1 #include <linux/ceph/ceph_debug.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
11 #include "mds_client.h"
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
20 * A cluster of MDS (metadata server) daemons is responsible for
21 * managing the file system namespace (the directory hierarchy and
22 * inodes) and for coordinating shared access to storage. Metadata is
23 * partitioning hierarchically across a number of servers, and that
24 * partition varies over time as the cluster adjusts the distribution
25 * in order to balance load.
27 * The MDS client is primarily responsible to managing synchronous
28 * metadata requests for operations like open, unlink, and so forth.
29 * If there is a MDS failure, we find out about it when we (possibly
30 * request and) receive a new MDS map, and can resubmit affected
33 * For the most part, though, we take advantage of a lossless
34 * communications channel to the MDS, and do not need to worry about
35 * timing out or resubmitting requests.
37 * We maintain a stateful "session" with each MDS we interact with.
38 * Within each session, we sent periodic heartbeat messages to ensure
39 * any capabilities or leases we have been issues remain valid. If
40 * the session times out and goes stale, our leases and capabilities
41 * are no longer valid.
44 struct ceph_reconnect_state
{
45 struct ceph_pagelist
*pagelist
;
49 static void __wake_requests(struct ceph_mds_client
*mdsc
,
50 struct list_head
*head
);
52 static const struct ceph_connection_operations mds_con_ops
;
60 * parse individual inode info
62 static int parse_reply_info_in(void **p
, void *end
,
63 struct ceph_mds_reply_info_in
*info
,
69 *p
+= sizeof(struct ceph_mds_reply_inode
) +
70 sizeof(*info
->in
->fragtree
.splits
) *
71 le32_to_cpu(info
->in
->fragtree
.nsplits
);
73 ceph_decode_32_safe(p
, end
, info
->symlink_len
, bad
);
74 ceph_decode_need(p
, end
, info
->symlink_len
, bad
);
76 *p
+= info
->symlink_len
;
78 if (features
& CEPH_FEATURE_DIRLAYOUTHASH
)
79 ceph_decode_copy_safe(p
, end
, &info
->dir_layout
,
80 sizeof(info
->dir_layout
), bad
);
82 memset(&info
->dir_layout
, 0, sizeof(info
->dir_layout
));
84 ceph_decode_32_safe(p
, end
, info
->xattr_len
, bad
);
85 ceph_decode_need(p
, end
, info
->xattr_len
, bad
);
86 info
->xattr_data
= *p
;
87 *p
+= info
->xattr_len
;
94 * parse a normal reply, which may contain a (dir+)dentry and/or a
97 static int parse_reply_info_trace(void **p
, void *end
,
98 struct ceph_mds_reply_info_parsed
*info
,
103 if (info
->head
->is_dentry
) {
104 err
= parse_reply_info_in(p
, end
, &info
->diri
, features
);
108 if (unlikely(*p
+ sizeof(*info
->dirfrag
) > end
))
111 *p
+= sizeof(*info
->dirfrag
) +
112 sizeof(u32
)*le32_to_cpu(info
->dirfrag
->ndist
);
113 if (unlikely(*p
> end
))
116 ceph_decode_32_safe(p
, end
, info
->dname_len
, bad
);
117 ceph_decode_need(p
, end
, info
->dname_len
, bad
);
119 *p
+= info
->dname_len
;
121 *p
+= sizeof(*info
->dlease
);
124 if (info
->head
->is_target
) {
125 err
= parse_reply_info_in(p
, end
, &info
->targeti
, features
);
130 if (unlikely(*p
!= end
))
137 pr_err("problem parsing mds trace %d\n", err
);
142 * parse readdir results
144 static int parse_reply_info_dir(void **p
, void *end
,
145 struct ceph_mds_reply_info_parsed
*info
,
152 if (*p
+ sizeof(*info
->dir_dir
) > end
)
154 *p
+= sizeof(*info
->dir_dir
) +
155 sizeof(u32
)*le32_to_cpu(info
->dir_dir
->ndist
);
159 ceph_decode_need(p
, end
, sizeof(num
) + 2, bad
);
160 num
= ceph_decode_32(p
);
161 info
->dir_end
= ceph_decode_8(p
);
162 info
->dir_complete
= ceph_decode_8(p
);
166 /* alloc large array */
168 info
->dir_in
= kcalloc(num
, sizeof(*info
->dir_in
) +
169 sizeof(*info
->dir_dname
) +
170 sizeof(*info
->dir_dname_len
) +
171 sizeof(*info
->dir_dlease
),
173 if (info
->dir_in
== NULL
) {
177 info
->dir_dname
= (void *)(info
->dir_in
+ num
);
178 info
->dir_dname_len
= (void *)(info
->dir_dname
+ num
);
179 info
->dir_dlease
= (void *)(info
->dir_dname_len
+ num
);
183 ceph_decode_need(p
, end
, sizeof(u32
)*2, bad
);
184 info
->dir_dname_len
[i
] = ceph_decode_32(p
);
185 ceph_decode_need(p
, end
, info
->dir_dname_len
[i
], bad
);
186 info
->dir_dname
[i
] = *p
;
187 *p
+= info
->dir_dname_len
[i
];
188 dout("parsed dir dname '%.*s'\n", info
->dir_dname_len
[i
],
190 info
->dir_dlease
[i
] = *p
;
191 *p
+= sizeof(struct ceph_mds_reply_lease
);
194 err
= parse_reply_info_in(p
, end
, &info
->dir_in
[i
], features
);
209 pr_err("problem parsing dir contents %d\n", err
);
214 * parse fcntl F_GETLK results
216 static int parse_reply_info_filelock(void **p
, void *end
,
217 struct ceph_mds_reply_info_parsed
*info
,
220 if (*p
+ sizeof(*info
->filelock_reply
) > end
)
223 info
->filelock_reply
= *p
;
224 *p
+= sizeof(*info
->filelock_reply
);
226 if (unlikely(*p
!= end
))
235 * parse extra results
237 static int parse_reply_info_extra(void **p
, void *end
,
238 struct ceph_mds_reply_info_parsed
*info
,
241 if (info
->head
->op
== CEPH_MDS_OP_GETFILELOCK
)
242 return parse_reply_info_filelock(p
, end
, info
, features
);
244 return parse_reply_info_dir(p
, end
, info
, features
);
248 * parse entire mds reply
250 static int parse_reply_info(struct ceph_msg
*msg
,
251 struct ceph_mds_reply_info_parsed
*info
,
258 info
->head
= msg
->front
.iov_base
;
259 p
= msg
->front
.iov_base
+ sizeof(struct ceph_mds_reply_head
);
260 end
= p
+ msg
->front
.iov_len
- sizeof(struct ceph_mds_reply_head
);
263 ceph_decode_32_safe(&p
, end
, len
, bad
);
265 err
= parse_reply_info_trace(&p
, p
+len
, info
, features
);
271 ceph_decode_32_safe(&p
, end
, len
, bad
);
273 err
= parse_reply_info_extra(&p
, p
+len
, info
, features
);
279 ceph_decode_32_safe(&p
, end
, len
, bad
);
280 info
->snapblob_len
= len
;
291 pr_err("mds parse_reply err %d\n", err
);
295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed
*info
)
304 static const char *session_state_name(int s
)
307 case CEPH_MDS_SESSION_NEW
: return "new";
308 case CEPH_MDS_SESSION_OPENING
: return "opening";
309 case CEPH_MDS_SESSION_OPEN
: return "open";
310 case CEPH_MDS_SESSION_HUNG
: return "hung";
311 case CEPH_MDS_SESSION_CLOSING
: return "closing";
312 case CEPH_MDS_SESSION_RESTARTING
: return "restarting";
313 case CEPH_MDS_SESSION_RECONNECTING
: return "reconnecting";
314 default: return "???";
318 static struct ceph_mds_session
*get_session(struct ceph_mds_session
*s
)
320 if (atomic_inc_not_zero(&s
->s_ref
)) {
321 dout("mdsc get_session %p %d -> %d\n", s
,
322 atomic_read(&s
->s_ref
)-1, atomic_read(&s
->s_ref
));
325 dout("mdsc get_session %p 0 -- FAIL", s
);
330 void ceph_put_mds_session(struct ceph_mds_session
*s
)
332 dout("mdsc put_session %p %d -> %d\n", s
,
333 atomic_read(&s
->s_ref
), atomic_read(&s
->s_ref
)-1);
334 if (atomic_dec_and_test(&s
->s_ref
)) {
336 s
->s_mdsc
->fsc
->client
->monc
.auth
->ops
->destroy_authorizer(
337 s
->s_mdsc
->fsc
->client
->monc
.auth
,
344 * called under mdsc->mutex
346 struct ceph_mds_session
*__ceph_lookup_mds_session(struct ceph_mds_client
*mdsc
,
349 struct ceph_mds_session
*session
;
351 if (mds
>= mdsc
->max_sessions
|| mdsc
->sessions
[mds
] == NULL
)
353 session
= mdsc
->sessions
[mds
];
354 dout("lookup_mds_session %p %d\n", session
,
355 atomic_read(&session
->s_ref
));
356 get_session(session
);
360 static bool __have_session(struct ceph_mds_client
*mdsc
, int mds
)
362 if (mds
>= mdsc
->max_sessions
)
364 return mdsc
->sessions
[mds
];
367 static int __verify_registered_session(struct ceph_mds_client
*mdsc
,
368 struct ceph_mds_session
*s
)
370 if (s
->s_mds
>= mdsc
->max_sessions
||
371 mdsc
->sessions
[s
->s_mds
] != s
)
377 * create+register a new session for given mds.
378 * called under mdsc->mutex.
380 static struct ceph_mds_session
*register_session(struct ceph_mds_client
*mdsc
,
383 struct ceph_mds_session
*s
;
385 s
= kzalloc(sizeof(*s
), GFP_NOFS
);
387 return ERR_PTR(-ENOMEM
);
390 s
->s_state
= CEPH_MDS_SESSION_NEW
;
393 mutex_init(&s
->s_mutex
);
395 ceph_con_init(mdsc
->fsc
->client
->msgr
, &s
->s_con
);
396 s
->s_con
.private = s
;
397 s
->s_con
.ops
= &mds_con_ops
;
398 s
->s_con
.peer_name
.type
= CEPH_ENTITY_TYPE_MDS
;
399 s
->s_con
.peer_name
.num
= cpu_to_le64(mds
);
401 spin_lock_init(&s
->s_cap_lock
);
404 s
->s_renew_requested
= 0;
406 INIT_LIST_HEAD(&s
->s_caps
);
409 atomic_set(&s
->s_ref
, 1);
410 INIT_LIST_HEAD(&s
->s_waiting
);
411 INIT_LIST_HEAD(&s
->s_unsafe
);
412 s
->s_num_cap_releases
= 0;
413 s
->s_cap_iterator
= NULL
;
414 INIT_LIST_HEAD(&s
->s_cap_releases
);
415 INIT_LIST_HEAD(&s
->s_cap_releases_done
);
416 INIT_LIST_HEAD(&s
->s_cap_flushing
);
417 INIT_LIST_HEAD(&s
->s_cap_snaps_flushing
);
419 dout("register_session mds%d\n", mds
);
420 if (mds
>= mdsc
->max_sessions
) {
421 int newmax
= 1 << get_count_order(mds
+1);
422 struct ceph_mds_session
**sa
;
424 dout("register_session realloc to %d\n", newmax
);
425 sa
= kcalloc(newmax
, sizeof(void *), GFP_NOFS
);
428 if (mdsc
->sessions
) {
429 memcpy(sa
, mdsc
->sessions
,
430 mdsc
->max_sessions
* sizeof(void *));
431 kfree(mdsc
->sessions
);
434 mdsc
->max_sessions
= newmax
;
436 mdsc
->sessions
[mds
] = s
;
437 atomic_inc(&s
->s_ref
); /* one ref to sessions[], one to caller */
439 ceph_con_open(&s
->s_con
, ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
445 return ERR_PTR(-ENOMEM
);
449 * called under mdsc->mutex
451 static void __unregister_session(struct ceph_mds_client
*mdsc
,
452 struct ceph_mds_session
*s
)
454 dout("__unregister_session mds%d %p\n", s
->s_mds
, s
);
455 BUG_ON(mdsc
->sessions
[s
->s_mds
] != s
);
456 mdsc
->sessions
[s
->s_mds
] = NULL
;
457 ceph_con_close(&s
->s_con
);
458 ceph_put_mds_session(s
);
462 * drop session refs in request.
464 * should be last request ref, or hold mdsc->mutex
466 static void put_request_session(struct ceph_mds_request
*req
)
468 if (req
->r_session
) {
469 ceph_put_mds_session(req
->r_session
);
470 req
->r_session
= NULL
;
474 void ceph_mdsc_release_request(struct kref
*kref
)
476 struct ceph_mds_request
*req
= container_of(kref
,
477 struct ceph_mds_request
,
480 ceph_msg_put(req
->r_request
);
482 ceph_msg_put(req
->r_reply
);
483 destroy_reply_info(&req
->r_reply_info
);
486 ceph_put_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
489 if (req
->r_locked_dir
)
490 ceph_put_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
491 if (req
->r_target_inode
)
492 iput(req
->r_target_inode
);
495 if (req
->r_old_dentry
) {
497 * track (and drop pins for) r_old_dentry_dir
498 * separately, since r_old_dentry's d_parent may have
499 * changed between the dir mutex being dropped and
500 * this request being freed.
