behavior.
2363 static void e1000_set_rx_mode(struct net_device
*netdev
)
2365 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2366 struct e1000_hw
*hw
= &adapter
->hw
;
2367 struct netdev_hw_addr
*ha
;
2368 bool use_uc
= false;
2369 struct dev_addr_list
*mc_ptr
;
2372 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2373 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2374 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2375 E1000_NUM_MTA_REGISTERS
;
2376 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2379 DPRINTK(PROBE
, ERR
, "memory allocation failed\n");
2383 if (hw
->mac_type
== e1000_ich8lan
)
2384 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2386 /* reserve RAR[14] for LAA over-write work-around */
2387 if (hw
->mac_type
== e1000_82571
)
2390 /* Check for Promiscuous and All Multicast modes */
2394 if (netdev
->flags
& IFF_PROMISC
) {
2395 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2396 rctl
&= ~E1000_RCTL_VFE
;
2398 if (netdev
->flags
& IFF_ALLMULTI
) {
2399 rctl
|= E1000_RCTL_MPE
;
2401 rctl
&= ~E1000_RCTL_MPE
;
2403 if (adapter
->hw
.mac_type
!= e1000_ich8lan
)
2404 rctl
|= E1000_RCTL_VFE
;
2407 if (netdev
->uc
.count
> rar_entries
- 1) {
2408 rctl
|= E1000_RCTL_UPE
;
2409 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2410 rctl
&= ~E1000_RCTL_UPE
;
2416 /* 82542 2.0 needs to be in reset to write receive address registers */
2418 if (hw
->mac_type
== e1000_82542_rev2_0
)
2419 e1000_enter_82542_rst(adapter
);
2421 /* load the first 14 addresses into the exact filters 1-14. Unicast
2422 * addresses take precedence to avoid disabling unicast filtering
2425 * RAR 0 is used for the station MAC adddress
2426 * if there are not 14 addresses, go ahead and clear the filters
2427 * -- with 82571 controllers only 0-13 entries are filled here
2431 list_for_each_entry(ha
, &netdev
->uc
.list
, list
) {
2432 if (i
== rar_entries
)
2434 e1000_rar_set(hw
, ha
->addr
, i
++);
2437 WARN_ON(i
== rar_entries
);
2439 mc_ptr
= netdev
->mc_list
;
2441 for (; i
< rar_entries
; i
++) {
2443 e1000_rar_set(hw
, mc_ptr
->da_addr
, i
);
2444 mc_ptr
= mc_ptr
->next
;
2446 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2447 E1000_WRITE_FLUSH();
2448 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2449 E1000_WRITE_FLUSH();
2453 /* load any remaining addresses into the hash table */
2455 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2456 u32 hash_reg
, hash_bit
, mta
;
2457 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->da_addr
);
2458 hash_reg
= (hash_value
>> 5) & 0x7F;
2459 hash_bit
= hash_value
& 0x1F;
2460 mta
= (1 << hash_bit
);
2461 mcarray
[hash_reg
] |= mta
;
2464 /* write the hash table completely, write from bottom to avoid
2465 * both stupid write combining chipsets, and flushing each write */
2466 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2468 * If we are on an 82544 has an errata where writing odd
2469 * offsets overwrites the previous even offset, but writing
2470 * backwards over the range solves the issue by always
2471 * writing the odd offset first
2473 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2475 E1000_WRITE_FLUSH();
2477 if (hw
->mac_type
== e1000_82542_rev2_0
)
2478 e1000_leave_82542_rst(adapter
);
2483 /* Need to wait a few seconds after link up to get diagnostic information from
2486 static void e1000_update_phy_info(unsigned long data
)
2488 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2489 struct e1000_hw
*hw
= &adapter
->hw
;
2490 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2494 * e1000_82547_tx_fifo_stall - Timer Call-back
2495 * @data: pointer to adapter cast into an unsigned long
2498 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2500 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2501 struct e1000_hw
*hw
= &adapter
->hw
;
2502 struct net_device
*netdev
= adapter
->netdev
;
2505 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2506 if ((er32(TDT
) == er32(TDH
)) &&
2507 (er32(TDFT
) == er32(TDFH
)) &&
2508 (er32(TDFTS
) == er32(TDFHS
))) {
2510 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2511 ew32(TDFT
, adapter
->tx_head_addr
);
2512 ew32(TDFH
, adapter
->tx_head_addr
);
2513 ew32(TDFTS
, adapter
->tx_head_addr
);
2514 ew32(TDFHS
, adapter
->tx_head_addr
);
2516 E1000_WRITE_FLUSH();
2518 adapter
->tx_fifo_head
= 0;
2519 atomic_set(&adapter
->tx_fifo_stall
, 0);
2520 netif_wake_queue(netdev
);
2522 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2528 * e1000_watchdog - Timer Call-back
2529 * @data: pointer to adapter cast into an unsigned long
2531 static void e1000_watchdog(unsigned long data
)
2533 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2534 struct e1000_hw
*hw
= &adapter
->hw
;
2535 struct net_device
*netdev
= adapter
->netdev
;
2536 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2540 ret_val
= e1000_check_for_link(hw
);
2541 if ((ret_val
== E1000_ERR_PHY
) &&
2542 (hw
->phy_type
== e1000_phy_igp_3
) &&
2543 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2544 /* See e1000_kumeran_lock_loss_workaround() */
2546 "Gigabit has been disabled, downgrading speed\n");
2549 if (hw
->mac_type
== e1000_82573
) {
2550 e1000_enable_tx_pkt_filtering(hw
);
2551 if (adapter
->mng_vlan_id
!= hw
->mng_cookie
.vlan_id
)
2552 e1000_update_mng_vlan(adapter
);
2555 if ((hw
->media_type
== e1000_media_type_internal_serdes
) &&
2556 !(er32(TXCW
) & E1000_TXCW_ANE
))
2557 link
= !hw
->serdes_link_down
;
2559 link
= er32(STATUS
) & E1000_STATUS_LU
;
2562 if (!netif_carrier_ok(netdev
)) {
2565 e1000_get_speed_and_duplex(hw
,
2566 &adapter
->link_speed
,
2567 &adapter
->link_duplex
);
2570 printk(KERN_INFO
"e1000: %s NIC Link is Up %d Mbps %s, "
2571 "Flow Control: %s\n",
2573 adapter
->link_speed
,
2574 adapter
->link_duplex
== FULL_DUPLEX
?
2575 "Full Duplex" : "Half Duplex",
2576 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2577 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2578 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2579 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2581 /* tweak tx_queue_len according to speed/duplex
2582 * and adjust the timeout factor */
2583 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2584 adapter
->tx_timeout_factor
= 1;
2585 switch (adapter
->link_speed
) {
2588 netdev
->tx_queue_len
= 10;
2589 adapter
->tx_timeout_factor
= 8;
2593 netdev
->tx_queue_len
= 100;
2594 /* maybe add some timeout factor ? */
2598 if ((hw
->mac_type
== e1000_82571
||
2599 hw
->mac_type
== e1000_82572
) &&
2602 tarc0
= er32(TARC0
);
2603 tarc0
&= ~(1 << 21);
2607 /* disable TSO for pcie and 10/100 speeds, to avoid
2608 * some hardware issues */
2609 if (!adapter
->tso_force
&&
2610 hw
->bus_type
== e1000_bus_type_pci_express
){
2611 switch (adapter
->link_speed
) {
2615 "10/100 speed: disabling TSO\n");
2616 netdev
->features
&= ~NETIF_F_TSO
;
2617 netdev
->features
&= ~NETIF_F_TSO6
;
2620 netdev
->features
|= NETIF_F_TSO
;
2621 netdev
->features
|= NETIF_F_TSO6
;
2629 /* enable transmits in the hardware, need to do this
2630 * after setting TARC0 */
2632 tctl
|= E1000_TCTL_EN
;
2635 netif_carrier_on(netdev
);
2636 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2637 adapter
->smartspeed
= 0;
2639 /* make sure the receive unit is started */
2640 if (hw
->rx_needs_kicking
) {
2641 u32 rctl
= er32(RCTL
);
2642 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
2646 if (netif_carrier_ok(netdev
)) {
2647 adapter
->link_speed
= 0;
2648 adapter
->link_duplex
= 0;
2649 printk(KERN_INFO
"e1000: %s NIC Link is Down\n",
2651 netif_carrier_off(netdev
);
2652 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2654 /* 80003ES2LAN workaround--
2655 * For packet buffer work-around on link down event;
2656 * disable receives in the ISR and
2657 * reset device here in the watchdog
2659 if (hw
->mac_type
== e1000_80003es2lan
)
2661 schedule_work(&adapter
->reset_task
);
2664 e1000_smartspeed(adapter
);
2667 e1000_update_stats(adapter
);
2669 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2670 adapter
->tpt_old
= adapter
->stats
.tpt
;
2671 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2672 adapter
->colc_old
= adapter
->stats
.colc
;
2674 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2675 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2676 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2677 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2679 e1000_update_adaptive(hw
);
2681 if (!netif_carrier_ok(netdev
)) {
2682 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2683 /* We've lost link, so the controller stops DMA,
2684 * but we've got queued Tx work that's never going
2685 * to get done, so reset controller to flush Tx.
