Add linux-next specific files for 20110826
[linux-2.6/next.git] / net / core / skbuff.c
blob296afd0aa8d28793fce91fd130428a9a9faf5beb
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
72 #include "kmap_skb.h"
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
80 put_page(buf->page);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 get_page(buf->page);
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 return 1;
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185 prefetchw(skb);
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
192 prefetchw(data + size);
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
199 memset(skb, 0, offsetof(struct sk_buff, tail));
200 skb->truesize = size + sizeof(struct sk_buff);
201 atomic_set(&skb->users, 1);
202 skb->head = data;
203 skb->data = data;
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb->mac_header = ~0U;
208 #endif
210 /* make sure we initialize shinfo sequentially */
211 shinfo = skb_shinfo(skb);
212 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 atomic_set(&shinfo->dataref, 1);
214 kmemcheck_annotate_variable(shinfo->destructor_arg);
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
220 kmemcheck_annotate_bitfield(child, flags1);
221 kmemcheck_annotate_bitfield(child, flags2);
222 skb->fclone = SKB_FCLONE_ORIG;
223 atomic_set(fclone_ref, 1);
225 child->fclone = SKB_FCLONE_UNAVAILABLE;
227 out:
228 return skb;
229 nodata:
230 kmem_cache_free(cache, skb);
231 skb = NULL;
232 goto out;
234 EXPORT_SYMBOL(__alloc_skb);
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
247 * %NULL is returned if there is no free memory.
249 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
250 unsigned int length, gfp_t gfp_mask)
252 struct sk_buff *skb;
254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
255 if (likely(skb)) {
256 skb_reserve(skb, NET_SKB_PAD);
257 skb->dev = dev;
259 return skb;
261 EXPORT_SYMBOL(__netdev_alloc_skb);
263 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264 int size)
266 skb_fill_page_desc(skb, i, page, off, size);
267 skb->len += size;
268 skb->data_len += size;
269 skb->truesize += size;
271 EXPORT_SYMBOL(skb_add_rx_frag);
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
285 struct sk_buff *dev_alloc_skb(unsigned int length)
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
291 return __dev_alloc_skb(length, GFP_ATOMIC);
293 EXPORT_SYMBOL(dev_alloc_skb);
295 static void skb_drop_list(struct sk_buff **listp)
297 struct sk_buff *list = *listp;
299 *listp = NULL;
301 do {
302 struct sk_buff *this = list;
303 list = list->next;
304 kfree_skb(this);
305 } while (list);
308 static inline void skb_drop_fraglist(struct sk_buff *skb)
310 skb_drop_list(&skb_shinfo(skb)->frag_list);
313 static void skb_clone_fraglist(struct sk_buff *skb)
315 struct sk_buff *list;
317 skb_walk_frags(skb, list)
318 skb_get(list);
321 static void skb_release_data(struct sk_buff *skb)
323 if (!skb->cloned ||
324 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
325 &skb_shinfo(skb)->dataref)) {
326 if (skb_shinfo(skb)->nr_frags) {
327 int i;
328 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
329 skb_frag_unref(skb, i);
333 * If skb buf is from userspace, we need to notify the caller
334 * the lower device DMA has done;
336 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
337 struct ubuf_info *uarg;
339 uarg = skb_shinfo(skb)->destructor_arg;
340 if (uarg->callback)
341 uarg->callback(uarg);
344 if (skb_has_frag_list(skb))
345 skb_drop_fraglist(skb);
347 kfree(skb->head);
352 * Free an skbuff by memory without cleaning the state.
354 static void kfree_skbmem(struct sk_buff *skb)
356 struct sk_buff *other;
357 atomic_t *fclone_ref;
359 switch (skb->fclone) {
360 case SKB_FCLONE_UNAVAILABLE:
361 kmem_cache_free(skbuff_head_cache, skb);
362 break;
364 case SKB_FCLONE_ORIG:
365 fclone_ref = (atomic_t *) (skb + 2);
366 if (atomic_dec_and_test(fclone_ref))
367 kmem_cache_free(skbuff_fclone_cache, skb);
368 break;
370 case SKB_FCLONE_CLONE:
371 fclone_ref = (atomic_t *) (skb + 1);
372 other = skb - 1;
374 /* The clone portion is available for
375 * fast-cloning again.
377 skb->fclone = SKB_FCLONE_UNAVAILABLE;
379 if (atomic_dec_and_test(fclone_ref))
380 kmem_cache_free(skbuff_fclone_cache, other);
381 break;
385 static void skb_release_head_state(struct sk_buff *skb)
387 skb_dst_drop(skb);
388 #ifdef CONFIG_XFRM
389 secpath_put(skb->sp);
390 #endif
391 if (skb->destructor) {
392 WARN_ON(in_irq());
393 skb->destructor(skb);
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 nf_conntrack_put(skb->nfct);
397 #endif
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 nf_conntrack_put_reasm(skb->nfct_reasm);
400 #endif
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 nf_bridge_put(skb->nf_bridge);
403 #endif
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
406 skb->tc_index = 0;
407 #ifdef CONFIG_NET_CLS_ACT
408 skb->tc_verd = 0;
409 #endif
410 #endif
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff *skb)
416 skb_release_head_state(skb);
417 skb_release_data(skb);
421 * __kfree_skb - private function
422 * @skb: buffer
424 * Free an sk_buff. Release anything attached to the buffer.
425 * Clean the state. This is an internal helper function. Users should
426 * always call kfree_skb
429 void __kfree_skb(struct sk_buff *skb)
431 skb_release_all(skb);
432 kfree_skbmem(skb);
434 EXPORT_SYMBOL(__kfree_skb);
437 * kfree_skb - free an sk_buff
438 * @skb: buffer to free
440 * Drop a reference to the buffer and free it if the usage count has
441 * hit zero.
443 void kfree_skb(struct sk_buff *skb)
445 if (unlikely(!skb))
446 return;
447 if (likely(atomic_read(&skb->users) == 1))
448 smp_rmb();
449 else if (likely(!atomic_dec_and_test(&skb->users)))
450 return;
451 trace_kfree_skb(skb, __builtin_return_address(0));
452 __kfree_skb(skb);
454 EXPORT_SYMBOL(kfree_skb);
457 * consume_skb - free an skbuff
458 * @skb: buffer to free
460 * Drop a ref to the buffer and free it if the usage count has hit zero
461 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
462 * is being dropped after a failure and notes that
464 void consume_skb(struct sk_buff *skb)
466 if (unlikely(!skb))
467 return;
468 if (likely(atomic_read(&skb->users) == 1))
469 smp_rmb();
470 else if (likely(!atomic_dec_and_test(&skb->users)))
471 return;
472 trace_consume_skb(skb);
473 __kfree_skb(skb);
475 EXPORT_SYMBOL(consume_skb);
478 * skb_recycle_check - check if skb can be reused for receive
479 * @skb: buffer
480 * @skb_size: minimum receive buffer size
482 * Checks that the skb passed in is not shared or cloned, and
483 * that it is linear and its head portion at least as large as
484 * skb_size so that it can be recycled as a receive buffer.
485 * If these conditions are met, this function does any necessary
486 * reference count dropping and cleans up the skbuff as if it
487 * just came from __alloc_skb().
489 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
491 struct skb_shared_info *shinfo;
493 if (irqs_disabled())
494 return false;
496 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
497 return false;
499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
500 return false;
502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
503 if (skb_end_pointer(skb) - skb->head < skb_size)
504 return false;
506 if (skb_shared(skb) || skb_cloned(skb))
507 return false;
509 skb_release_head_state(skb);
511 shinfo = skb_shinfo(skb);
512 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
513 atomic_set(&shinfo->dataref, 1);
515 memset(skb, 0, offsetof(struct sk_buff, tail));
516 skb->data = skb->head + NET_SKB_PAD;
517 skb_reset_tail_pointer(skb);
519 return true;
521 EXPORT_SYMBOL(skb_recycle_check);
523 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
525 new->tstamp = old->tstamp;
526 new->dev = old->dev;
527 new->transport_header = old->transport_header;
528 new->network_header = old->network_header;
529 new->mac_header = old->mac_header;
530 skb_dst_copy(new, old);
531 new->rxhash = old->rxhash;
532 new->ooo_okay = old->ooo_okay;
533 new->l4_rxhash = old->l4_rxhash;
534 #ifdef CONFIG_XFRM
535 new->sp = secpath_get(old->sp);
536 #endif
537 memcpy(new->cb, old->cb, sizeof(old->cb));
538 new->csum = old->csum;
539 new->local_df = old->local_df;
540 new->pkt_type = old->pkt_type;
541 new->ip_summed = old->ip_summed;
542 skb_copy_queue_mapping(new, old);
543 new->priority = old->priority;
544 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
545 new->ipvs_property = old->ipvs_property;
546 #endif
547 new->protocol = old->protocol;
548 new->mark = old->mark;
549 new->skb_iif = old->skb_iif;
550 __nf_copy(new, old);
551 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
552 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
553 new->nf_trace = old->nf_trace;
554 #endif
555 #ifdef CONFIG_NET_SCHED
556 new->tc_index = old->tc_index;
557 #ifdef CONFIG_NET_CLS_ACT
558 new->tc_verd = old->tc_verd;
559 #endif
560 #endif
561 new->vlan_tci = old->vlan_tci;
563 skb_copy_secmark(new, old);
567 * You should not add any new code to this function. Add it to
568 * __copy_skb_header above instead.
570 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
572 #define C(x) n->x = skb->x
574 n->next = n->prev = NULL;
575 n->sk = NULL;
576 __copy_skb_header(n, skb);
578 C(len);
579 C(data_len);
580 C(mac_len);
581 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
582 n->cloned = 1;
583 n->nohdr = 0;
584 n->destructor = NULL;
585 C(tail);
586 C(end);
587 C(head);
588 C(data);
589 C(truesize);
590 atomic_set(&n->users, 1);
592 atomic_inc(&(skb_shinfo(skb)->dataref));
593 skb->cloned = 1;
595 return n;
596 #undef C
600 * skb_morph - morph one skb into another
601 * @dst: the skb to receive the contents
602 * @src: the skb to supply the contents
604 * This is identical to skb_clone except that the target skb is
605 * supplied by the user.
