ath5k: fix values for bus error bits in ISR2
[linux-2.6/next.git] / drivers / net / qlge / qlge_main.c
blob5768af17f168b668a28e55bc65460a82cd87ef03
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
44 #include "qlge.h"
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80 /* required last entry */
81 {0,}
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
92 u32 sem_bits = 0;
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
130 unsigned int wait_count = 30;
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
134 udelay(100);
135 } while (--wait_count);
136 return -ETIMEDOUT;
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
152 u32 temp;
153 int count = UDELAY_COUNT;
155 while (count) {
156 temp = ql_read32(qdev, reg);
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
179 int count = UDELAY_COUNT;
180 u32 temp;
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
191 return -ETIMEDOUT;
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
217 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
218 if (status)
219 return status;
221 status = ql_wait_cfg(qdev, bit);
222 if (status) {
223 QPRINTK(qdev, IFUP, ERR,
224 "Timed out waiting for CFG to come ready.\n");
225 goto exit;
228 ql_write32(qdev, ICB_L, (u32) map);
229 ql_write32(qdev, ICB_H, (u32) (map >> 32));
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
236 * Wait for the bit to clear after signaling hw.
238 status = ql_wait_cfg(qdev, bit);
239 exit:
240 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
241 pci_unmap_single(qdev->pdev, map, size, direction);
242 return status;
245 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
246 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
247 u32 *value)
249 u32 offset = 0;
250 int status;
252 switch (type) {
253 case MAC_ADDR_TYPE_MULTI_MAC:
254 case MAC_ADDR_TYPE_CAM_MAC:
256 status =
257 ql_wait_reg_rdy(qdev,
258 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
259 if (status)
260 goto exit;
261 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
262 (index << MAC_ADDR_IDX_SHIFT) | /* index */
263 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
264 status =
265 ql_wait_reg_rdy(qdev,
266 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
267 if (status)
268 goto exit;
269 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
270 status =
271 ql_wait_reg_rdy(qdev,
272 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
273 if (status)
274 goto exit;
275 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
276 (index << MAC_ADDR_IDX_SHIFT) | /* index */
277 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278 status =
279 ql_wait_reg_rdy(qdev,
280 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
281 if (status)
282 goto exit;
283 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
284 if (type == MAC_ADDR_TYPE_CAM_MAC) {
285 status =
286 ql_wait_reg_rdy(qdev,
287 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
288 if (status)
289 goto exit;
290 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
291 (index << MAC_ADDR_IDX_SHIFT) | /* index */
292 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293 status =
294 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
295 MAC_ADDR_MR, 0);
296 if (status)
297 goto exit;
298 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 break;
302 case MAC_ADDR_TYPE_VLAN:
303 case MAC_ADDR_TYPE_MULTI_FLTR:
304 default:
305 QPRINTK(qdev, IFUP, CRIT,
306 "Address type %d not yet supported.\n", type);
307 status = -EPERM;
309 exit:
310 return status;
313 /* Set up a MAC, multicast or VLAN address for the
314 * inbound frame matching.
316 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
317 u16 index)
319 u32 offset = 0;
320 int status = 0;
322 switch (type) {
323 case MAC_ADDR_TYPE_MULTI_MAC:
324 case MAC_ADDR_TYPE_CAM_MAC:
326 u32 cam_output;
327 u32 upper = (addr[0] << 8) | addr[1];
328 u32 lower =
329 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
330 (addr[5]);
332 QPRINTK(qdev, IFUP, DEBUG,
333 "Adding %s address %pM"
334 " at index %d in the CAM.\n",
335 ((type ==
336 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
337 "UNICAST"), addr, index);
339 status =
340 ql_wait_reg_rdy(qdev,
341 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
342 if (status)
343 goto exit;
344 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
345 (index << MAC_ADDR_IDX_SHIFT) | /* index */
346 type); /* type */
347 ql_write32(qdev, MAC_ADDR_DATA, lower);
348 status =
349 ql_wait_reg_rdy(qdev,
350 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
351 if (status)
352 goto exit;
353 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
354 (index << MAC_ADDR_IDX_SHIFT) | /* index */
355 type); /* type */
356 ql_write32(qdev, MAC_ADDR_DATA, upper);
357 status =
358 ql_wait_reg_rdy(qdev,
359 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
360 if (status)
361 goto exit;
362 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
363 (index << MAC_ADDR_IDX_SHIFT) | /* index */
364 type); /* type */
365 /* This field should also include the queue id
366 and possibly the function id. Right now we hardcode
367 the route field to NIC core.
369 if (type == MAC_ADDR_TYPE_CAM_MAC) {
370 cam_output = (CAM_OUT_ROUTE_NIC |
371 (qdev->
372 func << CAM_OUT_FUNC_SHIFT) |
373 (qdev->
374 rss_ring_first_cq_id <<
375 CAM_OUT_CQ_ID_SHIFT));
376 if (qdev->vlgrp)
377 cam_output |= CAM_OUT_RV;
378 /* route to NIC core */
379 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
381 break;
383 case MAC_ADDR_TYPE_VLAN:
385 u32 enable_bit = *((u32 *) &addr[0]);
386 /* For VLAN, the addr actually holds a bit that
387 * either enables or disables the vlan id we are
388 * addressing. It's either MAC_ADDR_E on or off.
389 * That's bit-27 we're talking about.
391 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
392 (enable_bit ? "Adding" : "Removing"),
393 index, (enable_bit ? "to" : "from"));
395 status =
396 ql_wait_reg_rdy(qdev,
397 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
398 if (status)
399 goto exit;
400 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
401 (index << MAC_ADDR_IDX_SHIFT) | /* index */
402 type | /* type */
403 enable_bit); /* enable/disable */
404 break;
406 case MAC_ADDR_TYPE_MULTI_FLTR:
407 default:
408 QPRINTK(qdev, IFUP, CRIT,
409 "Address type %d not yet supported.\n", type);
410 status = -EPERM;
412 exit:
413 return status;
416 /* Set or clear MAC address in hardware. We sometimes
417 * have to clear it to prevent wrong frame routing
418 * especially in a bonding environment.
420 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
422 int status;
423 char zero_mac_addr[ETH_ALEN];
424 char *addr;
426 if (set) {
427 addr = &qdev->ndev->dev_addr[0];
428 QPRINTK(qdev, IFUP, DEBUG,
429 "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
430 addr[0], addr[1], addr[2], addr[3],
431 addr[4], addr[5]);
432 } else {
433 memset(zero_mac_addr, 0, ETH_ALEN);
434 addr = &zero_mac_addr[0];
435 QPRINTK(qdev, IFUP, DEBUG,
436 "Clearing MAC address on %s\n",
437 qdev->ndev->name);
439 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
440 if (status)
441 return status;
442 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
443 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
444 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
445 if (status)
446 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
447 "address.\n");
448 return status;
451 void ql_link_on(struct ql_adapter *qdev)
453 QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
454 qdev->ndev->name);
455 netif_carrier_on(qdev->ndev);
456 ql_set_mac_addr(qdev, 1);
459 void ql_link_off(struct ql_adapter *qdev)
461 QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
462 qdev->ndev->name);
463 netif_carrier_off(qdev->ndev);
464 ql_set_mac_addr(qdev, 0);
467 /* Get a specific frame routing value from the CAM.
468 * Used for debug and reg dump.
470 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
472 int status = 0;
474 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
475 if (status)
476 goto exit;
478 ql_write32(qdev, RT_IDX,
479 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
480 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
481 if (status)
482 goto exit;
483 *value = ql_read32(qdev, RT_DATA);
484 exit:
485 return status;
488 /* The NIC function for this chip has 16 routing indexes. Each one can be used
489 * to route different frame types to various inbound queues. We send broadcast/
490 * multicast/error frames to the default queue for slow handling,
491 * and CAM hit/RSS frames to the fast handling queues.
493 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
494 int enable)
496 int status = -EINVAL; /* Return error if no mask match. */
497 u32 value = 0;
499 QPRINTK(qdev, IFUP, DEBUG,
500 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
501 (enable ? "Adding" : "Removing"),
502 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
503 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
504 ((index ==
505 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
506 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
507 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
508 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
509 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
510 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
511 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
512 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
513 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
514 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
515 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
516 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
517 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
518 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
519 (enable ? "to" : "from"));
521 switch (mask) {
522 case RT_IDX_CAM_HIT:
524 value = RT_IDX_DST_CAM_Q | /* dest */
525 RT_IDX_TYPE_NICQ | /* type */
526 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
527 break;
529 case RT_IDX_VALID: /* Promiscuous Mode frames. */
531 value = RT_IDX_DST_DFLT_Q | /* dest */
532 RT_IDX_TYPE_NICQ | /* type */
533 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
534 break;
536 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
538 value = RT_IDX_DST_DFLT_Q | /* dest */
539 RT_IDX_TYPE_NICQ | /* type */
540 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
541 break;
543 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
545 value = RT_IDX_DST_DFLT_Q | /* dest */
546 RT_IDX_TYPE_NICQ | /* type */
547 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
548 break;
550 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
552 value = RT_IDX_DST_CAM_Q | /* dest */
553 RT_IDX_TYPE_NICQ | /* type */
554 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
555 break;
557 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
559 value = RT_IDX_DST_CAM_Q | /* dest */
560 RT_IDX_TYPE_NICQ | /* type */
561 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
562 break;
564 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
566 value = RT_IDX_DST_RSS | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
571 case 0: /* Clear the E-bit on an entry. */
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (index << RT_IDX_IDX_SHIFT);/* index */
576 break;
578 default:
579 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
580 mask);
581 status = -EPERM;
582 goto exit;
585 if (value) {
586 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
587 if (status)
588 goto exit;
589 value |= (enable ? RT_IDX_E : 0);
590 ql_write32(qdev, RT_IDX, value);
591 ql_write32(qdev, RT_DATA, enable ? mask : 0);
593 exit:
594 return status;
597 static void ql_enable_interrupts(struct ql_adapter *qdev)
599 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
602 static void ql_disable_interrupts(struct ql_adapter *qdev)
604 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
607 /* If we're running with multiple MSI-X vectors then we enable on the fly.
608 * Otherwise, we may have multiple outstanding workers and don't want to
609 * enable until the last one finishes. In this case, the irq_cnt gets
610 * incremented everytime we queue a worker and decremented everytime
611 * a worker finishes. Once it hits zero we enable the interrupt.
613 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
615 u32 var = 0;
616 unsigned long hw_flags = 0;
617 struct intr_context *ctx = qdev->intr_context + intr;
619 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
620 /* Always enable if we're MSIX multi interrupts and
621 * it's not the default (zeroeth) interrupt.
623 ql_write32(qdev, INTR_EN,
624 ctx->intr_en_mask);
625 var = ql_read32(qdev, STS);
626 return var;
629 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
630 if (atomic_dec_and_test(&ctx->irq_cnt)) {
631 ql_write32(qdev, INTR_EN,
632 ctx->intr_en_mask);
633 var = ql_read32(qdev, STS);
635 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
636 return var;
639 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
641 u32 var = 0;
642 struct intr_context *ctx;
644 /* HW disables for us if we're MSIX multi interrupts and
645 * it's not the default (zeroeth) interrupt.
647 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
648 return 0;
650 ctx = qdev->intr_context + intr;
651 spin_lock(&qdev->hw_lock);
652 if (!atomic_read(&ctx->irq_cnt)) {
653 ql_write32(qdev, INTR_EN,
654 ctx->intr_dis_mask);
655 var = ql_read32(qdev, STS);
657 atomic_inc(&ctx->irq_cnt);
658 spin_unlock(&qdev->hw_lock);
659 return var;
662 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
664 int i;
665 for (i = 0; i < qdev->intr_count; i++) {
666 /* The enable call does a atomic_dec_and_test
667 * and enables only if the result is zero.
668 * So we precharge it here.
670 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
671 i == 0))
672 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
673 ql_enable_completion_interrupt(qdev, i);
678 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
680 int status, i;
681 u16 csum = 0;
682 __le16 *flash = (__le16 *)&qdev->flash;
684 status = strncmp((char *)&qdev->flash, str, 4);
685 if (status) {
686 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
687 return status;
690 for (i = 0; i < size; i++)
691 csum += le16_to_cpu(*flash++);
693 if (csum)
694 QPRINTK(qdev, IFUP, ERR,
695 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
697 return csum;
700 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
702 int status = 0;
703 /* wait for reg to come ready */
704 status = ql_wait_reg_rdy(qdev,
705 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
706 if (status)
707 goto exit;
708 /* set up for reg read */
709 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
710 /* wait for reg to come ready */
711 status = ql_wait_reg_rdy(qdev,
712 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
713 if (status)
714 goto exit;
715 /* This data is stored on flash as an array of
716 * __le32. Since ql_read32() returns cpu endian
717 * we need to swap it back.
719 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
720 exit:
721 return status;
724 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
726 u32 i, size;
727 int status;
728 __le32 *p = (__le32 *)&qdev->flash;
729 u32 offset;
730 u8 mac_addr[6];
732 /* Get flash offset for function and adjust
733 * for dword access.
735 if (!qdev->port)
736 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
737 else
738 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
740 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
741 return -ETIMEDOUT;
743 size = sizeof(struct flash_params_8000) / sizeof(u32);
744 for (i = 0; i < size; i++, p++) {
745 status = ql_read_flash_word(qdev, i+offset, p);
746 if (status) {
747 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
748 goto exit;
752 status = ql_validate_flash(qdev,
753 sizeof(struct flash_params_8000) / sizeof(u16),
754 "8000");
755 if (status) {
756 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
757 status = -EINVAL;
758 goto exit;
761 /* Extract either manufacturer or BOFM modified
762 * MAC address.