2686 * (Do the reset outside of interrupt context). */
2687 adapter
->tx_timeout_count
++;
2688 schedule_work(&adapter
->reset_task
);
2689 /* return immediately since reset is imminent */
2694 /* Cause software interrupt to ensure rx ring is cleaned */
2695 ew32(ICS
, E1000_ICS_RXDMT0
);
2697 /* Force detection of hung controller every watchdog period */
2698 adapter
->detect_tx_hung
= true;
2700 /* With 82571 controllers, LAA may be overwritten due to controller
2701 * reset from the other port. Set the appropriate LAA in RAR[0] */
2702 if (hw
->mac_type
== e1000_82571
&& hw
->laa_is_present
)
2703 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2705 /* Reset the timer */
2706 mod_timer(&adapter
->watchdog_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2709 enum latency_range
{
2713 latency_invalid
= 255
2717 * e1000_update_itr - update the dynamic ITR value based on statistics
2718 * Stores a new ITR value based on packets and byte
2719 * counts during the last interrupt. The advantage of per interrupt
2720 * computation is faster updates and more accurate ITR for the current
2721 * traffic pattern. Constants in this function were computed
2722 * based on theoretical maximum wire speed and thresholds were set based
2723 * on testing data as well as attempting to minimize response time
2724 * while increasing bulk throughput.
2725 * this functionality is controlled by the InterruptThrottleRate module
2726 * parameter (see e1000_param.c)
2727 * @adapter: pointer to adapter
2728 * @itr_setting: current adapter->itr
2729 * @packets: the number of packets during this measurement interval
2730 * @bytes: the number of bytes during this measurement interval
2732 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2733 u16 itr_setting
, int packets
, int bytes
)
2735 unsigned int retval
= itr_setting
;
2736 struct e1000_hw
*hw
= &adapter
->hw
;
2738 if (unlikely(hw
->mac_type
< e1000_82540
))
2739 goto update_itr_done
;
2742 goto update_itr_done
;
2744 switch (itr_setting
) {
2745 case lowest_latency
:
2746 /* jumbo frames get bulk treatment*/
2747 if (bytes
/packets
> 8000)
2748 retval
= bulk_latency
;
2749 else if ((packets
< 5) && (bytes
> 512))
2750 retval
= low_latency
;
2752 case low_latency
: /* 50 usec aka 20000 ints/s */
2753 if (bytes
> 10000) {
2754 /* jumbo frames need bulk latency setting */
2755 if (bytes
/packets
> 8000)
2756 retval
= bulk_latency
;
2757 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2758 retval
= bulk_latency
;
2759 else if ((packets
> 35))
2760 retval
= lowest_latency
;
2761 } else if (bytes
/packets
> 2000)
2762 retval
= bulk_latency
;
2763 else if (packets
<= 2 && bytes
< 512)
2764 retval
= lowest_latency
;
2766 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2767 if (bytes
> 25000) {
2769 retval
= low_latency
;
2770 } else if (bytes
< 6000) {
2771 retval
= low_latency
;
2780 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2782 struct e1000_hw
*hw
= &adapter
->hw
;
2784 u32 new_itr
= adapter
->itr
;
2786 if (unlikely(hw
->mac_type
< e1000_82540
))
2789 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2790 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2796 adapter
->tx_itr
= e1000_update_itr(adapter
,
2798 adapter
->total_tx_packets
,
2799 adapter
->total_tx_bytes
);
2800 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2801 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2802 adapter
->tx_itr
= low_latency
;
2804 adapter
->rx_itr
= e1000_update_itr(adapter
,
2806 adapter
->total_rx_packets
,
2807 adapter
->total_rx_bytes
);
2808 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2809 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2810 adapter
->rx_itr
= low_latency
;
2812 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2814 switch (current_itr
) {
2815 /* counts and packets in update_itr are dependent on these numbers */
2816 case lowest_latency
:
2820 new_itr
= 20000; /* aka hwitr = ~200 */
2830 if (new_itr
!= adapter
->itr
) {
2831 /* this attempts to bias the interrupt rate towards Bulk
2832 * by adding intermediate steps when interrupt rate is
2834 new_itr
= new_itr
> adapter
->itr
?
2835 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2837 adapter
->itr
= new_itr
;
2838 ew32(ITR
, 1000000000 / (new_itr
* 256));
2844 #define E1000_TX_FLAGS_CSUM 0x00000001
2845 #define E1000_TX_FLAGS_VLAN 0x00000002
2846 #define E1000_TX_FLAGS_TSO 0x00000004
2847 #define E1000_TX_FLAGS_IPV4 0x00000008
2848 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2849 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2851 static int e1000_tso(struct e1000_adapter
*adapter
,
2852 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2854 struct e1000_context_desc
*context_desc
;
2855 struct e1000_buffer
*buffer_info
;
2858 u16 ipcse
= 0, tucse
, mss
;
2859 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2862 if (skb_is_gso(skb
)) {
2863 if (skb_header_cloned(skb
)) {
2864 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2869 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2870 mss
= skb_shinfo(skb
)->gso_size
;
2871 if (skb
->protocol
== htons(ETH_P_IP
)) {
2872 struct iphdr
*iph
= ip_hdr(skb
);
2875 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2879 cmd_length
= E1000_TXD_CMD_IP
;
2880 ipcse
= skb_transport_offset(skb
) - 1;
2881 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2882 ipv6_hdr(skb
)->payload_len
= 0;
2883 tcp_hdr(skb
)->check
=
2884 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2885 &ipv6_hdr(skb
)->daddr
,
2889 ipcss
= skb_network_offset(skb
);
2890 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2891 tucss
= skb_transport_offset(skb
);
2892 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2895 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2896 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2898 i
= tx_ring
->next_to_use
;
2899 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2900 buffer_info
= &tx_ring
->buffer_info
[i
];
2902 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2903 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2904 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2905 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2906 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2907 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2908 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2909 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2910 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2912 buffer_info
->time_stamp
= jiffies
;
2913 buffer_info
->next_to_watch
= i
;
2915 if (++i
== tx_ring
->count
) i
= 0;
2916 tx_ring
->next_to_use
= i
;
2923 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2924 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2926 struct e1000_context_desc
*context_desc
;
2927 struct e1000_buffer
*buffer_info
;
2930 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2932 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2935 switch (skb
->protocol
) {
2936 case cpu_to_be16(ETH_P_IP
):
2937 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2938 cmd_len
|= E1000_TXD_CMD_TCP
;
2940 case cpu_to_be16(ETH_P_IPV6
):
2941 /* XXX not handling all IPV6 headers */
2942 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2943 cmd_len
|= E1000_TXD_CMD_TCP
;
2946 if (unlikely(net_ratelimit()))
2947 DPRINTK(DRV
, WARNING
,
2948 "checksum_partial proto=%x!\n", skb
->protocol
);
2952 css
= skb_transport_offset(skb
);
2954 i
= tx_ring
->next_to_use
;
2955 buffer_info
= &tx_ring
->buffer_info
[i
];
2956 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2958 context_desc
->lower_setup
.ip_config
= 0;
2959 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2960 context_desc
->upper_setup
.tcp_fields
.tucso
=
2961 css
+ skb
->csum_offset
;
2962 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2963 context_desc
->tcp_seg_setup
.data
= 0;
2964 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2966 buffer_info
->time_stamp
= jiffies
;
2967 buffer_info
->next_to_watch
= i
;
2969 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2970 tx_ring
->next_to_use
= i
;
2975 #define E1000_MAX_TXD_PWR 12
2976 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2978 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2979 struct e1000_tx_ring
*tx_ring
,
2980 struct sk_buff
*skb
, unsigned int first
,
2981 unsigned int max_per_txd
, unsigned int nr_frags
,
2984 struct e1000_hw
*hw
= &adapter
->hw
;
2985 struct e1000_buffer
*buffer_info
;
2986 unsigned int len
= skb_headlen(skb
);
2987 unsigned int offset
, size
, count
= 0, i
;
2991 i
= tx_ring
->next_to_use
;
2993 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
2994 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2998 map
= skb_shinfo(skb
)->dma_maps
;
3002 buffer_info
= &tx_ring
->buffer_info
[i
];
3003 size
= min(len
, max_per_txd
);
3004 /* Workaround for Controller erratum --
3005 * descriptor for non-tso packet in a linear SKB that follows a
3006 * tso gets written back prematurely before the data is fully
3007 * DMA'd to the controller */
3008 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
3010 tx_ring
->last_tx_tso
= 0;
3014 /* Workaround for premature desc write-backs
3015 * in TSO mode. Append 4-byte sentinel desc */
3016 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
3018 /* work-around for errata 10 and it applies
3019 * to all controllers in PCI-X mode
3020 * The fix is to make sure that the first descriptor of a
3021 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3023 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3024 (size
> 2015) && count
== 0))
3027 /* Workaround for potential 82544 hang in PCI-X. Avoid
3028 * terminating buffers within evenly-aligned dwords. */
3029 if (unlikely(adapter
->pcix_82544
&&
3030 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
3034 buffer_info
->length
= size
;
3035 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
+ offset
;
3036 buffer_info
->time_stamp
= jiffies
;
3037 buffer_info
->next_to_watch
= i
;
3044 if (unlikely(i
== tx_ring
->count
))
3049 for (f
= 0; f
< nr_frags
; f
++) {
3050 struct skb_frag_struct
*frag
;
3052 frag
= &skb_shinfo(skb
)->frags
[f
];
3058 if (unlikely(i
== tx_ring
->count
))
3061 buffer_info
= &tx_ring
->buffer_info
[i
];
3062 size
= min(len
, max_per_txd
);
3063 /* Workaround for premature desc write-backs
3064 * in TSO mode. Append 4-byte sentinel desc */
3065 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
3067 /* Workaround for potential 82544 hang in PCI-X.