607 * The target skb is returned upon exit.
609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
611 skb_release_all(dst);
612 return __skb_clone(dst, src);
614 EXPORT_SYMBOL_GPL(skb_morph);
616 /* skb frags copy userspace buffers to kernel */
617 static int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
619 int i;
620 int num_frags = skb_shinfo(skb)->nr_frags;
621 struct page *page, *head = NULL;
622 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
624 for (i = 0; i < num_frags; i++) {
625 u8 *vaddr;
626 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
628 page = alloc_page(GFP_ATOMIC);
629 if (!page) {
630 while (head) {
631 struct page *next = (struct page *)head->private;
632 put_page(head);
633 head = next;
635 return -ENOMEM;
637 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
638 memcpy(page_address(page),
639 vaddr + f->page_offset, f->size);
640 kunmap_skb_frag(vaddr);
641 page->private = (unsigned long)head;
642 head = page;
645 /* skb frags release userspace buffers */
646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
647 put_page(skb_shinfo(skb)->frags[i].page);
649 uarg->callback(uarg);
651 /* skb frags point to kernel buffers */
652 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
653 skb_shinfo(skb)->frags[i - 1].page_offset = 0;
654 skb_shinfo(skb)->frags[i - 1].page = head;
655 head = (struct page *)head->private;
657 return 0;
662 * skb_clone - duplicate an sk_buff
663 * @skb: buffer to clone
664 * @gfp_mask: allocation priority
666 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
667 * copies share the same packet data but not structure. The new
668 * buffer has a reference count of 1. If the allocation fails the
669 * function returns %NULL otherwise the new buffer is returned.
671 * If this function is called from an interrupt gfp_mask() must be
672 * %GFP_ATOMIC.
675 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
677 struct sk_buff *n;
679 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
680 if (skb_copy_ubufs(skb, gfp_mask))
681 return NULL;
682 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
685 n = skb + 1;
686 if (skb->fclone == SKB_FCLONE_ORIG &&
687 n->fclone == SKB_FCLONE_UNAVAILABLE) {
688 atomic_t *fclone_ref = (atomic_t *) (n + 1);
689 n->fclone = SKB_FCLONE_CLONE;
690 atomic_inc(fclone_ref);
691 } else {
692 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
693 if (!n)
694 return NULL;
696 kmemcheck_annotate_bitfield(n, flags1);
697 kmemcheck_annotate_bitfield(n, flags2);
698 n->fclone = SKB_FCLONE_UNAVAILABLE;
701 return __skb_clone(n, skb);
703 EXPORT_SYMBOL(skb_clone);
705 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
707 #ifndef NET_SKBUFF_DATA_USES_OFFSET
709 * Shift between the two data areas in bytes
711 unsigned long offset = new->data - old->data;
712 #endif
714 __copy_skb_header(new, old);
716 #ifndef NET_SKBUFF_DATA_USES_OFFSET
717 /* {transport,network,mac}_header are relative to skb->head */
718 new->transport_header += offset;
719 new->network_header += offset;
720 if (skb_mac_header_was_set(new))
721 new->mac_header += offset;
722 #endif
723 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
724 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
725 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
729 * skb_copy - create private copy of an sk_buff
730 * @skb: buffer to copy
731 * @gfp_mask: allocation priority
733 * Make a copy of both an &sk_buff and its data. This is used when the
734 * caller wishes to modify the data and needs a private copy of the
735 * data to alter. Returns %NULL on failure or the pointer to the buffer
736 * on success. The returned buffer has a reference count of 1.
738 * As by-product this function converts non-linear &sk_buff to linear
739 * one, so that &sk_buff becomes completely private and caller is allowed
740 * to modify all the data of returned buffer. This means that this
741 * function is not recommended for use in circumstances when only
742 * header is going to be modified. Use pskb_copy() instead.
745 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
747 int headerlen = skb_headroom(skb);
748 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
749 struct sk_buff *n = alloc_skb(size, gfp_mask);
751 if (!n)
752 return NULL;
754 /* Set the data pointer */
755 skb_reserve(n, headerlen);
756 /* Set the tail pointer and length */
757 skb_put(n, skb->len);
759 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
760 BUG();
762 copy_skb_header(n, skb);
763 return n;
765 EXPORT_SYMBOL(skb_copy);
768 * pskb_copy - create copy of an sk_buff with private head.
769 * @skb: buffer to copy
770 * @gfp_mask: allocation priority
772 * Make a copy of both an &sk_buff and part of its data, located
773 * in header. Fragmented data remain shared. This is used when
774 * the caller wishes to modify only header of &sk_buff and needs
775 * private copy of the header to alter. Returns %NULL on failure
776 * or the pointer to the buffer on success.
777 * The returned buffer has a reference count of 1.
780 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
782 unsigned int size = skb_end_pointer(skb) - skb->head;
783 struct sk_buff *n = alloc_skb(size, gfp_mask);
785 if (!n)
786 goto out;
788 /* Set the data pointer */
789 skb_reserve(n, skb_headroom(skb));
790 /* Set the tail pointer and length */
791 skb_put(n, skb_headlen(skb));
792 /* Copy the bytes */
793 skb_copy_from_linear_data(skb, n->data, n->len);
795 n->truesize += skb->data_len;
796 n->data_len = skb->data_len;
797 n->len = skb->len;
799 if (skb_shinfo(skb)->nr_frags) {
800 int i;
802 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
803 if (skb_copy_ubufs(skb, gfp_mask)) {
804 kfree_skb(n);
805 n = NULL;
806 goto out;
808 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
810 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
811 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
812 skb_frag_ref(skb, i);
814 skb_shinfo(n)->nr_frags = i;
817 if (skb_has_frag_list(skb)) {
818 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
819 skb_clone_fraglist(n);
822 copy_skb_header(n, skb);
823 out:
824 return n;
826 EXPORT_SYMBOL(pskb_copy);
829 * pskb_expand_head - reallocate header of &sk_buff
830 * @skb: buffer to reallocate
831 * @nhead: room to add at head
832 * @ntail: room to add at tail
833 * @gfp_mask: allocation priority
835 * Expands (or creates identical copy, if &nhead and &ntail are zero)
836 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
837 * reference count of 1. Returns zero in the case of success or error,
838 * if expansion failed. In the last case, &sk_buff is not changed.
840 * All the pointers pointing into skb header may change and must be
841 * reloaded after call to this function.
844 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
845 gfp_t gfp_mask)
847 int i;
848 u8 *data;
849 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
850 long off;
851 bool fastpath;
853 BUG_ON(nhead < 0);
855 if (skb_shared(skb))
856 BUG();
858 size = SKB_DATA_ALIGN(size);
860 /* Check if we can avoid taking references on fragments if we own
861 * the last reference on skb->head. (see skb_release_data())
863 if (!skb->cloned)
864 fastpath = true;
865 else {
866 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
867 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
870 if (fastpath &&
871 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
872 memmove(skb->head + size, skb_shinfo(skb),
873 offsetof(struct skb_shared_info,
874 frags[skb_shinfo(skb)->nr_frags]));
875 memmove(skb->head + nhead, skb->head,
876 skb_tail_pointer(skb) - skb->head);
877 off = nhead;
878 goto adjust_others;
881 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
882 if (!data)
883 goto nodata;
885 /* Copy only real data... and, alas, header. This should be
886 * optimized for the cases when header is void.
888 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
890 memcpy((struct skb_shared_info *)(data + size),
891 skb_shinfo(skb),
892 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
894 if (fastpath) {
895 kfree(skb->head);
896 } else {
897 /* copy this zero copy skb frags */
898 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
899 if (skb_copy_ubufs(skb, gfp_mask))
900 goto nofrags;
901 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
903 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
904 skb_frag_ref(skb, i);
906 if (skb_has_frag_list(skb))
907 skb_clone_fraglist(skb);
909 skb_release_data(skb);
911 off = (data + nhead) - skb->head;
913 skb->head = data;
914 adjust_others:
915 skb->data += off;
916 #ifdef NET_SKBUFF_DATA_USES_OFFSET
917 skb->end = size;
918 off = nhead;
919 #else
920 skb->end = skb->head + size;
921 #endif
922 /* {transport,network,mac}_header and tail are relative to skb->head */
923 skb->tail += off;
924 skb->transport_header += off;
925 skb->network_header += off;
926 if (skb_mac_header_was_set(skb))
927 skb->mac_header += off;
928 /* Only adjust this if it actually is csum_start rather than csum */
929 if (skb->ip_summed == CHECKSUM_PARTIAL)
930 skb->csum_start += nhead;
931 skb->cloned = 0;
932 skb->hdr_len = 0;
933 skb->nohdr = 0;
934 atomic_set(&skb_shinfo(skb)->dataref, 1);
935 return 0;
937 nofrags:
938 kfree(data);
939 nodata:
940 return -ENOMEM;
942 EXPORT_SYMBOL(pskb_expand_head);
944 /* Make private copy of skb with writable head and some headroom */
946 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
948 struct sk_buff *skb2;
949 int delta = headroom - skb_headroom(skb);
951 if (delta <= 0)
952 skb2 = pskb_copy(skb, GFP_ATOMIC);
953 else {
954 skb2 = skb_clone(skb, GFP_ATOMIC);
955 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
956 GFP_ATOMIC)) {
957 kfree_skb(skb2);
958 skb2 = NULL;
961 return skb2;
963 EXPORT_SYMBOL(skb_realloc_headroom);
966 * skb_copy_expand - copy and expand sk_buff
967 * @skb: buffer to copy
968 * @newheadroom: new free bytes at head
969 * @newtailroom: new free bytes at tail
970 * @gfp_mask: allocation priority
972 * Make a copy of both an &sk_buff and its data and while doing so
973 * allocate additional space.
