2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
74 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
75 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
77 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
78 struct pipe_buffer
*buf
)
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
89 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
90 struct pipe_buffer
*buf
)
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
99 .map
= generic_pipe_buf_map
,
100 .unmap
= generic_pipe_buf_unmap
,
101 .confirm
= generic_pipe_buf_confirm
,
102 .release
= sock_pipe_buf_release
,
103 .steal
= sock_pipe_buf_steal
,
104 .get
= sock_pipe_buf_get
,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
114 * skb_over_panic - private function
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
123 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
126 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
127 skb
->dev
? skb
->dev
->name
: "<NULL>");
132 * skb_under_panic - private function
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
142 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
145 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
146 skb
->dev
? skb
->dev
->name
: "<NULL>");
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
171 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
172 int fclone
, int node
)
174 struct kmem_cache
*cache
;
175 struct skb_shared_info
*shinfo
;
179 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
182 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
187 size
= SKB_DATA_ALIGN(size
);
188 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
192 prefetchw(data
+ size
);
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
199 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
200 skb
->truesize
= size
+ sizeof(struct sk_buff
);
201 atomic_set(&skb
->users
, 1);
204 skb_reset_tail_pointer(skb
);
205 skb
->end
= skb
->tail
+ size
;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb
->mac_header
= ~0U;
210 /* make sure we initialize shinfo sequentially */
211 shinfo
= skb_shinfo(skb
);
212 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
213 atomic_set(&shinfo
->dataref
, 1);
214 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
217 struct sk_buff
*child
= skb
+ 1;
218 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
220 kmemcheck_annotate_bitfield(child
, flags1
);
221 kmemcheck_annotate_bitfield(child
, flags2
);
222 skb
->fclone
= SKB_FCLONE_ORIG
;
223 atomic_set(fclone_ref
, 1);
225 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
230 kmem_cache_free(cache
, skb
);
234 EXPORT_SYMBOL(__alloc_skb
);
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
247 * %NULL is returned if there is no free memory.
249 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
250 unsigned int length
, gfp_t gfp_mask
)
254 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, NUMA_NO_NODE
);
256 skb_reserve(skb
, NET_SKB_PAD
);
261 EXPORT_SYMBOL(__netdev_alloc_skb
);
263 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
266 skb_fill_page_desc(skb
, i
, page
, off
, size
);
268 skb
->data_len
+= size
;
269 skb
->truesize
+= size
;
271 EXPORT_SYMBOL(skb_add_rx_frag
);
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
285 struct sk_buff
*dev_alloc_skb(unsigned int length
)
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
291 return __dev_alloc_skb(length
, GFP_ATOMIC
);
293 EXPORT_SYMBOL(dev_alloc_skb
);
295 static void skb_drop_list(struct sk_buff
**listp
)
297 struct sk_buff
*list
= *listp
;
302 struct sk_buff
*this = list
;
308 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
310 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
313 static void skb_clone_fraglist(struct sk_buff
*skb
)
315 struct sk_buff
*list
;
317 skb_walk_frags(skb
, list
)
321 static void skb_release_data(struct sk_buff
*skb
)
324 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
325 &skb_shinfo(skb
)->dataref
)) {
326 if (skb_shinfo(skb
)->nr_frags
) {
328 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
329 skb_frag_unref(skb
, i
);
333 * If skb buf is from userspace, we need to notify the caller
334 * the lower device DMA has done;
336 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
337 struct ubuf_info
*uarg
;
339 uarg
= skb_shinfo(skb
)->destructor_arg
;
341 uarg
->callback(uarg
);
344 if (skb_has_frag_list(skb
))
345 skb_drop_fraglist(skb
);
352 * Free an skbuff by memory without cleaning the state.
354 static void kfree_skbmem(struct sk_buff
*skb
)
356 struct sk_buff
*other
;
357 atomic_t
*fclone_ref
;
359 switch (skb
->fclone
) {
360 case SKB_FCLONE_UNAVAILABLE
:
361 kmem_cache_free(skbuff_head_cache
, skb
);
364 case SKB_FCLONE_ORIG
:
365 fclone_ref
= (atomic_t
*) (skb
+ 2);
366 if (atomic_dec_and_test(fclone_ref
))
367 kmem_cache_free(skbuff_fclone_cache
, skb
);
370 case SKB_FCLONE_CLONE
:
371 fclone_ref
= (atomic_t
*) (skb
+ 1);
374 /* The clone portion is available for
375 * fast-cloning again.
377 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
379 if (atomic_dec_and_test(fclone_ref
))
380 kmem_cache_free(skbuff_fclone_cache
, other
);
385 static void skb_release_head_state(struct sk_buff
*skb
)
389 secpath_put(skb
->sp
);
391 if (skb
->destructor
) {
393 skb
->destructor(skb
);
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 nf_conntrack_put(skb
->nfct
);
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 nf_conntrack_put_reasm(skb
->nfct_reasm
);
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 nf_bridge_put(skb
->nf_bridge
);
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
407 #ifdef CONFIG_NET_CLS_ACT
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff
*skb
)
416 skb_release_head_state(skb
);
417 skb_release_data(skb
);
421 * __kfree_skb - private function
424 * Free an sk_buff. Release anything attached to the buffer.