502 ceph_put_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
504 dput(req
->r_old_dentry
);
505 iput(req
->r_old_dentry_dir
);
509 put_request_session(req
);
510 ceph_unreserve_caps(req
->r_mdsc
, &req
->r_caps_reservation
);
515 * lookup session, bump ref if found.
517 * called under mdsc->mutex.
519 static struct ceph_mds_request
*__lookup_request(struct ceph_mds_client
*mdsc
,
522 struct ceph_mds_request
*req
;
523 struct rb_node
*n
= mdsc
->request_tree
.rb_node
;
526 req
= rb_entry(n
, struct ceph_mds_request
, r_node
);
527 if (tid
< req
->r_tid
)
529 else if (tid
> req
->r_tid
)
532 ceph_mdsc_get_request(req
);
539 static void __insert_request(struct ceph_mds_client
*mdsc
,
540 struct ceph_mds_request
*new)
542 struct rb_node
**p
= &mdsc
->request_tree
.rb_node
;
543 struct rb_node
*parent
= NULL
;
544 struct ceph_mds_request
*req
= NULL
;
548 req
= rb_entry(parent
, struct ceph_mds_request
, r_node
);
549 if (new->r_tid
< req
->r_tid
)
551 else if (new->r_tid
> req
->r_tid
)
557 rb_link_node(&new->r_node
, parent
, p
);
558 rb_insert_color(&new->r_node
, &mdsc
->request_tree
);
562 * Register an in-flight request, and assign a tid. Link to directory
563 * are modifying (if any).
565 * Called under mdsc->mutex.
567 static void __register_request(struct ceph_mds_client
*mdsc
,
568 struct ceph_mds_request
*req
,
571 req
->r_tid
= ++mdsc
->last_tid
;
573 ceph_reserve_caps(mdsc
, &req
->r_caps_reservation
,
575 dout("__register_request %p tid %lld\n", req
, req
->r_tid
);
576 ceph_mdsc_get_request(req
);
577 __insert_request(mdsc
, req
);
579 req
->r_uid
= current_fsuid();
580 req
->r_gid
= current_fsgid();
583 struct ceph_inode_info
*ci
= ceph_inode(dir
);
586 spin_lock(&ci
->i_unsafe_lock
);
587 req
->r_unsafe_dir
= dir
;
588 list_add_tail(&req
->r_unsafe_dir_item
, &ci
->i_unsafe_dirops
);
589 spin_unlock(&ci
->i_unsafe_lock
);
593 static void __unregister_request(struct ceph_mds_client
*mdsc
,
594 struct ceph_mds_request
*req
)
596 dout("__unregister_request %p tid %lld\n", req
, req
->r_tid
);
597 rb_erase(&req
->r_node
, &mdsc
->request_tree
);
598 RB_CLEAR_NODE(&req
->r_node
);
600 if (req
->r_unsafe_dir
) {
601 struct ceph_inode_info
*ci
= ceph_inode(req
->r_unsafe_dir
);
603 spin_lock(&ci
->i_unsafe_lock
);
604 list_del_init(&req
->r_unsafe_dir_item
);
605 spin_unlock(&ci
->i_unsafe_lock
);
607 iput(req
->r_unsafe_dir
);
608 req
->r_unsafe_dir
= NULL
;
611 ceph_mdsc_put_request(req
);
615 * Choose mds to send request to next. If there is a hint set in the
616 * request (e.g., due to a prior forward hint from the mds), use that.
617 * Otherwise, consult frag tree and/or caps to identify the
618 * appropriate mds. If all else fails, choose randomly.
620 * Called under mdsc->mutex.
622 struct dentry
*get_nonsnap_parent(struct dentry
*dentry
)
625 * we don't need to worry about protecting the d_parent access
626 * here because we never renaming inside the snapped namespace
627 * except to resplice to another snapdir, and either the old or new
628 * result is a valid result.
630 while (!IS_ROOT(dentry
) && ceph_snap(dentry
->d_inode
) != CEPH_NOSNAP
)
631 dentry
= dentry
->d_parent
;
635 static int __choose_mds(struct ceph_mds_client
*mdsc
,
636 struct ceph_mds_request
*req
)
639 struct ceph_inode_info
*ci
;
640 struct ceph_cap
*cap
;
641 int mode
= req
->r_direct_mode
;
643 u32 hash
= req
->r_direct_hash
;
644 bool is_hash
= req
->r_direct_is_hash
;
647 * is there a specific mds we should try? ignore hint if we have
648 * no session and the mds is not up (active or recovering).
650 if (req
->r_resend_mds
>= 0 &&
651 (__have_session(mdsc
, req
->r_resend_mds
) ||
652 ceph_mdsmap_get_state(mdsc
->mdsmap
, req
->r_resend_mds
) > 0)) {
653 dout("choose_mds using resend_mds mds%d\n",
655 return req
->r_resend_mds
;
658 if (mode
== USE_RANDOM_MDS
)
663 inode
= req
->r_inode
;
664 } else if (req
->r_dentry
) {
665 /* ignore race with rename; old or new d_parent is okay */
666 struct dentry
*parent
= req
->r_dentry
->d_parent
;
667 struct inode
*dir
= parent
->d_inode
;
669 if (dir
->i_sb
!= mdsc
->fsc
->sb
) {
671 inode
= req
->r_dentry
->d_inode
;
672 } else if (ceph_snap(dir
) != CEPH_NOSNAP
) {
673 /* direct snapped/virtual snapdir requests
674 * based on parent dir inode */
675 struct dentry
*dn
= get_nonsnap_parent(parent
);
677 dout("__choose_mds using nonsnap parent %p\n", inode
);
678 } else if (req
->r_dentry
->d_inode
) {
680 inode
= req
->r_dentry
->d_inode
;
684 hash
= ceph_dentry_hash(dir
, req
->r_dentry
);
689 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode
, (int)is_hash
,
693 ci
= ceph_inode(inode
);
695 if (is_hash
&& S_ISDIR(inode
->i_mode
)) {
696 struct ceph_inode_frag frag
;
699 ceph_choose_frag(ci
, hash
, &frag
, &found
);
701 if (mode
== USE_ANY_MDS
&& frag
.ndist
> 0) {
704 /* choose a random replica */
705 get_random_bytes(&r
, 1);
708 dout("choose_mds %p %llx.%llx "
709 "frag %u mds%d (%d/%d)\n",
710 inode
, ceph_vinop(inode
),
713 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
714 CEPH_MDS_STATE_ACTIVE
)
718 /* since this file/dir wasn't known to be
719 * replicated, then we want to look for the
720 * authoritative mds. */
723 /* choose auth mds */
725 dout("choose_mds %p %llx.%llx "
726 "frag %u mds%d (auth)\n",
727 inode
, ceph_vinop(inode
), frag
.frag
, mds
);
728 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
729 CEPH_MDS_STATE_ACTIVE
)
735 spin_lock(&inode
->i_lock
);
737 if (mode
== USE_AUTH_MDS
)
738 cap
= ci
->i_auth_cap
;
739 if (!cap
&& !RB_EMPTY_ROOT(&ci
->i_caps
))
740 cap
= rb_entry(rb_first(&ci
->i_caps
), struct ceph_cap
, ci_node
);
742 spin_unlock(&inode
->i_lock
);
745 mds
= cap
->session
->s_mds
;
746 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
747 inode
, ceph_vinop(inode
), mds
,
748 cap
== ci
->i_auth_cap
? "auth " : "", cap
);
749 spin_unlock(&inode
->i_lock
);
753 mds
= ceph_mdsmap_get_random_mds(mdsc
->mdsmap
);
754 dout("choose_mds chose random mds%d\n", mds
);
762 static struct ceph_msg
*create_session_msg(u32 op
, u64 seq
)
764 struct ceph_msg
*msg
;
765 struct ceph_mds_session_head
*h
;
767 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
), GFP_NOFS
,
770 pr_err("create_session_msg ENOMEM creating msg\n");
773 h
= msg
->front
.iov_base
;
774 h
->op
= cpu_to_le32(op
);
775 h
->seq
= cpu_to_le64(seq
);
780 * send session open request.
782 * called under mdsc->mutex
784 static int __open_session(struct ceph_mds_client
*mdsc
,
785 struct ceph_mds_session
*session
)
787 struct ceph_msg
*msg
;
789 int mds
= session
->s_mds
;
791 /* wait for mds to go active? */
792 mstate
= ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
);
793 dout("open_session to mds%d (%s)\n", mds
,
794 ceph_mds_state_name(mstate
));
795 session
->s_state
= CEPH_MDS_SESSION_OPENING
;
796 session
->s_renew_requested
= jiffies
;
798 /* send connect message */
799 msg
= create_session_msg(CEPH_SESSION_REQUEST_OPEN
, session
->s_seq
);
802 ceph_con_send(&session
->s_con
, msg
);
807 * open sessions for any export targets for the given mds
809 * called under mdsc->mutex
811 static void __open_export_target_sessions(struct ceph_mds_client
*mdsc
,
812 struct ceph_mds_session
*session
)
814 struct ceph_mds_info
*mi
;
815 struct ceph_mds_session
*ts
;
816 int i
, mds
= session
->s_mds
;
819 if (mds
>= mdsc
->mdsmap
->m_max_mds
)
821 mi
= &mdsc
->mdsmap
->m_info
[mds
];
822 dout("open_export_target_sessions for mds%d (%d targets)\n",
823 session
->s_mds
, mi
->num_export_targets
);
825 for (i
= 0; i
< mi
->num_export_targets
; i
++) {
826 target
= mi
->export_targets
[i
];
827 ts
= __ceph_lookup_mds_session(mdsc
, target
);
829 ts
= register_session(mdsc
, target
);
833 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
834 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
835 __open_session(mdsc
, session
);
837 dout(" mds%d target mds%d %p is %s\n", session
->s_mds
,
838 i
, ts
, session_state_name(ts
->s_state
));
839 ceph_put_mds_session(ts
);
843 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client
*mdsc
,
844 struct ceph_mds_session
*session
)
846 mutex_lock(&mdsc
->mutex
);
847 __open_export_target_sessions(mdsc
, session
);
848 mutex_unlock(&mdsc
->mutex
);
856 * Free preallocated cap messages assigned to this session
858 static void cleanup_cap_releases(struct ceph_mds_session
*session
)
860 struct ceph_msg
*msg
;
862 spin_lock(&session
->s_cap_lock
);
863 while (!list_empty(&session
->s_cap_releases
)) {
864 msg
= list_first_entry(&session
->s_cap_releases
,
865 struct ceph_msg
, list_head
);
866 list_del_init(&msg
->list_head
);
869 while (!list_empty(&session
->s_cap_releases_done
)) {
870 msg
= list_first_entry(&session
->s_cap_releases_done
,
871 struct ceph_msg
, list_head
);
872 list_del_init(&msg
->list_head
);
875 spin_unlock(&session
->s_cap_lock
);
879 * Helper to safely iterate over all caps associated with a session, with
880 * special care taken to handle a racing __ceph_remove_cap().
882 * Caller must hold session s_mutex.
884 static int iterate_session_caps(struct ceph_mds_session
*session
,
885 int (*cb
)(struct inode
*, struct ceph_cap
*,
889 struct ceph_cap
*cap
;
890 struct inode
*inode
, *last_inode
= NULL
;
891 struct ceph_cap
*old_cap
= NULL
;
894 dout("iterate_session_caps %p mds%d\n", session
, session
->s_mds
);
895 spin_lock(&session
->s_cap_lock
);
896 p
= session
->s_caps
.next
;
897 while (p
!= &session
->s_caps
) {
898 cap
= list_entry(p
, struct ceph_cap
, session_caps
);
899 inode
= igrab(&cap
->ci
->vfs_inode
);
904 session
->s_cap_iterator
= cap
;
905 spin_unlock(&session
->s_cap_lock
);
912 ceph_put_cap(session
->s_mdsc
, old_cap
);
916 ret
= cb(inode
, cap
, arg
);
919 spin_lock(&session
->s_cap_lock
);
921 if (cap
->ci
== NULL
) {
922 dout("iterate_session_caps finishing cap %p removal\n",
924 BUG_ON(cap
->session
!= session
);
925 list_del_init(&cap
->session_caps
);
926 session
->s_nr_caps
--;
928 old_cap
= cap
; /* put_cap it w/o locks held */
935 session
->s_cap_iterator
= NULL
;
936 spin_unlock(&session
->s_cap_lock
);
941 ceph_put_cap(session
->s_mdsc
, old_cap
);
946 static int remove_session_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
949 struct ceph_inode_info
*ci
= ceph_inode(inode
);
952 dout("removing cap %p, ci is %p, inode is %p\n",
953 cap
, ci
, &ci
->vfs_inode
);
954 spin_lock(&inode
->i_lock
);
955 __ceph_remove_cap(cap
);
956 if (!__ceph_is_any_real_caps(ci
)) {
957 struct ceph_mds_client
*mdsc
=
958 ceph_sb_to_client(inode
->i_sb
)->mdsc
;
960 spin_lock(&mdsc
->cap_dirty_lock
);
961 if (!list_empty(&ci
->i_dirty_item
)) {
962 pr_info(" dropping dirty %s state for %p %lld\n",
963 ceph_cap_string(ci
->i_dirty_caps
),
964 inode
, ceph_ino(inode
));
965 ci
->i_dirty_caps
= 0;
966 list_del_init(&ci
->i_dirty_item
);
969 if (!list_empty(&ci
->i_flushing_item
)) {
970 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
971 ceph_cap_string(ci
->i_flushing_caps
),
972 inode
, ceph_ino(inode
));
973 ci
->i_flushing_caps
= 0;
974 list_del_init(&ci
->i_flushing_item
);
975 mdsc
->num_cap_flushing
--;
978 if (drop
&& ci
->i_wrbuffer_ref
) {
979 pr_info(" dropping dirty data for %p %lld\n",
980 inode
, ceph_ino(inode
));
981 ci
->i_wrbuffer_ref
= 0;
982 ci
->i_wrbuffer_ref_head
= 0;
985 spin_unlock(&mdsc
->cap_dirty_lock
);
987 spin_unlock(&inode
->i_lock
);
994 * caller must hold session s_mutex
996 static void remove_session_caps(struct ceph_mds_session
*session
)
998 dout("remove_session_caps on %p\n", session
);
999 iterate_session_caps(session
, remove_session_caps_cb
, NULL
);
1000 BUG_ON(session
->s_nr_caps
> 0);
1001 BUG_ON(!list_empty(&session
->s_cap_flushing
));
1002 cleanup_cap_releases(session
);
1006 * wake up any threads waiting on this session's caps. if the cap is
1007 * old (didn't get renewed on the client reconnect), remove it now.