764 if (qdev->flash.flash_params_8000.data_type1 == 2)
765 memcpy(mac_addr,
766 qdev->flash.flash_params_8000.mac_addr1,
767 qdev->ndev->addr_len);
768 else
769 memcpy(mac_addr,
770 qdev->flash.flash_params_8000.mac_addr,
771 qdev->ndev->addr_len);
773 if (!is_valid_ether_addr(mac_addr)) {
774 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
775 status = -EINVAL;
776 goto exit;
779 memcpy(qdev->ndev->dev_addr,
780 mac_addr,
781 qdev->ndev->addr_len);
783 exit:
784 ql_sem_unlock(qdev, SEM_FLASH_MASK);
785 return status;
788 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
790 int i;
791 int status;
792 __le32 *p = (__le32 *)&qdev->flash;
793 u32 offset = 0;
794 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
796 /* Second function's parameters follow the first
797 * function's.
799 if (qdev->port)
800 offset = size;
802 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
803 return -ETIMEDOUT;
805 for (i = 0; i < size; i++, p++) {
806 status = ql_read_flash_word(qdev, i+offset, p);
807 if (status) {
808 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
809 goto exit;
814 status = ql_validate_flash(qdev,
815 sizeof(struct flash_params_8012) / sizeof(u16),
816 "8012");
817 if (status) {
818 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
819 status = -EINVAL;
820 goto exit;
823 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
824 status = -EINVAL;
825 goto exit;
828 memcpy(qdev->ndev->dev_addr,
829 qdev->flash.flash_params_8012.mac_addr,
830 qdev->ndev->addr_len);
832 exit:
833 ql_sem_unlock(qdev, SEM_FLASH_MASK);
834 return status;
837 /* xgmac register are located behind the xgmac_addr and xgmac_data
838 * register pair. Each read/write requires us to wait for the ready
839 * bit before reading/writing the data.
841 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
843 int status;
844 /* wait for reg to come ready */
845 status = ql_wait_reg_rdy(qdev,
846 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
847 if (status)
848 return status;
849 /* write the data to the data reg */
850 ql_write32(qdev, XGMAC_DATA, data);
851 /* trigger the write */
852 ql_write32(qdev, XGMAC_ADDR, reg);
853 return status;
856 /* xgmac register are located behind the xgmac_addr and xgmac_data
857 * register pair. Each read/write requires us to wait for the ready
858 * bit before reading/writing the data.
860 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
862 int status = 0;
863 /* wait for reg to come ready */
864 status = ql_wait_reg_rdy(qdev,
865 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
866 if (status)
867 goto exit;
868 /* set up for reg read */
869 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
870 /* wait for reg to come ready */
871 status = ql_wait_reg_rdy(qdev,
872 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
873 if (status)
874 goto exit;
875 /* get the data */
876 *data = ql_read32(qdev, XGMAC_DATA);
877 exit:
878 return status;
881 /* This is used for reading the 64-bit statistics regs. */
882 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
884 int status = 0;
885 u32 hi = 0;
886 u32 lo = 0;
888 status = ql_read_xgmac_reg(qdev, reg, &lo);
889 if (status)
890 goto exit;
892 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
893 if (status)
894 goto exit;
896 *data = (u64) lo | ((u64) hi << 32);
898 exit:
899 return status;
902 static int ql_8000_port_initialize(struct ql_adapter *qdev)
904 int status;
906 * Get MPI firmware version for driver banner
907 * and ethool info.
909 status = ql_mb_about_fw(qdev);
910 if (status)
911 goto exit;
912 status = ql_mb_get_fw_state(qdev);
913 if (status)
914 goto exit;
915 /* Wake up a worker to get/set the TX/RX frame sizes. */
916 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
917 exit:
918 return status;
921 /* Take the MAC Core out of reset.
922 * Enable statistics counting.
923 * Take the transmitter/receiver out of reset.
924 * This functionality may be done in the MPI firmware at a
925 * later date.
927 static int ql_8012_port_initialize(struct ql_adapter *qdev)
929 int status = 0;
930 u32 data;
932 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
933 /* Another function has the semaphore, so
934 * wait for the port init bit to come ready.
936 QPRINTK(qdev, LINK, INFO,
937 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
938 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
939 if (status) {
940 QPRINTK(qdev, LINK, CRIT,
941 "Port initialize timed out.\n");
943 return status;
946 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
947 /* Set the core reset. */
948 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
949 if (status)
950 goto end;
951 data |= GLOBAL_CFG_RESET;
952 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
953 if (status)
954 goto end;
956 /* Clear the core reset and turn on jumbo for receiver. */
957 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
958 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
959 data |= GLOBAL_CFG_TX_STAT_EN;
960 data |= GLOBAL_CFG_RX_STAT_EN;
961 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
962 if (status)
963 goto end;
965 /* Enable transmitter, and clear it's reset. */
966 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
967 if (status)
968 goto end;
969 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
970 data |= TX_CFG_EN; /* Enable the transmitter. */
971 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
972 if (status)
973 goto end;
975 /* Enable receiver and clear it's reset. */
976 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
977 if (status)
978 goto end;
979 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
980 data |= RX_CFG_EN; /* Enable the receiver. */
981 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
982 if (status)
983 goto end;
985 /* Turn on jumbo. */
986 status =
987 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
988 if (status)
989 goto end;
990 status =
991 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
992 if (status)
993 goto end;
995 /* Signal to the world that the port is enabled. */
996 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
997 end:
998 ql_sem_unlock(qdev, qdev->xg_sem_mask);
999 return status;
1002 /* Get the next large buffer. */
1003 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1005 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1006 rx_ring->lbq_curr_idx++;
1007 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1008 rx_ring->lbq_curr_idx = 0;
1009 rx_ring->lbq_free_cnt++;
1010 return lbq_desc;
1013 /* Get the next small buffer. */
1014 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1016 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1017 rx_ring->sbq_curr_idx++;
1018 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1019 rx_ring->sbq_curr_idx = 0;
1020 rx_ring->sbq_free_cnt++;
1021 return sbq_desc;
1024 /* Update an rx ring index. */
1025 static void ql_update_cq(struct rx_ring *rx_ring)
1027 rx_ring->cnsmr_idx++;
1028 rx_ring->curr_entry++;
1029 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1030 rx_ring->cnsmr_idx = 0;
1031 rx_ring->curr_entry = rx_ring->cq_base;
1035 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1037 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1040 /* Process (refill) a large buffer queue. */
1041 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1043 u32 clean_idx = rx_ring->lbq_clean_idx;
1044 u32 start_idx = clean_idx;
1045 struct bq_desc *lbq_desc;
1046 u64 map;
1047 int i;
1049 while (rx_ring->lbq_free_cnt > 16) {
1050 for (i = 0; i < 16; i++) {
1051 QPRINTK(qdev, RX_STATUS, DEBUG,
1052 "lbq: try cleaning clean_idx = %d.\n",
1053 clean_idx);
1054 lbq_desc = &rx_ring->lbq[clean_idx];
1055 if (lbq_desc->p.lbq_page == NULL) {
1056 QPRINTK(qdev, RX_STATUS, DEBUG,
1057 "lbq: getting new page for index %d.\n",
1058 lbq_desc->index);
1059 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1060 if (lbq_desc->p.lbq_page == NULL) {
1061 rx_ring->lbq_clean_idx = clean_idx;
1062 QPRINTK(qdev, RX_STATUS, ERR,
1063 "Couldn't get a page.\n");
1064 return;
1066 map = pci_map_page(qdev->pdev,
1067 lbq_desc->p.lbq_page,
1068 0, PAGE_SIZE,
1069 PCI_DMA_FROMDEVICE);
1070 if (pci_dma_mapping_error(qdev->pdev, map)) {
1071 rx_ring->lbq_clean_idx = clean_idx;
1072 put_page(lbq_desc->p.lbq_page);
1073 lbq_desc->p.lbq_page = NULL;
1074 QPRINTK(qdev, RX_STATUS, ERR,
1075 "PCI mapping failed.\n");
1076 return;
1078 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1079 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1080 *lbq_desc->addr = cpu_to_le64(map);
1082 clean_idx++;
1083 if (clean_idx == rx_ring->lbq_len)
1084 clean_idx = 0;
1087 rx_ring->lbq_clean_idx = clean_idx;
1088 rx_ring->lbq_prod_idx += 16;
1089 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1090 rx_ring->lbq_prod_idx = 0;
1091 rx_ring->lbq_free_cnt -= 16;
1094 if (start_idx != clean_idx) {
1095 QPRINTK(qdev, RX_STATUS, DEBUG,
1096 "lbq: updating prod idx = %d.\n",
1097 rx_ring->lbq_prod_idx);
1098 ql_write_db_reg(rx_ring->lbq_prod_idx,
1099 rx_ring->lbq_prod_idx_db_reg);
1103 /* Process (refill) a small buffer queue. */
1104 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1106 u32 clean_idx = rx_ring->sbq_clean_idx;
1107 u32 start_idx = clean_idx;
1108 struct bq_desc *sbq_desc;
1109 u64 map;
1110 int i;
1112 while (rx_ring->sbq_free_cnt > 16) {
1113 for (i = 0; i < 16; i++) {
1114 sbq_desc = &rx_ring->sbq[clean_idx];
1115 QPRINTK(qdev, RX_STATUS, DEBUG,
1116 "sbq: try cleaning clean_idx = %d.\n",
1117 clean_idx);
1118 if (sbq_desc->p.skb == NULL) {
1119 QPRINTK(qdev, RX_STATUS, DEBUG,
1120 "sbq: getting new skb for index %d.\n",
1121 sbq_desc->index);
1122 sbq_desc->p.skb =
1123 netdev_alloc_skb(qdev->ndev,
1124 rx_ring->sbq_buf_size);
1125 if (sbq_desc->p.skb == NULL) {
1126 QPRINTK(qdev, PROBE, ERR,
1127 "Couldn't get an skb.\n");
1128 rx_ring->sbq_clean_idx = clean_idx;
1129 return;
1131 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1132 map = pci_map_single(qdev->pdev,
1133 sbq_desc->p.skb->data,
1134 rx_ring->sbq_buf_size /
1135 2, PCI_DMA_FROMDEVICE);
1136 if (pci_dma_mapping_error(qdev->pdev, map)) {
1137 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1138 rx_ring->sbq_clean_idx = clean_idx;
1139 dev_kfree_skb_any(sbq_desc->p.skb);
1140 sbq_desc->p.skb = NULL;
1141 return;
1143 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1144 pci_unmap_len_set(sbq_desc, maplen,
1145 rx_ring->sbq_buf_size / 2);
1146 *sbq_desc->addr = cpu_to_le64(map);
1149 clean_idx++;
1150 if (clean_idx == rx_ring->sbq_len)
1151 clean_idx = 0;
1153 rx_ring->sbq_clean_idx = clean_idx;
1154 rx_ring->sbq_prod_idx += 16;
1155 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1156 rx_ring->sbq_prod_idx = 0;
1157 rx_ring->sbq_free_cnt -= 16;
1160 if (start_idx != clean_idx) {
1161 QPRINTK(qdev, RX_STATUS, DEBUG,
1162 "sbq: updating prod idx = %d.\n",
1163 rx_ring->sbq_prod_idx);
1164 ql_write_db_reg(rx_ring->sbq_prod_idx,
1165 rx_ring->sbq_prod_idx_db_reg);
1169 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1170 struct rx_ring *rx_ring)
1172 ql_update_sbq(qdev, rx_ring);
1173 ql_update_lbq(qdev, rx_ring);
1176 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1177 * fails at some stage, or from the interrupt when a tx completes.
1179 static void ql_unmap_send(struct ql_adapter *qdev,
1180 struct tx_ring_desc *tx_ring_desc, int mapped)
1182 int i;
1183 for (i = 0; i < mapped; i++) {
1184 if (i == 0 || (i == 7 && mapped > 7)) {
1186 * Unmap the skb->data area, or the
1187 * external sglist (AKA the Outbound
1188 * Address List (OAL)).
1189 * If its the zeroeth element, then it's
1190 * the skb->data area. If it's the 7th
1191 * element and there is more than 6 frags,
1192 * then its an OAL.
1194 if (i == 7) {
1195 QPRINTK(qdev, TX_DONE, DEBUG,
1196 "unmapping OAL area.\n");
1198 pci_unmap_single(qdev->pdev,
1199 pci_unmap_addr(&tx_ring_desc->map[i],
1200 mapaddr),
1201 pci_unmap_len(&tx_ring_desc->map[i],
1202 maplen),
1203 PCI_DMA_TODEVICE);
1204 } else {
1205 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1207 pci_unmap_page(qdev->pdev,
1208 pci_unmap_addr(&tx_ring_desc->map[i],
1209 mapaddr),
1210 pci_unmap_len(&tx_ring_desc->map[i],
1211 maplen), PCI_DMA_TODEVICE);
1217 /* Map the buffers for this transmit. This will return
1218 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1220 static int ql_map_send(struct ql_adapter *qdev,
1221 struct ob_mac_iocb_req *mac_iocb_ptr,
1222 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1224 int len = skb_headlen(skb);
1225 dma_addr_t map;
1226 int frag_idx, err, map_idx = 0;
1227 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1228 int frag_cnt = skb_shinfo(skb)->nr_frags;
1230 if (frag_cnt) {
1231 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1234 * Map the skb buffer first.
1236 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1238 err = pci_dma_mapping_error(qdev->pdev, map);
1239 if (err) {
1240 QPRINTK(qdev, TX_QUEUED, ERR,
1241 "PCI mapping failed with error: %d\n", err);
1243 return NETDEV_TX_BUSY;
1246 tbd->len = cpu_to_le32(len);
1247 tbd->addr = cpu_to_le64(map);
1248 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1249 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1250 map_idx++;
1253 * This loop fills the remainder of the 8 address descriptors
1254 * in the IOCB. If there are more than 7 fragments, then the
1255 * eighth address desc will point to an external list (OAL).
1256 * When this happens, the remainder of the frags will be stored
1257 * in this list.
1259 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1260 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1261 tbd++;
1262 if (frag_idx == 6 && frag_cnt > 7) {
1263 /* Let's tack on an sglist.