975 * This is used when the caller wishes to modify the data and needs a
976 * private copy of the data to alter as well as more space for new fields.
977 * Returns %NULL on failure or the pointer to the buffer
978 * on success. The returned buffer has a reference count of 1.
980 * You must pass %GFP_ATOMIC as the allocation priority if this function
981 * is called from an interrupt.
983 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
984 int newheadroom, int newtailroom,
985 gfp_t gfp_mask)
988 * Allocate the copy buffer
990 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
991 gfp_mask);
992 int oldheadroom = skb_headroom(skb);
993 int head_copy_len, head_copy_off;
994 int off;
996 if (!n)
997 return NULL;
999 skb_reserve(n, newheadroom);
1001 /* Set the tail pointer and length */
1002 skb_put(n, skb->len);
1004 head_copy_len = oldheadroom;
1005 head_copy_off = 0;
1006 if (newheadroom <= head_copy_len)
1007 head_copy_len = newheadroom;
1008 else
1009 head_copy_off = newheadroom - head_copy_len;
1011 /* Copy the linear header and data. */
1012 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1013 skb->len + head_copy_len))
1014 BUG();
1016 copy_skb_header(n, skb);
1018 off = newheadroom - oldheadroom;
1019 if (n->ip_summed == CHECKSUM_PARTIAL)
1020 n->csum_start += off;
1021 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1022 n->transport_header += off;
1023 n->network_header += off;
1024 if (skb_mac_header_was_set(skb))
1025 n->mac_header += off;
1026 #endif
1028 return n;
1030 EXPORT_SYMBOL(skb_copy_expand);
1033 * skb_pad - zero pad the tail of an skb
1034 * @skb: buffer to pad
1035 * @pad: space to pad
1037 * Ensure that a buffer is followed by a padding area that is zero
1038 * filled. Used by network drivers which may DMA or transfer data
1039 * beyond the buffer end onto the wire.
1041 * May return error in out of memory cases. The skb is freed on error.
1044 int skb_pad(struct sk_buff *skb, int pad)
1046 int err;
1047 int ntail;
1049 /* If the skbuff is non linear tailroom is always zero.. */
1050 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1051 memset(skb->data+skb->len, 0, pad);
1052 return 0;
1055 ntail = skb->data_len + pad - (skb->end - skb->tail);
1056 if (likely(skb_cloned(skb) || ntail > 0)) {
1057 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1058 if (unlikely(err))
1059 goto free_skb;
1062 /* FIXME: The use of this function with non-linear skb's really needs
1063 * to be audited.
1065 err = skb_linearize(skb);
1066 if (unlikely(err))
1067 goto free_skb;
1069 memset(skb->data + skb->len, 0, pad);
1070 return 0;
1072 free_skb:
1073 kfree_skb(skb);
1074 return err;
1076 EXPORT_SYMBOL(skb_pad);
1079 * skb_put - add data to a buffer
1080 * @skb: buffer to use
1081 * @len: amount of data to add
1083 * This function extends the used data area of the buffer. If this would
1084 * exceed the total buffer size the kernel will panic. A pointer to the
1085 * first byte of the extra data is returned.
1087 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1089 unsigned char *tmp = skb_tail_pointer(skb);
1090 SKB_LINEAR_ASSERT(skb);
1091 skb->tail += len;
1092 skb->len += len;
1093 if (unlikely(skb->tail > skb->end))
1094 skb_over_panic(skb, len, __builtin_return_address(0));
1095 return tmp;
1097 EXPORT_SYMBOL(skb_put);
1100 * skb_push - add data to the start of a buffer
1101 * @skb: buffer to use
1102 * @len: amount of data to add
1104 * This function extends the used data area of the buffer at the buffer
1105 * start. If this would exceed the total buffer headroom the kernel will
1106 * panic. A pointer to the first byte of the extra data is returned.
1108 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1110 skb->data -= len;
1111 skb->len += len;
1112 if (unlikely(skb->data<skb->head))
1113 skb_under_panic(skb, len, __builtin_return_address(0));
1114 return skb->data;
1116 EXPORT_SYMBOL(skb_push);
1119 * skb_pull - remove data from the start of a buffer
1120 * @skb: buffer to use
1121 * @len: amount of data to remove
1123 * This function removes data from the start of a buffer, returning
1124 * the memory to the headroom. A pointer to the next data in the buffer
1125 * is returned. Once the data has been pulled future pushes will overwrite
1126 * the old data.
1128 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1130 return skb_pull_inline(skb, len);
1132 EXPORT_SYMBOL(skb_pull);
1135 * skb_trim - remove end from a buffer
1136 * @skb: buffer to alter
1137 * @len: new length
1139 * Cut the length of a buffer down by removing data from the tail. If
1140 * the buffer is already under the length specified it is not modified.
1141 * The skb must be linear.
1143 void skb_trim(struct sk_buff *skb, unsigned int len)
1145 if (skb->len > len)
1146 __skb_trim(skb, len);
1148 EXPORT_SYMBOL(skb_trim);
1150 /* Trims skb to length len. It can change skb pointers.
1153 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1155 struct sk_buff **fragp;
1156 struct sk_buff *frag;
1157 int offset = skb_headlen(skb);
1158 int nfrags = skb_shinfo(skb)->nr_frags;
1159 int i;
1160 int err;
1162 if (skb_cloned(skb) &&
1163 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1164 return err;
1166 i = 0;
1167 if (offset >= len)
1168 goto drop_pages;
1170 for (; i < nfrags; i++) {
1171 int end = offset + skb_shinfo(skb)->frags[i].size;
1173 if (end < len) {
1174 offset = end;
1175 continue;
1178 skb_shinfo(skb)->frags[i++].size = len - offset;
1180 drop_pages:
1181 skb_shinfo(skb)->nr_frags = i;
1183 for (; i < nfrags; i++)
1184 skb_frag_unref(skb, i);
1186 if (skb_has_frag_list(skb))
1187 skb_drop_fraglist(skb);
1188 goto done;
1191 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1192 fragp = &frag->next) {
1193 int end = offset + frag->len;
1195 if (skb_shared(frag)) {
1196 struct sk_buff *nfrag;
1198 nfrag = skb_clone(frag, GFP_ATOMIC);
1199 if (unlikely(!nfrag))
1200 return -ENOMEM;
1202 nfrag->next = frag->next;
1203 kfree_skb(frag);
1204 frag = nfrag;
1205 *fragp = frag;
1208 if (end < len) {
1209 offset = end;
1210 continue;
1213 if (end > len &&
1214 unlikely((err = pskb_trim(frag, len - offset))))
1215 return err;
1217 if (frag->next)
1218 skb_drop_list(&frag->next);
1219 break;
1222 done:
1223 if (len > skb_headlen(skb)) {
1224 skb->data_len -= skb->len - len;
1225 skb->len = len;
1226 } else {
1227 skb->len = len;
1228 skb->data_len = 0;
1229 skb_set_tail_pointer(skb, len);
1232 return 0;
1234 EXPORT_SYMBOL(___pskb_trim);
1237 * __pskb_pull_tail - advance tail of skb header
1238 * @skb: buffer to reallocate
1239 * @delta: number of bytes to advance tail
1241 * The function makes a sense only on a fragmented &sk_buff,
1242 * it expands header moving its tail forward and copying necessary
1243 * data from fragmented part.
1245 * &sk_buff MUST have reference count of 1.
1247 * Returns %NULL (and &sk_buff does not change) if pull failed
1248 * or value of new tail of skb in the case of success.
1250 * All the pointers pointing into skb header may change and must be
1251 * reloaded after call to this function.
1254 /* Moves tail of skb head forward, copying data from fragmented part,
1255 * when it is necessary.
1256 * 1. It may fail due to malloc failure.
1257 * 2. It may change skb pointers.
1259 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1261 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1263 /* If skb has not enough free space at tail, get new one
1264 * plus 128 bytes for future expansions. If we have enough
1265 * room at tail, reallocate without expansion only if skb is cloned.
1267 int i, k, eat = (skb->tail + delta) - skb->end;
1269 if (eat > 0 || skb_cloned(skb)) {
1270 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1271 GFP_ATOMIC))
1272 return NULL;
1275 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1276 BUG();
1278 /* Optimization: no fragments, no reasons to preestimate
1279 * size of pulled pages. Superb.
1281 if (!skb_has_frag_list(skb))
1282 goto pull_pages;
1284 /* Estimate size of pulled pages. */
1285 eat = delta;
1286 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1287 if (skb_shinfo(skb)->frags[i].size >= eat)
1288 goto pull_pages;
1289 eat -= skb_shinfo(skb)->frags[i].size;
1292 /* If we need update frag list, we are in troubles.
1293 * Certainly, it possible to add an offset to skb data,
1294 * but taking into account that pulling is expected to
1295 * be very rare operation, it is worth to fight against
1296 * further bloating skb head and crucify ourselves here instead.
1297 * Pure masohism, indeed. 8)8)
1299 if (eat) {
1300 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1301 struct sk_buff *clone = NULL;
1302 struct sk_buff *insp = NULL;
1304 do {
1305 BUG_ON(!list);
1307 if (list->len <= eat) {
1308 /* Eaten as whole. */
1309 eat -= list->len;
1310 list = list->next;
1311 insp = list;
1312 } else {
1313 /* Eaten partially. */
1315 if (skb_shared(list)) {
1316 /* Sucks! We need to fork list. :-( */
1317 clone = skb_clone(list, GFP_ATOMIC);
1318 if (!clone)
1319 return NULL;
1320 insp = list->next;
1321 list = clone;
1322 } else {
1323 /* This may be pulled without
1324 * problems. */
1325 insp = list;
1327 if (!pskb_pull(list, eat)) {
1328 kfree_skb(clone);
1329 return NULL;
1331 break;
1333 } while (eat);
1335 /* Free pulled out fragments. */
1336 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1337 skb_shinfo(skb)->frag_list = list->next;
1338 kfree_skb(list);
1340 /* And insert new clone at head. */
1341 if (clone) {
1342 clone->next = list;
1343 skb_shinfo(skb)->frag_list = clone;
1346 /* Success! Now we may commit changes to skb data. */
1348 pull_pages:
1349 eat = delta;
1350 k = 0;
1351 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1352 if (skb_shinfo(skb)->frags[i].size <= eat) {
1353 skb_frag_unref(skb, i);
1354 eat -= skb_shinfo(skb)->frags[i].size;
1355 } else {
1356 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1357 if (eat) {
1358 skb_shinfo(skb)->frags[k].page_offset += eat;
1359 skb_shinfo(skb)->frags[k].size -= eat;
1360 eat = 0;
1362 k++;
1365 skb_shinfo(skb)->nr_frags = k;
1367 skb->tail += delta;
1368 skb->data_len -= delta;
1370 return skb_tail_pointer(skb);
1372 EXPORT_SYMBOL(__pskb_pull_tail);
1375 * skb_copy_bits - copy bits from skb to kernel buffer
1376 * @skb: source skb
1377 * @offset: offset in source
1378 * @to: destination buffer
1379 * @len: number of bytes to copy
1381 * Copy the specified number of bytes from the source skb to the
1382 * destination buffer.