1009 * caller must hold s_mutex.
1011 static int wake_up_session_cb(struct inode
*inode
, struct ceph_cap
*cap
,
1014 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1016 wake_up_all(&ci
->i_cap_wq
);
1018 spin_lock(&inode
->i_lock
);
1019 ci
->i_wanted_max_size
= 0;
1020 ci
->i_requested_max_size
= 0;
1021 spin_unlock(&inode
->i_lock
);
1026 static void wake_up_session_caps(struct ceph_mds_session
*session
,
1029 dout("wake_up_session_caps %p mds%d\n", session
, session
->s_mds
);
1030 iterate_session_caps(session
, wake_up_session_cb
,
1031 (void *)(unsigned long)reconnect
);
1035 * Send periodic message to MDS renewing all currently held caps. The
1036 * ack will reset the expiration for all caps from this session.
1038 * caller holds s_mutex
1040 static int send_renew_caps(struct ceph_mds_client
*mdsc
,
1041 struct ceph_mds_session
*session
)
1043 struct ceph_msg
*msg
;
1046 if (time_after_eq(jiffies
, session
->s_cap_ttl
) &&
1047 time_after_eq(session
->s_cap_ttl
, session
->s_renew_requested
))
1048 pr_info("mds%d caps stale\n", session
->s_mds
);
1049 session
->s_renew_requested
= jiffies
;
1051 /* do not try to renew caps until a recovering mds has reconnected
1052 * with its clients. */
1053 state
= ceph_mdsmap_get_state(mdsc
->mdsmap
, session
->s_mds
);
1054 if (state
< CEPH_MDS_STATE_RECONNECT
) {
1055 dout("send_renew_caps ignoring mds%d (%s)\n",
1056 session
->s_mds
, ceph_mds_state_name(state
));
1060 dout("send_renew_caps to mds%d (%s)\n", session
->s_mds
,
1061 ceph_mds_state_name(state
));
1062 msg
= create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS
,
1063 ++session
->s_renew_seq
);
1066 ceph_con_send(&session
->s_con
, msg
);
1071 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1073 * Called under session->s_mutex
1075 static void renewed_caps(struct ceph_mds_client
*mdsc
,
1076 struct ceph_mds_session
*session
, int is_renew
)
1081 spin_lock(&session
->s_cap_lock
);
1082 was_stale
= is_renew
&& (session
->s_cap_ttl
== 0 ||
1083 time_after_eq(jiffies
, session
->s_cap_ttl
));
1085 session
->s_cap_ttl
= session
->s_renew_requested
+
1086 mdsc
->mdsmap
->m_session_timeout
*HZ
;
1089 if (time_before(jiffies
, session
->s_cap_ttl
)) {
1090 pr_info("mds%d caps renewed\n", session
->s_mds
);
1093 pr_info("mds%d caps still stale\n", session
->s_mds
);
1096 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1097 session
->s_mds
, session
->s_cap_ttl
, was_stale
? "stale" : "fresh",
1098 time_before(jiffies
, session
->s_cap_ttl
) ? "stale" : "fresh");
1099 spin_unlock(&session
->s_cap_lock
);
1102 wake_up_session_caps(session
, 0);
1106 * send a session close request
1108 static int request_close_session(struct ceph_mds_client
*mdsc
,
1109 struct ceph_mds_session
*session
)
1111 struct ceph_msg
*msg
;
1113 dout("request_close_session mds%d state %s seq %lld\n",
1114 session
->s_mds
, session_state_name(session
->s_state
),
1116 msg
= create_session_msg(CEPH_SESSION_REQUEST_CLOSE
, session
->s_seq
);
1119 ceph_con_send(&session
->s_con
, msg
);
1124 * Called with s_mutex held.
1126 static int __close_session(struct ceph_mds_client
*mdsc
,
1127 struct ceph_mds_session
*session
)
1129 if (session
->s_state
>= CEPH_MDS_SESSION_CLOSING
)
1131 session
->s_state
= CEPH_MDS_SESSION_CLOSING
;
1132 return request_close_session(mdsc
, session
);
1136 * Trim old(er) caps.
1138 * Because we can't cache an inode without one or more caps, we do
1139 * this indirectly: if a cap is unused, we prune its aliases, at which
1140 * point the inode will hopefully get dropped to.
1142 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1143 * memory pressure from the MDS, though, so it needn't be perfect.
1145 static int trim_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
, void *arg
)
1147 struct ceph_mds_session
*session
= arg
;
1148 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1149 int used
, oissued
, mine
;
1151 if (session
->s_trim_caps
<= 0)
1154 spin_lock(&inode
->i_lock
);
1155 mine
= cap
->issued
| cap
->implemented
;
1156 used
= __ceph_caps_used(ci
);
1157 oissued
= __ceph_caps_issued_other(ci
, cap
);
1159 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1160 inode
, cap
, ceph_cap_string(mine
), ceph_cap_string(oissued
),
1161 ceph_cap_string(used
));
1162 if (ci
->i_dirty_caps
)
1163 goto out
; /* dirty caps */
1164 if ((used
& ~oissued
) & mine
)
1165 goto out
; /* we need these caps */
1167 session
->s_trim_caps
--;
1169 /* we aren't the only cap.. just remove us */
1170 __ceph_remove_cap(cap
);
1172 /* try to drop referring dentries */
1173 spin_unlock(&inode
->i_lock
);
1174 d_prune_aliases(inode
);
1175 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1176 inode
, cap
, atomic_read(&inode
->i_count
));
1181 spin_unlock(&inode
->i_lock
);
1186 * Trim session cap count down to some max number.
1188 static int trim_caps(struct ceph_mds_client
*mdsc
,
1189 struct ceph_mds_session
*session
,
1192 int trim_caps
= session
->s_nr_caps
- max_caps
;
1194 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1195 session
->s_mds
, session
->s_nr_caps
, max_caps
, trim_caps
);
1196 if (trim_caps
> 0) {
1197 session
->s_trim_caps
= trim_caps
;
1198 iterate_session_caps(session
, trim_caps_cb
, session
);
1199 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1200 session
->s_mds
, session
->s_nr_caps
, max_caps
,
1201 trim_caps
- session
->s_trim_caps
);
1202 session
->s_trim_caps
= 0;
1208 * Allocate cap_release messages. If there is a partially full message
1209 * in the queue, try to allocate enough to cover it's remainder, so that
1210 * we can send it immediately.
1212 * Called under s_mutex.
1214 int ceph_add_cap_releases(struct ceph_mds_client
*mdsc
,
1215 struct ceph_mds_session
*session
)
1217 struct ceph_msg
*msg
, *partial
= NULL
;
1218 struct ceph_mds_cap_release
*head
;
1220 int extra
= mdsc
->fsc
->mount_options
->cap_release_safety
;
1223 dout("add_cap_releases %p mds%d extra %d\n", session
, session
->s_mds
,
1226 spin_lock(&session
->s_cap_lock
);
1228 if (!list_empty(&session
->s_cap_releases
)) {
1229 msg
= list_first_entry(&session
->s_cap_releases
,
1232 head
= msg
->front
.iov_base
;
1233 num
= le32_to_cpu(head
->num
);
1235 dout(" partial %p with (%d/%d)\n", msg
, num
,
1236 (int)CEPH_CAPS_PER_RELEASE
);
1237 extra
+= CEPH_CAPS_PER_RELEASE
- num
;
1241 while (session
->s_num_cap_releases
< session
->s_nr_caps
+ extra
) {
1242 spin_unlock(&session
->s_cap_lock
);
1243 msg
= ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE
, PAGE_CACHE_SIZE
,
1247 dout("add_cap_releases %p msg %p now %d\n", session
, msg
,
1248 (int)msg
->front
.iov_len
);
1249 head
= msg
->front
.iov_base
;
1250 head
->num
= cpu_to_le32(0);
1251 msg
->front
.iov_len
= sizeof(*head
);
1252 spin_lock(&session
->s_cap_lock
);
1253 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1254 session
->s_num_cap_releases
+= CEPH_CAPS_PER_RELEASE
;
1258 head
= partial
->front
.iov_base
;
1259 num
= le32_to_cpu(head
->num
);
1260 dout(" queueing partial %p with %d/%d\n", partial
, num
,
1261 (int)CEPH_CAPS_PER_RELEASE
);
1262 list_move_tail(&partial
->list_head
,
1263 &session
->s_cap_releases_done
);
1264 session
->s_num_cap_releases
-= CEPH_CAPS_PER_RELEASE
- num
;
1267 spin_unlock(&session
->s_cap_lock
);
1273 * flush all dirty inode data to disk.
1275 * returns true if we've flushed through want_flush_seq
1277 static int check_cap_flush(struct ceph_mds_client
*mdsc
, u64 want_flush_seq
)
1281 dout("check_cap_flush want %lld\n", want_flush_seq
);
1282 mutex_lock(&mdsc
->mutex
);
1283 for (mds
= 0; ret
&& mds
< mdsc
->max_sessions
; mds
++) {
1284 struct ceph_mds_session
*session
= mdsc
->sessions
[mds
];
1288 get_session(session
);
1289 mutex_unlock(&mdsc
->mutex
);
1291 mutex_lock(&session
->s_mutex
);
1292 if (!list_empty(&session
->s_cap_flushing
)) {
1293 struct ceph_inode_info
*ci
=
1294 list_entry(session
->s_cap_flushing
.next
,
1295 struct ceph_inode_info
,
1297 struct inode
*inode
= &ci
->vfs_inode
;
1299 spin_lock(&inode
->i_lock
);
1300 if (ci
->i_cap_flush_seq
<= want_flush_seq
) {
1301 dout("check_cap_flush still flushing %p "
1302 "seq %lld <= %lld to mds%d\n", inode
,
1303 ci
->i_cap_flush_seq
, want_flush_seq
,
1307 spin_unlock(&inode
->i_lock
);
1309 mutex_unlock(&session
->s_mutex
);
1310 ceph_put_mds_session(session
);
1314 mutex_lock(&mdsc
->mutex
);
1317 mutex_unlock(&mdsc
->mutex
);
1318 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq
);
1323 * called under s_mutex
1325 void ceph_send_cap_releases(struct ceph_mds_client
*mdsc
,
1326 struct ceph_mds_session
*session
)
1328 struct ceph_msg
*msg
;
1330 dout("send_cap_releases mds%d\n", session
->s_mds
);
1331 spin_lock(&session
->s_cap_lock
);
1332 while (!list_empty(&session
->s_cap_releases_done
)) {
1333 msg
= list_first_entry(&session
->s_cap_releases_done
,
1334 struct ceph_msg
, list_head
);
1335 list_del_init(&msg
->list_head
);
1336 spin_unlock(&session
->s_cap_lock
);
1337 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1338 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1339 ceph_con_send(&session
->s_con
, msg
);
1340 spin_lock(&session
->s_cap_lock
);
1342 spin_unlock(&session
->s_cap_lock
);
1345 static void discard_cap_releases(struct ceph_mds_client
*mdsc
,
1346 struct ceph_mds_session
*session
)
1348 struct ceph_msg
*msg
;
1349 struct ceph_mds_cap_release
*head
;
1352 dout("discard_cap_releases mds%d\n", session
->s_mds
);
1353 spin_lock(&session
->s_cap_lock
);
1355 /* zero out the in-progress message */
1356 msg
= list_first_entry(&session
->s_cap_releases
,
1357 struct ceph_msg
, list_head
);
1358 head
= msg
->front
.iov_base
;
1359 num
= le32_to_cpu(head
->num
);
1360 dout("discard_cap_releases mds%d %p %u\n", session
->s_mds
, msg
, num
);
1361 head
->num
= cpu_to_le32(0);
1362 session
->s_num_cap_releases
+= num
;
1364 /* requeue completed messages */
1365 while (!list_empty(&session
->s_cap_releases_done
)) {
1366 msg
= list_first_entry(&session
->s_cap_releases_done
,
1367 struct ceph_msg
, list_head
);
1368 list_del_init(&msg
->list_head
);
1370 head
= msg
->front
.iov_base
;
1371 num
= le32_to_cpu(head
->num
);
1372 dout("discard_cap_releases mds%d %p %u\n", session
->s_mds
, msg
,
1374 session
->s_num_cap_releases
+= num
;
1375 head
->num
= cpu_to_le32(0);
1376 msg
->front
.iov_len
= sizeof(*head
);
1377 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1380 spin_unlock(&session
->s_cap_lock
);
1388 * Create an mds request.