1264 * Our control block will now
1265 * look like this:
1266 * iocb->seg[0] = skb->data
1267 * iocb->seg[1] = frag[0]
1268 * iocb->seg[2] = frag[1]
1269 * iocb->seg[3] = frag[2]
1270 * iocb->seg[4] = frag[3]
1271 * iocb->seg[5] = frag[4]
1272 * iocb->seg[6] = frag[5]
1273 * iocb->seg[7] = ptr to OAL (external sglist)
1274 * oal->seg[0] = frag[6]
1275 * oal->seg[1] = frag[7]
1276 * oal->seg[2] = frag[8]
1277 * oal->seg[3] = frag[9]
1278 * oal->seg[4] = frag[10]
1279 * etc...
1281 /* Tack on the OAL in the eighth segment of IOCB. */
1282 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1283 sizeof(struct oal),
1284 PCI_DMA_TODEVICE);
1285 err = pci_dma_mapping_error(qdev->pdev, map);
1286 if (err) {
1287 QPRINTK(qdev, TX_QUEUED, ERR,
1288 "PCI mapping outbound address list with error: %d\n",
1289 err);
1290 goto map_error;
1293 tbd->addr = cpu_to_le64(map);
1295 * The length is the number of fragments
1296 * that remain to be mapped times the length
1297 * of our sglist (OAL).
1299 tbd->len =
1300 cpu_to_le32((sizeof(struct tx_buf_desc) *
1301 (frag_cnt - frag_idx)) | TX_DESC_C);
1302 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1303 map);
1304 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1305 sizeof(struct oal));
1306 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1307 map_idx++;
1310 map =
1311 pci_map_page(qdev->pdev, frag->page,
1312 frag->page_offset, frag->size,
1313 PCI_DMA_TODEVICE);
1315 err = pci_dma_mapping_error(qdev->pdev, map);
1316 if (err) {
1317 QPRINTK(qdev, TX_QUEUED, ERR,
1318 "PCI mapping frags failed with error: %d.\n",
1319 err);
1320 goto map_error;
1323 tbd->addr = cpu_to_le64(map);
1324 tbd->len = cpu_to_le32(frag->size);
1325 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1326 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1327 frag->size);
1330 /* Save the number of segments we've mapped. */
1331 tx_ring_desc->map_cnt = map_idx;
1332 /* Terminate the last segment. */
1333 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1334 return NETDEV_TX_OK;
1336 map_error:
1338 * If the first frag mapping failed, then i will be zero.
1339 * This causes the unmap of the skb->data area. Otherwise
1340 * we pass in the number of frags that mapped successfully
1341 * so they can be umapped.
1343 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1344 return NETDEV_TX_BUSY;
1347 static void ql_realign_skb(struct sk_buff *skb, int len)
1349 void *temp_addr = skb->data;
1351 /* Undo the skb_reserve(skb,32) we did before
1352 * giving to hardware, and realign data on
1353 * a 2-byte boundary.
1355 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1356 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1357 skb_copy_to_linear_data(skb, temp_addr,
1358 (unsigned int)len);
1362 * This function builds an skb for the given inbound
1363 * completion. It will be rewritten for readability in the near
1364 * future, but for not it works well.
1366 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1367 struct rx_ring *rx_ring,
1368 struct ib_mac_iocb_rsp *ib_mac_rsp)
1370 struct bq_desc *lbq_desc;
1371 struct bq_desc *sbq_desc;
1372 struct sk_buff *skb = NULL;
1373 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1374 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1377 * Handle the header buffer if present.
1379 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1380 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1381 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1383 * Headers fit nicely into a small buffer.
1385 sbq_desc = ql_get_curr_sbuf(rx_ring);
1386 pci_unmap_single(qdev->pdev,
1387 pci_unmap_addr(sbq_desc, mapaddr),
1388 pci_unmap_len(sbq_desc, maplen),
1389 PCI_DMA_FROMDEVICE);
1390 skb = sbq_desc->p.skb;
1391 ql_realign_skb(skb, hdr_len);
1392 skb_put(skb, hdr_len);
1393 sbq_desc->p.skb = NULL;
1397 * Handle the data buffer(s).
1399 if (unlikely(!length)) { /* Is there data too? */
1400 QPRINTK(qdev, RX_STATUS, DEBUG,
1401 "No Data buffer in this packet.\n");
1402 return skb;
1405 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1406 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1407 QPRINTK(qdev, RX_STATUS, DEBUG,
1408 "Headers in small, data of %d bytes in small, combine them.\n", length);
1410 * Data is less than small buffer size so it's
1411 * stuffed in a small buffer.
1412 * For this case we append the data
1413 * from the "data" small buffer to the "header" small
1414 * buffer.
1416 sbq_desc = ql_get_curr_sbuf(rx_ring);
1417 pci_dma_sync_single_for_cpu(qdev->pdev,
1418 pci_unmap_addr
1419 (sbq_desc, mapaddr),
1420 pci_unmap_len
1421 (sbq_desc, maplen),
1422 PCI_DMA_FROMDEVICE);
1423 memcpy(skb_put(skb, length),
1424 sbq_desc->p.skb->data, length);
1425 pci_dma_sync_single_for_device(qdev->pdev,
1426 pci_unmap_addr
1427 (sbq_desc,
1428 mapaddr),
1429 pci_unmap_len
1430 (sbq_desc,
1431 maplen),
1432 PCI_DMA_FROMDEVICE);
1433 } else {
1434 QPRINTK(qdev, RX_STATUS, DEBUG,
1435 "%d bytes in a single small buffer.\n", length);
1436 sbq_desc = ql_get_curr_sbuf(rx_ring);
1437 skb = sbq_desc->p.skb;
1438 ql_realign_skb(skb, length);
1439 skb_put(skb, length);
1440 pci_unmap_single(qdev->pdev,
1441 pci_unmap_addr(sbq_desc,
1442 mapaddr),
1443 pci_unmap_len(sbq_desc,
1444 maplen),
1445 PCI_DMA_FROMDEVICE);
1446 sbq_desc->p.skb = NULL;
1448 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1449 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1450 QPRINTK(qdev, RX_STATUS, DEBUG,
1451 "Header in small, %d bytes in large. Chain large to small!\n", length);
1453 * The data is in a single large buffer. We
1454 * chain it to the header buffer's skb and let
1455 * it rip.
1457 lbq_desc = ql_get_curr_lbuf(rx_ring);
1458 pci_unmap_page(qdev->pdev,
1459 pci_unmap_addr(lbq_desc,
1460 mapaddr),
1461 pci_unmap_len(lbq_desc, maplen),
1462 PCI_DMA_FROMDEVICE);
1463 QPRINTK(qdev, RX_STATUS, DEBUG,
1464 "Chaining page to skb.\n");
1465 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1466 0, length);
1467 skb->len += length;
1468 skb->data_len += length;
1469 skb->truesize += length;
1470 lbq_desc->p.lbq_page = NULL;
1471 } else {
1473 * The headers and data are in a single large buffer. We
1474 * copy it to a new skb and let it go. This can happen with
1475 * jumbo mtu on a non-TCP/UDP frame.
1477 lbq_desc = ql_get_curr_lbuf(rx_ring);
1478 skb = netdev_alloc_skb(qdev->ndev, length);
1479 if (skb == NULL) {
1480 QPRINTK(qdev, PROBE, DEBUG,
1481 "No skb available, drop the packet.\n");
1482 return NULL;
1484 pci_unmap_page(qdev->pdev,
1485 pci_unmap_addr(lbq_desc,
1486 mapaddr),
1487 pci_unmap_len(lbq_desc, maplen),
1488 PCI_DMA_FROMDEVICE);
1489 skb_reserve(skb, NET_IP_ALIGN);
1490 QPRINTK(qdev, RX_STATUS, DEBUG,
1491 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1492 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1493 0, length);
1494 skb->len += length;
1495 skb->data_len += length;
1496 skb->truesize += length;
1497 length -= length;
1498 lbq_desc->p.lbq_page = NULL;
1499 __pskb_pull_tail(skb,
1500 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1501 VLAN_ETH_HLEN : ETH_HLEN);
1503 } else {
1505 * The data is in a chain of large buffers
1506 * pointed to by a small buffer. We loop
1507 * thru and chain them to the our small header
1508 * buffer's skb.
1509 * frags: There are 18 max frags and our small
1510 * buffer will hold 32 of them. The thing is,
1511 * we'll use 3 max for our 9000 byte jumbo
1512 * frames. If the MTU goes up we could
1513 * eventually be in trouble.
1515 int size, offset, i = 0;
1516 __le64 *bq, bq_array[8];
1517 sbq_desc = ql_get_curr_sbuf(rx_ring);
1518 pci_unmap_single(qdev->pdev,
1519 pci_unmap_addr(sbq_desc, mapaddr),
1520 pci_unmap_len(sbq_desc, maplen),
1521 PCI_DMA_FROMDEVICE);
1522 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1524 * This is an non TCP/UDP IP frame, so
1525 * the headers aren't split into a small
1526 * buffer. We have to use the small buffer
1527 * that contains our sg list as our skb to
1528 * send upstairs. Copy the sg list here to
1529 * a local buffer and use it to find the
1530 * pages to chain.
1532 QPRINTK(qdev, RX_STATUS, DEBUG,
1533 "%d bytes of headers & data in chain of large.\n", length);
1534 skb = sbq_desc->p.skb;
1535 bq = &bq_array[0];
1536 memcpy(bq, skb->data, sizeof(bq_array));
1537 sbq_desc->p.skb = NULL;
1538 skb_reserve(skb, NET_IP_ALIGN);
1539 } else {
1540 QPRINTK(qdev, RX_STATUS, DEBUG,
1541 "Headers in small, %d bytes of data in chain of large.\n", length);
1542 bq = (__le64 *)sbq_desc->p.skb->data;
1544 while (length > 0) {
1545 lbq_desc = ql_get_curr_lbuf(rx_ring);
1546 pci_unmap_page(qdev->pdev,
1547 pci_unmap_addr(lbq_desc,
1548 mapaddr),
1549 pci_unmap_len(lbq_desc,
1550 maplen),
1551 PCI_DMA_FROMDEVICE);
1552 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1553 offset = 0;
1555 QPRINTK(qdev, RX_STATUS, DEBUG,
1556 "Adding page %d to skb for %d bytes.\n",
1557 i, size);
1558 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1559 offset, size);
1560 skb->len += size;
1561 skb->data_len += size;
1562 skb->truesize += size;
1563 length -= size;
1564 lbq_desc->p.lbq_page = NULL;
1565 bq++;
1566 i++;
1568 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1569 VLAN_ETH_HLEN : ETH_HLEN);
1571 return skb;
1574 /* Process an inbound completion from an rx ring. */
1575 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1576 struct rx_ring *rx_ring,
1577 struct ib_mac_iocb_rsp *ib_mac_rsp)
1579 struct net_device *ndev = qdev->ndev;
1580 struct sk_buff *skb = NULL;
1581 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1582 IB_MAC_IOCB_RSP_VLAN_MASK)
1584 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1586 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1587 if (unlikely(!skb)) {
1588 QPRINTK(qdev, RX_STATUS, DEBUG,
1589 "No skb available, drop packet.\n");
1590 return;
1593 /* Frame error, so drop the packet. */
1594 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1595 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1596 ib_mac_rsp->flags2);
1597 dev_kfree_skb_any(skb);
1598 return;
1601 /* The max framesize filter on this chip is set higher than
1602 * MTU since FCoE uses 2k frames.
1604 if (skb->len > ndev->mtu + ETH_HLEN) {
1605 dev_kfree_skb_any(skb);
1606 return;
1609 prefetch(skb->data);
1610 skb->dev = ndev;
1611 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1612 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1613 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1614 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1615 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1616 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1617 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1618 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1620 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1621 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1624 skb->protocol = eth_type_trans(skb, ndev);
1625 skb->ip_summed = CHECKSUM_NONE;
1627 /* If rx checksum is on, and there are no
1628 * csum or frame errors.