3068 * Avoid terminating buffers within evenly-aligned
3070 if (unlikely(adapter
->pcix_82544
&&
3071 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
3075 buffer_info
->length
= size
;
3076 buffer_info
->dma
= map
[f
] + offset
;
3077 buffer_info
->time_stamp
= jiffies
;
3078 buffer_info
->next_to_watch
= i
;
3086 tx_ring
->buffer_info
[i
].skb
= skb
;
3087 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3092 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3093 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
3096 struct e1000_hw
*hw
= &adapter
->hw
;
3097 struct e1000_tx_desc
*tx_desc
= NULL
;
3098 struct e1000_buffer
*buffer_info
;
3099 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3102 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
3103 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3105 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3107 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
3108 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3111 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3112 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3113 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3116 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3117 txd_lower
|= E1000_TXD_CMD_VLE
;
3118 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3121 i
= tx_ring
->next_to_use
;
3124 buffer_info
= &tx_ring
->buffer_info
[i
];
3125 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3126 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3127 tx_desc
->lower
.data
=
3128 cpu_to_le32(txd_lower
| buffer_info
->length
);
3129 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3130 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3133 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3135 /* Force memory writes to complete before letting h/w
3136 * know there are new descriptors to fetch. (Only
3137 * applicable for weak-ordered memory model archs,
3138 * such as IA-64). */
3141 tx_ring
->next_to_use
= i
;
3142 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
3143 /* we need this if more than one processor can write to our tail
3144 * at a time, it syncronizes IO on IA64/Altix systems */
3149 * 82547 workaround to avoid controller hang in half-duplex environment.
3150 * The workaround is to avoid queuing a large packet that would span
3151 * the internal Tx FIFO ring boundary by notifying the stack to resend
3152 * the packet at a later time. This gives the Tx FIFO an opportunity to
3153 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3154 * to the beginning of the Tx FIFO.
3157 #define E1000_FIFO_HDR 0x10
3158 #define E1000_82547_PAD_LEN 0x3E0
3160 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3161 struct sk_buff
*skb
)
3163 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3164 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3166 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3168 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3169 goto no_fifo_stall_required
;
3171 if (atomic_read(&adapter
->tx_fifo_stall
))
3174 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3175 atomic_set(&adapter
->tx_fifo_stall
, 1);
3179 no_fifo_stall_required
:
3180 adapter
->tx_fifo_head
+= skb_fifo_len
;
3181 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3182 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3186 #define MINIMUM_DHCP_PACKET_SIZE 282
3187 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
3188 struct sk_buff
*skb
)
3190 struct e1000_hw
*hw
= &adapter
->hw
;
3192 if (vlan_tx_tag_present(skb
)) {
3193 if (!((vlan_tx_tag_get(skb
) == hw
->mng_cookie
.vlan_id
) &&
3194 ( hw
->mng_cookie
.status
&
3195 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
3198 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
3199 struct ethhdr
*eth
= (struct ethhdr
*)skb
->data
;
3200 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
3201 const struct iphdr
*ip
=
3202 (struct iphdr
*)((u8
*)skb
->data
+14);
3203 if (IPPROTO_UDP
== ip
->protocol
) {
3204 struct udphdr
*udp
=
3205 (struct udphdr
*)((u8
*)ip
+
3207 if (ntohs(udp
->dest
) == 67) {
3208 offset
= (u8
*)udp
+ 8 - skb
->data
;
3209 length
= skb
->len
- offset
;
3211 return e1000_mng_write_dhcp_info(hw
,
3221 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3223 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3224 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3226 netif_stop_queue(netdev
);
3227 /* Herbert's original patch had:
3228 * smp_mb__after_netif_stop_queue();
3229 * but since that doesn't exist yet, just open code it. */
3232 /* We need to check again in a case another CPU has just
3233 * made room available. */
3234 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3238 netif_start_queue(netdev
);
3239 ++adapter
->restart_queue
;
3243 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3244 struct e1000_tx_ring
*tx_ring
, int size
)
3246 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3248 return __e1000_maybe_stop_tx(netdev
, size
);
3251 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3252 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3254 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3255 struct e1000_hw
*hw
= &adapter
->hw
;
3256 struct e1000_tx_ring
*tx_ring
;
3257 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3258 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3259 unsigned int tx_flags
= 0;
3260 unsigned int len
= skb
->len
- skb
->data_len
;
3261 unsigned int nr_frags
;
3267 /* This goes back to the question of how to logically map a tx queue
3268 * to a flow. Right now, performance is impacted slightly negatively
3269 * if using multiple tx queues. If the stack breaks away from a
3270 * single qdisc implementation, we can look at this again. */
3271 tx_ring
= adapter
->tx_ring
;
3273 if (unlikely(skb
->len
<= 0)) {
3274 dev_kfree_skb_any(skb
);
3275 return NETDEV_TX_OK
;
3278 /* 82571 and newer doesn't need the workaround that limited descriptor
3280 if (hw
->mac_type
>= e1000_82571
)
3283 mss
= skb_shinfo(skb
)->gso_size
;
3284 /* The controller does a simple calculation to
3285 * make sure there is enough room in the FIFO before
3286 * initiating the DMA for each buffer. The calc is:
3287 * 4 = ceil(buffer len/mss). To make sure we don't
3288 * overrun the FIFO, adjust the max buffer len if mss
3292 max_per_txd
= min(mss
<< 2, max_per_txd
);
3293 max_txd_pwr
= fls(max_per_txd
) - 1;
3295 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3296 * points to just header, pull a few bytes of payload from
3297 * frags into skb->data */
3298 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3299 if (skb
->data_len
&& hdr_len
== len
) {
3300 switch (hw
->mac_type
) {
3301 unsigned int pull_size
;
3303 /* Make sure we have room to chop off 4 bytes,
3304 * and that the end alignment will work out to
3305 * this hardware's requirements
3306 * NOTE: this is a TSO only workaround
3307 * if end byte alignment not correct move us
3308 * into the next dword */
3309 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3316 pull_size
= min((unsigned int)4, skb
->data_len
);
3317 if (!__pskb_pull_tail(skb
, pull_size
)) {
3319 "__pskb_pull_tail failed.\n");
3320 dev_kfree_skb_any(skb
);
3321 return NETDEV_TX_OK
;
3323 len
= skb
->len
- skb
->data_len
;
3332 /* reserve a descriptor for the offload context */
3333 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3337 /* Controller Erratum workaround */
3338 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3341 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3343 if (adapter
->pcix_82544
)
3346 /* work-around for errata 10 and it applies to all controllers
3347 * in PCI-X mode, so add one more descriptor to the count
3349 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3353 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3354 for (f
= 0; f
< nr_frags
; f
++)
3355 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3357 if (adapter
->pcix_82544
)
3361 if (hw
->tx_pkt_filtering
&&
3362 (hw
->mac_type
== e1000_82573
))
3363 e1000_transfer_dhcp_info(adapter
, skb
);
3365 /* need: count + 2 desc gap to keep tail from touching
3366 * head, otherwise try next time */
3367 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3368 return NETDEV_TX_BUSY
;
3370 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3371 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3372 netif_stop_queue(netdev
);
3373 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
3374 return NETDEV_TX_BUSY
;
3378 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3379 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3380 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3383 first
= tx_ring
->next_to_use
;
3385 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3387 dev_kfree_skb_any(skb
);
3388 return NETDEV_TX_OK
;
3392 tx_ring
->last_tx_tso
= 1;
3393 tx_flags
|= E1000_TX_FLAGS_TSO
;
3394 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3395 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3397 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3398 * 82571 hardware supports TSO capabilities for IPv6 as well...
3399 * no longer assume, we must. */
3400 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3401 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3403 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3407 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3408 /* Make sure there is space in the ring for the next send. */
3409 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3412 dev_kfree_skb_any(skb
);
3413 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3414 tx_ring
->next_to_use
= first
;
3417 return NETDEV_TX_OK
;
3421 * e1000_tx_timeout - Respond to a Tx Hang
3422 * @netdev: network interface device structure
3425 static void e1000_tx_timeout(struct net_device
*netdev
)
3427 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3429 /* Do the reset outside of interrupt context */
3430 adapter
->tx_timeout_count
++;
3431 schedule_work(&adapter
->reset_task
);
3434 static void e1000_reset_task(struct work_struct
*work
)
3436 struct e1000_adapter
*adapter
=
3437 container_of(work
, struct e1000_adapter
, reset_task
);
3439 e1000_reinit_locked(adapter
);
3443 * e1000_get_stats - Get System Network Statistics
3444 * @netdev: network interface device structure
3446 * Returns the address of the device statistics structure.
3447 * The statistics are actually updated from the timer callback.