1384 * CAUTION ! :
1385 * If its prototype is ever changed,
1386 * check arch/{*}/net/{*}.S files,
1387 * since it is called from BPF assembly code.
1389 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1391 int start = skb_headlen(skb);
1392 struct sk_buff *frag_iter;
1393 int i, copy;
1395 if (offset > (int)skb->len - len)
1396 goto fault;
1398 /* Copy header. */
1399 if ((copy = start - offset) > 0) {
1400 if (copy > len)
1401 copy = len;
1402 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1403 if ((len -= copy) == 0)
1404 return 0;
1405 offset += copy;
1406 to += copy;
1409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1410 int end;
1412 WARN_ON(start > offset + len);
1414 end = start + skb_shinfo(skb)->frags[i].size;
1415 if ((copy = end - offset) > 0) {
1416 u8 *vaddr;
1418 if (copy > len)
1419 copy = len;
1421 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1422 memcpy(to,
1423 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1424 offset - start, copy);
1425 kunmap_skb_frag(vaddr);
1427 if ((len -= copy) == 0)
1428 return 0;
1429 offset += copy;
1430 to += copy;
1432 start = end;
1435 skb_walk_frags(skb, frag_iter) {
1436 int end;
1438 WARN_ON(start > offset + len);
1440 end = start + frag_iter->len;
1441 if ((copy = end - offset) > 0) {
1442 if (copy > len)
1443 copy = len;
1444 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1445 goto fault;
1446 if ((len -= copy) == 0)
1447 return 0;
1448 offset += copy;
1449 to += copy;
1451 start = end;
1454 if (!len)
1455 return 0;
1457 fault:
1458 return -EFAULT;
1460 EXPORT_SYMBOL(skb_copy_bits);
1463 * Callback from splice_to_pipe(), if we need to release some pages
1464 * at the end of the spd in case we error'ed out in filling the pipe.
1466 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1468 put_page(spd->pages[i]);
1471 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1472 unsigned int *offset,
1473 struct sk_buff *skb, struct sock *sk)
1475 struct page *p = sk->sk_sndmsg_page;
1476 unsigned int off;
1478 if (!p) {
1479 new_page:
1480 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1481 if (!p)
1482 return NULL;
1484 off = sk->sk_sndmsg_off = 0;
1485 /* hold one ref to this page until it's full */
1486 } else {
1487 unsigned int mlen;
1489 off = sk->sk_sndmsg_off;
1490 mlen = PAGE_SIZE - off;
1491 if (mlen < 64 && mlen < *len) {
1492 put_page(p);
1493 goto new_page;
1496 *len = min_t(unsigned int, *len, mlen);
1499 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1500 sk->sk_sndmsg_off += *len;
1501 *offset = off;
1502 get_page(p);
1504 return p;
1508 * Fill page/offset/length into spd, if it can hold more pages.
1510 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1511 struct pipe_inode_info *pipe, struct page *page,
1512 unsigned int *len, unsigned int offset,
1513 struct sk_buff *skb, int linear,
1514 struct sock *sk)
1516 if (unlikely(spd->nr_pages == pipe->buffers))
1517 return 1;
1519 if (linear) {
1520 page = linear_to_page(page, len, &offset, skb, sk);
1521 if (!page)
1522 return 1;
1523 } else
1524 get_page(page);
1526 spd->pages[spd->nr_pages] = page;
1527 spd->partial[spd->nr_pages].len = *len;
1528 spd->partial[spd->nr_pages].offset = offset;
1529 spd->nr_pages++;
1531 return 0;
1534 static inline void __segment_seek(struct page **page, unsigned int *poff,
1535 unsigned int *plen, unsigned int off)
1537 unsigned long n;
1539 *poff += off;
1540 n = *poff / PAGE_SIZE;
1541 if (n)
1542 *page = nth_page(*page, n);
1544 *poff = *poff % PAGE_SIZE;
1545 *plen -= off;
1548 static inline int __splice_segment(struct page *page, unsigned int poff,
1549 unsigned int plen, unsigned int *off,
1550 unsigned int *len, struct sk_buff *skb,
1551 struct splice_pipe_desc *spd, int linear,
1552 struct sock *sk,
1553 struct pipe_inode_info *pipe)
1555 if (!*len)
1556 return 1;
1558 /* skip this segment if already processed */
1559 if (*off >= plen) {
1560 *off -= plen;
1561 return 0;
1564 /* ignore any bits we already processed */
1565 if (*off) {
1566 __segment_seek(&page, &poff, &plen, *off);
1567 *off = 0;
1570 do {
1571 unsigned int flen = min(*len, plen);
1573 /* the linear region may spread across several pages */
1574 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1576 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1577 return 1;
1579 __segment_seek(&page, &poff, &plen, flen);
1580 *len -= flen;
1582 } while (*len && plen);
1584 return 0;
1588 * Map linear and fragment data from the skb to spd. It reports failure if the
1589 * pipe is full or if we already spliced the requested length.
1591 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1592 unsigned int *offset, unsigned int *len,
1593 struct splice_pipe_desc *spd, struct sock *sk)
1595 int seg;
1598 * map the linear part
1600 if (__splice_segment(virt_to_page(skb->data),
1601 (unsigned long) skb->data & (PAGE_SIZE - 1),
1602 skb_headlen(skb),
1603 offset, len, skb, spd, 1, sk, pipe))
1604 return 1;
1607 * then map the fragments
1609 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1610 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1612 if (__splice_segment(skb_frag_page(f),
1613 f->page_offset, f->size,
1614 offset, len, skb, spd, 0, sk, pipe))
1615 return 1;
1618 return 0;
1622 * Map data from the skb to a pipe. Should handle both the linear part,
1623 * the fragments, and the frag list. It does NOT handle frag lists within
1624 * the frag list, if such a thing exists. We'd probably need to recurse to
1625 * handle that cleanly.
1627 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1628 struct pipe_inode_info *pipe, unsigned int tlen,
1629 unsigned int flags)
1631 struct partial_page partial[PIPE_DEF_BUFFERS];
1632 struct page *pages[PIPE_DEF_BUFFERS];
1633 struct splice_pipe_desc spd = {
1634 .pages = pages,
1635 .partial = partial,
1636 .flags = flags,
1637 .ops = &sock_pipe_buf_ops,
1638 .spd_release = sock_spd_release,
1640 struct sk_buff *frag_iter;
1641 struct sock *sk = skb->sk;
1642 int ret = 0;
1644 if (splice_grow_spd(pipe, &spd))
1645 return -ENOMEM;
1648 * __skb_splice_bits() only fails if the output has no room left,
1649 * so no point in going over the frag_list for the error case.
1651 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1652 goto done;
1653 else if (!tlen)
1654 goto done;
1657 * now see if we have a frag_list to map
1659 skb_walk_frags(skb, frag_iter) {
1660 if (!tlen)
1661 break;
1662 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1663 break;
1666 done:
1667 if (spd.nr_pages) {
1669 * Drop the socket lock, otherwise we have reverse
1670 * locking dependencies between sk_lock and i_mutex
1671 * here as compared to sendfile(). We enter here
1672 * with the socket lock held, and splice_to_pipe() will
1673 * grab the pipe inode lock. For sendfile() emulation,
1674 * we call into ->sendpage() with the i_mutex lock held
1675 * and networking will grab the socket lock.
1677 release_sock(sk);
1678 ret = splice_to_pipe(pipe, &spd);
1679 lock_sock(sk);
1682 splice_shrink_spd(pipe, &spd);
1683 return ret;
1687 * skb_store_bits - store bits from kernel buffer to skb
1688 * @skb: destination buffer
1689 * @offset: offset in destination
1690 * @from: source buffer
1691 * @len: number of bytes to copy
1693 * Copy the specified number of bytes from the source buffer to the
1694 * destination skb. This function handles all the messy bits of
1695 * traversing fragment lists and such.