1630 if (qdev->rx_csum &&
1631 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1632 /* TCP frame. */
1633 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1634 QPRINTK(qdev, RX_STATUS, DEBUG,
1635 "TCP checksum done!\n");
1636 skb->ip_summed = CHECKSUM_UNNECESSARY;
1637 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1638 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1639 /* Unfragmented ipv4 UDP frame. */
1640 struct iphdr *iph = (struct iphdr *) skb->data;
1641 if (!(iph->frag_off &
1642 cpu_to_be16(IP_MF|IP_OFFSET))) {
1643 skb->ip_summed = CHECKSUM_UNNECESSARY;
1644 QPRINTK(qdev, RX_STATUS, DEBUG,
1645 "TCP checksum done!\n");
1650 qdev->stats.rx_packets++;
1651 qdev->stats.rx_bytes += skb->len;
1652 skb_record_rx_queue(skb,
1653 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1654 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1655 if (qdev->vlgrp &&
1656 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1657 (vlan_id != 0))
1658 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1659 vlan_id, skb);
1660 else
1661 napi_gro_receive(&rx_ring->napi, skb);
1662 } else {
1663 if (qdev->vlgrp &&
1664 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1665 (vlan_id != 0))
1666 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1667 else
1668 netif_receive_skb(skb);
1672 /* Process an outbound completion from an rx ring. */
1673 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1674 struct ob_mac_iocb_rsp *mac_rsp)
1676 struct tx_ring *tx_ring;
1677 struct tx_ring_desc *tx_ring_desc;
1679 QL_DUMP_OB_MAC_RSP(mac_rsp);
1680 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1681 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1682 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1683 qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
1684 qdev->stats.tx_packets++;
1685 dev_kfree_skb(tx_ring_desc->skb);
1686 tx_ring_desc->skb = NULL;
1688 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1689 OB_MAC_IOCB_RSP_S |
1690 OB_MAC_IOCB_RSP_L |
1691 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1692 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1693 QPRINTK(qdev, TX_DONE, WARNING,
1694 "Total descriptor length did not match transfer length.\n");
1696 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1697 QPRINTK(qdev, TX_DONE, WARNING,
1698 "Frame too short to be legal, not sent.\n");
1700 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1701 QPRINTK(qdev, TX_DONE, WARNING,
1702 "Frame too long, but sent anyway.\n");
1704 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1705 QPRINTK(qdev, TX_DONE, WARNING,
1706 "PCI backplane error. Frame not sent.\n");
1709 atomic_inc(&tx_ring->tx_count);
1712 /* Fire up a handler to reset the MPI processor. */
1713 void ql_queue_fw_error(struct ql_adapter *qdev)
1715 ql_link_off(qdev);
1716 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1719 void ql_queue_asic_error(struct ql_adapter *qdev)
1721 ql_link_off(qdev);
1722 ql_disable_interrupts(qdev);
1723 /* Clear adapter up bit to signal the recovery
1724 * process that it shouldn't kill the reset worker
1725 * thread
1727 clear_bit(QL_ADAPTER_UP, &qdev->flags);
1728 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1731 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1732 struct ib_ae_iocb_rsp *ib_ae_rsp)
1734 switch (ib_ae_rsp->event) {
1735 case MGMT_ERR_EVENT:
1736 QPRINTK(qdev, RX_ERR, ERR,
1737 "Management Processor Fatal Error.\n");
1738 ql_queue_fw_error(qdev);
1739 return;
1741 case CAM_LOOKUP_ERR_EVENT:
1742 QPRINTK(qdev, LINK, ERR,
1743 "Multiple CAM hits lookup occurred.\n");
1744 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1745 ql_queue_asic_error(qdev);
1746 return;
1748 case SOFT_ECC_ERROR_EVENT:
1749 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1750 ql_queue_asic_error(qdev);
1751 break;
1753 case PCI_ERR_ANON_BUF_RD:
1754 QPRINTK(qdev, RX_ERR, ERR,
1755 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1756 ib_ae_rsp->q_id);
1757 ql_queue_asic_error(qdev);
1758 break;
1760 default:
1761 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1762 ib_ae_rsp->event);
1763 ql_queue_asic_error(qdev);
1764 break;
1768 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1770 struct ql_adapter *qdev = rx_ring->qdev;
1771 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1772 struct ob_mac_iocb_rsp *net_rsp = NULL;
1773 int count = 0;
1775 struct tx_ring *tx_ring;
1776 /* While there are entries in the completion queue. */
1777 while (prod != rx_ring->cnsmr_idx) {
1779 QPRINTK(qdev, RX_STATUS, DEBUG,
1780 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1781 prod, rx_ring->cnsmr_idx);
1783 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1784 rmb();
1785 switch (net_rsp->opcode) {
1787 case OPCODE_OB_MAC_TSO_IOCB:
1788 case OPCODE_OB_MAC_IOCB:
1789 ql_process_mac_tx_intr(qdev, net_rsp);
1790 break;
1791 default:
1792 QPRINTK(qdev, RX_STATUS, DEBUG,
1793 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1794 net_rsp->opcode);
1796 count++;
1797 ql_update_cq(rx_ring);
1798 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1800 ql_write_cq_idx(rx_ring);
1801 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1802 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1803 net_rsp != NULL) {
1804 if (atomic_read(&tx_ring->queue_stopped) &&
1805 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1807 * The queue got stopped because the tx_ring was full.
1808 * Wake it up, because it's now at least 25% empty.
1810 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1813 return count;
1816 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1818 struct ql_adapter *qdev = rx_ring->qdev;
1819 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1820 struct ql_net_rsp_iocb *net_rsp;
1821 int count = 0;
1823 /* While there are entries in the completion queue. */
1824 while (prod != rx_ring->cnsmr_idx) {
1826 QPRINTK(qdev, RX_STATUS, DEBUG,
1827 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1828 prod, rx_ring->cnsmr_idx);
1830 net_rsp = rx_ring->curr_entry;
1831 rmb();
1832 switch (net_rsp->opcode) {
1833 case OPCODE_IB_MAC_IOCB:
1834 ql_process_mac_rx_intr(qdev, rx_ring,
1835 (struct ib_mac_iocb_rsp *)
1836 net_rsp);
1837 break;
1839 case OPCODE_IB_AE_IOCB:
1840 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1841 net_rsp);
1842 break;
1843 default:
1845 QPRINTK(qdev, RX_STATUS, DEBUG,
1846 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1847 net_rsp->opcode);
1850 count++;
1851 ql_update_cq(rx_ring);
1852 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1853 if (count == budget)
1854 break;
1856 ql_update_buffer_queues(qdev, rx_ring);
1857 ql_write_cq_idx(rx_ring);
1858 return count;
1861 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1863 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1864 struct ql_adapter *qdev = rx_ring->qdev;
1865 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1867 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1868 rx_ring->cq_id);
1870 if (work_done < budget) {
1871 napi_complete(napi);
1872 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1874 return work_done;
1877 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1879 struct ql_adapter *qdev = netdev_priv(ndev);
1881 qdev->vlgrp = grp;
1882 if (grp) {
1883 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1884 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1885 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1886 } else {
1887 QPRINTK(qdev, IFUP, DEBUG,
1888 "Turning off VLAN in NIC_RCV_CFG.\n");
1889 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1893 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1895 struct ql_adapter *qdev = netdev_priv(ndev);
1896 u32 enable_bit = MAC_ADDR_E;
1897 int status;
1899 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1900 if (status)
1901 return;
1902 spin_lock(&qdev->hw_lock);
1903 if (ql_set_mac_addr_reg
1904 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1905 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1907 spin_unlock(&qdev->hw_lock);
1908 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1911 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1913 struct ql_adapter *qdev = netdev_priv(ndev);
1914 u32 enable_bit = 0;
1915 int status;
1917 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1918 if (status)
1919 return;
1921 spin_lock(&qdev->hw_lock);
1922 if (ql_set_mac_addr_reg
1923 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1924 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1926 spin_unlock(&qdev->hw_lock);
1927 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1931 /* Worker thread to process a given rx_ring that is dedicated
1932 * to outbound completions.
1934 static void ql_tx_clean(struct work_struct *work)
1936 struct rx_ring *rx_ring =
1937 container_of(work, struct rx_ring, rx_work.work);
1938 ql_clean_outbound_rx_ring(rx_ring);
1939 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1943 /* Worker thread to process a given rx_ring that is dedicated
1944 * to inbound completions.
1946 static void ql_rx_clean(struct work_struct *work)
1948 struct rx_ring *rx_ring =
1949 container_of(work, struct rx_ring, rx_work.work);
1950 ql_clean_inbound_rx_ring(rx_ring, 64);
1951 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1954 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1955 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1957 struct rx_ring *rx_ring = dev_id;
1958 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1959 &rx_ring->rx_work, 0);
1960 return IRQ_HANDLED;
1963 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1964 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1966 struct rx_ring *rx_ring = dev_id;
1967 napi_schedule(&rx_ring->napi);
1968 return IRQ_HANDLED;
1971 /* This handles a fatal error, MPI activity, and the default
1972 * rx_ring in an MSI-X multiple vector environment.
1973 * In MSI/Legacy environment it also process the rest of
1974 * the rx_rings.
1976 static irqreturn_t qlge_isr(int irq, void *dev_id)
1978 struct rx_ring *rx_ring = dev_id;
1979 struct ql_adapter *qdev = rx_ring->qdev;
1980 struct intr_context *intr_context = &qdev->intr_context[0];
1981 u32 var;
1982 int i;
1983 int work_done = 0;
1985 spin_lock(&qdev->hw_lock);
1986 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1987 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1988 spin_unlock(&qdev->hw_lock);
1989 return IRQ_NONE;
1991 spin_unlock(&qdev->hw_lock);
1993 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1996 * Check for fatal error.
1998 if (var & STS_FE) {
1999 ql_queue_asic_error(qdev);
2000 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
2001 var = ql_read32(qdev, ERR_STS);
2002 QPRINTK(qdev, INTR, ERR,
2003 "Resetting chip. Error Status Register = 0x%x\n", var);
2004 return IRQ_HANDLED;
2008 * Check MPI processor activity.
2010 if (var & STS_PI) {
2012 * We've got an async event or mailbox completion.
2013 * Handle it and clear the source of the interrupt.
2015 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2016 ql_disable_completion_interrupt(qdev, intr_context->intr);
2017 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
2018 &qdev->mpi_work, 0);
2019 work_done++;
2023 * Check the default queue and wake handler if active.
2025 rx_ring = &qdev->rx_ring[0];
2026 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
2027 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
2028 ql_disable_completion_interrupt(qdev, intr_context->intr);
2029 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
2030 &rx_ring->rx_work, 0);
2031 work_done++;
2034 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2036 * Start the DPC for each active queue.
2038 for (i = 1; i < qdev->rx_ring_count; i++) {
2039 rx_ring = &qdev->rx_ring[i];
2040 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2041 rx_ring->cnsmr_idx) {
2042 QPRINTK(qdev, INTR, INFO,
2043 "Waking handler for rx_ring[%d].\n", i);
2044 ql_disable_completion_interrupt(qdev,
2045 intr_context->
2046 intr);
2047 if (i < qdev->rss_ring_first_cq_id)
2048 queue_delayed_work_on(rx_ring->cpu,
2049 qdev->q_workqueue,
2050 &rx_ring->rx_work,
2052 else
2053 napi_schedule(&rx_ring->napi);
2054 work_done++;
2058 ql_enable_completion_interrupt(qdev, intr_context->intr);
2059 return work_done ? IRQ_HANDLED : IRQ_NONE;
2062 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2065 if (skb_is_gso(skb)) {
2066 int err;
2067 if (skb_header_cloned(skb)) {
2068 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2069 if (err)
2070 return err;
2073 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2074 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2075 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2076 mac_iocb_ptr->total_hdrs_len =
2077 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2078 mac_iocb_ptr->net_trans_offset =
2079 cpu_to_le16(skb_network_offset(skb) |
2080 skb_transport_offset(skb)
2081 << OB_MAC_TRANSPORT_HDR_SHIFT);
2082 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2083 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2084 if (likely(skb->protocol == htons(ETH_P_IP))) {
2085 struct iphdr *iph = ip_hdr(skb);
2086 iph->check = 0;
2087 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2088 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2089 iph->daddr, 0,
2090 IPPROTO_TCP,
2092 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2093 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2094 tcp_hdr(skb)->check =
2095 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2096 &ipv6_hdr(skb)->daddr,
2097 0, IPPROTO_TCP, 0);
2099 return 1;
2101 return 0;
2104 static void ql_hw_csum_setup(struct sk_buff *skb,
2105 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2107 int len;
2108 struct iphdr *iph = ip_hdr(skb);
2109 __sum16 *check;
2110 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2111 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2112 mac_iocb_ptr->net_trans_offset =
2113 cpu_to_le16(skb_network_offset(skb) |
2114 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2116 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2117 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2118 if (likely(iph->protocol == IPPROTO_TCP)) {
2119 check = &(tcp_hdr(skb)->check);
2120 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2121 mac_iocb_ptr->total_hdrs_len =
2122 cpu_to_le16(skb_transport_offset(skb) +
2123 (tcp_hdr(skb)->doff << 2));
2124 } else {
2125 check = &(udp_hdr(skb)->check);
2126 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2127 mac_iocb_ptr->total_hdrs_len =
2128 cpu_to_le16(skb_transport_offset(skb) +
2129 sizeof(struct udphdr));
2131 *check = ~csum_tcpudp_magic(iph->saddr,
2132 iph->daddr, len, iph->protocol, 0);
2135 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2137 struct tx_ring_desc *tx_ring_desc;
2138 struct ob_mac_iocb_req *mac_iocb_ptr;
2139 struct ql_adapter *qdev = netdev_priv(ndev);
2140 int tso;
2141 struct tx_ring *tx_ring;
2142 u32 tx_ring_idx = (u32) skb->queue_mapping;
2144 tx_ring = &qdev->tx_ring[tx_ring_idx];
2146 if (skb_padto(skb, ETH_ZLEN))
2147 return NETDEV_TX_OK;
2149 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2150 QPRINTK(qdev, TX_QUEUED, INFO,
2151 "%s: shutting down tx queue %d du to lack of resources.\n",
2152 __func__, tx_ring_idx);
2153 netif_stop_subqueue(ndev, tx_ring->wq_id);
2154 atomic_inc(&tx_ring->queue_stopped);
2155 return NETDEV_TX_BUSY;
2157 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2158 mac_iocb_ptr = tx_ring_desc->queue_entry;
2159 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2161 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2162 mac_iocb_ptr->tid = tx_ring_desc->index;
2163 /* We use the upper 32-bits to store the tx queue for this IO.
2164 * When we get the completion we can use it to establish the context.