3450 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3452 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3454 /* only return the current stats */
3455 return &adapter
->net_stats
;
3459 * e1000_change_mtu - Change the Maximum Transfer Unit
3460 * @netdev: network interface device structure
3461 * @new_mtu: new value for maximum frame size
3463 * Returns 0 on success, negative on failure
3466 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3468 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3469 struct e1000_hw
*hw
= &adapter
->hw
;
3470 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3471 u16 eeprom_data
= 0;
3473 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3474 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3475 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3479 /* Adapter-specific max frame size limits. */
3480 switch (hw
->mac_type
) {
3481 case e1000_undefined
... e1000_82542_rev2_1
:
3483 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3484 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3489 /* Jumbo Frames not supported if:
3490 * - this is not an 82573L device
3491 * - ASPM is enabled in any way (0x1A bits 3:2) */
3492 e1000_read_eeprom(hw
, EEPROM_INIT_3GIO_3
, 1,
3494 if ((hw
->device_id
!= E1000_DEV_ID_82573L
) ||
3495 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3496 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3498 "Jumbo Frames not supported.\n");
3503 /* ERT will be enabled later to enable wire speed receives */
3505 /* fall through to get support */
3508 case e1000_80003es2lan
:
3509 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3510 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3511 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3516 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3520 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3521 * means we reserve 2 more, this pushes us to allocate from the next
3523 * i.e. RXBUFFER_2048 --> size-4096 slab
3524 * however with the new *_jumbo_rx* routines, jumbo receives will use
3525 * fragmented skbs */
3527 if (max_frame
<= E1000_RXBUFFER_256
)
3528 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3529 else if (max_frame
<= E1000_RXBUFFER_512
)
3530 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3531 else if (max_frame
<= E1000_RXBUFFER_1024
)
3532 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3533 else if (max_frame
<= E1000_RXBUFFER_2048
)
3534 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3536 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3537 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3538 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3539 adapter
->rx_buffer_len
= PAGE_SIZE
;
3542 /* adjust allocation if LPE protects us, and we aren't using SBP */
3543 if (!hw
->tbi_compatibility_on
&&
3544 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3545 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3546 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3548 netdev
->mtu
= new_mtu
;
3549 hw
->max_frame_size
= max_frame
;
3551 if (netif_running(netdev
))
3552 e1000_reinit_locked(adapter
);
3558 * e1000_update_stats - Update the board statistics counters
3559 * @adapter: board private structure
3562 void e1000_update_stats(struct e1000_adapter
*adapter
)
3564 struct e1000_hw
*hw
= &adapter
->hw
;
3565 struct pci_dev
*pdev
= adapter
->pdev
;
3566 unsigned long flags
;
3569 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3572 * Prevent stats update while adapter is being reset, or if the pci
3573 * connection is down.
3575 if (adapter
->link_speed
== 0)
3577 if (pci_channel_offline(pdev
))
3580 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3582 /* these counters are modified from e1000_tbi_adjust_stats,
3583 * called from the interrupt context, so they must only
3584 * be written while holding adapter->stats_lock
3587 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3588 adapter
->stats
.gprc
+= er32(GPRC
);
3589 adapter
->stats
.gorcl
+= er32(GORCL
);
3590 adapter
->stats
.gorch
+= er32(GORCH
);
3591 adapter
->stats
.bprc
+= er32(BPRC
);
3592 adapter
->stats
.mprc
+= er32(MPRC
);
3593 adapter
->stats
.roc
+= er32(ROC
);
3595 if (hw
->mac_type
!= e1000_ich8lan
) {
3596 adapter
->stats
.prc64
+= er32(PRC64
);
3597 adapter
->stats
.prc127
+= er32(PRC127
);
3598 adapter
->stats
.prc255
+= er32(PRC255
);
3599 adapter
->stats
.prc511
+= er32(PRC511
);
3600 adapter
->stats
.prc1023
+= er32(PRC1023
);
3601 adapter
->stats
.prc1522
+= er32(PRC1522
);
3604 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3605 adapter
->stats
.mpc
+= er32(MPC
);
3606 adapter
->stats
.scc
+= er32(SCC
);
3607 adapter
->stats
.ecol
+= er32(ECOL
);
3608 adapter
->stats
.mcc
+= er32(MCC
);
3609 adapter
->stats
.latecol
+= er32(LATECOL
);
3610 adapter
->stats
.dc
+= er32(DC
);
3611 adapter
->stats
.sec
+= er32(SEC
);
3612 adapter
->stats
.rlec
+= er32(RLEC
);
3613 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3614 adapter
->stats
.xontxc
+= er32(XONTXC
);
3615 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3616 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3617 adapter
->stats
.fcruc
+= er32(FCRUC
);
3618 adapter
->stats
.gptc
+= er32(GPTC
);
3619 adapter
->stats
.gotcl
+= er32(GOTCL
);
3620 adapter
->stats
.gotch
+= er32(GOTCH
);
3621 adapter
->stats
.rnbc
+= er32(RNBC
);
3622 adapter
->stats
.ruc
+= er32(RUC
);
3623 adapter
->stats
.rfc
+= er32(RFC
);
3624 adapter
->stats
.rjc
+= er32(RJC
);
3625 adapter
->stats
.torl
+= er32(TORL
);
3626 adapter
->stats
.torh
+= er32(TORH
);
3627 adapter
->stats
.totl
+= er32(TOTL
);
3628 adapter
->stats
.toth
+= er32(TOTH
);
3629 adapter
->stats
.tpr
+= er32(TPR
);
3631 if (hw
->mac_type
!= e1000_ich8lan
) {
3632 adapter
->stats
.ptc64
+= er32(PTC64
);
3633 adapter
->stats
.ptc127
+= er32(PTC127
);
3634 adapter
->stats
.ptc255
+= er32(PTC255
);
3635 adapter
->stats
.ptc511
+= er32(PTC511
);
3636 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3637 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3640 adapter
->stats
.mptc
+= er32(MPTC
);
3641 adapter
->stats
.bptc
+= er32(BPTC
);
3643 /* used for adaptive IFS */
3645 hw
->tx_packet_delta
= er32(TPT
);
3646 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3647 hw
->collision_delta
= er32(COLC
);
3648 adapter
->stats
.colc
+= hw
->collision_delta
;
3650 if (hw
->mac_type
>= e1000_82543
) {
3651 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3652 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3653 adapter
->stats
.tncrs
+= er32(TNCRS
);
3654 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3655 adapter
->stats
.tsctc
+= er32(TSCTC
);
3656 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3658 if (hw
->mac_type
> e1000_82547_rev_2
) {
3659 adapter
->stats
.iac
+= er32(IAC
);
3660 adapter
->stats
.icrxoc
+= er32(ICRXOC
);
3662 if (hw
->mac_type
!= e1000_ich8lan
) {
3663 adapter
->stats
.icrxptc
+= er32(ICRXPTC
);
3664 adapter
->stats
.icrxatc
+= er32(ICRXATC
);
3665 adapter
->stats
.ictxptc
+= er32(ICTXPTC
);
3666 adapter
->stats
.ictxatc
+= er32(ICTXATC
);
3667 adapter
->stats
.ictxqec
+= er32(ICTXQEC
);
3668 adapter
->stats
.ictxqmtc
+= er32(ICTXQMTC
);
3669 adapter
->stats
.icrxdmtc
+= er32(ICRXDMTC
);
3673 /* Fill out the OS statistics structure */
3674 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3675 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3679 /* RLEC on some newer hardware can be incorrect so build
3680 * our own version based on RUC and ROC */
3681 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3682 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3683 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3684 adapter
->stats
.cexterr
;
3685 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3686 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3687 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3688 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3689 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3692 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3693 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3694 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3695 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3696 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3697 if (hw
->bad_tx_carr_stats_fd
&&
3698 adapter
->link_duplex
== FULL_DUPLEX
) {
3699 adapter
->net_stats
.tx_carrier_errors
= 0;
3700 adapter
->stats
.tncrs
= 0;
3703 /* Tx Dropped needs to be maintained elsewhere */
3706 if (hw
->media_type
== e1000_media_type_copper
) {
3707 if ((adapter
->link_speed
== SPEED_1000
) &&
3708 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3709 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3710 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3713 if ((hw
->mac_type
<= e1000_82546
) &&
3714 (hw
->phy_type
== e1000_phy_m88
) &&
3715 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3716 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3719 /* Management Stats */
3720 if (hw
->has_smbus
) {