1698 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1700 int start = skb_headlen(skb);
1701 struct sk_buff *frag_iter;
1702 int i, copy;
1704 if (offset > (int)skb->len - len)
1705 goto fault;
1707 if ((copy = start - offset) > 0) {
1708 if (copy > len)
1709 copy = len;
1710 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1711 if ((len -= copy) == 0)
1712 return 0;
1713 offset += copy;
1714 from += copy;
1717 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1718 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1719 int end;
1721 WARN_ON(start > offset + len);
1723 end = start + frag->size;
1724 if ((copy = end - offset) > 0) {
1725 u8 *vaddr;
1727 if (copy > len)
1728 copy = len;
1730 vaddr = kmap_skb_frag(frag);
1731 memcpy(vaddr + frag->page_offset + offset - start,
1732 from, copy);
1733 kunmap_skb_frag(vaddr);
1735 if ((len -= copy) == 0)
1736 return 0;
1737 offset += copy;
1738 from += copy;
1740 start = end;
1743 skb_walk_frags(skb, frag_iter) {
1744 int end;
1746 WARN_ON(start > offset + len);
1748 end = start + frag_iter->len;
1749 if ((copy = end - offset) > 0) {
1750 if (copy > len)
1751 copy = len;
1752 if (skb_store_bits(frag_iter, offset - start,
1753 from, copy))
1754 goto fault;
1755 if ((len -= copy) == 0)
1756 return 0;
1757 offset += copy;
1758 from += copy;
1760 start = end;
1762 if (!len)
1763 return 0;
1765 fault:
1766 return -EFAULT;
1768 EXPORT_SYMBOL(skb_store_bits);
1770 /* Checksum skb data. */
1772 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1773 int len, __wsum csum)
1775 int start = skb_headlen(skb);
1776 int i, copy = start - offset;
1777 struct sk_buff *frag_iter;
1778 int pos = 0;
1780 /* Checksum header. */
1781 if (copy > 0) {
1782 if (copy > len)
1783 copy = len;
1784 csum = csum_partial(skb->data + offset, copy, csum);
1785 if ((len -= copy) == 0)
1786 return csum;
1787 offset += copy;
1788 pos = copy;
1791 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1792 int end;
1794 WARN_ON(start > offset + len);
1796 end = start + skb_shinfo(skb)->frags[i].size;
1797 if ((copy = end - offset) > 0) {
1798 __wsum csum2;
1799 u8 *vaddr;
1800 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1802 if (copy > len)
1803 copy = len;
1804 vaddr = kmap_skb_frag(frag);
1805 csum2 = csum_partial(vaddr + frag->page_offset +
1806 offset - start, copy, 0);
1807 kunmap_skb_frag(vaddr);
1808 csum = csum_block_add(csum, csum2, pos);
1809 if (!(len -= copy))
1810 return csum;
1811 offset += copy;
1812 pos += copy;
1814 start = end;
1817 skb_walk_frags(skb, frag_iter) {
1818 int end;
1820 WARN_ON(start > offset + len);
1822 end = start + frag_iter->len;
1823 if ((copy = end - offset) > 0) {
1824 __wsum csum2;
1825 if (copy > len)
1826 copy = len;
1827 csum2 = skb_checksum(frag_iter, offset - start,
1828 copy, 0);
1829 csum = csum_block_add(csum, csum2, pos);
1830 if ((len -= copy) == 0)
1831 return csum;
1832 offset += copy;
1833 pos += copy;
1835 start = end;
1837 BUG_ON(len);
1839 return csum;
1841 EXPORT_SYMBOL(skb_checksum);
1843 /* Both of above in one bottle. */
1845 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1846 u8 *to, int len, __wsum csum)
1848 int start = skb_headlen(skb);
1849 int i, copy = start - offset;
1850 struct sk_buff *frag_iter;
1851 int pos = 0;
1853 /* Copy header. */
1854 if (copy > 0) {
1855 if (copy > len)
1856 copy = len;
1857 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1858 copy, csum);
1859 if ((len -= copy) == 0)
1860 return csum;
1861 offset += copy;
1862 to += copy;
1863 pos = copy;
1866 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1867 int end;
1869 WARN_ON(start > offset + len);
1871 end = start + skb_shinfo(skb)->frags[i].size;
1872 if ((copy = end - offset) > 0) {
1873 __wsum csum2;
1874 u8 *vaddr;
1875 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1877 if (copy > len)
1878 copy = len;
1879 vaddr = kmap_skb_frag(frag);
1880 csum2 = csum_partial_copy_nocheck(vaddr +
1881 frag->page_offset +
1882 offset - start, to,
1883 copy, 0);
1884 kunmap_skb_frag(vaddr);
1885 csum = csum_block_add(csum, csum2, pos);
1886 if (!(len -= copy))
1887 return csum;
1888 offset += copy;
1889 to += copy;
1890 pos += copy;
1892 start = end;
1895 skb_walk_frags(skb, frag_iter) {
1896 __wsum csum2;
1897 int end;
1899 WARN_ON(start > offset + len);
1901 end = start + frag_iter->len;
1902 if ((copy = end - offset) > 0) {
1903 if (copy > len)
1904 copy = len;
1905 csum2 = skb_copy_and_csum_bits(frag_iter,
1906 offset - start,
1907 to, copy, 0);
1908 csum = csum_block_add(csum, csum2, pos);
1909 if ((len -= copy) == 0)
1910 return csum;
1911 offset += copy;
1912 to += copy;
1913 pos += copy;
1915 start = end;
1917 BUG_ON(len);
1918 return csum;
1920 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1922 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1924 __wsum csum;
1925 long csstart;
1927 if (skb->ip_summed == CHECKSUM_PARTIAL)
1928 csstart = skb_checksum_start_offset(skb);
1929 else
1930 csstart = skb_headlen(skb);
1932 BUG_ON(csstart > skb_headlen(skb));
1934 skb_copy_from_linear_data(skb, to, csstart);
1936 csum = 0;
1937 if (csstart != skb->len)
1938 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1939 skb->len - csstart, 0);
1941 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1942 long csstuff = csstart + skb->csum_offset;
1944 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1947 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1950 * skb_dequeue - remove from the head of the queue
1951 * @list: list to dequeue from
1953 * Remove the head of the list. The list lock is taken so the function
1954 * may be used safely with other locking list functions. The head item is
1955 * returned or %NULL if the list is empty.
1958 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1960 unsigned long flags;
1961 struct sk_buff *result;
1963 spin_lock_irqsave(&list->lock, flags);
1964 result = __skb_dequeue(list);
1965 spin_unlock_irqrestore(&list->lock, flags);
1966 return result;
1968 EXPORT_SYMBOL(skb_dequeue);
1971 * skb_dequeue_tail - remove from the tail of the queue
1972 * @list: list to dequeue from
1974 * Remove the tail of the list. The list lock is taken so the function
1975 * may be used safely with other locking list functions. The tail item is
1976 * returned or %NULL if the list is empty.
1978 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1980 unsigned long flags;
1981 struct sk_buff *result;
1983 spin_lock_irqsave(&list->lock, flags);
1984 result = __skb_dequeue_tail(list);
1985 spin_unlock_irqrestore(&list->lock, flags);
1986 return result;
1988 EXPORT_SYMBOL(skb_dequeue_tail);
1991 * skb_queue_purge - empty a list
1992 * @list: list to empty
1994 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1995 * the list and one reference dropped. This function takes the list
1996 * lock and is atomic with respect to other list locking functions.
1998 void skb_queue_purge(struct sk_buff_head *list)
2000 struct sk_buff *skb;
2001 while ((skb = skb_dequeue(list)) != NULL)
2002 kfree_skb(skb);
2004 EXPORT_SYMBOL(skb_queue_purge);
2007 * skb_queue_head - queue a buffer at the list head
2008 * @list: list to use
2009 * @newsk: buffer to queue
2011 * Queue a buffer at the start of the list. This function takes the
2012 * list lock and can be used safely with other locking &sk_buff functions
2013 * safely.
2015 * A buffer cannot be placed on two lists at the same time.
2017 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2019 unsigned long flags;
2021 spin_lock_irqsave(&list->lock, flags);
2022 __skb_queue_head(list, newsk);
2023 spin_unlock_irqrestore(&list->lock, flags);
2025 EXPORT_SYMBOL(skb_queue_head);
2028 * skb_queue_tail - queue a buffer at the list tail
2029 * @list: list to use
2030 * @newsk: buffer to queue
2032 * Queue a buffer at the tail of the list. This function takes the
2033 * list lock and can be used safely with other locking &sk_buff functions
2034 * safely.
2036 * A buffer cannot be placed on two lists at the same time.
2038 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2040 unsigned long flags;
2042 spin_lock_irqsave(&list->lock, flags);
2043 __skb_queue_tail(list, newsk);
2044 spin_unlock_irqrestore(&list->lock, flags);
2046 EXPORT_SYMBOL(skb_queue_tail);
2049 * skb_unlink - remove a buffer from a list
2050 * @skb: buffer to remove
2051 * @list: list to use
2053 * Remove a packet from a list. The list locks are taken and this
2054 * function is atomic with respect to other list locked calls
2056 * You must know what list the SKB is on.
2058 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2060 unsigned long flags;
2062 spin_lock_irqsave(&list->lock, flags);
2063 __skb_unlink(skb, list);
2064 spin_unlock_irqrestore(&list->lock, flags);
2066 EXPORT_SYMBOL(skb_unlink);
2069 * skb_append - append a buffer
2070 * @old: buffer to insert after
2071 * @newsk: buffer to insert
2072 * @list: list to use
2074 * Place a packet after a given packet in a list. The list locks are taken
2075 * and this function is atomic with respect to other list locked calls.
2076 * A buffer cannot be placed on two lists at the same time.
2078 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2080 unsigned long flags;
2082 spin_lock_irqsave(&list->lock, flags);
2083 __skb_queue_after(list, old, newsk);
2084 spin_unlock_irqrestore(&list->lock, flags);
2086 EXPORT_SYMBOL(skb_append);
2089 * skb_insert - insert a buffer
2090 * @old: buffer to insert before
2091 * @newsk: buffer to insert
2092 * @list: list to use
2094 * Place a packet before a given packet in a list. The list locks are
2095 * taken and this function is atomic with respect to other list locked
2096 * calls.
2098 * A buffer cannot be placed on two lists at the same time.