2166 mac_iocb_ptr->txq_idx = tx_ring_idx;
2167 tx_ring_desc->skb = skb;
2169 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2171 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2172 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2173 vlan_tx_tag_get(skb));
2174 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2175 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2177 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2178 if (tso < 0) {
2179 dev_kfree_skb_any(skb);
2180 return NETDEV_TX_OK;
2181 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2182 ql_hw_csum_setup(skb,
2183 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2185 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2186 NETDEV_TX_OK) {
2187 QPRINTK(qdev, TX_QUEUED, ERR,
2188 "Could not map the segments.\n");
2189 return NETDEV_TX_BUSY;
2191 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2192 tx_ring->prod_idx++;
2193 if (tx_ring->prod_idx == tx_ring->wq_len)
2194 tx_ring->prod_idx = 0;
2195 wmb();
2197 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2198 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2199 tx_ring->prod_idx, skb->len);
2201 atomic_dec(&tx_ring->tx_count);
2202 return NETDEV_TX_OK;
2205 static void ql_free_shadow_space(struct ql_adapter *qdev)
2207 if (qdev->rx_ring_shadow_reg_area) {
2208 pci_free_consistent(qdev->pdev,
2209 PAGE_SIZE,
2210 qdev->rx_ring_shadow_reg_area,
2211 qdev->rx_ring_shadow_reg_dma);
2212 qdev->rx_ring_shadow_reg_area = NULL;
2214 if (qdev->tx_ring_shadow_reg_area) {
2215 pci_free_consistent(qdev->pdev,
2216 PAGE_SIZE,
2217 qdev->tx_ring_shadow_reg_area,
2218 qdev->tx_ring_shadow_reg_dma);
2219 qdev->tx_ring_shadow_reg_area = NULL;
2223 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2225 qdev->rx_ring_shadow_reg_area =
2226 pci_alloc_consistent(qdev->pdev,
2227 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2228 if (qdev->rx_ring_shadow_reg_area == NULL) {
2229 QPRINTK(qdev, IFUP, ERR,
2230 "Allocation of RX shadow space failed.\n");
2231 return -ENOMEM;
2233 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2234 qdev->tx_ring_shadow_reg_area =
2235 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2236 &qdev->tx_ring_shadow_reg_dma);
2237 if (qdev->tx_ring_shadow_reg_area == NULL) {
2238 QPRINTK(qdev, IFUP, ERR,
2239 "Allocation of TX shadow space failed.\n");
2240 goto err_wqp_sh_area;
2242 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2243 return 0;
2245 err_wqp_sh_area:
2246 pci_free_consistent(qdev->pdev,
2247 PAGE_SIZE,
2248 qdev->rx_ring_shadow_reg_area,
2249 qdev->rx_ring_shadow_reg_dma);
2250 return -ENOMEM;
2253 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2255 struct tx_ring_desc *tx_ring_desc;
2256 int i;
2257 struct ob_mac_iocb_req *mac_iocb_ptr;
2259 mac_iocb_ptr = tx_ring->wq_base;
2260 tx_ring_desc = tx_ring->q;
2261 for (i = 0; i < tx_ring->wq_len; i++) {
2262 tx_ring_desc->index = i;
2263 tx_ring_desc->skb = NULL;
2264 tx_ring_desc->queue_entry = mac_iocb_ptr;
2265 mac_iocb_ptr++;
2266 tx_ring_desc++;
2268 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2269 atomic_set(&tx_ring->queue_stopped, 0);
2272 static void ql_free_tx_resources(struct ql_adapter *qdev,
2273 struct tx_ring *tx_ring)
2275 if (tx_ring->wq_base) {
2276 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2277 tx_ring->wq_base, tx_ring->wq_base_dma);
2278 tx_ring->wq_base = NULL;
2280 kfree(tx_ring->q);
2281 tx_ring->q = NULL;
2284 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2285 struct tx_ring *tx_ring)
2287 tx_ring->wq_base =
2288 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2289 &tx_ring->wq_base_dma);
2291 if ((tx_ring->wq_base == NULL)
2292 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2293 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2294 return -ENOMEM;
2296 tx_ring->q =
2297 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2298 if (tx_ring->q == NULL)
2299 goto err;
2301 return 0;
2302 err:
2303 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2304 tx_ring->wq_base, tx_ring->wq_base_dma);
2305 return -ENOMEM;
2308 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2310 int i;
2311 struct bq_desc *lbq_desc;
2313 for (i = 0; i < rx_ring->lbq_len; i++) {
2314 lbq_desc = &rx_ring->lbq[i];
2315 if (lbq_desc->p.lbq_page) {
2316 pci_unmap_page(qdev->pdev,
2317 pci_unmap_addr(lbq_desc, mapaddr),
2318 pci_unmap_len(lbq_desc, maplen),
2319 PCI_DMA_FROMDEVICE);
2321 put_page(lbq_desc->p.lbq_page);
2322 lbq_desc->p.lbq_page = NULL;
2327 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2329 int i;
2330 struct bq_desc *sbq_desc;
2332 for (i = 0; i < rx_ring->sbq_len; i++) {
2333 sbq_desc = &rx_ring->sbq[i];
2334 if (sbq_desc == NULL) {
2335 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2336 return;
2338 if (sbq_desc->p.skb) {
2339 pci_unmap_single(qdev->pdev,
2340 pci_unmap_addr(sbq_desc, mapaddr),
2341 pci_unmap_len(sbq_desc, maplen),
2342 PCI_DMA_FROMDEVICE);
2343 dev_kfree_skb(sbq_desc->p.skb);
2344 sbq_desc->p.skb = NULL;
2349 /* Free all large and small rx buffers associated
2350 * with the completion queues for this device.
2352 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2354 int i;
2355 struct rx_ring *rx_ring;
2357 for (i = 0; i < qdev->rx_ring_count; i++) {
2358 rx_ring = &qdev->rx_ring[i];
2359 if (rx_ring->lbq)
2360 ql_free_lbq_buffers(qdev, rx_ring);
2361 if (rx_ring->sbq)
2362 ql_free_sbq_buffers(qdev, rx_ring);
2366 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2368 struct rx_ring *rx_ring;
2369 int i;
2371 for (i = 0; i < qdev->rx_ring_count; i++) {
2372 rx_ring = &qdev->rx_ring[i];
2373 if (rx_ring->type != TX_Q)
2374 ql_update_buffer_queues(qdev, rx_ring);
2378 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2379 struct rx_ring *rx_ring)
2381 int i;
2382 struct bq_desc *lbq_desc;
2383 __le64 *bq = rx_ring->lbq_base;
2385 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2386 for (i = 0; i < rx_ring->lbq_len; i++) {
2387 lbq_desc = &rx_ring->lbq[i];
2388 memset(lbq_desc, 0, sizeof(*lbq_desc));
2389 lbq_desc->index = i;
2390 lbq_desc->addr = bq;
2391 bq++;
2395 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2396 struct rx_ring *rx_ring)
2398 int i;
2399 struct bq_desc *sbq_desc;
2400 __le64 *bq = rx_ring->sbq_base;
2402 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2403 for (i = 0; i < rx_ring->sbq_len; i++) {
2404 sbq_desc = &rx_ring->sbq[i];
2405 memset(sbq_desc, 0, sizeof(*sbq_desc));
2406 sbq_desc->index = i;
2407 sbq_desc->addr = bq;
2408 bq++;
2412 static void ql_free_rx_resources(struct ql_adapter *qdev,
2413 struct rx_ring *rx_ring)
2415 /* Free the small buffer queue. */
2416 if (rx_ring->sbq_base) {
2417 pci_free_consistent(qdev->pdev,
2418 rx_ring->sbq_size,
2419 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2420 rx_ring->sbq_base = NULL;
2423 /* Free the small buffer queue control blocks. */
2424 kfree(rx_ring->sbq);
2425 rx_ring->sbq = NULL;
2427 /* Free the large buffer queue. */
2428 if (rx_ring->lbq_base) {
2429 pci_free_consistent(qdev->pdev,
2430 rx_ring->lbq_size,
2431 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2432 rx_ring->lbq_base = NULL;
2435 /* Free the large buffer queue control blocks. */
2436 kfree(rx_ring->lbq);
2437 rx_ring->lbq = NULL;
2439 /* Free the rx queue. */
2440 if (rx_ring->cq_base) {
2441 pci_free_consistent(qdev->pdev,
2442 rx_ring->cq_size,
2443 rx_ring->cq_base, rx_ring->cq_base_dma);
2444 rx_ring->cq_base = NULL;
2448 /* Allocate queues and buffers for this completions queue based
2449 * on the values in the parameter structure. */
2450 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2451 struct rx_ring *rx_ring)
2455 * Allocate the completion queue for this rx_ring.
2457 rx_ring->cq_base =
2458 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2459 &rx_ring->cq_base_dma);
2461 if (rx_ring->cq_base == NULL) {
2462 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2463 return -ENOMEM;
2466 if (rx_ring->sbq_len) {
2468 * Allocate small buffer queue.
2470 rx_ring->sbq_base =
2471 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2472 &rx_ring->sbq_base_dma);
2474 if (rx_ring->sbq_base == NULL) {
2475 QPRINTK(qdev, IFUP, ERR,
2476 "Small buffer queue allocation failed.\n");
2477 goto err_mem;
2481 * Allocate small buffer queue control blocks.
2483 rx_ring->sbq =
2484 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2485 GFP_KERNEL);
2486 if (rx_ring->sbq == NULL) {
2487 QPRINTK(qdev, IFUP, ERR,
2488 "Small buffer queue control block allocation failed.\n");
2489 goto err_mem;
2492 ql_init_sbq_ring(qdev, rx_ring);
2495 if (rx_ring->lbq_len) {
2497 * Allocate large buffer queue.
2499 rx_ring->lbq_base =
2500 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2501 &rx_ring->lbq_base_dma);
2503 if (rx_ring->lbq_base == NULL) {
2504 QPRINTK(qdev, IFUP, ERR,
2505 "Large buffer queue allocation failed.\n");
2506 goto err_mem;
2509 * Allocate large buffer queue control blocks.
2511 rx_ring->lbq =
2512 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2513 GFP_KERNEL);
2514 if (rx_ring->lbq == NULL) {
2515 QPRINTK(qdev, IFUP, ERR,
2516 "Large buffer queue control block allocation failed.\n");
2517 goto err_mem;
2520 ql_init_lbq_ring(qdev, rx_ring);
2523 return 0;
2525 err_mem:
2526 ql_free_rx_resources(qdev, rx_ring);
2527 return -ENOMEM;
2530 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2532 struct tx_ring *tx_ring;
2533 struct tx_ring_desc *tx_ring_desc;
2534 int i, j;
2537 * Loop through all queues and free
2538 * any resources.
2540 for (j = 0; j < qdev->tx_ring_count; j++) {
2541 tx_ring = &qdev->tx_ring[j];
2542 for (i = 0; i < tx_ring->wq_len; i++) {
2543 tx_ring_desc = &tx_ring->q[i];
2544 if (tx_ring_desc && tx_ring_desc->skb) {
2545 QPRINTK(qdev, IFDOWN, ERR,
2546 "Freeing lost SKB %p, from queue %d, index %d.\n",
2547 tx_ring_desc->skb, j,
2548 tx_ring_desc->index);
2549 ql_unmap_send(qdev, tx_ring_desc,
2550 tx_ring_desc->map_cnt);
2551 dev_kfree_skb(tx_ring_desc->skb);
2552 tx_ring_desc->skb = NULL;
2558 static void ql_free_mem_resources(struct ql_adapter *qdev)
2560 int i;
2562 for (i = 0; i < qdev->tx_ring_count; i++)
2563 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2564 for (i = 0; i < qdev->rx_ring_count; i++)
2565 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2566 ql_free_shadow_space(qdev);
2569 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2571 int i;
2573 /* Allocate space for our shadow registers and such. */
2574 if (ql_alloc_shadow_space(qdev))
2575 return -ENOMEM;
2577 for (i = 0; i < qdev->rx_ring_count; i++) {
2578 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2579 QPRINTK(qdev, IFUP, ERR,
2580 "RX resource allocation failed.\n");
2581 goto err_mem;
2584 /* Allocate tx queue resources */
2585 for (i = 0; i < qdev->tx_ring_count; i++) {
2586 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2587 QPRINTK(qdev, IFUP, ERR,
2588 "TX resource allocation failed.\n");
2589 goto err_mem;
2592 return 0;
2594 err_mem:
2595 ql_free_mem_resources(qdev);
2596 return -ENOMEM;
2599 /* Set up the rx ring control block and pass it to the chip.
2600 * The control block is defined as
2601 * "Completion Queue Initialization Control Block", or cqicb.
2603 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2605 struct cqicb *cqicb = &rx_ring->cqicb;
2606 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2607 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2608 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2609 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2610 void __iomem *doorbell_area =
2611 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2612 int err = 0;
2613 u16 bq_len;
2614 u64 tmp;
2615 __le64 *base_indirect_ptr;
2616 int page_entries;
2618 /* Set up the shadow registers for this ring. */
2619 rx_ring->prod_idx_sh_reg = shadow_reg;
2620 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2621 shadow_reg += sizeof(u64);
2622 shadow_reg_dma += sizeof(u64);
2623 rx_ring->lbq_base_indirect = shadow_reg;
2624 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2625 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2626 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2627 rx_ring->sbq_base_indirect = shadow_reg;
2628 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2630 /* PCI doorbell mem area + 0x00 for consumer index register */
2631 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2632 rx_ring->cnsmr_idx = 0;
2633 rx_ring->curr_entry = rx_ring->cq_base;
2635 /* PCI doorbell mem area + 0x04 for valid register */
2636 rx_ring->valid_db_reg = doorbell_area + 0x04;
2638 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2639 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2641 /* PCI doorbell mem area + 0x1c */
2642 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2644 memset((void *)cqicb, 0, sizeof(struct cqicb));
2645 cqicb->msix_vect = rx_ring->irq;
2647 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2648 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2650 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2652 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2655 * Set up the control block load flags.