1390 struct ceph_mds_request
*
1391 ceph_mdsc_create_request(struct ceph_mds_client
*mdsc
, int op
, int mode
)
1393 struct ceph_mds_request
*req
= kzalloc(sizeof(*req
), GFP_NOFS
);
1396 return ERR_PTR(-ENOMEM
);
1398 mutex_init(&req
->r_fill_mutex
);
1400 req
->r_started
= jiffies
;
1401 req
->r_resend_mds
= -1;
1402 INIT_LIST_HEAD(&req
->r_unsafe_dir_item
);
1404 kref_init(&req
->r_kref
);
1405 INIT_LIST_HEAD(&req
->r_wait
);
1406 init_completion(&req
->r_completion
);
1407 init_completion(&req
->r_safe_completion
);
1408 INIT_LIST_HEAD(&req
->r_unsafe_item
);
1411 req
->r_direct_mode
= mode
;
1416 * return oldest (lowest) request, tid in request tree, 0 if none.
1418 * called under mdsc->mutex.
1420 static struct ceph_mds_request
*__get_oldest_req(struct ceph_mds_client
*mdsc
)
1422 if (RB_EMPTY_ROOT(&mdsc
->request_tree
))
1424 return rb_entry(rb_first(&mdsc
->request_tree
),
1425 struct ceph_mds_request
, r_node
);
1428 static u64
__get_oldest_tid(struct ceph_mds_client
*mdsc
)
1430 struct ceph_mds_request
*req
= __get_oldest_req(mdsc
);
1438 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1439 * on build_path_from_dentry in fs/cifs/dir.c.
1441 * If @stop_on_nosnap, generate path relative to the first non-snapped
1444 * Encode hidden .snap dirs as a double /, i.e.
1445 * foo/.snap/bar -> foo//bar
1447 char *ceph_mdsc_build_path(struct dentry
*dentry
, int *plen
, u64
*base
,
1450 struct dentry
*temp
;
1456 return ERR_PTR(-EINVAL
);
1460 seq
= read_seqbegin(&rename_lock
);
1462 for (temp
= dentry
; !IS_ROOT(temp
);) {
1463 struct inode
*inode
= temp
->d_inode
;
1464 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
)
1465 len
++; /* slash only */
1466 else if (stop_on_nosnap
&& inode
&&
1467 ceph_snap(inode
) == CEPH_NOSNAP
)
1470 len
+= 1 + temp
->d_name
.len
;
1471 temp
= temp
->d_parent
;
1474 pr_err("build_path corrupt dentry %p\n", dentry
);
1475 return ERR_PTR(-EINVAL
);
1480 len
--; /* no leading '/' */
1482 path
= kmalloc(len
+1, GFP_NOFS
);
1484 return ERR_PTR(-ENOMEM
);
1486 path
[pos
] = 0; /* trailing null */
1488 for (temp
= dentry
; !IS_ROOT(temp
) && pos
!= 0; ) {
1489 struct inode
*inode
;
1491 spin_lock(&temp
->d_lock
);
1492 inode
= temp
->d_inode
;
1493 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
) {
1494 dout("build_path path+%d: %p SNAPDIR\n",
1496 } else if (stop_on_nosnap
&& inode
&&
1497 ceph_snap(inode
) == CEPH_NOSNAP
) {
1500 pos
-= temp
->d_name
.len
;
1502 spin_unlock(&temp
->d_lock
);
1505 strncpy(path
+ pos
, temp
->d_name
.name
,
1508 spin_unlock(&temp
->d_lock
);
1511 temp
= temp
->d_parent
;
1514 pr_err("build_path corrupt dentry\n");
1516 return ERR_PTR(-EINVAL
);
1520 if (pos
!= 0 || read_seqretry(&rename_lock
, seq
)) {
1521 pr_err("build_path did not end path lookup where "
1522 "expected, namelen is %d, pos is %d\n", len
, pos
);
1523 /* presumably this is only possible if racing with a
1524 rename of one of the parent directories (we can not
1525 lock the dentries above us to prevent this, but
1526 retrying should be harmless) */
1531 *base
= ceph_ino(temp
->d_inode
);
1533 dout("build_path on %p %d built %llx '%.*s'\n",
1534 dentry
, dentry
->d_count
, *base
, len
, path
);
1538 static int build_dentry_path(struct dentry
*dentry
,
1539 const char **ppath
, int *ppathlen
, u64
*pino
,
1544 if (ceph_snap(dentry
->d_parent
->d_inode
) == CEPH_NOSNAP
) {
1545 *pino
= ceph_ino(dentry
->d_parent
->d_inode
);
1546 *ppath
= dentry
->d_name
.name
;
1547 *ppathlen
= dentry
->d_name
.len
;
1550 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1552 return PTR_ERR(path
);
1558 static int build_inode_path(struct inode
*inode
,
1559 const char **ppath
, int *ppathlen
, u64
*pino
,
1562 struct dentry
*dentry
;
1565 if (ceph_snap(inode
) == CEPH_NOSNAP
) {
1566 *pino
= ceph_ino(inode
);
1570 dentry
= d_find_alias(inode
);
1571 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1574 return PTR_ERR(path
);
1581 * request arguments may be specified via an inode *, a dentry *, or
1582 * an explicit ino+path.
1584 static int set_request_path_attr(struct inode
*rinode
, struct dentry
*rdentry
,
1585 const char *rpath
, u64 rino
,
1586 const char **ppath
, int *pathlen
,
1587 u64
*ino
, int *freepath
)
1592 r
= build_inode_path(rinode
, ppath
, pathlen
, ino
, freepath
);
1593 dout(" inode %p %llx.%llx\n", rinode
, ceph_ino(rinode
),
1595 } else if (rdentry
) {
1596 r
= build_dentry_path(rdentry
, ppath
, pathlen
, ino
, freepath
);
1597 dout(" dentry %p %llx/%.*s\n", rdentry
, *ino
, *pathlen
,
1602 *pathlen
= strlen(rpath
);
1603 dout(" path %.*s\n", *pathlen
, rpath
);
1610 * called under mdsc->mutex
1612 static struct ceph_msg
*create_request_message(struct ceph_mds_client
*mdsc
,
1613 struct ceph_mds_request
*req
,
1616 struct ceph_msg
*msg
;
1617 struct ceph_mds_request_head
*head
;
1618 const char *path1
= NULL
;
1619 const char *path2
= NULL
;
1620 u64 ino1
= 0, ino2
= 0;
1621 int pathlen1
= 0, pathlen2
= 0;
1622 int freepath1
= 0, freepath2
= 0;
1628 ret
= set_request_path_attr(req
->r_inode
, req
->r_dentry
,
1629 req
->r_path1
, req
->r_ino1
.ino
,
1630 &path1
, &pathlen1
, &ino1
, &freepath1
);
1636 ret
= set_request_path_attr(NULL
, req
->r_old_dentry
,
1637 req
->r_path2
, req
->r_ino2
.ino
,
1638 &path2
, &pathlen2
, &ino2
, &freepath2
);
1644 len
= sizeof(*head
) +
1645 pathlen1
+ pathlen2
+ 2*(1 + sizeof(u32
) + sizeof(u64
));
1647 /* calculate (max) length for cap releases */
1648 len
+= sizeof(struct ceph_mds_request_release
) *
1649 (!!req
->r_inode_drop
+ !!req
->r_dentry_drop
+
1650 !!req
->r_old_inode_drop
+ !!req
->r_old_dentry_drop
);
1651 if (req
->r_dentry_drop
)
1652 len
+= req
->r_dentry
->d_name
.len
;
1653 if (req
->r_old_dentry_drop
)
1654 len
+= req
->r_old_dentry
->d_name
.len
;
1656 msg
= ceph_msg_new(CEPH_MSG_CLIENT_REQUEST
, len
, GFP_NOFS
, false);
1658 msg
= ERR_PTR(-ENOMEM
);
1662 msg
->hdr
.tid
= cpu_to_le64(req
->r_tid
);
1664 head
= msg
->front
.iov_base
;
1665 p
= msg
->front
.iov_base
+ sizeof(*head
);
1666 end
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1668 head
->mdsmap_epoch
= cpu_to_le32(mdsc
->mdsmap
->m_epoch
);
1669 head
->op
= cpu_to_le32(req
->r_op
);
1670 head
->caller_uid
= cpu_to_le32(req
->r_uid
);
1671 head
->caller_gid
= cpu_to_le32(req
->r_gid
);
1672 head
->args
= req
->r_args
;
1674 ceph_encode_filepath(&p
, end
, ino1
, path1
);
1675 ceph_encode_filepath(&p
, end
, ino2
, path2
);
1677 /* make note of release offset, in case we need to replay */
1678 req
->r_request_release_offset
= p
- msg
->front
.iov_base
;
1682 if (req
->r_inode_drop
)
1683 releases
+= ceph_encode_inode_release(&p
,
1684 req
->r_inode
? req
->r_inode
: req
->r_dentry
->d_inode
,
1685 mds
, req
->r_inode_drop
, req
->r_inode_unless
, 0);
1686 if (req
->r_dentry_drop
)
1687 releases
+= ceph_encode_dentry_release(&p
, req
->r_dentry
,
1688 mds
, req
->r_dentry_drop
, req
->r_dentry_unless
);
1689 if (req
->r_old_dentry_drop
)
1690 releases
+= ceph_encode_dentry_release(&p
, req
->r_old_dentry
,
1691 mds
, req
->r_old_dentry_drop
, req
->r_old_dentry_unless
);
1692 if (req
->r_old_inode_drop
)
1693 releases
+= ceph_encode_inode_release(&p
,
1694 req
->r_old_dentry
->d_inode
,
1695 mds
, req
->r_old_inode_drop
, req
->r_old_inode_unless
, 0);
1696 head
->num_releases
= cpu_to_le16(releases
);
1699 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
1700 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1702 msg
->pages
= req
->r_pages
;
1703 msg
->nr_pages
= req
->r_num_pages
;
1704 msg
->hdr
.data_len
= cpu_to_le32(req
->r_data_len
);
1705 msg
->hdr
.data_off
= cpu_to_le16(0);
1709 kfree((char *)path2
);
1712 kfree((char *)path1
);
1718 * called under mdsc->mutex if error, under no mutex if
1721 static void complete_request(struct ceph_mds_client
*mdsc
,
1722 struct ceph_mds_request
*req
)
1724 if (req
->r_callback
)
1725 req
->r_callback(mdsc
, req
);
1727 complete_all(&req
->r_completion
);
1731 * called under mdsc->mutex
1733 static int __prepare_send_request(struct ceph_mds_client
*mdsc
,
1734 struct ceph_mds_request
*req
,
1737 struct ceph_mds_request_head
*rhead
;
1738 struct ceph_msg
*msg
;
1743 struct ceph_cap
*cap
=
1744 ceph_get_cap_for_mds(ceph_inode(req
->r_inode
), mds
);
1747 req
->r_sent_on_mseq
= cap
->mseq
;
1749 req
->r_sent_on_mseq
= -1;
1751 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req
,
1752 req
->r_tid
, ceph_mds_op_name(req
->r_op
), req
->r_attempts
);
1754 if (req
->r_got_unsafe
) {
1756 * Replay. Do not regenerate message (and rebuild
1757 * paths, etc.); just use the original message.
1758 * Rebuilding paths will break for renames because
1759 * d_move mangles the src name.
1761 msg
= req
->r_request
;
1762 rhead
= msg
->front
.iov_base
;
1764 flags
= le32_to_cpu(rhead
->flags
);
1765 flags
|= CEPH_MDS_FLAG_REPLAY
;
1766 rhead
->flags
= cpu_to_le32(flags
);
1768 if (req
->r_target_inode
)
1769 rhead
->ino
= cpu_to_le64(ceph_ino(req
->r_target_inode
));
1771 rhead
->num_retry
= req
->r_attempts
- 1;
1773 /* remove cap/dentry releases from message */
1774 rhead
->num_releases
= 0;
1775 msg
->hdr
.front_len
= cpu_to_le32(req
->r_request_release_offset
);
1776 msg
->front
.iov_len
= req
->r_request_release_offset
;
1780 if (req
->r_request
) {
1781 ceph_msg_put(req
->r_request
);
1782 req
->r_request
= NULL
;
1784 msg
= create_request_message(mdsc
, req
, mds
);
1786 req
->r_err
= PTR_ERR(msg
);
1787 complete_request(mdsc
, req
);
1788 return PTR_ERR(msg
);
1790 req
->r_request
= msg
;
1792 rhead
= msg
->front
.iov_base
;
1793 rhead
->oldest_client_tid
= cpu_to_le64(__get_oldest_tid(mdsc
));
1794 if (req
->r_got_unsafe
)
1795 flags
|= CEPH_MDS_FLAG_REPLAY
;
1796 if (req
->r_locked_dir
)
1797 flags
|= CEPH_MDS_FLAG_WANT_DENTRY
;
1798 rhead
->flags
= cpu_to_le32(flags
);
1799 rhead
->num_fwd
= req
->r_num_fwd
;
1800 rhead
->num_retry
= req
->r_attempts
- 1;
1803 dout(" r_locked_dir = %p\n", req
->r_locked_dir
);
1808 * send request, or put it on the appropriate wait list.