2100 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2102 unsigned long flags;
2104 spin_lock_irqsave(&list->lock, flags);
2105 __skb_insert(newsk, old->prev, old, list);
2106 spin_unlock_irqrestore(&list->lock, flags);
2108 EXPORT_SYMBOL(skb_insert);
2110 static inline void skb_split_inside_header(struct sk_buff *skb,
2111 struct sk_buff* skb1,
2112 const u32 len, const int pos)
2114 int i;
2116 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2117 pos - len);
2118 /* And move data appendix as is. */
2119 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2120 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2122 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2123 skb_shinfo(skb)->nr_frags = 0;
2124 skb1->data_len = skb->data_len;
2125 skb1->len += skb1->data_len;
2126 skb->data_len = 0;
2127 skb->len = len;
2128 skb_set_tail_pointer(skb, len);
2131 static inline void skb_split_no_header(struct sk_buff *skb,
2132 struct sk_buff* skb1,
2133 const u32 len, int pos)
2135 int i, k = 0;
2136 const int nfrags = skb_shinfo(skb)->nr_frags;
2138 skb_shinfo(skb)->nr_frags = 0;
2139 skb1->len = skb1->data_len = skb->len - len;
2140 skb->len = len;
2141 skb->data_len = len - pos;
2143 for (i = 0; i < nfrags; i++) {
2144 int size = skb_shinfo(skb)->frags[i].size;
2146 if (pos + size > len) {
2147 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2149 if (pos < len) {
2150 /* Split frag.
2151 * We have two variants in this case:
2152 * 1. Move all the frag to the second
2153 * part, if it is possible. F.e.
2154 * this approach is mandatory for TUX,
2155 * where splitting is expensive.
2156 * 2. Split is accurately. We make this.
2158 skb_frag_ref(skb, i);
2159 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2160 skb_shinfo(skb1)->frags[0].size -= len - pos;
2161 skb_shinfo(skb)->frags[i].size = len - pos;
2162 skb_shinfo(skb)->nr_frags++;
2164 k++;
2165 } else
2166 skb_shinfo(skb)->nr_frags++;
2167 pos += size;
2169 skb_shinfo(skb1)->nr_frags = k;
2173 * skb_split - Split fragmented skb to two parts at length len.
2174 * @skb: the buffer to split
2175 * @skb1: the buffer to receive the second part
2176 * @len: new length for skb
2178 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2180 int pos = skb_headlen(skb);
2182 if (len < pos) /* Split line is inside header. */
2183 skb_split_inside_header(skb, skb1, len, pos);
2184 else /* Second chunk has no header, nothing to copy. */
2185 skb_split_no_header(skb, skb1, len, pos);
2187 EXPORT_SYMBOL(skb_split);
2189 /* Shifting from/to a cloned skb is a no-go.
2191 * Caller cannot keep skb_shinfo related pointers past calling here!
2193 static int skb_prepare_for_shift(struct sk_buff *skb)
2195 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2199 * skb_shift - Shifts paged data partially from skb to another
2200 * @tgt: buffer into which tail data gets added
2201 * @skb: buffer from which the paged data comes from
2202 * @shiftlen: shift up to this many bytes
2204 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2205 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2206 * It's up to caller to free skb if everything was shifted.
2208 * If @tgt runs out of frags, the whole operation is aborted.
2210 * Skb cannot include anything else but paged data while tgt is allowed
2211 * to have non-paged data as well.
2213 * TODO: full sized shift could be optimized but that would need
2214 * specialized skb free'er to handle frags without up-to-date nr_frags.
2216 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2218 int from, to, merge, todo;
2219 struct skb_frag_struct *fragfrom, *fragto;
2221 BUG_ON(shiftlen > skb->len);
2222 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2224 todo = shiftlen;
2225 from = 0;
2226 to = skb_shinfo(tgt)->nr_frags;
2227 fragfrom = &skb_shinfo(skb)->frags[from];
2229 /* Actual merge is delayed until the point when we know we can
2230 * commit all, so that we don't have to undo partial changes
2232 if (!to ||
2233 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2234 fragfrom->page_offset)) {
2235 merge = -1;
2236 } else {
2237 merge = to - 1;
2239 todo -= fragfrom->size;
2240 if (todo < 0) {
2241 if (skb_prepare_for_shift(skb) ||
2242 skb_prepare_for_shift(tgt))
2243 return 0;
2245 /* All previous frag pointers might be stale! */
2246 fragfrom = &skb_shinfo(skb)->frags[from];
2247 fragto = &skb_shinfo(tgt)->frags[merge];
2249 fragto->size += shiftlen;
2250 fragfrom->size -= shiftlen;
2251 fragfrom->page_offset += shiftlen;
2253 goto onlymerged;
2256 from++;
2259 /* Skip full, not-fitting skb to avoid expensive operations */
2260 if ((shiftlen == skb->len) &&
2261 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2262 return 0;
2264 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2265 return 0;
2267 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2268 if (to == MAX_SKB_FRAGS)
2269 return 0;
2271 fragfrom = &skb_shinfo(skb)->frags[from];
2272 fragto = &skb_shinfo(tgt)->frags[to];
2274 if (todo >= fragfrom->size) {
2275 *fragto = *fragfrom;
2276 todo -= fragfrom->size;
2277 from++;
2278 to++;
2280 } else {
2281 __skb_frag_ref(fragfrom);
2282 fragto->page = fragfrom->page;
2283 fragto->page_offset = fragfrom->page_offset;
2284 fragto->size = todo;
2286 fragfrom->page_offset += todo;
2287 fragfrom->size -= todo;
2288 todo = 0;
2290 to++;
2291 break;
2295 /* Ready to "commit" this state change to tgt */
2296 skb_shinfo(tgt)->nr_frags = to;
2298 if (merge >= 0) {
2299 fragfrom = &skb_shinfo(skb)->frags[0];
2300 fragto = &skb_shinfo(tgt)->frags[merge];
2302 fragto->size += fragfrom->size;
2303 __skb_frag_unref(fragfrom);
2306 /* Reposition in the original skb */
2307 to = 0;
2308 while (from < skb_shinfo(skb)->nr_frags)
2309 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2310 skb_shinfo(skb)->nr_frags = to;
2312 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2314 onlymerged:
2315 /* Most likely the tgt won't ever need its checksum anymore, skb on
2316 * the other hand might need it if it needs to be resent
2318 tgt->ip_summed = CHECKSUM_PARTIAL;
2319 skb->ip_summed = CHECKSUM_PARTIAL;
2321 /* Yak, is it really working this way? Some helper please? */
2322 skb->len -= shiftlen;
2323 skb->data_len -= shiftlen;
2324 skb->truesize -= shiftlen;
2325 tgt->len += shiftlen;
2326 tgt->data_len += shiftlen;
2327 tgt->truesize += shiftlen;
2329 return shiftlen;
2333 * skb_prepare_seq_read - Prepare a sequential read of skb data
2334 * @skb: the buffer to read
2335 * @from: lower offset of data to be read
2336 * @to: upper offset of data to be read
2337 * @st: state variable
2339 * Initializes the specified state variable. Must be called before
2340 * invoking skb_seq_read() for the first time.
2342 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2343 unsigned int to, struct skb_seq_state *st)
2345 st->lower_offset = from;
2346 st->upper_offset = to;
2347 st->root_skb = st->cur_skb = skb;
2348 st->frag_idx = st->stepped_offset = 0;
2349 st->frag_data = NULL;
2351 EXPORT_SYMBOL(skb_prepare_seq_read);
2354 * skb_seq_read - Sequentially read skb data
2355 * @consumed: number of bytes consumed by the caller so far
2356 * @data: destination pointer for data to be returned
2357 * @st: state variable
2359 * Reads a block of skb data at &consumed relative to the
2360 * lower offset specified to skb_prepare_seq_read(). Assigns
2361 * the head of the data block to &data and returns the length
2362 * of the block or 0 if the end of the skb data or the upper
2363 * offset has been reached.
2365 * The caller is not required to consume all of the data
2366 * returned, i.e. &consumed is typically set to the number
2367 * of bytes already consumed and the next call to
2368 * skb_seq_read() will return the remaining part of the block.
2370 * Note 1: The size of each block of data returned can be arbitrary,
2371 * this limitation is the cost for zerocopy seqeuental
2372 * reads of potentially non linear data.
2374 * Note 2: Fragment lists within fragments are not implemented
2375 * at the moment, state->root_skb could be replaced with
2376 * a stack for this purpose.
2378 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2379 struct skb_seq_state *st)
2381 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2382 skb_frag_t *frag;
2384 if (unlikely(abs_offset >= st->upper_offset))
2385 return 0;
2387 next_skb:
2388 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2390 if (abs_offset < block_limit && !st->frag_data) {
2391 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2392 return block_limit - abs_offset;
2395 if (st->frag_idx == 0 && !st->frag_data)
2396 st->stepped_offset += skb_headlen(st->cur_skb);
2398 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2399 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2400 block_limit = frag->size + st->stepped_offset;
2402 if (abs_offset < block_limit) {
2403 if (!st->frag_data)
2404 st->frag_data = kmap_skb_frag(frag);
2406 *data = (u8 *) st->frag_data + frag->page_offset +
2407 (abs_offset - st->stepped_offset);
2409 return block_limit - abs_offset;
2412 if (st->frag_data) {
2413 kunmap_skb_frag(st->frag_data);
2414 st->frag_data = NULL;
2417 st->frag_idx++;
2418 st->stepped_offset += frag->size;
2421 if (st->frag_data) {
2422 kunmap_skb_frag(st->frag_data);
2423 st->frag_data = NULL;
2426 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2427 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2428 st->frag_idx = 0;
2429 goto next_skb;
2430 } else if (st->cur_skb->next) {
2431 st->cur_skb = st->cur_skb->next;
2432 st->frag_idx = 0;
2433 goto next_skb;
2436 return 0;
2438 EXPORT_SYMBOL(skb_seq_read);
2441 * skb_abort_seq_read - Abort a sequential read of skb data
2442 * @st: state variable
2444 * Must be called if skb_seq_read() was not called until it
2445 * returned 0.
2447 void skb_abort_seq_read(struct skb_seq_state *st)
2449 if (st->frag_data)
2450 kunmap_skb_frag(st->frag_data);
2452 EXPORT_SYMBOL(skb_abort_seq_read);
2454 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2456 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2457 struct ts_config *conf,
2458 struct ts_state *state)
2460 return skb_seq_read(offset, text, TS_SKB_CB(state));
2463 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2465 skb_abort_seq_read(TS_SKB_CB(state));
2469 * skb_find_text - Find a text pattern in skb data
2470 * @skb: the buffer to look in
2471 * @from: search offset
2472 * @to: search limit
2473 * @config: textsearch configuration
2474 * @state: uninitialized textsearch state variable
2476 * Finds a pattern in the skb data according to the specified
2477 * textsearch configuration. Use textsearch_next() to retrieve
2478 * subsequent occurrences of the pattern. Returns the offset
2479 * to the first occurrence or UINT_MAX if no match was found.