3721 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3722 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3723 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3726 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3730 * e1000_intr_msi - Interrupt Handler
3731 * @irq: interrupt number
3732 * @data: pointer to a network interface device structure
3735 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
3737 struct net_device
*netdev
= data
;
3738 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3739 struct e1000_hw
*hw
= &adapter
->hw
;
3740 u32 icr
= er32(ICR
);
3742 /* in NAPI mode read ICR disables interrupts using IAM */
3744 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3745 hw
->get_link_status
= 1;
3746 /* 80003ES2LAN workaround-- For packet buffer work-around on
3747 * link down event; disable receives here in the ISR and reset
3748 * adapter in watchdog */
3749 if (netif_carrier_ok(netdev
) &&
3750 (hw
->mac_type
== e1000_80003es2lan
)) {
3751 /* disable receives */
3752 u32 rctl
= er32(RCTL
);
3753 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3755 /* guard against interrupt when we're going down */
3756 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3757 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3760 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3761 adapter
->total_tx_bytes
= 0;
3762 adapter
->total_tx_packets
= 0;
3763 adapter
->total_rx_bytes
= 0;
3764 adapter
->total_rx_packets
= 0;
3765 __napi_schedule(&adapter
->napi
);
3767 e1000_irq_enable(adapter
);
3773 * e1000_intr - Interrupt Handler
3774 * @irq: interrupt number
3775 * @data: pointer to a network interface device structure
3778 static irqreturn_t
e1000_intr(int irq
, void *data
)
3780 struct net_device
*netdev
= data
;
3781 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3782 struct e1000_hw
*hw
= &adapter
->hw
;
3783 u32 rctl
, icr
= er32(ICR
);
3785 if (unlikely((!icr
) || test_bit(__E1000_DOWN
, &adapter
->flags
)))
3786 return IRQ_NONE
; /* Not our interrupt */
3788 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3789 * not set, then the adapter didn't send an interrupt */
3790 if (unlikely(hw
->mac_type
>= e1000_82571
&&
3791 !(icr
& E1000_ICR_INT_ASSERTED
)))
3794 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3795 * need for the IMC write */
3797 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3798 hw
->get_link_status
= 1;
3799 /* 80003ES2LAN workaround--
3800 * For packet buffer work-around on link down event;
3801 * disable receives here in the ISR and
3802 * reset adapter in watchdog
3804 if (netif_carrier_ok(netdev
) &&
3805 (hw
->mac_type
== e1000_80003es2lan
)) {
3806 /* disable receives */
3808 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3810 /* guard against interrupt when we're going down */
3811 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3812 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3815 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3816 /* disable interrupts, without the synchronize_irq bit */
3818 E1000_WRITE_FLUSH();
3820 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3821 adapter
->total_tx_bytes
= 0;
3822 adapter
->total_tx_packets
= 0;
3823 adapter
->total_rx_bytes
= 0;
3824 adapter
->total_rx_packets
= 0;
3825 __napi_schedule(&adapter
->napi
);
3827 /* this really should not happen! if it does it is basically a
3828 * bug, but not a hard error, so enable ints and continue */
3829 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3830 e1000_irq_enable(adapter
);
3837 * e1000_clean - NAPI Rx polling callback
3838 * @adapter: board private structure
3840 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3842 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3843 struct net_device
*poll_dev
= adapter
->netdev
;
3844 int tx_cleaned
= 0, work_done
= 0;
3846 adapter
= netdev_priv(poll_dev
);
3848 tx_cleaned
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3850 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3851 &work_done
, budget
);
3856 /* If budget not fully consumed, exit the polling mode */
3857 if (work_done
< budget
) {
3858 if (likely(adapter
->itr_setting
& 3))
3859 e1000_set_itr(adapter
);
3860 napi_complete(napi
);
3861 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3862 e1000_irq_enable(adapter
);
3869 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3870 * @adapter: board private structure
3872 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3873 struct e1000_tx_ring
*tx_ring
)
3875 struct e1000_hw
*hw
= &adapter
->hw
;
3876 struct net_device
*netdev
= adapter
->netdev
;
3877 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3878 struct e1000_buffer
*buffer_info
;
3879 unsigned int i
, eop
;
3880 unsigned int count
= 0;
3881 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3883 i
= tx_ring
->next_to_clean
;
3884 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3885 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3887 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3888 (count
< tx_ring
->count
)) {
3889 bool cleaned
= false;
3890 for ( ; !cleaned
; count
++) {
3891 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3892 buffer_info
= &tx_ring
->buffer_info
[i
];
3893 cleaned
= (i
== eop
);
3896 struct sk_buff
*skb
= buffer_info
->skb
;
3897 unsigned int segs
, bytecount
;
3898 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3899 /* multiply data chunks by size of headers */
3900 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3902 total_tx_packets
+= segs
;
3903 total_tx_bytes
+= bytecount
;
3905 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3906 tx_desc
->upper
.data
= 0;
3908 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3911 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3912 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3915 tx_ring
->next_to_clean
= i
;
3917 #define TX_WAKE_THRESHOLD 32
3918 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3919 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3920 /* Make sure that anybody stopping the queue after this
3921 * sees the new next_to_clean.
3924 if (netif_queue_stopped(netdev
)) {
3925 netif_wake_queue(netdev
);
3926 ++adapter
->restart_queue
;
3930 if (adapter
->detect_tx_hung
) {
3931 /* Detect a transmit hang in hardware, this serializes the
3932 * check with the clearing of time_stamp and movement of i */
3933 adapter
->detect_tx_hung
= false;
3934 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3935 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3936 (adapter
->tx_timeout_factor
* HZ
))
3937 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3939 /* detected Tx unit hang */
3940 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3944 " next_to_use <%x>\n"
3945 " next_to_clean <%x>\n"
3946 "buffer_info[next_to_clean]\n"
3947 " time_stamp <%lx>\n"
3948 " next_to_watch <%x>\n"
3950 " next_to_watch.status <%x>\n",
3951 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3952 sizeof(struct e1000_tx_ring
)),
3953 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3954 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3955 tx_ring
->next_to_use
,
3956 tx_ring
->next_to_clean
,
3957 tx_ring
->buffer_info
[i
].time_stamp
,
3960 eop_desc
->upper
.fields
.status
);
3961 netif_stop_queue(netdev
);
3964 adapter
->total_tx_bytes
+= total_tx_bytes
;
3965 adapter
->total_tx_packets
+= total_tx_packets
;
3966 adapter
->net_stats
.tx_bytes
+= total_tx_bytes
;
3967 adapter
->net_stats
.tx_packets
+= total_tx_packets
;
3968 return (count
< tx_ring
->count
);
3972 * e1000_rx_checksum - Receive Checksum Offload for 82543
3973 * @adapter: board private structure
3974 * @status_err: receive descriptor status and error fields
3975 * @csum: receive descriptor csum field
3976 * @sk_buff: socket buffer with received data
3979 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3980 u32 csum
, struct sk_buff
*skb
)
3982 struct e1000_hw
*hw
= &adapter
->hw
;
3983 u16 status
= (u16
)status_err
;
3984 u8 errors
= (u8
)(status_err
>> 24);
3985 skb
->ip_summed
= CHECKSUM_NONE
;
3987 /* 82543 or newer only */
3988 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3989 /* Ignore Checksum bit is set */
3990 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3991 /* TCP/UDP checksum error bit is set */
3992 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3993 /* let the stack verify checksum errors */
3994 adapter
->hw_csum_err
++;
3997 /* TCP/UDP Checksum has not been calculated */
3998 if (hw
->mac_type
<= e1000_82547_rev_2
) {
3999 if (!(status
& E1000_RXD_STAT_TCPCS
))
4002 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
4005 /* It must be a TCP or UDP packet with a valid checksum */
4006 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
4007 /* TCP checksum is good */
4008 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4009 } else if (hw
->mac_type
> e1000_82547_rev_2
) {
4010 /* IP fragment with UDP payload */
4011 /* Hardware complements the payload checksum, so we undo it
4012 * and then put the value in host order for further stack use.