1810 static int __do_request(struct ceph_mds_client
*mdsc
,
1811 struct ceph_mds_request
*req
)
1813 struct ceph_mds_session
*session
= NULL
;
1817 if (req
->r_err
|| req
->r_got_result
)
1820 if (req
->r_timeout
&&
1821 time_after_eq(jiffies
, req
->r_started
+ req
->r_timeout
)) {
1822 dout("do_request timed out\n");
1827 put_request_session(req
);
1829 mds
= __choose_mds(mdsc
, req
);
1831 ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) < CEPH_MDS_STATE_ACTIVE
) {
1832 dout("do_request no mds or not active, waiting for map\n");
1833 list_add(&req
->r_wait
, &mdsc
->waiting_for_map
);
1837 /* get, open session */
1838 session
= __ceph_lookup_mds_session(mdsc
, mds
);
1840 session
= register_session(mdsc
, mds
);
1841 if (IS_ERR(session
)) {
1842 err
= PTR_ERR(session
);
1846 req
->r_session
= get_session(session
);
1848 dout("do_request mds%d session %p state %s\n", mds
, session
,
1849 session_state_name(session
->s_state
));
1850 if (session
->s_state
!= CEPH_MDS_SESSION_OPEN
&&
1851 session
->s_state
!= CEPH_MDS_SESSION_HUNG
) {
1852 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
1853 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
1854 __open_session(mdsc
, session
);
1855 list_add(&req
->r_wait
, &session
->s_waiting
);
1860 req
->r_resend_mds
= -1; /* forget any previous mds hint */
1862 if (req
->r_request_started
== 0) /* note request start time */
1863 req
->r_request_started
= jiffies
;
1865 err
= __prepare_send_request(mdsc
, req
, mds
);
1867 ceph_msg_get(req
->r_request
);
1868 ceph_con_send(&session
->s_con
, req
->r_request
);
1872 ceph_put_mds_session(session
);
1878 complete_request(mdsc
, req
);
1883 * called under mdsc->mutex
1885 static void __wake_requests(struct ceph_mds_client
*mdsc
,
1886 struct list_head
*head
)
1888 struct ceph_mds_request
*req
, *nreq
;
1890 list_for_each_entry_safe(req
, nreq
, head
, r_wait
) {
1891 list_del_init(&req
->r_wait
);
1892 __do_request(mdsc
, req
);
1897 * Wake up threads with requests pending for @mds, so that they can
1898 * resubmit their requests to a possibly different mds.
1900 static void kick_requests(struct ceph_mds_client
*mdsc
, int mds
)
1902 struct ceph_mds_request
*req
;
1905 dout("kick_requests mds%d\n", mds
);
1906 for (p
= rb_first(&mdsc
->request_tree
); p
; p
= rb_next(p
)) {
1907 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
1908 if (req
->r_got_unsafe
)
1910 if (req
->r_session
&&
1911 req
->r_session
->s_mds
== mds
) {
1912 dout(" kicking tid %llu\n", req
->r_tid
);
1913 __do_request(mdsc
, req
);
1918 void ceph_mdsc_submit_request(struct ceph_mds_client
*mdsc
,
1919 struct ceph_mds_request
*req
)
1921 dout("submit_request on %p\n", req
);
1922 mutex_lock(&mdsc
->mutex
);
1923 __register_request(mdsc
, req
, NULL
);
1924 __do_request(mdsc
, req
);
1925 mutex_unlock(&mdsc
->mutex
);
1929 * Synchrously perform an mds request. Take care of all of the
1930 * session setup, forwarding, retry details.
1932 int ceph_mdsc_do_request(struct ceph_mds_client
*mdsc
,
1934 struct ceph_mds_request
*req
)
1938 dout("do_request on %p\n", req
);
1940 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1942 ceph_get_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
1943 if (req
->r_locked_dir
)
1944 ceph_get_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
1945 if (req
->r_old_dentry
)
1946 ceph_get_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
1950 mutex_lock(&mdsc
->mutex
);
1951 __register_request(mdsc
, req
, dir
);
1952 __do_request(mdsc
, req
);
1956 __unregister_request(mdsc
, req
);
1957 dout("do_request early error %d\n", err
);
1962 mutex_unlock(&mdsc
->mutex
);
1963 dout("do_request waiting\n");
1964 if (req
->r_timeout
) {
1965 err
= (long)wait_for_completion_killable_timeout(
1966 &req
->r_completion
, req
->r_timeout
);
1970 err
= wait_for_completion_killable(&req
->r_completion
);
1972 dout("do_request waited, got %d\n", err
);
1973 mutex_lock(&mdsc
->mutex
);
1975 /* only abort if we didn't race with a real reply */
1976 if (req
->r_got_result
) {
1977 err
= le32_to_cpu(req
->r_reply_info
.head
->result
);
1978 } else if (err
< 0) {
1979 dout("aborted request %lld with %d\n", req
->r_tid
, err
);
1982 * ensure we aren't running concurrently with
1983 * ceph_fill_trace or ceph_readdir_prepopulate, which
1984 * rely on locks (dir mutex) held by our caller.
1986 mutex_lock(&req
->r_fill_mutex
);
1988 req
->r_aborted
= true;
1989 mutex_unlock(&req
->r_fill_mutex
);
1991 if (req
->r_locked_dir
&&
1992 (req
->r_op
& CEPH_MDS_OP_WRITE
))
1993 ceph_invalidate_dir_request(req
);
1999 mutex_unlock(&mdsc
->mutex
);
2000 dout("do_request %p done, result %d\n", req
, err
);
2005 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
2006 * namespace request.
2008 void ceph_invalidate_dir_request(struct ceph_mds_request
*req
)
2010 struct inode
*inode
= req
->r_locked_dir
;
2011 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2013 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode
);
2014 spin_lock(&inode
->i_lock
);
2015 ci
->i_ceph_flags
&= ~CEPH_I_COMPLETE
;
2016 ci
->i_release_count
++;
2017 spin_unlock(&inode
->i_lock
);
2020 ceph_invalidate_dentry_lease(req
->r_dentry
);
2021 if (req
->r_old_dentry
)
2022 ceph_invalidate_dentry_lease(req
->r_old_dentry
);
2028 * We take the session mutex and parse and process the reply immediately.
2029 * This preserves the logical ordering of replies, capabilities, etc., sent
2030 * by the MDS as they are applied to our local cache.
2032 static void handle_reply(struct ceph_mds_session
*session
, struct ceph_msg
*msg
)
2034 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2035 struct ceph_mds_request
*req
;
2036 struct ceph_mds_reply_head
*head
= msg
->front
.iov_base
;
2037 struct ceph_mds_reply_info_parsed
*rinfo
; /* parsed reply info */
2040 int mds
= session
->s_mds
;
2042 if (msg
->front
.iov_len
< sizeof(*head
)) {
2043 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2048 /* get request, session */
2049 tid
= le64_to_cpu(msg
->hdr
.tid
);
2050 mutex_lock(&mdsc
->mutex
);
2051 req
= __lookup_request(mdsc
, tid
);
2053 dout("handle_reply on unknown tid %llu\n", tid
);
2054 mutex_unlock(&mdsc
->mutex
);
2057 dout("handle_reply %p\n", req
);
2059 /* correct session? */
2060 if (req
->r_session
!= session
) {
2061 pr_err("mdsc_handle_reply got %llu on session mds%d"
2062 " not mds%d\n", tid
, session
->s_mds
,
2063 req
->r_session
? req
->r_session
->s_mds
: -1);
2064 mutex_unlock(&mdsc
->mutex
);
2069 if ((req
->r_got_unsafe
&& !head
->safe
) ||
2070 (req
->r_got_safe
&& head
->safe
)) {
2071 pr_warning("got a dup %s reply on %llu from mds%d\n",
2072 head
->safe
? "safe" : "unsafe", tid
, mds
);
2073 mutex_unlock(&mdsc
->mutex
);
2076 if (req
->r_got_safe
&& !head
->safe
) {
2077 pr_warning("got unsafe after safe on %llu from mds%d\n",
2079 mutex_unlock(&mdsc
->mutex
);
2083 result
= le32_to_cpu(head
->result
);
2087 * if we're not talking to the authority, send to them
2088 * if the authority has changed while we weren't looking,
2089 * send to new authority
2090 * Otherwise we just have to return an ESTALE
2092 if (result
== -ESTALE
) {
2093 dout("got ESTALE on request %llu", req
->r_tid
);
2094 if (!req
->r_inode
) {
2095 /* do nothing; not an authority problem */
2096 } else if (req
->r_direct_mode
!= USE_AUTH_MDS
) {
2097 dout("not using auth, setting for that now");
2098 req
->r_direct_mode
= USE_AUTH_MDS
;
2099 __do_request(mdsc
, req
);
2100 mutex_unlock(&mdsc
->mutex
);
2103 struct ceph_inode_info
*ci
= ceph_inode(req
->r_inode
);
2104 struct ceph_cap
*cap
= NULL
;
2107 cap
= ceph_get_cap_for_mds(ci
,
2108 req
->r_session
->s_mds
);
2110 dout("already using auth");
2111 if ((!cap
|| cap
!= ci
->i_auth_cap
) ||
2112 (cap
->mseq
!= req
->r_sent_on_mseq
)) {
2113 dout("but cap changed, so resending");
2114 __do_request(mdsc
, req
);
2115 mutex_unlock(&mdsc
->mutex
);
2119 dout("have to return ESTALE on request %llu", req
->r_tid
);
2124 req
->r_got_safe
= true;
2125 __unregister_request(mdsc
, req
);
2126 complete_all(&req
->r_safe_completion
);
2128 if (req
->r_got_unsafe
) {
2130 * We already handled the unsafe response, now do the
2131 * cleanup. No need to examine the response; the MDS
2132 * doesn't include any result info in the safe
2133 * response. And even if it did, there is nothing
2134 * useful we could do with a revised return value.
2136 dout("got safe reply %llu, mds%d\n", tid
, mds
);
2137 list_del_init(&req
->r_unsafe_item
);
2139 /* last unsafe request during umount? */
2140 if (mdsc
->stopping
&& !__get_oldest_req(mdsc
))
2141 complete_all(&mdsc
->safe_umount_waiters
);
2142 mutex_unlock(&mdsc
->mutex
);
2146 req
->r_got_unsafe
= true;
2147 list_add_tail(&req
->r_unsafe_item
, &req
->r_session
->s_unsafe
);
2150 dout("handle_reply tid %lld result %d\n", tid
, result
);
2151 rinfo
= &req
->r_reply_info
;
2152 err
= parse_reply_info(msg
, rinfo
, session
->s_con
.peer_features
);
2153 mutex_unlock(&mdsc
->mutex
);
2155 mutex_lock(&session
->s_mutex
);
2157 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds
, tid
);
2163 if (rinfo
->snapblob_len
) {
2164 down_write(&mdsc
->snap_rwsem
);
2165 ceph_update_snap_trace(mdsc
, rinfo
->snapblob
,
2166 rinfo
->snapblob
+ rinfo
->snapblob_len
,
2167 le32_to_cpu(head
->op
) == CEPH_MDS_OP_RMSNAP
);
2168 downgrade_write(&mdsc
->snap_rwsem
);
2170 down_read(&mdsc
->snap_rwsem
);
2173 /* insert trace into our cache */
2174 mutex_lock(&req
->r_fill_mutex
);
2175 err
= ceph_fill_trace(mdsc
->fsc
->sb
, req
, req
->r_session
);
2177 if (result
== 0 && req
->r_op
!= CEPH_MDS_OP_GETFILELOCK
&&
2179 ceph_readdir_prepopulate(req
, req
->r_session
);
2180 ceph_unreserve_caps(mdsc
, &req
->r_caps_reservation
);
2182 mutex_unlock(&req
->r_fill_mutex
);
2184 up_read(&mdsc
->snap_rwsem
);
2186 mutex_lock(&mdsc
->mutex
);
2187 if (!req
->r_aborted
) {
2193 req
->r_got_result
= true;
2196 dout("reply arrived after request %lld was aborted\n", tid
);
2198 mutex_unlock(&mdsc
->mutex
);
2200 ceph_add_cap_releases(mdsc
, req
->r_session
);
2201 mutex_unlock(&session
->s_mutex
);
2203 /* kick calling process */
2204 complete_request(mdsc
, req
);
2206 ceph_mdsc_put_request(req
);
2213 * handle mds notification that our request has been forwarded.