2481 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2482 unsigned int to, struct ts_config *config,
2483 struct ts_state *state)
2485 unsigned int ret;
2487 config->get_next_block = skb_ts_get_next_block;
2488 config->finish = skb_ts_finish;
2490 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2492 ret = textsearch_find(config, state);
2493 return (ret <= to - from ? ret : UINT_MAX);
2495 EXPORT_SYMBOL(skb_find_text);
2498 * skb_append_datato_frags: - append the user data to a skb
2499 * @sk: sock structure
2500 * @skb: skb structure to be appened with user data.
2501 * @getfrag: call back function to be used for getting the user data
2502 * @from: pointer to user message iov
2503 * @length: length of the iov message
2505 * Description: This procedure append the user data in the fragment part
2506 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2508 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2509 int (*getfrag)(void *from, char *to, int offset,
2510 int len, int odd, struct sk_buff *skb),
2511 void *from, int length)
2513 int frg_cnt = 0;
2514 skb_frag_t *frag = NULL;
2515 struct page *page = NULL;
2516 int copy, left;
2517 int offset = 0;
2518 int ret;
2520 do {
2521 /* Return error if we don't have space for new frag */
2522 frg_cnt = skb_shinfo(skb)->nr_frags;
2523 if (frg_cnt >= MAX_SKB_FRAGS)
2524 return -EFAULT;
2526 /* allocate a new page for next frag */
2527 page = alloc_pages(sk->sk_allocation, 0);
2529 /* If alloc_page fails just return failure and caller will
2530 * free previous allocated pages by doing kfree_skb()
2532 if (page == NULL)
2533 return -ENOMEM;
2535 /* initialize the next frag */
2536 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2537 skb->truesize += PAGE_SIZE;
2538 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2540 /* get the new initialized frag */
2541 frg_cnt = skb_shinfo(skb)->nr_frags;
2542 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2544 /* copy the user data to page */
2545 left = PAGE_SIZE - frag->page_offset;
2546 copy = (length > left)? left : length;
2548 ret = getfrag(from, skb_frag_address(frag) + frag->size,
2549 offset, copy, 0, skb);
2550 if (ret < 0)
2551 return -EFAULT;
2553 /* copy was successful so update the size parameters */
2554 frag->size += copy;
2555 skb->len += copy;
2556 skb->data_len += copy;
2557 offset += copy;
2558 length -= copy;
2560 } while (length > 0);
2562 return 0;
2564 EXPORT_SYMBOL(skb_append_datato_frags);
2567 * skb_pull_rcsum - pull skb and update receive checksum
2568 * @skb: buffer to update
2569 * @len: length of data pulled
2571 * This function performs an skb_pull on the packet and updates
2572 * the CHECKSUM_COMPLETE checksum. It should be used on
2573 * receive path processing instead of skb_pull unless you know
2574 * that the checksum difference is zero (e.g., a valid IP header)
2575 * or you are setting ip_summed to CHECKSUM_NONE.
2577 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2579 BUG_ON(len > skb->len);
2580 skb->len -= len;
2581 BUG_ON(skb->len < skb->data_len);
2582 skb_postpull_rcsum(skb, skb->data, len);
2583 return skb->data += len;
2585 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2588 * skb_segment - Perform protocol segmentation on skb.
2589 * @skb: buffer to segment
2590 * @features: features for the output path (see dev->features)
2592 * This function performs segmentation on the given skb. It returns
2593 * a pointer to the first in a list of new skbs for the segments.
2594 * In case of error it returns ERR_PTR(err).
2596 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2598 struct sk_buff *segs = NULL;
2599 struct sk_buff *tail = NULL;
2600 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2601 unsigned int mss = skb_shinfo(skb)->gso_size;
2602 unsigned int doffset = skb->data - skb_mac_header(skb);
2603 unsigned int offset = doffset;
2604 unsigned int headroom;
2605 unsigned int len;
2606 int sg = !!(features & NETIF_F_SG);
2607 int nfrags = skb_shinfo(skb)->nr_frags;
2608 int err = -ENOMEM;
2609 int i = 0;
2610 int pos;
2612 __skb_push(skb, doffset);
2613 headroom = skb_headroom(skb);
2614 pos = skb_headlen(skb);
2616 do {
2617 struct sk_buff *nskb;
2618 skb_frag_t *frag;
2619 int hsize;
2620 int size;
2622 len = skb->len - offset;
2623 if (len > mss)
2624 len = mss;
2626 hsize = skb_headlen(skb) - offset;
2627 if (hsize < 0)
2628 hsize = 0;
2629 if (hsize > len || !sg)
2630 hsize = len;
2632 if (!hsize && i >= nfrags) {
2633 BUG_ON(fskb->len != len);
2635 pos += len;
2636 nskb = skb_clone(fskb, GFP_ATOMIC);
2637 fskb = fskb->next;
2639 if (unlikely(!nskb))
2640 goto err;
2642 hsize = skb_end_pointer(nskb) - nskb->head;
2643 if (skb_cow_head(nskb, doffset + headroom)) {
2644 kfree_skb(nskb);
2645 goto err;
2648 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2649 hsize;
2650 skb_release_head_state(nskb);
2651 __skb_push(nskb, doffset);
2652 } else {
2653 nskb = alloc_skb(hsize + doffset + headroom,
2654 GFP_ATOMIC);
2656 if (unlikely(!nskb))
2657 goto err;
2659 skb_reserve(nskb, headroom);
2660 __skb_put(nskb, doffset);
2663 if (segs)
2664 tail->next = nskb;
2665 else
2666 segs = nskb;
2667 tail = nskb;
2669 __copy_skb_header(nskb, skb);
2670 nskb->mac_len = skb->mac_len;
2672 /* nskb and skb might have different headroom */
2673 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2674 nskb->csum_start += skb_headroom(nskb) - headroom;
2676 skb_reset_mac_header(nskb);
2677 skb_set_network_header(nskb, skb->mac_len);
2678 nskb->transport_header = (nskb->network_header +
2679 skb_network_header_len(skb));
2680 skb_copy_from_linear_data(skb, nskb->data, doffset);
2682 if (fskb != skb_shinfo(skb)->frag_list)
2683 continue;
2685 if (!sg) {
2686 nskb->ip_summed = CHECKSUM_NONE;
2687 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2688 skb_put(nskb, len),
2689 len, 0);
2690 continue;
2693 frag = skb_shinfo(nskb)->frags;
2695 skb_copy_from_linear_data_offset(skb, offset,
2696 skb_put(nskb, hsize), hsize);
2698 while (pos < offset + len && i < nfrags) {
2699 *frag = skb_shinfo(skb)->frags[i];
2700 __skb_frag_ref(frag);
2701 size = frag->size;
2703 if (pos < offset) {
2704 frag->page_offset += offset - pos;
2705 frag->size -= offset - pos;
2708 skb_shinfo(nskb)->nr_frags++;
2710 if (pos + size <= offset + len) {
2711 i++;
2712 pos += size;
2713 } else {
2714 frag->size -= pos + size - (offset + len);
2715 goto skip_fraglist;
2718 frag++;
2721 if (pos < offset + len) {
2722 struct sk_buff *fskb2 = fskb;
2724 BUG_ON(pos + fskb->len != offset + len);
2726 pos += fskb->len;
2727 fskb = fskb->next;
2729 if (fskb2->next) {
2730 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2731 if (!fskb2)
2732 goto err;
2733 } else
2734 skb_get(fskb2);
2736 SKB_FRAG_ASSERT(nskb);
2737 skb_shinfo(nskb)->frag_list = fskb2;
2740 skip_fraglist:
2741 nskb->data_len = len - hsize;
2742 nskb->len += nskb->data_len;
2743 nskb->truesize += nskb->data_len;
2744 } while ((offset += len) < skb->len);
2746 return segs;
2748 err:
2749 while ((skb = segs)) {
2750 segs = skb->next;
2751 kfree_skb(skb);
2753 return ERR_PTR(err);
2755 EXPORT_SYMBOL_GPL(skb_segment);
2757 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2759 struct sk_buff *p = *head;
2760 struct sk_buff *nskb;
2761 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2762 struct skb_shared_info *pinfo = skb_shinfo(p);
2763 unsigned int headroom;
2764 unsigned int len = skb_gro_len(skb);
2765 unsigned int offset = skb_gro_offset(skb);
2766 unsigned int headlen = skb_headlen(skb);
2768 if (p->len + len >= 65536)
2769 return -E2BIG;
2771 if (pinfo->frag_list)
2772 goto merge;
2773 else if (headlen <= offset) {
2774 skb_frag_t *frag;
2775 skb_frag_t *frag2;
2776 int i = skbinfo->nr_frags;
2777 int nr_frags = pinfo->nr_frags + i;
2779 offset -= headlen;
2781 if (nr_frags > MAX_SKB_FRAGS)
2782 return -E2BIG;
2784 pinfo->nr_frags = nr_frags;
2785 skbinfo->nr_frags = 0;
2787 frag = pinfo->frags + nr_frags;
2788 frag2 = skbinfo->frags + i;
2789 do {
2790 *--frag = *--frag2;
2791 } while (--i);
2793 frag->page_offset += offset;
2794 frag->size -= offset;
2796 skb->truesize -= skb->data_len;
2797 skb->len -= skb->data_len;
2798 skb->data_len = 0;
2800 NAPI_GRO_CB(skb)->free = 1;
2801 goto done;
2802 } else if (skb_gro_len(p) != pinfo->gso_size)
2803 return -E2BIG;
2805 headroom = skb_headroom(p);
2806 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2807 if (unlikely(!nskb))
2808 return -ENOMEM;
2810 __copy_skb_header(nskb, p);
2811 nskb->mac_len = p->mac_len;
2813 skb_reserve(nskb, headroom);
2814 __skb_put(nskb, skb_gro_offset(p));
2816 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2817 skb_set_network_header(nskb, skb_network_offset(p));
2818 skb_set_transport_header(nskb, skb_transport_offset(p));
2820 __skb_pull(p, skb_gro_offset(p));
2821 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2822 p->data - skb_mac_header(p));
2824 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2825 skb_shinfo(nskb)->frag_list = p;
2826 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2827 pinfo->gso_size = 0;
2828 skb_header_release(p);
2829 nskb->prev = p;
2831 nskb->data_len += p->len;
2832 nskb->truesize += p->len;
2833 nskb->len += p->len;
2835 *head = nskb;
2836 nskb->next = p->next;
2837 p->next = NULL;
2839 p = nskb;
2841 merge:
2842 if (offset > headlen) {
2843 unsigned int eat = offset - headlen;
2845 skbinfo->frags[0].page_offset += eat;
2846 skbinfo->frags[0].size -= eat;
2847 skb->data_len -= eat;
2848 skb->len -= eat;
2849 offset = headlen;
2852 __skb_pull(skb, offset);
2854 p->prev->next = skb;
2855 p->prev = skb;
2856 skb_header_release(skb);
2858 done:
2859 NAPI_GRO_CB(p)->count++;
2860 p->data_len += len;
2861 p->truesize += len;
2862 p->len += len;
2864 NAPI_GRO_CB(skb)->same_flow = 1;
2865 return 0;
2867 EXPORT_SYMBOL_GPL(skb_gro_receive);
2869 void __init skb_init(void)
2871 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2872 sizeof(struct sk_buff),
2874 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2875 NULL);
2876 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2877 (2*sizeof(struct sk_buff)) +
2878 sizeof(atomic_t),
2880 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2881 NULL);
2885 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2886 * @skb: Socket buffer containing the buffers to be mapped
2887 * @sg: The scatter-gather list to map into
2888 * @offset: The offset into the buffer's contents to start mapping
2889 * @len: Length of buffer space to be mapped
2891 * Fill the specified scatter-gather list with mappings/pointers into a
2892 * region of the buffer space attached to a socket buffer.