4014 __sum16 sum
= (__force __sum16
)htons(csum
);
4015 skb
->csum
= csum_unfold(~sum
);
4016 skb
->ip_summed
= CHECKSUM_COMPLETE
;
4018 adapter
->hw_csum_good
++;
4022 * e1000_consume_page - helper function
4024 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
4029 skb
->data_len
+= length
;
4030 skb
->truesize
+= length
;
4034 * e1000_receive_skb - helper function to handle rx indications
4035 * @adapter: board private structure
4036 * @status: descriptor status field as written by hardware
4037 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4038 * @skb: pointer to sk_buff to be indicated to stack
4040 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
4041 __le16 vlan
, struct sk_buff
*skb
)
4043 if (unlikely(adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))) {
4044 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4046 E1000_RXD_SPC_VLAN_MASK
);
4048 netif_receive_skb(skb
);
4053 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4054 * @adapter: board private structure
4055 * @rx_ring: ring to clean
4056 * @work_done: amount of napi work completed this call
4057 * @work_to_do: max amount of work allowed for this call to do
4059 * the return value indicates whether actual cleaning was done, there
4060 * is no guarantee that everything was cleaned
4062 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
4063 struct e1000_rx_ring
*rx_ring
,
4064 int *work_done
, int work_to_do
)
4066 struct e1000_hw
*hw
= &adapter
->hw
;
4067 struct net_device
*netdev
= adapter
->netdev
;
4068 struct pci_dev
*pdev
= adapter
->pdev
;
4069 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4070 struct e1000_buffer
*buffer_info
, *next_buffer
;
4071 unsigned long irq_flags
;
4074 int cleaned_count
= 0;
4075 bool cleaned
= false;
4076 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4078 i
= rx_ring
->next_to_clean
;
4079 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4080 buffer_info
= &rx_ring
->buffer_info
[i
];
4082 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4083 struct sk_buff
*skb
;
4086 if (*work_done
>= work_to_do
)
4090 status
= rx_desc
->status
;
4091 skb
= buffer_info
->skb
;
4092 buffer_info
->skb
= NULL
;
4094 if (++i
== rx_ring
->count
) i
= 0;
4095 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4098 next_buffer
= &rx_ring
->buffer_info
[i
];
4102 pci_unmap_page(pdev
, buffer_info
->dma
, buffer_info
->length
,
4103 PCI_DMA_FROMDEVICE
);
4104 buffer_info
->dma
= 0;
4106 length
= le16_to_cpu(rx_desc
->length
);
4108 /* errors is only valid for DD + EOP descriptors */
4109 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
4110 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
4111 u8 last_byte
= *(skb
->data
+ length
- 1);
4112 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4114 spin_lock_irqsave(&adapter
->stats_lock
,
4116 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4118 spin_unlock_irqrestore(&adapter
->stats_lock
,
4122 /* recycle both page and skb */
4123 buffer_info
->skb
= skb
;
4124 /* an error means any chain goes out the window
4126 if (rx_ring
->rx_skb_top
)
4127 dev_kfree_skb(rx_ring
->rx_skb_top
);
4128 rx_ring
->rx_skb_top
= NULL
;
4133 #define rxtop rx_ring->rx_skb_top
4134 if (!(status
& E1000_RXD_STAT_EOP
)) {
4135 /* this descriptor is only the beginning (or middle) */
4137 /* this is the beginning of a chain */
4139 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
4142 /* this is the middle of a chain */
4143 skb_fill_page_desc(rxtop
,
4144 skb_shinfo(rxtop
)->nr_frags
,
4145 buffer_info
->page
, 0, length
);
4146 /* re-use the skb, only consumed the page */
4147 buffer_info
->skb
= skb
;
4149 e1000_consume_page(buffer_info
, rxtop
, length
);
4153 /* end of the chain */
4154 skb_fill_page_desc(rxtop
,
4155 skb_shinfo(rxtop
)->nr_frags
,
4156 buffer_info
->page
, 0, length
);
4157 /* re-use the current skb, we only consumed the
4159 buffer_info
->skb
= skb
;
4162 e1000_consume_page(buffer_info
, skb
, length
);
4164 /* no chain, got EOP, this buf is the packet
4165 * copybreak to save the put_page/alloc_page */
4166 if (length
<= copybreak
&&
4167 skb_tailroom(skb
) >= length
) {
4169 vaddr
= kmap_atomic(buffer_info
->page
,
4170 KM_SKB_DATA_SOFTIRQ
);
4171 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
4172 kunmap_atomic(vaddr
,
4173 KM_SKB_DATA_SOFTIRQ
);
4174 /* re-use the page, so don't erase
4175 * buffer_info->page */
4176 skb_put(skb
, length
);
4178 skb_fill_page_desc(skb
, 0,
4179 buffer_info
->page
, 0,
4181 e1000_consume_page(buffer_info
, skb
,
4187 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4188 e1000_rx_checksum(adapter
,
4190 ((u32
)(rx_desc
->errors
) << 24),
4191 le16_to_cpu(rx_desc
->csum
), skb
);
4193 pskb_trim(skb
, skb
->len
- 4);
4195 /* probably a little skewed due to removing CRC */
4196 total_rx_bytes
+= skb
->len
;
4199 /* eth type trans needs skb->data to point to something */
4200 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
4201 DPRINTK(DRV
, ERR
, "pskb_may_pull failed.\n");
4206 skb
->protocol
= eth_type_trans(skb
, netdev
);
4208 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4211 rx_desc
->status
= 0;
4213 /* return some buffers to hardware, one at a time is too slow */
4214 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4215 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4219 /* use prefetched values */
4221 buffer_info
= next_buffer
;
4223 rx_ring
->next_to_clean
= i
;
4225 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4227 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4229 adapter
->total_rx_packets
+= total_rx_packets
;
4230 adapter
->total_rx_bytes
+= total_rx_bytes
;
4231 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
4232 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
4237 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4238 * @adapter: board private structure
4239 * @rx_ring: ring to clean
4240 * @work_done: amount of napi work completed this call
4241 * @work_to_do: max amount of work allowed for this call to do
4243 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4244 struct e1000_rx_ring
*rx_ring
,
4245 int *work_done
, int work_to_do
)
4247 struct e1000_hw
*hw
= &adapter
->hw
;
4248 struct net_device
*netdev
= adapter
->netdev
;
4249 struct pci_dev
*pdev
= adapter
->pdev
;
4250 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4251 struct e1000_buffer
*buffer_info
, *next_buffer
;
4252 unsigned long flags
;
4255 int cleaned_count
= 0;
4256 bool cleaned
= false;
4257 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4259 i
= rx_ring
->next_to_clean
;
4260 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4261 buffer_info
= &rx_ring
->buffer_info
[i
];
4263 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4264 struct sk_buff
*skb
;
4267 if (*work_done
>= work_to_do
)
4271 status
= rx_desc
->status
;
4272 skb
= buffer_info
->skb
;
4273 buffer_info
->skb
= NULL
;
4275 prefetch(skb
->data
- NET_IP_ALIGN
);
4277 if (++i
== rx_ring
->count
) i
= 0;
4278 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4281 next_buffer
= &rx_ring
->buffer_info
[i
];
4285 pci_unmap_single(pdev
, buffer_info
->dma
, buffer_info
->length
,
4286 PCI_DMA_FROMDEVICE
);
4287 buffer_info
->dma
= 0;
4289 length
= le16_to_cpu(rx_desc
->length
);
4290 /* !EOP means multiple descriptors were used to store a single
4291 * packet, also make sure the frame isn't just CRC only */
4292 if (unlikely(!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4))) {
4293 /* All receives must fit into a single buffer */
4294 E1000_DBG("%s: Receive packet consumed multiple"
4295 " buffers\n", netdev
->name
);
4297 buffer_info
->skb
= skb
;
4301 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4302 u8 last_byte
= *(skb
->data
+ length
- 1);
4303 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4305 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4306 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4308 spin_unlock_irqrestore(&adapter
->stats_lock
,
4313 buffer_info
->skb
= skb
;
4318 /* adjust length to remove Ethernet CRC, this must be
4319 * done after the TBI_ACCEPT workaround above */
4322 /* probably a little skewed due to removing CRC */
4323 total_rx_bytes
+= length
;
4326 /* code added for copybreak, this should improve
4327 * performance for small packets with large amounts
4328 * of reassembly being done in the stack */
4329 if (length
< copybreak
) {
4330 struct sk_buff
*new_skb
=
4331 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
4333 skb_reserve(new_skb
, NET_IP_ALIGN
);
4334 skb_copy_to_linear_data_offset(new_skb
,
4340 /* save the skb in buffer_info as good */
4341 buffer_info
->skb
= skb
;
4344 /* else just continue with the old one */
4346 /* end copybreak code */
4347 skb_put(skb
, length
);
4349 /* Receive Checksum Offload */
4350 e1000_rx_checksum(adapter
,
4352 ((u32
)(rx_desc
->errors
) << 24),
4353 le16_to_cpu(rx_desc
->csum
), skb
);
4355 skb
->protocol
= eth_type_trans(skb
, netdev
);
4357 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4360 rx_desc
->status
= 0;
4362 /* return some buffers to hardware, one at a time is too slow */
4363 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4364 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4368 /* use prefetched values */
4370 buffer_info
= next_buffer
;
4372 rx_ring
->next_to_clean
= i
;
4374 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4376 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4378 adapter
->total_rx_packets
+= total_rx_packets
;
4379 adapter
->total_rx_bytes
+= total_rx_bytes
;
4380 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
4381 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
4386 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4387 * @adapter: address of board private structure
4388 * @rx_ring: pointer to receive ring structure
4389 * @cleaned_count: number of buffers to allocate this pass
4393 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4394 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4396 struct net_device
*netdev
= adapter
->netdev
;
4397 struct pci_dev
*pdev
= adapter
->pdev
;
4398 struct e1000_rx_desc
*rx_desc
;