2657 cqicb->flags = FLAGS_LC | /* Load queue base address */
2658 FLAGS_LV | /* Load MSI-X vector */
2659 FLAGS_LI; /* Load irq delay values */
2660 if (rx_ring->lbq_len) {
2661 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2662 tmp = (u64)rx_ring->lbq_base_dma;;
2663 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2664 page_entries = 0;
2665 do {
2666 *base_indirect_ptr = cpu_to_le64(tmp);
2667 tmp += DB_PAGE_SIZE;
2668 base_indirect_ptr++;
2669 page_entries++;
2670 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2671 cqicb->lbq_addr =
2672 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2673 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2674 (u16) rx_ring->lbq_buf_size;
2675 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2676 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2677 (u16) rx_ring->lbq_len;
2678 cqicb->lbq_len = cpu_to_le16(bq_len);
2679 rx_ring->lbq_prod_idx = 0;
2680 rx_ring->lbq_curr_idx = 0;
2681 rx_ring->lbq_clean_idx = 0;
2682 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2684 if (rx_ring->sbq_len) {
2685 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2686 tmp = (u64)rx_ring->sbq_base_dma;;
2687 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2688 page_entries = 0;
2689 do {
2690 *base_indirect_ptr = cpu_to_le64(tmp);
2691 tmp += DB_PAGE_SIZE;
2692 base_indirect_ptr++;
2693 page_entries++;
2694 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
2695 cqicb->sbq_addr =
2696 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2697 cqicb->sbq_buf_size =
2698 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2699 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2700 (u16) rx_ring->sbq_len;
2701 cqicb->sbq_len = cpu_to_le16(bq_len);
2702 rx_ring->sbq_prod_idx = 0;
2703 rx_ring->sbq_curr_idx = 0;
2704 rx_ring->sbq_clean_idx = 0;
2705 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2707 switch (rx_ring->type) {
2708 case TX_Q:
2709 /* If there's only one interrupt, then we use
2710 * worker threads to process the outbound
2711 * completion handling rx_rings. We do this so
2712 * they can be run on multiple CPUs. There is
2713 * room to play with this more where we would only
2714 * run in a worker if there are more than x number
2715 * of outbound completions on the queue and more
2716 * than one queue active. Some threshold that
2717 * would indicate a benefit in spite of the cost
2718 * of a context switch.
2719 * If there's more than one interrupt, then the
2720 * outbound completions are processed in the ISR.
2722 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2723 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2724 else {
2725 /* With all debug warnings on we see a WARN_ON message
2726 * when we free the skb in the interrupt context.
2728 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2730 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2731 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2732 break;
2733 case DEFAULT_Q:
2734 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2735 cqicb->irq_delay = 0;
2736 cqicb->pkt_delay = 0;
2737 break;
2738 case RX_Q:
2739 /* Inbound completion handling rx_rings run in
2740 * separate NAPI contexts.
2742 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2743 64);
2744 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2745 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2746 break;
2747 default:
2748 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2749 rx_ring->type);
2751 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2752 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2753 CFG_LCQ, rx_ring->cq_id);
2754 if (err) {
2755 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2756 return err;
2758 return err;
2761 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2763 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2764 void __iomem *doorbell_area =
2765 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2766 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2767 (tx_ring->wq_id * sizeof(u64));
2768 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2769 (tx_ring->wq_id * sizeof(u64));
2770 int err = 0;
2773 * Assign doorbell registers for this tx_ring.
2775 /* TX PCI doorbell mem area for tx producer index */
2776 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2777 tx_ring->prod_idx = 0;
2778 /* TX PCI doorbell mem area + 0x04 */
2779 tx_ring->valid_db_reg = doorbell_area + 0x04;
2782 * Assign shadow registers for this tx_ring.
2784 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2785 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2787 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2788 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2789 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2790 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2791 wqicb->rid = 0;
2792 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2794 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2796 ql_init_tx_ring(qdev, tx_ring);
2798 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
2799 (u16) tx_ring->wq_id);
2800 if (err) {
2801 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2802 return err;
2804 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2805 return err;
2808 static void ql_disable_msix(struct ql_adapter *qdev)
2810 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2811 pci_disable_msix(qdev->pdev);
2812 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2813 kfree(qdev->msi_x_entry);
2814 qdev->msi_x_entry = NULL;
2815 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2816 pci_disable_msi(qdev->pdev);
2817 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2821 static void ql_enable_msix(struct ql_adapter *qdev)
2823 int i;
2825 qdev->intr_count = 1;
2826 /* Get the MSIX vectors. */
2827 if (irq_type == MSIX_IRQ) {
2828 /* Try to alloc space for the msix struct,
2829 * if it fails then go to MSI/legacy.
2831 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2832 sizeof(struct msix_entry),
2833 GFP_KERNEL);
2834 if (!qdev->msi_x_entry) {
2835 irq_type = MSI_IRQ;
2836 goto msi;
2839 for (i = 0; i < qdev->rx_ring_count; i++)
2840 qdev->msi_x_entry[i].entry = i;
2842 if (!pci_enable_msix
2843 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2844 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2845 qdev->intr_count = qdev->rx_ring_count;
2846 QPRINTK(qdev, IFUP, DEBUG,
2847 "MSI-X Enabled, got %d vectors.\n",
2848 qdev->intr_count);
2849 return;
2850 } else {
2851 kfree(qdev->msi_x_entry);
2852 qdev->msi_x_entry = NULL;
2853 QPRINTK(qdev, IFUP, WARNING,
2854 "MSI-X Enable failed, trying MSI.\n");
2855 irq_type = MSI_IRQ;
2858 msi:
2859 if (irq_type == MSI_IRQ) {
2860 if (!pci_enable_msi(qdev->pdev)) {
2861 set_bit(QL_MSI_ENABLED, &qdev->flags);
2862 QPRINTK(qdev, IFUP, INFO,
2863 "Running with MSI interrupts.\n");
2864 return;
2867 irq_type = LEG_IRQ;
2868 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2872 * Here we build the intr_context structures based on
2873 * our rx_ring count and intr vector count.
2874 * The intr_context structure is used to hook each vector
2875 * to possibly different handlers.
2877 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2879 int i = 0;
2880 struct intr_context *intr_context = &qdev->intr_context[0];
2882 ql_enable_msix(qdev);
2884 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2885 /* Each rx_ring has it's
2886 * own intr_context since we have separate
2887 * vectors for each queue.
2888 * This only true when MSI-X is enabled.
2890 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2891 qdev->rx_ring[i].irq = i;
2892 intr_context->intr = i;
2893 intr_context->qdev = qdev;
2895 * We set up each vectors enable/disable/read bits so
2896 * there's no bit/mask calculations in the critical path.
2898 intr_context->intr_en_mask =
2899 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2900 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2901 | i;
2902 intr_context->intr_dis_mask =
2903 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2904 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2905 INTR_EN_IHD | i;
2906 intr_context->intr_read_mask =
2907 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2908 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2911 if (i == 0) {
2913 * Default queue handles bcast/mcast plus
2914 * async events. Needs buffers.
2916 intr_context->handler = qlge_isr;
2917 sprintf(intr_context->name, "%s-default-queue",
2918 qdev->ndev->name);
2919 } else if (i < qdev->rss_ring_first_cq_id) {
2921 * Outbound queue is for outbound completions only.
2923 intr_context->handler = qlge_msix_tx_isr;
2924 sprintf(intr_context->name, "%s-tx-%d",
2925 qdev->ndev->name, i);
2926 } else {
2928 * Inbound queues handle unicast frames only.
2930 intr_context->handler = qlge_msix_rx_isr;
2931 sprintf(intr_context->name, "%s-rx-%d",
2932 qdev->ndev->name, i);
2935 } else {
2937 * All rx_rings use the same intr_context since
2938 * there is only one vector.
2940 intr_context->intr = 0;
2941 intr_context->qdev = qdev;
2943 * We set up each vectors enable/disable/read bits so
2944 * there's no bit/mask calculations in the critical path.
2946 intr_context->intr_en_mask =
2947 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2948 intr_context->intr_dis_mask =
2949 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2950 INTR_EN_TYPE_DISABLE;
2951 intr_context->intr_read_mask =
2952 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2954 * Single interrupt means one handler for all rings.
2956 intr_context->handler = qlge_isr;
2957 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2958 for (i = 0; i < qdev->rx_ring_count; i++)
2959 qdev->rx_ring[i].irq = 0;
2963 static void ql_free_irq(struct ql_adapter *qdev)
2965 int i;
2966 struct intr_context *intr_context = &qdev->intr_context[0];
2968 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2969 if (intr_context->hooked) {
2970 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2971 free_irq(qdev->msi_x_entry[i].vector,
2972 &qdev->rx_ring[i]);
2973 QPRINTK(qdev, IFDOWN, DEBUG,
2974 "freeing msix interrupt %d.\n", i);
2975 } else {
2976 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2977 QPRINTK(qdev, IFDOWN, DEBUG,
2978 "freeing msi interrupt %d.\n", i);
2982 ql_disable_msix(qdev);
2985 static int ql_request_irq(struct ql_adapter *qdev)
2987 int i;
2988 int status = 0;
2989 struct pci_dev *pdev = qdev->pdev;
2990 struct intr_context *intr_context = &qdev->intr_context[0];
2992 ql_resolve_queues_to_irqs(qdev);
2994 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2995 atomic_set(&intr_context->irq_cnt, 0);
2996 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2997 status = request_irq(qdev->msi_x_entry[i].vector,
2998 intr_context->handler,
3000 intr_context->name,
3001 &qdev->rx_ring[i]);
3002 if (status) {
3003 QPRINTK(qdev, IFUP, ERR,
3004 "Failed request for MSIX interrupt %d.\n",
3006 goto err_irq;
3007 } else {
3008 QPRINTK(qdev, IFUP, DEBUG,
3009 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3011 qdev->rx_ring[i].type ==
3012 DEFAULT_Q ? "DEFAULT_Q" : "",
3013 qdev->rx_ring[i].type ==
3014 TX_Q ? "TX_Q" : "",
3015 qdev->rx_ring[i].type ==
3016 RX_Q ? "RX_Q" : "", intr_context->name);
3018 } else {
3019 QPRINTK(qdev, IFUP, DEBUG,
3020 "trying msi or legacy interrupts.\n");
3021 QPRINTK(qdev, IFUP, DEBUG,
3022 "%s: irq = %d.\n", __func__, pdev->irq);
3023 QPRINTK(qdev, IFUP, DEBUG,
3024 "%s: context->name = %s.\n", __func__,
3025 intr_context->name);
3026 QPRINTK(qdev, IFUP, DEBUG,
3027 "%s: dev_id = 0x%p.\n", __func__,
3028 &qdev->rx_ring[0]);
3029 status =
3030 request_irq(pdev->irq, qlge_isr,
3031 test_bit(QL_MSI_ENABLED,
3032 &qdev->
3033 flags) ? 0 : IRQF_SHARED,
3034 intr_context->name, &qdev->rx_ring[0]);
3035 if (status)
3036 goto err_irq;
3038 QPRINTK(qdev, IFUP, ERR,
3039 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3041 qdev->rx_ring[0].type ==
3042 DEFAULT_Q ? "DEFAULT_Q" : "",
3043 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
3044 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3045 intr_context->name);
3047 intr_context->hooked = 1;
3049 return status;
3050 err_irq:
3051 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3052 ql_free_irq(qdev);
3053 return status;
3056 static int ql_start_rss(struct ql_adapter *qdev)
3058 struct ricb *ricb = &qdev->ricb;
3059 int status = 0;
3060 int i;
3061 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3063 memset((void *)ricb, 0, sizeof(*ricb));
3065 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
3066 ricb->flags =
3067 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
3068 RSS_RT6);
3069 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
3072 * Fill out the Indirection Table.
3074 for (i = 0; i < 256; i++)
3075 hash_id[i] = i & (qdev->rss_ring_count - 1);
3078 * Random values for the IPv6 and IPv4 Hash Keys.
3080 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
3081 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
3083 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
3085 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3086 if (status) {
3087 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3088 return status;
3090 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
3091 return status;
3094 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3096 int i, status = 0;
3098 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3099 if (status)
3100 return status;
3101 /* Clear all the entries in the routing table. */
3102 for (i = 0; i < 16; i++) {
3103 status = ql_set_routing_reg(qdev, i, 0, 0);
3104 if (status) {
3105 QPRINTK(qdev, IFUP, ERR,
3106 "Failed to init routing register for CAM "
3107 "packets.\n");
3108 break;
3111 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3112 return status;
3115 /* Initialize the frame-to-queue routing. */
3116 static int ql_route_initialize(struct ql_adapter *qdev)
3118 int status = 0;
3120 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3121 if (status)
3122 return status;
3124 /* Clear all the entries in the routing table. */
3125 status = ql_clear_routing_entries(qdev);
3126 if (status)
3127 goto exit;
3129 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3130 if (status) {
3131 QPRINTK(qdev, IFUP, ERR,
3132 "Failed to init routing register for error packets.\n");
3133 goto exit;
3135 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3136 if (status) {
3137 QPRINTK(qdev, IFUP, ERR,
3138 "Failed to init routing register for broadcast packets.\n");
3139 goto exit;
3141 /* If we have more than one inbound queue, then turn on RSS in the
3142 * routing block.
3144 if (qdev->rss_ring_count > 1) {
3145 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3146 RT_IDX_RSS_MATCH, 1);
3147 if (status) {
3148 QPRINTK(qdev, IFUP, ERR,
3149 "Failed to init routing register for MATCH RSS packets.\n");
3150 goto exit;
3154 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3155 RT_IDX_CAM_HIT, 1);
3156 if (status)
3157 QPRINTK(qdev, IFUP, ERR,
3158 "Failed to init routing register for CAM packets.\n");
3159 exit:
3160 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3161 return status;
3164 int ql_cam_route_initialize(struct ql_adapter *qdev)
3166 int status, set;
3168 /* If check if the link is up and use to
3169 * determine if we are setting or clearing
3170 * the MAC address in the CAM.
3172 set = ql_read32(qdev, STS);
3173 set &= qdev->port_link_up;
3174 status = ql_set_mac_addr(qdev, set);
3175 if (status) {
3176 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3177 return status;
3180 status = ql_route_initialize(qdev);
3181 if (status)
3182 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3184 return status;
3187 static int ql_adapter_initialize(struct ql_adapter *qdev)
3189 u32 value, mask;
3190 int i;
3191 int status = 0;
3194 * Set up the System register to halt on errors.