2894 static int
2895 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2897 int start = skb_headlen(skb);
2898 int i, copy = start - offset;
2899 struct sk_buff *frag_iter;
2900 int elt = 0;
2902 if (copy > 0) {
2903 if (copy > len)
2904 copy = len;
2905 sg_set_buf(sg, skb->data + offset, copy);
2906 elt++;
2907 if ((len -= copy) == 0)
2908 return elt;
2909 offset += copy;
2912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2913 int end;
2915 WARN_ON(start > offset + len);
2917 end = start + skb_shinfo(skb)->frags[i].size;
2918 if ((copy = end - offset) > 0) {
2919 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2921 if (copy > len)
2922 copy = len;
2923 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
2924 frag->page_offset+offset-start);
2925 elt++;
2926 if (!(len -= copy))
2927 return elt;
2928 offset += copy;
2930 start = end;
2933 skb_walk_frags(skb, frag_iter) {
2934 int end;
2936 WARN_ON(start > offset + len);
2938 end = start + frag_iter->len;
2939 if ((copy = end - offset) > 0) {
2940 if (copy > len)
2941 copy = len;
2942 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2943 copy);
2944 if ((len -= copy) == 0)
2945 return elt;
2946 offset += copy;
2948 start = end;
2950 BUG_ON(len);
2951 return elt;
2954 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2956 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2958 sg_mark_end(&sg[nsg - 1]);
2960 return nsg;
2962 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2965 * skb_cow_data - Check that a socket buffer's data buffers are writable
2966 * @skb: The socket buffer to check.
2967 * @tailbits: Amount of trailing space to be added
2968 * @trailer: Returned pointer to the skb where the @tailbits space begins
2970 * Make sure that the data buffers attached to a socket buffer are
2971 * writable. If they are not, private copies are made of the data buffers
2972 * and the socket buffer is set to use these instead.
2974 * If @tailbits is given, make sure that there is space to write @tailbits
2975 * bytes of data beyond current end of socket buffer. @trailer will be
2976 * set to point to the skb in which this space begins.
2978 * The number of scatterlist elements required to completely map the
2979 * COW'd and extended socket buffer will be returned.
2981 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2983 int copyflag;
2984 int elt;
2985 struct sk_buff *skb1, **skb_p;
2987 /* If skb is cloned or its head is paged, reallocate
2988 * head pulling out all the pages (pages are considered not writable
2989 * at the moment even if they are anonymous).
2991 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2992 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2993 return -ENOMEM;
2995 /* Easy case. Most of packets will go this way. */
2996 if (!skb_has_frag_list(skb)) {
2997 /* A little of trouble, not enough of space for trailer.
2998 * This should not happen, when stack is tuned to generate
2999 * good frames. OK, on miss we reallocate and reserve even more
3000 * space, 128 bytes is fair. */
3002 if (skb_tailroom(skb) < tailbits &&
3003 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3004 return -ENOMEM;
3006 /* Voila! */
3007 *trailer = skb;
3008 return 1;
3011 /* Misery. We are in troubles, going to mincer fragments... */
3013 elt = 1;
3014 skb_p = &skb_shinfo(skb)->frag_list;
3015 copyflag = 0;
3017 while ((skb1 = *skb_p) != NULL) {
3018 int ntail = 0;
3020 /* The fragment is partially pulled by someone,
3021 * this can happen on input. Copy it and everything
3022 * after it. */
3024 if (skb_shared(skb1))
3025 copyflag = 1;
3027 /* If the skb is the last, worry about trailer. */
3029 if (skb1->next == NULL && tailbits) {
3030 if (skb_shinfo(skb1)->nr_frags ||
3031 skb_has_frag_list(skb1) ||
3032 skb_tailroom(skb1) < tailbits)
3033 ntail = tailbits + 128;
3036 if (copyflag ||
3037 skb_cloned(skb1) ||
3038 ntail ||
3039 skb_shinfo(skb1)->nr_frags ||
3040 skb_has_frag_list(skb1)) {
3041 struct sk_buff *skb2;
3043 /* Fuck, we are miserable poor guys... */
3044 if (ntail == 0)
3045 skb2 = skb_copy(skb1, GFP_ATOMIC);
3046 else
3047 skb2 = skb_copy_expand(skb1,
3048 skb_headroom(skb1),
3049 ntail,
3050 GFP_ATOMIC);
3051 if (unlikely(skb2 == NULL))
3052 return -ENOMEM;
3054 if (skb1->sk)
3055 skb_set_owner_w(skb2, skb1->sk);
3057 /* Looking around. Are we still alive?
3058 * OK, link new skb, drop old one */
3060 skb2->next = skb1->next;
3061 *skb_p = skb2;
3062 kfree_skb(skb1);
3063 skb1 = skb2;
3065 elt++;
3066 *trailer = skb1;
3067 skb_p = &skb1->next;
3070 return elt;
3072 EXPORT_SYMBOL_GPL(skb_cow_data);
3074 static void sock_rmem_free(struct sk_buff *skb)
3076 struct sock *sk = skb->sk;
3078 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3082 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3084 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3086 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3087 (unsigned)sk->sk_rcvbuf)
3088 return -ENOMEM;
3090 skb_orphan(skb);
3091 skb->sk = sk;
3092 skb->destructor = sock_rmem_free;
3093 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3095 /* before exiting rcu section, make sure dst is refcounted */
3096 skb_dst_force(skb);
3098 skb_queue_tail(&sk->sk_error_queue, skb);
3099 if (!sock_flag(sk, SOCK_DEAD))
3100 sk->sk_data_ready(sk, skb->len);
3101 return 0;
3103 EXPORT_SYMBOL(sock_queue_err_skb);
3105 void skb_tstamp_tx(struct sk_buff *orig_skb,
3106 struct skb_shared_hwtstamps *hwtstamps)
3108 struct sock *sk = orig_skb->sk;
3109 struct sock_exterr_skb *serr;
3110 struct sk_buff *skb;
3111 int err;
3113 if (!sk)
3114 return;
3116 skb = skb_clone(orig_skb, GFP_ATOMIC);
3117 if (!skb)
3118 return;
3120 if (hwtstamps) {
3121 *skb_hwtstamps(skb) =
3122 *hwtstamps;
3123 } else {
3125 * no hardware time stamps available,
3126 * so keep the shared tx_flags and only
3127 * store software time stamp
3129 skb->tstamp = ktime_get_real();
3132 serr = SKB_EXT_ERR(skb);
3133 memset(serr, 0, sizeof(*serr));
3134 serr->ee.ee_errno = ENOMSG;
3135 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3137 err = sock_queue_err_skb(sk, skb);
3139 if (err)
3140 kfree_skb(skb);
3142 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3146 * skb_partial_csum_set - set up and verify partial csum values for packet
3147 * @skb: the skb to set
3148 * @start: the number of bytes after skb->data to start checksumming.
3149 * @off: the offset from start to place the checksum.
3151 * For untrusted partially-checksummed packets, we need to make sure the values
3152 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3154 * This function checks and sets those values and skb->ip_summed: if this
3155 * returns false you should drop the packet.
3157 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3159 if (unlikely(start > skb_headlen(skb)) ||
3160 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3161 if (net_ratelimit())
3162 printk(KERN_WARNING
3163 "bad partial csum: csum=%u/%u len=%u\n",
3164 start, off, skb_headlen(skb));
3165 return false;
3167 skb->ip_summed = CHECKSUM_PARTIAL;
3168 skb->csum_start = skb_headroom(skb) + start;
3169 skb->csum_offset = off;
3170 return true;
3172 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3174 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3176 if (net_ratelimit())
3177 pr_warning("%s: received packets cannot be forwarded"
3178 " while LRO is enabled\n", skb->dev->name);
3180 EXPORT_SYMBOL(__skb_warn_lro_forwarding);