2215 static void handle_forward(struct ceph_mds_client
*mdsc
,
2216 struct ceph_mds_session
*session
,
2217 struct ceph_msg
*msg
)
2219 struct ceph_mds_request
*req
;
2220 u64 tid
= le64_to_cpu(msg
->hdr
.tid
);
2224 void *p
= msg
->front
.iov_base
;
2225 void *end
= p
+ msg
->front
.iov_len
;
2227 ceph_decode_need(&p
, end
, 2*sizeof(u32
), bad
);
2228 next_mds
= ceph_decode_32(&p
);
2229 fwd_seq
= ceph_decode_32(&p
);
2231 mutex_lock(&mdsc
->mutex
);
2232 req
= __lookup_request(mdsc
, tid
);
2234 dout("forward tid %llu to mds%d - req dne\n", tid
, next_mds
);
2235 goto out
; /* dup reply? */
2238 if (req
->r_aborted
) {
2239 dout("forward tid %llu aborted, unregistering\n", tid
);
2240 __unregister_request(mdsc
, req
);
2241 } else if (fwd_seq
<= req
->r_num_fwd
) {
2242 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2243 tid
, next_mds
, req
->r_num_fwd
, fwd_seq
);
2245 /* resend. forward race not possible; mds would drop */
2246 dout("forward tid %llu to mds%d (we resend)\n", tid
, next_mds
);
2248 BUG_ON(req
->r_got_result
);
2249 req
->r_num_fwd
= fwd_seq
;
2250 req
->r_resend_mds
= next_mds
;
2251 put_request_session(req
);
2252 __do_request(mdsc
, req
);
2254 ceph_mdsc_put_request(req
);
2256 mutex_unlock(&mdsc
->mutex
);
2260 pr_err("mdsc_handle_forward decode error err=%d\n", err
);
2264 * handle a mds session control message
2266 static void handle_session(struct ceph_mds_session
*session
,
2267 struct ceph_msg
*msg
)
2269 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2272 int mds
= session
->s_mds
;
2273 struct ceph_mds_session_head
*h
= msg
->front
.iov_base
;
2277 if (msg
->front
.iov_len
!= sizeof(*h
))
2279 op
= le32_to_cpu(h
->op
);
2280 seq
= le64_to_cpu(h
->seq
);
2282 mutex_lock(&mdsc
->mutex
);
2283 if (op
== CEPH_SESSION_CLOSE
)
2284 __unregister_session(mdsc
, session
);
2285 /* FIXME: this ttl calculation is generous */
2286 session
->s_ttl
= jiffies
+ HZ
*mdsc
->mdsmap
->m_session_autoclose
;
2287 mutex_unlock(&mdsc
->mutex
);
2289 mutex_lock(&session
->s_mutex
);
2291 dout("handle_session mds%d %s %p state %s seq %llu\n",
2292 mds
, ceph_session_op_name(op
), session
,
2293 session_state_name(session
->s_state
), seq
);
2295 if (session
->s_state
== CEPH_MDS_SESSION_HUNG
) {
2296 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2297 pr_info("mds%d came back\n", session
->s_mds
);
2301 case CEPH_SESSION_OPEN
:
2302 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2303 pr_info("mds%d reconnect success\n", session
->s_mds
);
2304 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2305 renewed_caps(mdsc
, session
, 0);
2308 __close_session(mdsc
, session
);
2311 case CEPH_SESSION_RENEWCAPS
:
2312 if (session
->s_renew_seq
== seq
)
2313 renewed_caps(mdsc
, session
, 1);
2316 case CEPH_SESSION_CLOSE
:
2317 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2318 pr_info("mds%d reconnect denied\n", session
->s_mds
);
2319 remove_session_caps(session
);
2320 wake
= 1; /* for good measure */
2321 wake_up_all(&mdsc
->session_close_wq
);
2322 kick_requests(mdsc
, mds
);
2325 case CEPH_SESSION_STALE
:
2326 pr_info("mds%d caps went stale, renewing\n",
2328 spin_lock(&session
->s_cap_lock
);
2329 session
->s_cap_gen
++;
2330 session
->s_cap_ttl
= 0;
2331 spin_unlock(&session
->s_cap_lock
);
2332 send_renew_caps(mdsc
, session
);
2335 case CEPH_SESSION_RECALL_STATE
:
2336 trim_caps(mdsc
, session
, le32_to_cpu(h
->max_caps
));
2340 pr_err("mdsc_handle_session bad op %d mds%d\n", op
, mds
);
2344 mutex_unlock(&session
->s_mutex
);
2346 mutex_lock(&mdsc
->mutex
);
2347 __wake_requests(mdsc
, &session
->s_waiting
);
2348 mutex_unlock(&mdsc
->mutex
);
2353 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds
,
2354 (int)msg
->front
.iov_len
);
2361 * called under session->mutex.
2363 static void replay_unsafe_requests(struct ceph_mds_client
*mdsc
,
2364 struct ceph_mds_session
*session
)
2366 struct ceph_mds_request
*req
, *nreq
;
2369 dout("replay_unsafe_requests mds%d\n", session
->s_mds
);
2371 mutex_lock(&mdsc
->mutex
);
2372 list_for_each_entry_safe(req
, nreq
, &session
->s_unsafe
, r_unsafe_item
) {
2373 err
= __prepare_send_request(mdsc
, req
, session
->s_mds
);
2375 ceph_msg_get(req
->r_request
);
2376 ceph_con_send(&session
->s_con
, req
->r_request
);
2379 mutex_unlock(&mdsc
->mutex
);
2383 * Encode information about a cap for a reconnect with the MDS.
2385 static int encode_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
2389 struct ceph_mds_cap_reconnect v2
;
2390 struct ceph_mds_cap_reconnect_v1 v1
;
2393 struct ceph_inode_info
*ci
;
2394 struct ceph_reconnect_state
*recon_state
= arg
;
2395 struct ceph_pagelist
*pagelist
= recon_state
->pagelist
;
2399 struct dentry
*dentry
;
2403 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2404 inode
, ceph_vinop(inode
), cap
, cap
->cap_id
,
2405 ceph_cap_string(cap
->issued
));
2406 err
= ceph_pagelist_encode_64(pagelist
, ceph_ino(inode
));
2410 dentry
= d_find_alias(inode
);
2412 path
= ceph_mdsc_build_path(dentry
, &pathlen
, &pathbase
, 0);
2414 err
= PTR_ERR(path
);
2421 err
= ceph_pagelist_encode_string(pagelist
, path
, pathlen
);
2425 spin_lock(&inode
->i_lock
);
2426 cap
->seq
= 0; /* reset cap seq */
2427 cap
->issue_seq
= 0; /* and issue_seq */
2429 if (recon_state
->flock
) {
2430 rec
.v2
.cap_id
= cpu_to_le64(cap
->cap_id
);
2431 rec
.v2
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2432 rec
.v2
.issued
= cpu_to_le32(cap
->issued
);
2433 rec
.v2
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2434 rec
.v2
.pathbase
= cpu_to_le64(pathbase
);
2435 rec
.v2
.flock_len
= 0;
2436 reclen
= sizeof(rec
.v2
);
2438 rec
.v1
.cap_id
= cpu_to_le64(cap
->cap_id
);
2439 rec
.v1
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2440 rec
.v1
.issued
= cpu_to_le32(cap
->issued
);
2441 rec
.v1
.size
= cpu_to_le64(inode
->i_size
);
2442 ceph_encode_timespec(&rec
.v1
.mtime
, &inode
->i_mtime
);
2443 ceph_encode_timespec(&rec
.v1
.atime
, &inode
->i_atime
);
2444 rec
.v1
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2445 rec
.v1
.pathbase
= cpu_to_le64(pathbase
);
2446 reclen
= sizeof(rec
.v1
);
2448 spin_unlock(&inode
->i_lock
);
2450 if (recon_state
->flock
) {
2451 int num_fcntl_locks
, num_flock_locks
;
2452 struct ceph_pagelist_cursor trunc_point
;
2454 ceph_pagelist_set_cursor(pagelist
, &trunc_point
);
2457 ceph_count_locks(inode
, &num_fcntl_locks
,
2459 rec
.v2
.flock_len
= (2*sizeof(u32
) +
2460 (num_fcntl_locks
+num_flock_locks
) *
2461 sizeof(struct ceph_filelock
));
2464 /* pre-alloc pagelist */
2465 ceph_pagelist_truncate(pagelist
, &trunc_point
);
2466 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2468 err
= ceph_pagelist_reserve(pagelist
,
2474 err
= ceph_encode_locks(inode
,
2480 } while (err
== -ENOSPC
);
2482 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2494 * If an MDS fails and recovers, clients need to reconnect in order to
2495 * reestablish shared state. This includes all caps issued through
2496 * this session _and_ the snap_realm hierarchy. Because it's not
2497 * clear which snap realms the mds cares about, we send everything we
2498 * know about.. that ensures we'll then get any new info the
2499 * recovering MDS might have.
2501 * This is a relatively heavyweight operation, but it's rare.
2503 * called with mdsc->mutex held.
2505 static void send_mds_reconnect(struct ceph_mds_client
*mdsc
,
2506 struct ceph_mds_session
*session
)
2508 struct ceph_msg
*reply
;
2510 int mds
= session
->s_mds
;
2512 struct ceph_pagelist
*pagelist
;
2513 struct ceph_reconnect_state recon_state
;
2515 pr_info("mds%d reconnect start\n", mds
);
2517 pagelist
= kmalloc(sizeof(*pagelist
), GFP_NOFS
);
2519 goto fail_nopagelist
;
2520 ceph_pagelist_init(pagelist
);
2522 reply
= ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT
, 0, GFP_NOFS
, false);
2526 mutex_lock(&session
->s_mutex
);
2527 session
->s_state
= CEPH_MDS_SESSION_RECONNECTING
;
2530 ceph_con_open(&session
->s_con
,
2531 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
2533 /* replay unsafe requests */
2534 replay_unsafe_requests(mdsc
, session
);
2536 down_read(&mdsc
->snap_rwsem
);
2538 dout("session %p state %s\n", session
,
2539 session_state_name(session
->s_state
));
2541 /* drop old cap expires; we're about to reestablish that state */
2542 discard_cap_releases(mdsc
, session
);
2544 /* traverse this session's caps */
2545 err
= ceph_pagelist_encode_32(pagelist
, session
->s_nr_caps
);
2549 recon_state
.pagelist
= pagelist
;
2550 recon_state
.flock
= session
->s_con
.peer_features
& CEPH_FEATURE_FLOCK
;
2551 err
= iterate_session_caps(session
, encode_caps_cb
, &recon_state
);
2556 * snaprealms. we provide mds with the ino, seq (version), and
2557 * parent for all of our realms. If the mds has any newer info,
2560 for (p
= rb_first(&mdsc
->snap_realms
); p
; p
= rb_next(p
)) {
2561 struct ceph_snap_realm
*realm
=
2562 rb_entry(p
, struct ceph_snap_realm
, node
);
2563 struct ceph_mds_snaprealm_reconnect sr_rec
;
2565 dout(" adding snap realm %llx seq %lld parent %llx\n",
2566 realm
->ino
, realm
->seq
, realm
->parent_ino
);
2567 sr_rec
.ino
= cpu_to_le64(realm
->ino
);
2568 sr_rec
.seq
= cpu_to_le64(realm
->seq
);
2569 sr_rec
.parent
= cpu_to_le64(realm
->parent_ino
);
2570 err
= ceph_pagelist_append(pagelist
, &sr_rec
, sizeof(sr_rec
));
2575 reply
->pagelist
= pagelist
;
2576 if (recon_state
.flock
)
2577 reply
->hdr
.version
= cpu_to_le16(2);
2578 reply
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
2579 reply
->nr_pages
= calc_pages_for(0, pagelist
->length
);
2580 ceph_con_send(&session
->s_con
, reply
);
2582 mutex_unlock(&session
->s_mutex
);
2584 mutex_lock(&mdsc
->mutex
);
2585 __wake_requests(mdsc
, &session
->s_waiting
);
2586 mutex_unlock(&mdsc
->mutex
);
2588 up_read(&mdsc
->snap_rwsem
);
2592 ceph_msg_put(reply
);
2593 up_read(&mdsc
->snap_rwsem
);
2594 mutex_unlock(&session
->s_mutex
);
2596 ceph_pagelist_release(pagelist
);
2599 pr_err("error %d preparing reconnect for mds%d\n", err
, mds
);
2605 * compare old and new mdsmaps, kicking requests
2606 * and closing out old connections as necessary
2608 * called under mdsc->mutex.
2610 static void check_new_map(struct ceph_mds_client
*mdsc
,
2611 struct ceph_mdsmap
*newmap
,
2612 struct ceph_mdsmap
*oldmap
)
2615 int oldstate
, newstate
;
2616 struct ceph_mds_session
*s
;
2618 dout("check_new_map new %u old %u\n",
2619 newmap
->m_epoch
, oldmap
->m_epoch
);
2621 for (i
= 0; i
< oldmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
2622 if (mdsc
->sessions
[i
] == NULL
)
2624 s
= mdsc
->sessions
[i
];
2625 oldstate
= ceph_mdsmap_get_state(oldmap
, i
);
2626 newstate
= ceph_mdsmap_get_state(newmap
, i
);
2628 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2629 i
, ceph_mds_state_name(oldstate
),
2630 ceph_mdsmap_is_laggy(oldmap
, i
) ? " (laggy)" : "",
2631 ceph_mds_state_name(newstate
),
2632 ceph_mdsmap_is_laggy(newmap
, i
) ? " (laggy)" : "",
2633 session_state_name(s
->s_state
));
2635 if (memcmp(ceph_mdsmap_get_addr(oldmap
, i
),
2636 ceph_mdsmap_get_addr(newmap
, i
),
2637 sizeof(struct ceph_entity_addr
))) {
2638 if (s
->s_state
== CEPH_MDS_SESSION_OPENING
) {
2639 /* the session never opened, just close it
2641 __wake_requests(mdsc
, &s
->s_waiting
);
2642 __unregister_session(mdsc
, s
);
2645 mutex_unlock(&mdsc
->mutex
);
2646 mutex_lock(&s
->s_mutex
);
2647 mutex_lock(&mdsc
->mutex
);
2648 ceph_con_close(&s
->s_con
);
2649 mutex_unlock(&s
->s_mutex
);
2650 s
->s_state
= CEPH_MDS_SESSION_RESTARTING
;
2653 /* kick any requests waiting on the recovering mds */
2654 kick_requests(mdsc
, i
);
2655 } else if (oldstate
== newstate
) {
2656 continue; /* nothing new with this mds */
2662 if (s
->s_state
== CEPH_MDS_SESSION_RESTARTING
&&
2663 newstate
>= CEPH_MDS_STATE_RECONNECT
) {
2664 mutex_unlock(&mdsc
->mutex
);
2665 send_mds_reconnect(mdsc
, s
);
2666 mutex_lock(&mdsc
->mutex
);
2670 * kick request on any mds that has gone active.