4399 struct e1000_buffer
*buffer_info
;
4400 struct sk_buff
*skb
;
4402 unsigned int bufsz
= 256 -
4403 16 /*for skb_reserve */ -
4406 i
= rx_ring
->next_to_use
;
4407 buffer_info
= &rx_ring
->buffer_info
[i
];
4409 while (cleaned_count
--) {
4410 skb
= buffer_info
->skb
;
4416 skb
= netdev_alloc_skb(netdev
, bufsz
);
4417 if (unlikely(!skb
)) {
4418 /* Better luck next round */
4419 adapter
->alloc_rx_buff_failed
++;
4423 /* Fix for errata 23, can't cross 64kB boundary */
4424 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4425 struct sk_buff
*oldskb
= skb
;
4426 DPRINTK(PROBE
, ERR
, "skb align check failed: %u bytes "
4427 "at %p\n", bufsz
, skb
->data
);
4428 /* Try again, without freeing the previous */
4429 skb
= netdev_alloc_skb(netdev
, bufsz
);
4430 /* Failed allocation, critical failure */
4432 dev_kfree_skb(oldskb
);
4433 adapter
->alloc_rx_buff_failed
++;
4437 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4440 dev_kfree_skb(oldskb
);
4441 break; /* while (cleaned_count--) */
4444 /* Use new allocation */
4445 dev_kfree_skb(oldskb
);
4447 /* Make buffer alignment 2 beyond a 16 byte boundary
4448 * this will result in a 16 byte aligned IP header after
4449 * the 14 byte MAC header is removed
4451 skb_reserve(skb
, NET_IP_ALIGN
);
4453 buffer_info
->skb
= skb
;
4454 buffer_info
->length
= adapter
->rx_buffer_len
;
4456 /* allocate a new page if necessary */
4457 if (!buffer_info
->page
) {
4458 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4459 if (unlikely(!buffer_info
->page
)) {
4460 adapter
->alloc_rx_buff_failed
++;
4465 if (!buffer_info
->dma
)
4466 buffer_info
->dma
= pci_map_page(pdev
,
4467 buffer_info
->page
, 0,
4468 buffer_info
->length
,
4469 PCI_DMA_FROMDEVICE
);
4471 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4472 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4474 if (unlikely(++i
== rx_ring
->count
))
4476 buffer_info
= &rx_ring
->buffer_info
[i
];
4479 if (likely(rx_ring
->next_to_use
!= i
)) {
4480 rx_ring
->next_to_use
= i
;
4481 if (unlikely(i
-- == 0))
4482 i
= (rx_ring
->count
- 1);
4484 /* Force memory writes to complete before letting h/w
4485 * know there are new descriptors to fetch. (Only
4486 * applicable for weak-ordered memory model archs,
4487 * such as IA-64). */
4489 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4494 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4495 * @adapter: address of board private structure
4498 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4499 struct e1000_rx_ring
*rx_ring
,
4502 struct e1000_hw
*hw
= &adapter
->hw
;
4503 struct net_device
*netdev
= adapter
->netdev
;
4504 struct pci_dev
*pdev
= adapter
->pdev
;
4505 struct e1000_rx_desc
*rx_desc
;
4506 struct e1000_buffer
*buffer_info
;
4507 struct sk_buff
*skb
;
4509 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4511 i
= rx_ring
->next_to_use
;
4512 buffer_info
= &rx_ring
->buffer_info
[i
];
4514 while (cleaned_count
--) {
4515 skb
= buffer_info
->skb
;
4521 skb
= netdev_alloc_skb(netdev
, bufsz
);
4522 if (unlikely(!skb
)) {
4523 /* Better luck next round */
4524 adapter
->alloc_rx_buff_failed
++;
4528 /* Fix for errata 23, can't cross 64kB boundary */
4529 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4530 struct sk_buff
*oldskb
= skb
;
4531 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4532 "at %p\n", bufsz
, skb
->data
);
4533 /* Try again, without freeing the previous */
4534 skb
= netdev_alloc_skb(netdev
, bufsz
);
4535 /* Failed allocation, critical failure */
4537 dev_kfree_skb(oldskb
);
4538 adapter
->alloc_rx_buff_failed
++;
4542 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4545 dev_kfree_skb(oldskb
);
4546 adapter
->alloc_rx_buff_failed
++;
4547 break; /* while !buffer_info->skb */
4550 /* Use new allocation */
4551 dev_kfree_skb(oldskb
);
4553 /* Make buffer alignment 2 beyond a 16 byte boundary
4554 * this will result in a 16 byte aligned IP header after
4555 * the 14 byte MAC header is removed
4557 skb_reserve(skb
, NET_IP_ALIGN
);
4559 buffer_info
->skb
= skb
;
4560 buffer_info
->length
= adapter
->rx_buffer_len
;
4562 buffer_info
->dma
= pci_map_single(pdev
,
4564 buffer_info
->length
,
4565 PCI_DMA_FROMDEVICE
);
4568 * XXX if it was allocated cleanly it will never map to a
4572 /* Fix for errata 23, can't cross 64kB boundary */
4573 if (!e1000_check_64k_bound(adapter
,
4574 (void *)(unsigned long)buffer_info
->dma
,
4575 adapter
->rx_buffer_len
)) {
4576 DPRINTK(RX_ERR
, ERR
,
4577 "dma align check failed: %u bytes at %p\n",
4578 adapter
->rx_buffer_len
,
4579 (void *)(unsigned long)buffer_info
->dma
);
4581 buffer_info
->skb
= NULL
;
4583 pci_unmap_single(pdev
, buffer_info
->dma
,
4584 adapter
->rx_buffer_len
,
4585 PCI_DMA_FROMDEVICE
);
4586 buffer_info
->dma
= 0;
4588 adapter
->alloc_rx_buff_failed
++;
4589 break; /* while !buffer_info->skb */
4591 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4592 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4594 if (unlikely(++i
== rx_ring
->count
))
4596 buffer_info
= &rx_ring
->buffer_info
[i
];
4599 if (likely(rx_ring
->next_to_use
!= i
)) {
4600 rx_ring
->next_to_use
= i
;
4601 if (unlikely(i
-- == 0))
4602 i
= (rx_ring
->count
- 1);
4604 /* Force memory writes to complete before letting h/w
4605 * know there are new descriptors to fetch. (Only
4606 * applicable for weak-ordered memory model archs,
4607 * such as IA-64). */
4609 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4614 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4618 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4620 struct e1000_hw
*hw
= &adapter
->hw
;
4624 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4625 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4628 if (adapter
->smartspeed
== 0) {
4629 /* If Master/Slave config fault is asserted twice,
4630 * we assume back-to-back */
4631 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4632 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4633 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4634 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4635 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4636 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4637 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4638 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4640 adapter
->smartspeed
++;
4641 if (!e1000_phy_setup_autoneg(hw
) &&
4642 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4644 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4645 MII_CR_RESTART_AUTO_NEG
);
4646 e1000_write_phy_reg(hw
, PHY_CTRL
,
4651 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4652 /* If still no link, perhaps using 2/3 pair cable */
4653 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4654 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4655 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4656 if (!e1000_phy_setup_autoneg(hw
) &&
4657 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4658 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4659 MII_CR_RESTART_AUTO_NEG
);
4660 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4663 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4664 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4665 adapter
->smartspeed
= 0;
4675 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4681 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4694 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4697 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4698 struct e1000_hw
*hw
= &adapter
->hw
;
4699 struct mii_ioctl_data
*data
= if_mii(ifr
);
4703 unsigned long flags
;
4705 if (hw
->media_type
!= e1000_media_type_copper
)
4710 data
->phy_id
= hw
->phy_addr
;
4713 if (!capable(CAP_NET_ADMIN
))
4715 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4716 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4718 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4721 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4724 if (!capable(CAP_NET_ADMIN
))
4726 if (data
->reg_num
& ~(0x1F))
4728 mii_reg
= data
->val_in
;
4729 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4730 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4732 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4735 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4736 if (hw
->media_type
== e1000_media_type_copper
) {
4737 switch (data
->reg_num
) {
4739 if (mii_reg
& MII_CR_POWER_DOWN
)
4741 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4743 hw
->autoneg_advertised
= 0x2F;
4746 spddplx
= SPEED_1000
;
4747 else if (mii_reg
& 0x2000)
4748 spddplx
= SPEED_100
;
4751 spddplx
+= (mii_reg
& 0x100)
4754 retval
= e1000_set_spd_dplx(adapter
,
4759 if (netif_running(adapter
->netdev
))
4760 e1000_reinit_locked(adapter
);
4762 e1000_reset(adapter
);
4764 case M88E1000_PHY_SPEC_CTRL
:
4765 case M88E1000_EXT_PHY_SPEC_CTRL
:
4766 if (e1000_phy_reset(hw
))
4771 switch (data
->reg_num
) {
4773 if (mii_reg
& MII_CR_POWER_DOWN
)
4775 if (netif_running(adapter
->netdev
))
4776 e1000_reinit_locked(adapter
);
4778 e1000_reset(adapter
);
4786 return E1000_SUCCESS
;
4789 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4791 struct e1000_adapter
*adapter
= hw
->back
;
4792 int ret_val
= pci_set_mwi(adapter
->pdev
);
4795 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4798 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4800 struct e1000_adapter
*adapter
= hw
->back
;
4802 pci_clear_mwi(adapter
->pdev
);
4805 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4807 struct e1000_adapter
*adapter
= hw
->back
;
4808 return pcix_get_mmrbc(adapter
->pdev
);
4811 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4813 struct e1000_adapter
*adapter
= hw
->back
;
4814 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4817 s32
e1000_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
4819 struct e1000_adapter
*adapter
= hw
->back
;
4822 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
4824 return -E1000_ERR_CONFIG
;
4826 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
4828 return E1000_SUCCESS
;
4831 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4836 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4837 struct vlan_group