3196 value = SYS_EFE | SYS_FAE;
3197 mask = value << 16;
3198 ql_write32(qdev, SYS, mask | value);
3200 /* Set the default queue, and VLAN behavior. */
3201 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3202 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3203 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3205 /* Set the MPI interrupt to enabled. */
3206 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3208 /* Enable the function, set pagesize, enable error checking. */
3209 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3210 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3212 /* Set/clear header splitting. */
3213 mask = FSC_VM_PAGESIZE_MASK |
3214 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3215 ql_write32(qdev, FSC, mask | value);
3217 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3218 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3220 /* Start up the rx queues. */
3221 for (i = 0; i < qdev->rx_ring_count; i++) {
3222 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3223 if (status) {
3224 QPRINTK(qdev, IFUP, ERR,
3225 "Failed to start rx ring[%d].\n", i);
3226 return status;
3230 /* If there is more than one inbound completion queue
3231 * then download a RICB to configure RSS.
3233 if (qdev->rss_ring_count > 1) {
3234 status = ql_start_rss(qdev);
3235 if (status) {
3236 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3237 return status;
3241 /* Start up the tx queues. */
3242 for (i = 0; i < qdev->tx_ring_count; i++) {
3243 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3244 if (status) {
3245 QPRINTK(qdev, IFUP, ERR,
3246 "Failed to start tx ring[%d].\n", i);
3247 return status;
3251 /* Initialize the port and set the max framesize. */
3252 status = qdev->nic_ops->port_initialize(qdev);
3253 if (status) {
3254 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3255 return status;
3258 /* Set up the MAC address and frame routing filter. */
3259 status = ql_cam_route_initialize(qdev);
3260 if (status) {
3261 QPRINTK(qdev, IFUP, ERR,
3262 "Failed to init CAM/Routing tables.\n");
3263 return status;
3266 /* Start NAPI for the RSS queues. */
3267 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3268 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3270 napi_enable(&qdev->rx_ring[i].napi);
3273 return status;
3276 /* Issue soft reset to chip. */
3277 static int ql_adapter_reset(struct ql_adapter *qdev)
3279 u32 value;
3280 int status = 0;
3281 unsigned long end_jiffies;
3283 /* Clear all the entries in the routing table. */
3284 status = ql_clear_routing_entries(qdev);
3285 if (status) {
3286 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3287 return status;
3290 end_jiffies = jiffies +
3291 max((unsigned long)1, usecs_to_jiffies(30));
3292 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3294 do {
3295 value = ql_read32(qdev, RST_FO);
3296 if ((value & RST_FO_FR) == 0)
3297 break;
3298 cpu_relax();
3299 } while (time_before(jiffies, end_jiffies));
3301 if (value & RST_FO_FR) {
3302 QPRINTK(qdev, IFDOWN, ERR,
3303 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3304 status = -ETIMEDOUT;
3307 return status;
3310 static void ql_display_dev_info(struct net_device *ndev)
3312 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3314 QPRINTK(qdev, PROBE, INFO,
3315 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3316 "XG Roll = %d, XG Rev = %d.\n",
3317 qdev->func,
3318 qdev->port,
3319 qdev->chip_rev_id & 0x0000000f,
3320 qdev->chip_rev_id >> 4 & 0x0000000f,
3321 qdev->chip_rev_id >> 8 & 0x0000000f,
3322 qdev->chip_rev_id >> 12 & 0x0000000f);
3323 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3326 static int ql_adapter_down(struct ql_adapter *qdev)
3328 int i, status = 0;
3329 struct rx_ring *rx_ring;
3331 ql_link_off(qdev);
3333 /* Don't kill the reset worker thread if we
3334 * are in the process of recovery.
3336 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3337 cancel_delayed_work_sync(&qdev->asic_reset_work);
3338 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3339 cancel_delayed_work_sync(&qdev->mpi_work);
3340 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3341 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3343 /* The default queue at index 0 is always processed in
3344 * a workqueue.
3346 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3348 /* The rest of the rx_rings are processed in
3349 * a workqueue only if it's a single interrupt
3350 * environment (MSI/Legacy).
3352 for (i = 1; i < qdev->rx_ring_count; i++) {
3353 rx_ring = &qdev->rx_ring[i];
3354 /* Only the RSS rings use NAPI on multi irq
3355 * environment. Outbound completion processing
3356 * is done in interrupt context.
3358 if (i >= qdev->rss_ring_first_cq_id) {
3359 napi_disable(&rx_ring->napi);
3360 } else {
3361 cancel_delayed_work_sync(&rx_ring->rx_work);
3365 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3367 ql_disable_interrupts(qdev);
3369 ql_tx_ring_clean(qdev);
3371 /* Call netif_napi_del() from common point.
3373 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3374 netif_napi_del(&qdev->rx_ring[i].napi);
3376 ql_free_rx_buffers(qdev);
3378 spin_lock(&qdev->hw_lock);
3379 status = ql_adapter_reset(qdev);
3380 if (status)
3381 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3382 qdev->func);
3383 spin_unlock(&qdev->hw_lock);
3384 return status;
3387 static int ql_adapter_up(struct ql_adapter *qdev)
3389 int err = 0;
3391 err = ql_adapter_initialize(qdev);
3392 if (err) {
3393 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3394 goto err_init;
3396 set_bit(QL_ADAPTER_UP, &qdev->flags);
3397 ql_alloc_rx_buffers(qdev);
3398 /* If the port is initialized and the
3399 * link is up the turn on the carrier.
3401 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3402 (ql_read32(qdev, STS) & qdev->port_link_up))
3403 ql_link_on(qdev);
3404 ql_enable_interrupts(qdev);
3405 ql_enable_all_completion_interrupts(qdev);
3406 netif_tx_start_all_queues(qdev->ndev);
3408 return 0;
3409 err_init:
3410 ql_adapter_reset(qdev);
3411 return err;
3414 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3416 ql_free_mem_resources(qdev);
3417 ql_free_irq(qdev);
3420 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3422 int status = 0;
3424 if (ql_alloc_mem_resources(qdev)) {
3425 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3426 return -ENOMEM;
3428 status = ql_request_irq(qdev);
3429 return status;
3432 static int qlge_close(struct net_device *ndev)
3434 struct ql_adapter *qdev = netdev_priv(ndev);
3437 * Wait for device to recover from a reset.
3438 * (Rarely happens, but possible.)
3440 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3441 msleep(1);
3442 ql_adapter_down(qdev);
3443 ql_release_adapter_resources(qdev);
3444 return 0;
3447 static int ql_configure_rings(struct ql_adapter *qdev)
3449 int i;
3450 struct rx_ring *rx_ring;
3451 struct tx_ring *tx_ring;
3452 int cpu_cnt = num_online_cpus();
3455 * For each processor present we allocate one
3456 * rx_ring for outbound completions, and one
3457 * rx_ring for inbound completions. Plus there is
3458 * always the one default queue. For the CPU
3459 * counts we end up with the following rx_rings:
3460 * rx_ring count =
3461 * one default queue +
3462 * (CPU count * outbound completion rx_ring) +
3463 * (CPU count * inbound (RSS) completion rx_ring)
3464 * To keep it simple we limit the total number of
3465 * queues to < 32, so we truncate CPU to 8.
3466 * This limitation can be removed when requested.
3469 if (cpu_cnt > MAX_CPUS)
3470 cpu_cnt = MAX_CPUS;
3473 * rx_ring[0] is always the default queue.
3475 /* Allocate outbound completion ring for each CPU. */
3476 qdev->tx_ring_count = cpu_cnt;
3477 /* Allocate inbound completion (RSS) ring for each CPU. */
3478 qdev->rss_ring_count = cpu_cnt;
3479 /* cq_id for the first inbound ring handler. */
3480 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3482 * qdev->rx_ring_count:
3483 * Total number of rx_rings. This includes the one
3484 * default queue, a number of outbound completion
3485 * handler rx_rings, and the number of inbound
3486 * completion handler rx_rings.
3488 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3490 for (i = 0; i < qdev->tx_ring_count; i++) {
3491 tx_ring = &qdev->tx_ring[i];
3492 memset((void *)tx_ring, 0, sizeof(*tx_ring));
3493 tx_ring->qdev = qdev;
3494 tx_ring->wq_id = i;
3495 tx_ring->wq_len = qdev->tx_ring_size;
3496 tx_ring->wq_size =
3497 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3500 * The completion queue ID for the tx rings start
3501 * immediately after the default Q ID, which is zero.
3503 tx_ring->cq_id = i + 1;
3506 for (i = 0; i < qdev->rx_ring_count; i++) {
3507 rx_ring = &qdev->rx_ring[i];
3508 memset((void *)rx_ring, 0, sizeof(*rx_ring));
3509 rx_ring->qdev = qdev;
3510 rx_ring->cq_id = i;
3511 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3512 if (i == 0) { /* Default queue at index 0. */
3514 * Default queue handles bcast/mcast plus
3515 * async events. Needs buffers.
3517 rx_ring->cq_len = qdev->rx_ring_size;
3518 rx_ring->cq_size =
3519 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3520 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3521 rx_ring->lbq_size =
3522 rx_ring->lbq_len * sizeof(__le64);
3523 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3524 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3525 rx_ring->sbq_size =
3526 rx_ring->sbq_len * sizeof(__le64);
3527 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3528 rx_ring->type = DEFAULT_Q;
3529 } else if (i < qdev->rss_ring_first_cq_id) {
3531 * Outbound queue handles outbound completions only.
3533 /* outbound cq is same size as tx_ring it services. */
3534 rx_ring->cq_len = qdev->tx_ring_size;
3535 rx_ring->cq_size =
3536 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3537 rx_ring->lbq_len = 0;
3538 rx_ring->lbq_size = 0;
3539 rx_ring->lbq_buf_size = 0;
3540 rx_ring->sbq_len = 0;
3541 rx_ring->sbq_size = 0;
3542 rx_ring->sbq_buf_size = 0;
3543 rx_ring->type = TX_Q;
3544 } else { /* Inbound completions (RSS) queues */
3546 * Inbound queues handle unicast frames only.
3548 rx_ring->cq_len = qdev->rx_ring_size;
3549 rx_ring->cq_size =
3550 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3551 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3552 rx_ring->lbq_size =
3553 rx_ring->lbq_len * sizeof(__le64);
3554 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3555 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3556 rx_ring->sbq_size =
3557 rx_ring->sbq_len * sizeof(__le64);
3558 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3559 rx_ring->type = RX_Q;
3562 return 0;
3565 static int qlge_open(struct net_device *ndev)
3567 int err = 0;
3568 struct ql_adapter *qdev = netdev_priv(ndev);
3570 err = ql_configure_rings(qdev);
3571 if (err)
3572 return err;
3574 err = ql_get_adapter_resources(qdev);
3575 if (err)
3576 goto error_up;
3578 err = ql_adapter_up(qdev);
3579 if (err)
3580 goto error_up;
3582 return err;
3584 error_up:
3585 ql_release_adapter_resources(qdev);
3586 return err;
3589 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3591 struct ql_adapter *qdev = netdev_priv(ndev);
3593 if (ndev->mtu == 1500 && new_mtu == 9000) {
3594 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3595 queue_delayed_work(qdev->workqueue,
3596 &qdev->mpi_port_cfg_work, 0);
3597 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3598 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3599 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3600 (ndev->mtu == 9000 && new_mtu == 9000)) {
3601 return 0;
3602 } else
3603 return -EINVAL;
3604 ndev->mtu = new_mtu;
3605 return 0;
3608 static struct net_device_stats *qlge_get_stats(struct net_device
3609 *ndev)
3611 struct ql_adapter *qdev = netdev_priv(ndev);
3612 return &qdev->stats;
3615 static void qlge_set_multicast_list(struct net_device *ndev)
3617 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3618 struct dev_mc_list *mc_ptr;
3619 int i, status;
3621 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3622 if (status)
3623 return;
3624 spin_lock(&qdev->hw_lock);
3626 * Set or clear promiscuous mode if a
3627 * transition is taking place.
3629 if (ndev->flags & IFF_PROMISC) {
3630 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3631 if (ql_set_routing_reg
3632 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3633 QPRINTK(qdev, HW, ERR,
3634 "Failed to set promiscous mode.\n");
3635 } else {
3636 set_bit(QL_PROMISCUOUS, &qdev->flags);
3639 } else {
3640 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3641 if (ql_set_routing_reg
3642 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3643 QPRINTK(qdev, HW, ERR,
3644 "Failed to clear promiscous mode.\n");
3645 } else {
3646 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3652 * Set or clear all multicast mode if a
3653 * transition is taking place.
3655 if ((ndev->flags & IFF_ALLMULTI) ||
3656 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3657 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3658 if (ql_set_routing_reg
3659 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3660 QPRINTK(qdev, HW, ERR,
3661 "Failed to set all-multi mode.\n");
3662 } else {
3663 set_bit(QL_ALLMULTI, &qdev->flags);
3666 } else {
3667 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3668 if (ql_set_routing_reg
3669 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3670 QPRINTK(qdev, HW, ERR,
3671 "Failed to clear all-multi mode.\n");
3672 } else {
3673 clear_bit(QL_ALLMULTI, &qdev->flags);
3678 if (ndev->mc_count) {
3679 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3680 if (status)
3681 goto exit;
3682 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3683 i++, mc_ptr = mc_ptr->next)
3684 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3685 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3686 QPRINTK(qdev, HW, ERR,
3687 "Failed to loadmulticast address.\n");
3688 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3689 goto exit;
3691 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3692 if (ql_set_routing_reg
3693 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3694 QPRINTK(qdev, HW, ERR,
3695 "Failed to set multicast match mode.\n");
3696 } else {
3697 set_bit(QL_ALLMULTI, &qdev->flags);
3700 exit:
3701 spin_unlock(&qdev->hw_lock);
3702 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3705 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3707 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3708 struct sockaddr *addr = p;
3709 int status;
3711 if (netif_running(ndev))
3712 return -EBUSY;
3714 if (!is_valid_ether_addr(addr->sa_data))
3715 return -EADDRNOTAVAIL;
3716 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3718 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3719 if (status)
3720 return status;
3721 spin_lock(&qdev->hw_lock);
3722 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3723 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3724 spin_unlock(&qdev->hw_lock);
3725 if (status)
3726 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3727 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3728 return status;
3731 static void qlge_tx_timeout(struct net_device *ndev)
3733 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3734 ql_queue_asic_error(qdev);
3737 static void ql_asic_reset_work(struct work_struct *work)
3739 struct ql_adapter *qdev =
3740 container_of(work, struct ql_adapter, asic_reset_work.work);
3741 int status;
3743 status = ql_adapter_down(qdev);
3744 if (status)
3745 goto error;
3747 status = ql_adapter_up(qdev);
3748 if (status)
3749 goto error;
3751 return;
3752 error:
3753 QPRINTK(qdev, IFUP, ALERT,
3754 "Driver up/down cycle failed, closing device\n");
3755 rtnl_lock();
3756 set_bit(QL_ADAPTER_UP, &qdev->flags);
3757 dev_close(qdev->ndev);
3758 rtnl_unlock();
3761 static struct nic_operations qla8012_nic_ops = {
3762 .get_flash = ql_get_8012_flash_params,
3763 .port_initialize = ql_8012_port_initialize,
3766 static struct nic_operations qla8000_nic_ops = {
3767 .get_flash = ql_get_8000_flash_params,
3768 .port_initialize = ql_8000_port_initialize,
3771 /* Find the pcie function number for the other NIC
3772 * on this chip. Since both NIC functions share a
3773 * common firmware we have the lowest enabled function
3774 * do any common work. Examples would be resetting
3775 * after a fatal firmware error, or doing a firmware
3776 * coredump.