2672 if (oldstate
< CEPH_MDS_STATE_ACTIVE
&&
2673 newstate
>= CEPH_MDS_STATE_ACTIVE
) {
2674 if (oldstate
!= CEPH_MDS_STATE_CREATING
&&
2675 oldstate
!= CEPH_MDS_STATE_STARTING
)
2676 pr_info("mds%d recovery completed\n", s
->s_mds
);
2677 kick_requests(mdsc
, i
);
2678 ceph_kick_flushing_caps(mdsc
, s
);
2679 wake_up_session_caps(s
, 1);
2683 for (i
= 0; i
< newmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
2684 s
= mdsc
->sessions
[i
];
2687 if (!ceph_mdsmap_is_laggy(newmap
, i
))
2689 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
2690 s
->s_state
== CEPH_MDS_SESSION_HUNG
||
2691 s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
2692 dout(" connecting to export targets of laggy mds%d\n",
2694 __open_export_target_sessions(mdsc
, s
);
2706 * caller must hold session s_mutex, dentry->d_lock
2708 void __ceph_mdsc_drop_dentry_lease(struct dentry
*dentry
)
2710 struct ceph_dentry_info
*di
= ceph_dentry(dentry
);
2712 ceph_put_mds_session(di
->lease_session
);
2713 di
->lease_session
= NULL
;
2716 static void handle_lease(struct ceph_mds_client
*mdsc
,
2717 struct ceph_mds_session
*session
,
2718 struct ceph_msg
*msg
)
2720 struct super_block
*sb
= mdsc
->fsc
->sb
;
2721 struct inode
*inode
;
2722 struct dentry
*parent
, *dentry
;
2723 struct ceph_dentry_info
*di
;
2724 int mds
= session
->s_mds
;
2725 struct ceph_mds_lease
*h
= msg
->front
.iov_base
;
2727 struct ceph_vino vino
;
2731 dout("handle_lease from mds%d\n", mds
);
2734 if (msg
->front
.iov_len
< sizeof(*h
) + sizeof(u32
))
2736 vino
.ino
= le64_to_cpu(h
->ino
);
2737 vino
.snap
= CEPH_NOSNAP
;
2738 seq
= le32_to_cpu(h
->seq
);
2739 dname
.name
= (void *)h
+ sizeof(*h
) + sizeof(u32
);
2740 dname
.len
= msg
->front
.iov_len
- sizeof(*h
) - sizeof(u32
);
2741 if (dname
.len
!= get_unaligned_le32(h
+1))
2744 mutex_lock(&session
->s_mutex
);
2748 inode
= ceph_find_inode(sb
, vino
);
2749 dout("handle_lease %s, ino %llx %p %.*s\n",
2750 ceph_lease_op_name(h
->action
), vino
.ino
, inode
,
2751 dname
.len
, dname
.name
);
2752 if (inode
== NULL
) {
2753 dout("handle_lease no inode %llx\n", vino
.ino
);
2758 parent
= d_find_alias(inode
);
2760 dout("no parent dentry on inode %p\n", inode
);
2762 goto release
; /* hrm... */
2764 dname
.hash
= full_name_hash(dname
.name
, dname
.len
);
2765 dentry
= d_lookup(parent
, &dname
);
2770 spin_lock(&dentry
->d_lock
);
2771 di
= ceph_dentry(dentry
);
2772 switch (h
->action
) {
2773 case CEPH_MDS_LEASE_REVOKE
:
2774 if (di
&& di
->lease_session
== session
) {
2775 if (ceph_seq_cmp(di
->lease_seq
, seq
) > 0)
2776 h
->seq
= cpu_to_le32(di
->lease_seq
);
2777 __ceph_mdsc_drop_dentry_lease(dentry
);
2782 case CEPH_MDS_LEASE_RENEW
:
2783 if (di
&& di
->lease_session
== session
&&
2784 di
->lease_gen
== session
->s_cap_gen
&&
2785 di
->lease_renew_from
&&
2786 di
->lease_renew_after
== 0) {
2787 unsigned long duration
=
2788 le32_to_cpu(h
->duration_ms
) * HZ
/ 1000;
2790 di
->lease_seq
= seq
;
2791 dentry
->d_time
= di
->lease_renew_from
+ duration
;
2792 di
->lease_renew_after
= di
->lease_renew_from
+
2794 di
->lease_renew_from
= 0;
2798 spin_unlock(&dentry
->d_lock
);
2805 /* let's just reuse the same message */
2806 h
->action
= CEPH_MDS_LEASE_REVOKE_ACK
;
2808 ceph_con_send(&session
->s_con
, msg
);
2812 mutex_unlock(&session
->s_mutex
);
2816 pr_err("corrupt lease message\n");
2820 void ceph_mdsc_lease_send_msg(struct ceph_mds_session
*session
,
2821 struct inode
*inode
,
2822 struct dentry
*dentry
, char action
,
2825 struct ceph_msg
*msg
;
2826 struct ceph_mds_lease
*lease
;
2827 int len
= sizeof(*lease
) + sizeof(u32
);
2830 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2831 inode
, dentry
, ceph_lease_op_name(action
), session
->s_mds
);
2832 dnamelen
= dentry
->d_name
.len
;
2835 msg
= ceph_msg_new(CEPH_MSG_CLIENT_LEASE
, len
, GFP_NOFS
, false);
2838 lease
= msg
->front
.iov_base
;
2839 lease
->action
= action
;
2840 lease
->ino
= cpu_to_le64(ceph_vino(inode
).ino
);
2841 lease
->first
= lease
->last
= cpu_to_le64(ceph_vino(inode
).snap
);
2842 lease
->seq
= cpu_to_le32(seq
);
2843 put_unaligned_le32(dnamelen
, lease
+ 1);
2844 memcpy((void *)(lease
+ 1) + 4, dentry
->d_name
.name
, dnamelen
);
2847 * if this is a preemptive lease RELEASE, no need to
2848 * flush request stream, since the actual request will
2851 msg
->more_to_follow
= (action
== CEPH_MDS_LEASE_RELEASE
);
2853 ceph_con_send(&session
->s_con
, msg
);
2857 * Preemptively release a lease we expect to invalidate anyway.
2858 * Pass @inode always, @dentry is optional.
2860 void ceph_mdsc_lease_release(struct ceph_mds_client
*mdsc
, struct inode
*inode
,
2861 struct dentry
*dentry
)
2863 struct ceph_dentry_info
*di
;
2864 struct ceph_mds_session
*session
;
2867 BUG_ON(inode
== NULL
);
2868 BUG_ON(dentry
== NULL
);
2870 /* is dentry lease valid? */
2871 spin_lock(&dentry
->d_lock
);
2872 di
= ceph_dentry(dentry
);
2873 if (!di
|| !di
->lease_session
||
2874 di
->lease_session
->s_mds
< 0 ||
2875 di
->lease_gen
!= di
->lease_session
->s_cap_gen
||
2876 !time_before(jiffies
, dentry
->d_time
)) {
2877 dout("lease_release inode %p dentry %p -- "
2880 spin_unlock(&dentry
->d_lock
);
2884 /* we do have a lease on this dentry; note mds and seq */
2885 session
= ceph_get_mds_session(di
->lease_session
);
2886 seq
= di
->lease_seq
;
2887 __ceph_mdsc_drop_dentry_lease(dentry
);
2888 spin_unlock(&dentry
->d_lock
);
2890 dout("lease_release inode %p dentry %p to mds%d\n",
2891 inode
, dentry
, session
->s_mds
);
2892 ceph_mdsc_lease_send_msg(session
, inode
, dentry
,
2893 CEPH_MDS_LEASE_RELEASE
, seq
);
2894 ceph_put_mds_session(session
);
2898 * drop all leases (and dentry refs) in preparation for umount
2900 static void drop_leases(struct ceph_mds_client
*mdsc
)
2904 dout("drop_leases\n");
2905 mutex_lock(&mdsc
->mutex
);
2906 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2907 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
2910 mutex_unlock(&mdsc
->mutex
);
2911 mutex_lock(&s
->s_mutex
);
2912 mutex_unlock(&s
->s_mutex
);
2913 ceph_put_mds_session(s
);
2914 mutex_lock(&mdsc
->mutex
);
2916 mutex_unlock(&mdsc
->mutex
);
2922 * delayed work -- periodically trim expired leases, renew caps with mds
2924 static void schedule_delayed(struct ceph_mds_client
*mdsc
)
2927 unsigned hz
= round_jiffies_relative(HZ
* delay
);
2928 schedule_delayed_work(&mdsc
->delayed_work
, hz
);
2931 static void delayed_work(struct work_struct
*work
)
2934 struct ceph_mds_client
*mdsc
=
2935 container_of(work
, struct ceph_mds_client
, delayed_work
.work
);
2939 dout("mdsc delayed_work\n");
2940 ceph_check_delayed_caps(mdsc
);
2942 mutex_lock(&mdsc
->mutex
);
2943 renew_interval
= mdsc
->mdsmap
->m_session_timeout
>> 2;
2944 renew_caps
= time_after_eq(jiffies
, HZ
*renew_interval
+
2945 mdsc
->last_renew_caps
);
2947 mdsc
->last_renew_caps
= jiffies
;
2949 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2950 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
2953 if (s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
2954 dout("resending session close request for mds%d\n",
2956 request_close_session(mdsc
, s
);
2957 ceph_put_mds_session(s
);
2960 if (s
->s_ttl
&& time_after(jiffies
, s
->s_ttl
)) {
2961 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
) {
2962 s
->s_state
= CEPH_MDS_SESSION_HUNG
;
2963 pr_info("mds%d hung\n", s
->s_mds
);
2966 if (s
->s_state
< CEPH_MDS_SESSION_OPEN
) {
2967 /* this mds is failed or recovering, just wait */
2968 ceph_put_mds_session(s
);
2971 mutex_unlock(&mdsc
->mutex
);
2973 mutex_lock(&s
->s_mutex
);
2975 send_renew_caps(mdsc
, s
);
2977 ceph_con_keepalive(&s
->s_con
);
2978 ceph_add_cap_releases(mdsc
, s
);
2979 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
2980 s
->s_state
== CEPH_MDS_SESSION_HUNG
)
2981 ceph_send_cap_releases(mdsc
, s
);
2982 mutex_unlock(&s
->s_mutex
);
2983 ceph_put_mds_session(s
);
2985 mutex_lock(&mdsc
->mutex
);
2987 mutex_unlock(&mdsc
->mutex
);
2989 schedule_delayed(mdsc
);
2992 int ceph_mdsc_init(struct ceph_fs_client
*fsc
)
2995 struct ceph_mds_client
*mdsc
;
2997 mdsc
= kzalloc(sizeof(struct ceph_mds_client
), GFP_NOFS
);
3002 mutex_init(&mdsc
->mutex
);
3003 mdsc
->mdsmap
= kzalloc(sizeof(*mdsc
->mdsmap
), GFP_NOFS
);
3004 if (mdsc
->mdsmap
== NULL
)
3007 init_completion(&mdsc
->safe_umount_waiters
);
3008 init_waitqueue_head(&mdsc
->session_close_wq
);
3009 INIT_LIST_HEAD(&mdsc
->waiting_for_map
);
3010 mdsc
->sessions
= NULL
;
3011 mdsc
->max_sessions
= 0;
3013 init_rwsem(&mdsc
->snap_rwsem
);
3014 mdsc
->snap_realms
= RB_ROOT
;
3015 INIT_LIST_HEAD(&mdsc
->snap_empty
);
3016 spin_lock_init(&mdsc
->snap_empty_lock
);
3018 mdsc
->request_tree
= RB_ROOT
;
3019 INIT_DELAYED_WORK(&mdsc
->delayed_work
, delayed_work
);
3020 mdsc
->last_renew_caps
= jiffies
;
3021 INIT_LIST_HEAD(&mdsc
->cap_delay_list
);
3022 spin_lock_init(&mdsc
->cap_delay_lock
);
3023 INIT_LIST_HEAD(&mdsc
->snap_flush_list
);
3024 spin_lock_init(&mdsc
->snap_flush_lock
);
3025 mdsc
->cap_flush_seq
= 0;
3026 INIT_LIST_HEAD(&mdsc
->cap_dirty
);
3027 INIT_LIST_HEAD(&mdsc
->cap_dirty_migrating
);
3028 mdsc
->num_cap_flushing
= 0;
3029 spin_lock_init(&mdsc
->cap_dirty_lock
);
3030 init_waitqueue_head(&mdsc
->cap_flushing_wq
);
3031 spin_lock_init(&mdsc
->dentry_lru_lock
);
3032 INIT_LIST_HEAD(&mdsc
->dentry_lru
);
3034 ceph_caps_init(mdsc
);
3035 ceph_adjust_min_caps(mdsc
, fsc
->min_caps
);
3041 * Wait for safe replies on open mds requests. If we time out, drop
3042 * all requests from the tree to avoid dangling dentry refs.