*grp
)
4839 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4840 struct e1000_hw
*hw
= &adapter
->hw
;
4843 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4844 e1000_irq_disable(adapter
);
4845 adapter
->vlgrp
= grp
;
4848 /* enable VLAN tag insert/strip */
4850 ctrl
|= E1000_CTRL_VME
;
4853 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4854 /* enable VLAN receive filtering */
4856 rctl
&= ~E1000_RCTL_CFIEN
;
4858 e1000_update_mng_vlan(adapter
);
4861 /* disable VLAN tag insert/strip */
4863 ctrl
&= ~E1000_CTRL_VME
;
4866 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4867 if (adapter
->mng_vlan_id
!=
4868 (u16
)E1000_MNG_VLAN_NONE
) {
4869 e1000_vlan_rx_kill_vid(netdev
,
4870 adapter
->mng_vlan_id
);
4871 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4876 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4877 e1000_irq_enable(adapter
);
4880 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4882 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4883 struct e1000_hw
*hw
= &adapter
->hw
;
4886 if ((hw
->mng_cookie
.status
&
4887 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4888 (vid
== adapter
->mng_vlan_id
))
4890 /* add VID to filter table */
4891 index
= (vid
>> 5) & 0x7F;
4892 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4893 vfta
|= (1 << (vid
& 0x1F));
4894 e1000_write_vfta(hw
, index
, vfta
);
4897 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4899 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4900 struct e1000_hw
*hw
= &adapter
->hw
;
4903 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4904 e1000_irq_disable(adapter
);
4905 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4906 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4907 e1000_irq_enable(adapter
);
4909 if ((hw
->mng_cookie
.status
&
4910 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4911 (vid
== adapter
->mng_vlan_id
)) {
4912 /* release control to f/w */
4913 e1000_release_hw_control(adapter
);
4917 /* remove VID from filter table */
4918 index
= (vid
>> 5) & 0x7F;
4919 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4920 vfta
&= ~(1 << (vid
& 0x1F));
4921 e1000_write_vfta(hw
, index
, vfta
);
4924 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4926 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4928 if (adapter
->vlgrp
) {
4930 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4931 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4933 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4938 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4940 struct e1000_hw
*hw
= &adapter
->hw
;
4944 /* Fiber NICs only allow 1000 gbps Full duplex */
4945 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4946 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4947 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4952 case SPEED_10
+ DUPLEX_HALF
:
4953 hw
->forced_speed_duplex
= e1000_10_half
;
4955 case SPEED_10
+ DUPLEX_FULL
:
4956 hw
->forced_speed_duplex
= e1000_10_full
;
4958 case SPEED_100
+ DUPLEX_HALF
:
4959 hw
->forced_speed_duplex
= e1000_100_half
;
4961 case SPEED_100
+ DUPLEX_FULL
:
4962 hw
->forced_speed_duplex
= e1000_100_full
;
4964 case SPEED_1000
+ DUPLEX_FULL
:
4966 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4968 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4970 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4976 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4978 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4979 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4980 struct e1000_hw
*hw
= &adapter
->hw
;
4981 u32 ctrl
, ctrl_ext
, rctl
, status
;
4982 u32 wufc
= adapter
->wol
;
4987 netif_device_detach(netdev
);
4989 if (netif_running(netdev
)) {
4990 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4991 e1000_down(adapter
);
4995 retval
= pci_save_state(pdev
);
5000 status
= er32(STATUS
);
5001 if (status
& E1000_STATUS_LU
)
5002 wufc
&= ~E1000_WUFC_LNKC
;
5005 e1000_setup_rctl(adapter
);
5006 e1000_set_rx_mode(netdev
);
5008 /* turn on all-multi mode if wake on multicast is enabled */
5009 if (wufc
& E1000_WUFC_MC
) {
5011 rctl
|= E1000_RCTL_MPE
;
5015 if (hw
->mac_type
>= e1000_82540
) {
5017 /* advertise wake from D3Cold */
5018 #define E1000_CTRL_ADVD3WUC 0x00100000
5019 /* phy power management enable */
5020 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5021 ctrl
|= E1000_CTRL_ADVD3WUC
|
5022 E1000_CTRL_EN_PHY_PWR_MGMT
;
5026 if (hw
->media_type
== e1000_media_type_fiber
||
5027 hw
->media_type
== e1000_media_type_internal_serdes
) {
5028 /* keep the laser running in D3 */
5029 ctrl_ext
= er32(CTRL_EXT
);
5030 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
5031 ew32(CTRL_EXT
, ctrl_ext
);
5034 /* Allow time for pending master requests to run */
5035 e1000_disable_pciex_master(hw
);
5037 ew32(WUC
, E1000_WUC_PME_EN
);
5044 e1000_release_manageability(adapter
);
5046 *enable_wake
= !!wufc
;
5048 /* make sure adapter isn't asleep if manageability is enabled */
5049 if (adapter
->en_mng_pt
)
5050 *enable_wake
= true;
5052 if (hw
->phy_type
== e1000_phy_igp_3
)
5053 e1000_phy_powerdown_workaround(hw
);
5055 if (netif_running(netdev
))
5056 e1000_free_irq(adapter
);
5058 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5059 * would have already happened in close and is redundant. */
5060 e1000_release_hw_control(adapter
);
5062 pci_disable_device(pdev
);
5068 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5073 retval
= __e1000_shutdown(pdev
, &wake
);
5078 pci_prepare_to_sleep(pdev
);
5080 pci_wake_from_d3(pdev
, false);
5081 pci_set_power_state(pdev
, PCI_D3hot
);
5087 static int e1000_resume(struct pci_dev
*pdev
)
5089 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5090 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5091 struct e1000_hw
*hw
= &adapter
->hw
;
5094 pci_set_power_state(pdev
, PCI_D0
);
5095 pci_restore_state(pdev
);
5097 if (adapter
->need_ioport
)
5098 err
= pci_enable_device(pdev
);
5100 err
= pci_enable_device_mem(pdev
);
5102 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
5105 pci_set_master(pdev
);
5107 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5108 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5110 if (netif_running(netdev
)) {
5111 err
= e1000_request_irq(adapter
);
5116 e1000_power_up_phy(adapter
);
5117 e1000_reset(adapter
);
5120 e1000_init_manageability(adapter
);
5122 if (netif_running(netdev
))
5125 netif_device_attach(netdev
);
5127 /* If the controller is 82573 and f/w is AMT, do not set
5128 * DRV_LOAD until the interface is up. For all other cases,
5129 * let the f/w know that the h/w is now under the control
5131 if (hw
->mac_type
!= e1000_82573
||
5132 !e1000_check_mng_mode(hw
))
5133 e1000_get_hw_control(adapter
);
5139 static void e1000_shutdown(struct pci_dev
*pdev
)
5143 __e1000_shutdown(pdev
, &wake
);
5145 if (system_state
== SYSTEM_POWER_OFF
) {
5146 pci_wake_from_d3(pdev
, wake
);
5147 pci_set_power_state(pdev
, PCI_D3hot
);
5151 #ifdef CONFIG_NET_POLL_CONTROLLER
5153 * Polling 'interrupt' - used by things like netconsole to send skbs
5154 * without having to re-enable interrupts. It's not called while
5155 * the interrupt routine is executing.
5157 static void e1000_netpoll(struct net_device
*netdev
)
5159 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5161 disable_irq(adapter
->pdev
->irq
);
5162 e1000_intr(adapter
->pdev
->irq
, netdev
);
5163 enable_irq(adapter
->pdev
->irq
);
5168 * e1000_io_error_detected - called when PCI error is detected
5169 * @pdev: Pointer to PCI device
5170 * @state: The current pci conneection state
5172 * This function is called after a PCI bus error affecting
5173 * this device has been detected.
5175 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5176 pci_channel_state_t state
)
5178 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5179 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5181 netif_device_detach(netdev
);
5183 if (state
== pci_channel_io_perm_failure
)
5184 return PCI_ERS_RESULT_DISCONNECT
;
5186 if (netif_running(netdev
))
5187 e1000_down(adapter
);
5188 pci_disable_device(pdev
);
5190 /* Request a slot slot reset. */
5191 return PCI_ERS_RESULT_NEED_RESET
;
5195 * e1000_io_slot_reset - called after the pci bus has been reset.
5196 * @pdev: Pointer to PCI device
5198 * Restart the card from scratch, as if from a cold-boot. Implementation
5199 * resembles the first-half of the e1000_resume routine.
5201 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5203 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5204 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5205 struct e1000_hw
*hw
= &adapter
->hw
;
5208 if (adapter
->need_ioport
)
5209 err
= pci_enable_device(pdev
);
5211 err
= pci_enable_device_mem(pdev
);
5213 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
5214 return PCI_ERS_RESULT_DISCONNECT
;
5216 pci_set_master(pdev
);
5218 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5219 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5221 e1000_reset(adapter
);
5224 return PCI_ERS_RESULT_RECOVERED
;
5228 * e1000_io_resume - called when traffic can start flowing again.
5229 * @pdev: Pointer to PCI device
5231 * This callback is called when the error recovery driver tells us that
5232 * its OK to resume normal operation. Implementation resembles the
5233 * second-half of the e1000_resume routine.
5235 static void e1000_io_resume(struct pci_dev
*pdev
)
5237 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5238 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5239 struct e1000_hw
*hw
= &adapter
->hw
;
5241 e1000_init_manageability(adapter
);
5243 if (netif_running(netdev
)) {
5244 if (e1000_up(adapter
)) {
5245 printk("e1000: can't bring device back up after reset\n");
5250 netif_device_attach(netdev
);
5252 /* If the controller is 82573 and f/w is AMT, do not set
5253 * DRV_LOAD until the interface is up. For all other cases,
5254 * let the f/w know that the h/w is now under the control
5256 if (hw
->mac_type
!= e1000_82573
||
5257 !e1000_check_mng_mode(hw
))
5258 e1000_get_hw_control(adapter
);