3778 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3780 int status = 0;
3781 u32 temp;
3782 u32 nic_func1, nic_func2;
3784 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3785 &temp);
3786 if (status)
3787 return status;
3789 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3790 MPI_TEST_NIC_FUNC_MASK);
3791 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3792 MPI_TEST_NIC_FUNC_MASK);
3794 if (qdev->func == nic_func1)
3795 qdev->alt_func = nic_func2;
3796 else if (qdev->func == nic_func2)
3797 qdev->alt_func = nic_func1;
3798 else
3799 status = -EIO;
3801 return status;
3804 static int ql_get_board_info(struct ql_adapter *qdev)
3806 int status;
3807 qdev->func =
3808 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3809 if (qdev->func > 3)
3810 return -EIO;
3812 status = ql_get_alt_pcie_func(qdev);
3813 if (status)
3814 return status;
3816 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3817 if (qdev->port) {
3818 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3819 qdev->port_link_up = STS_PL1;
3820 qdev->port_init = STS_PI1;
3821 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3822 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3823 } else {
3824 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3825 qdev->port_link_up = STS_PL0;
3826 qdev->port_init = STS_PI0;
3827 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3828 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3830 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3831 qdev->device_id = qdev->pdev->device;
3832 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3833 qdev->nic_ops = &qla8012_nic_ops;
3834 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3835 qdev->nic_ops = &qla8000_nic_ops;
3836 return status;
3839 static void ql_release_all(struct pci_dev *pdev)
3841 struct net_device *ndev = pci_get_drvdata(pdev);
3842 struct ql_adapter *qdev = netdev_priv(ndev);
3844 if (qdev->workqueue) {
3845 destroy_workqueue(qdev->workqueue);
3846 qdev->workqueue = NULL;
3848 if (qdev->q_workqueue) {
3849 destroy_workqueue(qdev->q_workqueue);
3850 qdev->q_workqueue = NULL;
3852 if (qdev->reg_base)
3853 iounmap(qdev->reg_base);
3854 if (qdev->doorbell_area)
3855 iounmap(qdev->doorbell_area);
3856 pci_release_regions(pdev);
3857 pci_set_drvdata(pdev, NULL);
3860 static int __devinit ql_init_device(struct pci_dev *pdev,
3861 struct net_device *ndev, int cards_found)
3863 struct ql_adapter *qdev = netdev_priv(ndev);
3864 int pos, err = 0;
3865 u16 val16;
3867 memset((void *)qdev, 0, sizeof(*qdev));
3868 err = pci_enable_device(pdev);
3869 if (err) {
3870 dev_err(&pdev->dev, "PCI device enable failed.\n");
3871 return err;
3874 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3875 if (pos <= 0) {
3876 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3877 "aborting.\n");
3878 goto err_out;
3879 } else {
3880 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3881 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3882 val16 |= (PCI_EXP_DEVCTL_CERE |
3883 PCI_EXP_DEVCTL_NFERE |
3884 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3885 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3888 err = pci_request_regions(pdev, DRV_NAME);
3889 if (err) {
3890 dev_err(&pdev->dev, "PCI region request failed.\n");
3891 goto err_out;
3894 pci_set_master(pdev);
3895 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3896 set_bit(QL_DMA64, &qdev->flags);
3897 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3898 } else {
3899 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3900 if (!err)
3901 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3904 if (err) {
3905 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3906 goto err_out;
3909 pci_set_drvdata(pdev, ndev);
3910 qdev->reg_base =
3911 ioremap_nocache(pci_resource_start(pdev, 1),
3912 pci_resource_len(pdev, 1));
3913 if (!qdev->reg_base) {
3914 dev_err(&pdev->dev, "Register mapping failed.\n");
3915 err = -ENOMEM;
3916 goto err_out;
3919 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3920 qdev->doorbell_area =
3921 ioremap_nocache(pci_resource_start(pdev, 3),
3922 pci_resource_len(pdev, 3));
3923 if (!qdev->doorbell_area) {
3924 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3925 err = -ENOMEM;
3926 goto err_out;
3929 qdev->ndev = ndev;
3930 qdev->pdev = pdev;
3931 err = ql_get_board_info(qdev);
3932 if (err) {
3933 dev_err(&pdev->dev, "Register access failed.\n");
3934 err = -EIO;
3935 goto err_out;
3937 qdev->msg_enable = netif_msg_init(debug, default_msg);
3938 spin_lock_init(&qdev->hw_lock);
3939 spin_lock_init(&qdev->stats_lock);
3941 /* make sure the EEPROM is good */
3942 err = qdev->nic_ops->get_flash(qdev);
3943 if (err) {
3944 dev_err(&pdev->dev, "Invalid FLASH.\n");
3945 goto err_out;
3948 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3950 /* Set up the default ring sizes. */
3951 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3952 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3954 /* Set up the coalescing parameters. */
3955 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3956 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3957 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3958 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3961 * Set up the operating parameters.
3963 qdev->rx_csum = 1;
3965 qdev->q_workqueue = create_workqueue(ndev->name);
3966 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3967 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3968 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3969 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3970 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3971 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3972 mutex_init(&qdev->mpi_mutex);
3973 init_completion(&qdev->ide_completion);
3975 if (!cards_found) {
3976 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3977 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3978 DRV_NAME, DRV_VERSION);
3980 return 0;
3981 err_out:
3982 ql_release_all(pdev);
3983 pci_disable_device(pdev);
3984 return err;
3988 static const struct net_device_ops qlge_netdev_ops = {
3989 .ndo_open = qlge_open,
3990 .ndo_stop = qlge_close,
3991 .ndo_start_xmit = qlge_send,
3992 .ndo_change_mtu = qlge_change_mtu,
3993 .ndo_get_stats = qlge_get_stats,
3994 .ndo_set_multicast_list = qlge_set_multicast_list,
3995 .ndo_set_mac_address = qlge_set_mac_address,
3996 .ndo_validate_addr = eth_validate_addr,
3997 .ndo_tx_timeout = qlge_tx_timeout,
3998 .ndo_vlan_rx_register = ql_vlan_rx_register,
3999 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
4000 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
4003 static int __devinit qlge_probe(struct pci_dev *pdev,
4004 const struct pci_device_id *pci_entry)
4006 struct net_device *ndev = NULL;
4007 struct ql_adapter *qdev = NULL;
4008 static int cards_found = 0;
4009 int err = 0;
4011 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4012 min(MAX_CPUS, (int)num_online_cpus()));
4013 if (!ndev)
4014 return -ENOMEM;
4016 err = ql_init_device(pdev, ndev, cards_found);
4017 if (err < 0) {
4018 free_netdev(ndev);
4019 return err;
4022 qdev = netdev_priv(ndev);
4023 SET_NETDEV_DEV(ndev, &pdev->dev);
4024 ndev->features = (0
4025 | NETIF_F_IP_CSUM
4026 | NETIF_F_SG
4027 | NETIF_F_TSO
4028 | NETIF_F_TSO6
4029 | NETIF_F_TSO_ECN
4030 | NETIF_F_HW_VLAN_TX
4031 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
4032 ndev->features |= NETIF_F_GRO;
4034 if (test_bit(QL_DMA64, &qdev->flags))
4035 ndev->features |= NETIF_F_HIGHDMA;
4038 * Set up net_device structure.
4040 ndev->tx_queue_len = qdev->tx_ring_size;
4041 ndev->irq = pdev->irq;
4043 ndev->netdev_ops = &qlge_netdev_ops;
4044 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4045 ndev->watchdog_timeo = 10 * HZ;
4047 err = register_netdev(ndev);
4048 if (err) {
4049 dev_err(&pdev->dev, "net device registration failed.\n");
4050 ql_release_all(pdev);
4051 pci_disable_device(pdev);
4052 return err;
4054 ql_link_off(qdev);
4055 ql_display_dev_info(ndev);
4056 cards_found++;
4057 return 0;
4060 static void __devexit qlge_remove(struct pci_dev *pdev)
4062 struct net_device *ndev = pci_get_drvdata(pdev);
4063 unregister_netdev(ndev);
4064 ql_release_all(pdev);
4065 pci_disable_device(pdev);
4066 free_netdev(ndev);
4070 * This callback is called by the PCI subsystem whenever
4071 * a PCI bus error is detected.
4073 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4074 enum pci_channel_state state)
4076 struct net_device *ndev = pci_get_drvdata(pdev);
4077 struct ql_adapter *qdev = netdev_priv(ndev);
4079 if (netif_running(ndev))
4080 ql_adapter_down(qdev);
4082 pci_disable_device(pdev);
4084 /* Request a slot reset. */
4085 return PCI_ERS_RESULT_NEED_RESET;
4089 * This callback is called after the PCI buss has been reset.
4090 * Basically, this tries to restart the card from scratch.
4091 * This is a shortened version of the device probe/discovery code,
4092 * it resembles the first-half of the () routine.
4094 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4096 struct net_device *ndev = pci_get_drvdata(pdev);
4097 struct ql_adapter *qdev = netdev_priv(ndev);
4099 if (pci_enable_device(pdev)) {
4100 QPRINTK(qdev, IFUP, ERR,
4101 "Cannot re-enable PCI device after reset.\n");
4102 return PCI_ERS_RESULT_DISCONNECT;
4105 pci_set_master(pdev);
4107 netif_carrier_off(ndev);
4108 ql_adapter_reset(qdev);
4110 /* Make sure the EEPROM is good */
4111 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4113 if (!is_valid_ether_addr(ndev->perm_addr)) {
4114 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4115 return PCI_ERS_RESULT_DISCONNECT;
4118 return PCI_ERS_RESULT_RECOVERED;
4121 static void qlge_io_resume(struct pci_dev *pdev)
4123 struct net_device *ndev = pci_get_drvdata(pdev);
4124 struct ql_adapter *qdev = netdev_priv(ndev);
4126 pci_set_master(pdev);
4128 if (netif_running(ndev)) {
4129 if (ql_adapter_up(qdev)) {
4130 QPRINTK(qdev, IFUP, ERR,
4131 "Device initialization failed after reset.\n");
4132 return;
4136 netif_device_attach(ndev);
4139 static struct pci_error_handlers qlge_err_handler = {
4140 .error_detected = qlge_io_error_detected,
4141 .slot_reset = qlge_io_slot_reset,
4142 .resume = qlge_io_resume,
4145 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4147 struct net_device *ndev = pci_get_drvdata(pdev);
4148 struct ql_adapter *qdev = netdev_priv(ndev);
4149 int err;
4151 netif_device_detach(ndev);
4153 if (netif_running(ndev)) {
4154 err = ql_adapter_down(qdev);
4155 if (!err)
4156 return err;
4159 err = pci_save_state(pdev);
4160 if (err)
4161 return err;
4163 pci_disable_device(pdev);
4165 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4167 return 0;
4170 #ifdef CONFIG_PM
4171 static int qlge_resume(struct pci_dev *pdev)
4173 struct net_device *ndev = pci_get_drvdata(pdev);
4174 struct ql_adapter *qdev = netdev_priv(ndev);
4175 int err;
4177 pci_set_power_state(pdev, PCI_D0);
4178 pci_restore_state(pdev);
4179 err = pci_enable_device(pdev);
4180 if (err) {
4181 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4182 return err;
4184 pci_set_master(pdev);
4186 pci_enable_wake(pdev, PCI_D3hot, 0);
4187 pci_enable_wake(pdev, PCI_D3cold, 0);
4189 if (netif_running(ndev)) {
4190 err = ql_adapter_up(qdev);
4191 if (err)
4192 return err;
4195 netif_device_attach(ndev);
4197 return 0;
4199 #endif /* CONFIG_PM */
4201 static void qlge_shutdown(struct pci_dev *pdev)
4203 qlge_suspend(pdev, PMSG_SUSPEND);
4206 static struct pci_driver qlge_driver = {
4207 .name = DRV_NAME,
4208 .id_table = qlge_pci_tbl,
4209 .probe = qlge_probe,
4210 .remove = __devexit_p(qlge_remove),
4211 #ifdef CONFIG_PM
4212 .suspend = qlge_suspend,
4213 .resume = qlge_resume,
4214 #endif
4215 .shutdown = qlge_shutdown,
4216 .err_handler = &qlge_err_handler
4219 static int __init qlge_init_module(void)
4221 return pci_register_driver(&qlge_driver);
4224 static void __exit qlge_exit(void)
4226 pci_unregister_driver(&qlge_driver);
4229 module_init(qlge_init_module);
4230 module_exit(qlge_exit);