3044 static void wait_requests(struct ceph_mds_client
*mdsc
)
3046 struct ceph_mds_request
*req
;
3047 struct ceph_fs_client
*fsc
= mdsc
->fsc
;
3049 mutex_lock(&mdsc
->mutex
);
3050 if (__get_oldest_req(mdsc
)) {
3051 mutex_unlock(&mdsc
->mutex
);
3053 dout("wait_requests waiting for requests\n");
3054 wait_for_completion_timeout(&mdsc
->safe_umount_waiters
,
3055 fsc
->client
->options
->mount_timeout
* HZ
);
3057 /* tear down remaining requests */
3058 mutex_lock(&mdsc
->mutex
);
3059 while ((req
= __get_oldest_req(mdsc
))) {
3060 dout("wait_requests timed out on tid %llu\n",
3062 __unregister_request(mdsc
, req
);
3065 mutex_unlock(&mdsc
->mutex
);
3066 dout("wait_requests done\n");
3070 * called before mount is ro, and before dentries are torn down.
3071 * (hmm, does this still race with new lookups?)
3073 void ceph_mdsc_pre_umount(struct ceph_mds_client
*mdsc
)
3075 dout("pre_umount\n");
3079 ceph_flush_dirty_caps(mdsc
);
3080 wait_requests(mdsc
);
3083 * wait for reply handlers to drop their request refs and
3084 * their inode/dcache refs
3090 * wait for all write mds requests to flush.
3092 static void wait_unsafe_requests(struct ceph_mds_client
*mdsc
, u64 want_tid
)
3094 struct ceph_mds_request
*req
= NULL
, *nextreq
;
3097 mutex_lock(&mdsc
->mutex
);
3098 dout("wait_unsafe_requests want %lld\n", want_tid
);
3100 req
= __get_oldest_req(mdsc
);
3101 while (req
&& req
->r_tid
<= want_tid
) {
3102 /* find next request */
3103 n
= rb_next(&req
->r_node
);
3105 nextreq
= rb_entry(n
, struct ceph_mds_request
, r_node
);
3108 if ((req
->r_op
& CEPH_MDS_OP_WRITE
)) {
3110 ceph_mdsc_get_request(req
);
3112 ceph_mdsc_get_request(nextreq
);
3113 mutex_unlock(&mdsc
->mutex
);
3114 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3115 req
->r_tid
, want_tid
);
3116 wait_for_completion(&req
->r_safe_completion
);
3117 mutex_lock(&mdsc
->mutex
);
3118 ceph_mdsc_put_request(req
);
3120 break; /* next dne before, so we're done! */
3121 if (RB_EMPTY_NODE(&nextreq
->r_node
)) {
3122 /* next request was removed from tree */
3123 ceph_mdsc_put_request(nextreq
);
3126 ceph_mdsc_put_request(nextreq
); /* won't go away */
3130 mutex_unlock(&mdsc
->mutex
);
3131 dout("wait_unsafe_requests done\n");
3134 void ceph_mdsc_sync(struct ceph_mds_client
*mdsc
)
3136 u64 want_tid
, want_flush
;
3138 if (mdsc
->fsc
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
3142 mutex_lock(&mdsc
->mutex
);
3143 want_tid
= mdsc
->last_tid
;
3144 want_flush
= mdsc
->cap_flush_seq
;
3145 mutex_unlock(&mdsc
->mutex
);
3146 dout("sync want tid %lld flush_seq %lld\n", want_tid
, want_flush
);
3148 ceph_flush_dirty_caps(mdsc
);
3150 wait_unsafe_requests(mdsc
, want_tid
);
3151 wait_event(mdsc
->cap_flushing_wq
, check_cap_flush(mdsc
, want_flush
));
3155 * true if all sessions are closed, or we force unmount
3157 bool done_closing_sessions(struct ceph_mds_client
*mdsc
)
3161 if (mdsc
->fsc
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
3164 mutex_lock(&mdsc
->mutex
);
3165 for (i
= 0; i
< mdsc
->max_sessions
; i
++)
3166 if (mdsc
->sessions
[i
])
3168 mutex_unlock(&mdsc
->mutex
);
3173 * called after sb is ro.
3175 void ceph_mdsc_close_sessions(struct ceph_mds_client
*mdsc
)
3177 struct ceph_mds_session
*session
;
3179 struct ceph_fs_client
*fsc
= mdsc
->fsc
;
3180 unsigned long timeout
= fsc
->client
->options
->mount_timeout
* HZ
;
3182 dout("close_sessions\n");
3184 /* close sessions */
3185 mutex_lock(&mdsc
->mutex
);
3186 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3187 session
= __ceph_lookup_mds_session(mdsc
, i
);
3190 mutex_unlock(&mdsc
->mutex
);
3191 mutex_lock(&session
->s_mutex
);
3192 __close_session(mdsc
, session
);
3193 mutex_unlock(&session
->s_mutex
);
3194 ceph_put_mds_session(session
);
3195 mutex_lock(&mdsc
->mutex
);
3197 mutex_unlock(&mdsc
->mutex
);
3199 dout("waiting for sessions to close\n");
3200 wait_event_timeout(mdsc
->session_close_wq
, done_closing_sessions(mdsc
),
3203 /* tear down remaining sessions */
3204 mutex_lock(&mdsc
->mutex
);
3205 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3206 if (mdsc
->sessions
[i
]) {
3207 session
= get_session(mdsc
->sessions
[i
]);
3208 __unregister_session(mdsc
, session
);
3209 mutex_unlock(&mdsc
->mutex
);
3210 mutex_lock(&session
->s_mutex
);
3211 remove_session_caps(session
);
3212 mutex_unlock(&session
->s_mutex
);
3213 ceph_put_mds_session(session
);
3214 mutex_lock(&mdsc
->mutex
);
3217 WARN_ON(!list_empty(&mdsc
->cap_delay_list
));
3218 mutex_unlock(&mdsc
->mutex
);
3220 ceph_cleanup_empty_realms(mdsc
);
3222 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3227 static void ceph_mdsc_stop(struct ceph_mds_client
*mdsc
)
3230 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3232 ceph_mdsmap_destroy(mdsc
->mdsmap
);
3233 kfree(mdsc
->sessions
);
3234 ceph_caps_finalize(mdsc
);
3237 void ceph_mdsc_destroy(struct ceph_fs_client
*fsc
)
3239 struct ceph_mds_client
*mdsc
= fsc
->mdsc
;
3241 dout("mdsc_destroy %p\n", mdsc
);
3242 ceph_mdsc_stop(mdsc
);
3244 /* flush out any connection work with references to us */
3249 dout("mdsc_destroy %p done\n", mdsc
);
3254 * handle mds map update.
3256 void ceph_mdsc_handle_map(struct ceph_mds_client
*mdsc
, struct ceph_msg
*msg
)
3260 void *p
= msg
->front
.iov_base
;
3261 void *end
= p
+ msg
->front
.iov_len
;
3262 struct ceph_mdsmap
*newmap
, *oldmap
;
3263 struct ceph_fsid fsid
;
3266 ceph_decode_need(&p
, end
, sizeof(fsid
)+2*sizeof(u32
), bad
);
3267 ceph_decode_copy(&p
, &fsid
, sizeof(fsid
));
3268 if (ceph_check_fsid(mdsc
->fsc
->client
, &fsid
) < 0)
3270 epoch
= ceph_decode_32(&p
);
3271 maplen
= ceph_decode_32(&p
);
3272 dout("handle_map epoch %u len %d\n", epoch
, (int)maplen
);
3274 /* do we need it? */
3275 ceph_monc_got_mdsmap(&mdsc
->fsc
->client
->monc
, epoch
);
3276 mutex_lock(&mdsc
->mutex
);
3277 if (mdsc
->mdsmap
&& epoch
<= mdsc
->mdsmap
->m_epoch
) {
3278 dout("handle_map epoch %u <= our %u\n",
3279 epoch
, mdsc
->mdsmap
->m_epoch
);
3280 mutex_unlock(&mdsc
->mutex
);
3284 newmap
= ceph_mdsmap_decode(&p
, end
);
3285 if (IS_ERR(newmap
)) {
3286 err
= PTR_ERR(newmap
);
3290 /* swap into place */
3292 oldmap
= mdsc
->mdsmap
;
3293 mdsc
->mdsmap
= newmap
;
3294 check_new_map(mdsc
, newmap
, oldmap
);
3295 ceph_mdsmap_destroy(oldmap
);
3297 mdsc
->mdsmap
= newmap
; /* first mds map */
3299 mdsc
->fsc
->sb
->s_maxbytes
= mdsc
->mdsmap
->m_max_file_size
;
3301 __wake_requests(mdsc
, &mdsc
->waiting_for_map
);
3303 mutex_unlock(&mdsc
->mutex
);
3304 schedule_delayed(mdsc
);
3308 mutex_unlock(&mdsc
->mutex
);
3310 pr_err("error decoding mdsmap %d\n", err
);
3314 static struct ceph_connection
*con_get(struct ceph_connection
*con
)
3316 struct ceph_mds_session
*s
= con
->private;
3318 if (get_session(s
)) {
3319 dout("mdsc con_get %p ok (%d)\n", s
, atomic_read(&s
->s_ref
));
3322 dout("mdsc con_get %p FAIL\n", s
);
3326 static void con_put(struct ceph_connection
*con
)
3328 struct ceph_mds_session
*s
= con
->private;
3330 dout("mdsc con_put %p (%d)\n", s
, atomic_read(&s
->s_ref
) - 1);
3331 ceph_put_mds_session(s
);
3335 * if the client is unresponsive for long enough, the mds will kill
3336 * the session entirely.
3338 static void peer_reset(struct ceph_connection
*con
)
3340 struct ceph_mds_session
*s
= con
->private;
3341 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3343 pr_warning("mds%d closed our session\n", s
->s_mds
);
3344 send_mds_reconnect(mdsc
, s
);
3347 static void dispatch(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3349 struct ceph_mds_session
*s
= con
->private;
3350 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3351 int type
= le16_to_cpu(msg
->hdr
.type
);
3353 mutex_lock(&mdsc
->mutex
);
3354 if (__verify_registered_session(mdsc
, s
) < 0) {
3355 mutex_unlock(&mdsc
->mutex
);
3358 mutex_unlock(&mdsc
->mutex
);
3361 case CEPH_MSG_MDS_MAP
:
3362 ceph_mdsc_handle_map(mdsc
, msg
);
3364 case CEPH_MSG_CLIENT_SESSION
:
3365 handle_session(s
, msg
);
3367 case CEPH_MSG_CLIENT_REPLY
:
3368 handle_reply(s
, msg
);
3370 case CEPH_MSG_CLIENT_REQUEST_FORWARD
:
3371 handle_forward(mdsc
, s
, msg
);
3373 case CEPH_MSG_CLIENT_CAPS
:
3374 ceph_handle_caps(s
, msg
);
3376 case CEPH_MSG_CLIENT_SNAP
:
3377 ceph_handle_snap(mdsc
, s
, msg
);
3379 case CEPH_MSG_CLIENT_LEASE
:
3380 handle_lease(mdsc
, s
, msg
);
3384 pr_err("received unknown message type %d %s\n", type
,
3385 ceph_msg_type_name(type
));
3394 static int get_authorizer(struct ceph_connection
*con
,
3395 void **buf
, int *len
, int *proto
,
3396 void **reply_buf
, int *reply_len
, int force_new
)
3398 struct ceph_mds_session
*s
= con
->private;
3399 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3400 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3403 if (force_new
&& s
->s_authorizer
) {
3404 ac
->ops
->destroy_authorizer(ac
, s
->s_authorizer
);
3405 s
->s_authorizer
= NULL
;
3407 if (s
->s_authorizer
== NULL
) {
3408 if (ac
->ops
->create_authorizer
) {
3409 ret
= ac
->ops
->create_authorizer(
3410 ac
, CEPH_ENTITY_TYPE_MDS
,
3412 &s
->s_authorizer_buf
,
3413 &s
->s_authorizer_buf_len
,
3414 &s
->s_authorizer_reply_buf
,
3415 &s
->s_authorizer_reply_buf_len
);
3421 *proto
= ac
->protocol
;
3422 *buf
= s
->s_authorizer_buf
;
3423 *len
= s
->s_authorizer_buf_len
;
3424 *reply_buf
= s
->s_authorizer_reply_buf
;
3425 *reply_len
= s
->s_authorizer_reply_buf_len
;
3430 static int verify_authorizer_reply(struct ceph_connection
*con
, int len
)
3432 struct ceph_mds_session
*s
= con
->private;
3433 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3434 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3436 return ac
->ops
->verify_authorizer_reply(ac
, s
->s_authorizer
, len
);
3439 static int invalidate_authorizer(struct ceph_connection
*con
)
3441 struct ceph_mds_session
*s
= con
->private;
3442 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3443 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3445 if (ac
->ops
->invalidate_authorizer
)
3446 ac
->ops
->invalidate_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
);
3448 return ceph_monc_validate_auth(&mdsc
->fsc
->client
->monc
);
3451 static const struct ceph_connection_operations mds_con_ops
= {
3454 .dispatch
= dispatch
,
3455 .get_authorizer
= get_authorizer
,
3456 .verify_authorizer_reply
= verify_authorizer_reply
,
3457 .invalidate_authorizer
= invalidate_authorizer
,
3458 .peer_reset
= peer_reset
,