425 * Clean the state. This is an internal helper function. Users should
426 * always call kfree_skb
429 void __kfree_skb(struct sk_buff
*skb
)
431 skb_release_all(skb
);
434 EXPORT_SYMBOL(__kfree_skb
);
437 * kfree_skb - free an sk_buff
438 * @skb: buffer to free
440 * Drop a reference to the buffer and free it if the usage count has
443 void kfree_skb(struct sk_buff
*skb
)
447 if (likely(atomic_read(&skb
->users
) == 1))
449 else if (likely(!atomic_dec_and_test(&skb
->users
)))
451 trace_kfree_skb(skb
, __builtin_return_address(0));
454 EXPORT_SYMBOL(kfree_skb
);
457 * consume_skb - free an skbuff
458 * @skb: buffer to free
460 * Drop a ref to the buffer and free it if the usage count has hit zero
461 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
462 * is being dropped after a failure and notes that
464 void consume_skb(struct sk_buff
*skb
)
468 if (likely(atomic_read(&skb
->users
) == 1))
470 else if (likely(!atomic_dec_and_test(&skb
->users
)))
472 trace_consume_skb(skb
);
475 EXPORT_SYMBOL(consume_skb
);
478 * skb_recycle_check - check if skb can be reused for receive
480 * @skb_size: minimum receive buffer size
482 * Checks that the skb passed in is not shared or cloned, and
483 * that it is linear and its head portion at least as large as
484 * skb_size so that it can be recycled as a receive buffer.
485 * If these conditions are met, this function does any necessary
486 * reference count dropping and cleans up the skbuff as if it
487 * just came from __alloc_skb().
489 bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
491 struct skb_shared_info
*shinfo
;
496 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
)
499 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
502 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
503 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
506 if (skb_shared(skb
) || skb_cloned(skb
))
509 skb_release_head_state(skb
);
511 shinfo
= skb_shinfo(skb
);
512 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
513 atomic_set(&shinfo
->dataref
, 1);
515 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
516 skb
->data
= skb
->head
+ NET_SKB_PAD
;
517 skb_reset_tail_pointer(skb
);
521 EXPORT_SYMBOL(skb_recycle_check
);
523 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
525 new->tstamp
= old
->tstamp
;
527 new->transport_header
= old
->transport_header
;
528 new->network_header
= old
->network_header
;
529 new->mac_header
= old
->mac_header
;
530 skb_dst_copy(new, old
);
531 new->rxhash
= old
->rxhash
;
532 new->ooo_okay
= old
->ooo_okay
;
533 new->l4_rxhash
= old
->l4_rxhash
;
535 new->sp
= secpath_get(old
->sp
);
537 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
538 new->csum
= old
->csum
;
539 new->local_df
= old
->local_df
;
540 new->pkt_type
= old
->pkt_type
;
541 new->ip_summed
= old
->ip_summed
;
542 skb_copy_queue_mapping(new, old
);
543 new->priority
= old
->priority
;
544 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
545 new->ipvs_property
= old
->ipvs_property
;
547 new->protocol
= old
->protocol
;
548 new->mark
= old
->mark
;
549 new->skb_iif
= old
->skb_iif
;
551 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
552 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
553 new->nf_trace
= old
->nf_trace
;
555 #ifdef CONFIG_NET_SCHED
556 new->tc_index
= old
->tc_index
;
557 #ifdef CONFIG_NET_CLS_ACT
558 new->tc_verd
= old
->tc_verd
;
561 new->vlan_tci
= old
->vlan_tci
;
563 skb_copy_secmark(new, old
);
567 * You should not add any new code to this function. Add it to
568 * __copy_skb_header above instead.
570 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
572 #define C(x) n->x = skb->x
574 n
->next
= n
->prev
= NULL
;
576 __copy_skb_header(n
, skb
);
581 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
584 n
->destructor
= NULL
;
590 atomic_set(&n
->users
, 1);
592 atomic_inc(&(skb_shinfo(skb
)->dataref
));
600 * skb_morph - morph one skb into another
601 * @dst: the skb to receive the contents
602 * @src: the skb to supply the contents
604 * This is identical to skb_clone except that the target skb is
605 * supplied by the user.
607 * The target skb is returned upon exit.
609 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
611 skb_release_all(dst
);
612 return __skb_clone(dst
, src
);
614 EXPORT_SYMBOL_GPL(skb_morph
);
616 /* skb frags copy userspace buffers to kernel */
617 static int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
620 int num_frags
= skb_shinfo(skb
)->nr_frags
;
621 struct page
*page
, *head
= NULL
;
622 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
624 for (i
= 0; i
< num_frags
; i
++) {
626 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
628 page
= alloc_page(GFP_ATOMIC
);
631 struct page
*next
= (struct page
*)head
->private;
637 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
638 memcpy(page_address(page
),
639 vaddr
+ f
->page_offset
, f
->size
);
640 kunmap_skb_frag(vaddr
);
641 page
->private = (unsigned long)head
;
645 /* skb frags release userspace buffers */
646 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
647 put_page(skb_shinfo(skb
)->frags
[i
].page
);
649 uarg
->callback(uarg
);
651 /* skb frags point to kernel buffers */
652 for (i
= skb_shinfo(skb
)->nr_frags
; i
> 0; i
--) {
653 skb_shinfo(skb
)->frags
[i
- 1].page_offset
= 0;
654 skb_shinfo(skb
)->frags
[i
- 1].page
= head
;
655 head
= (struct page
*)head
->private;
662 * skb_clone - duplicate an sk_buff
663 * @skb: buffer to clone
664 * @gfp_mask: allocation priority
666 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
667 * copies share the same packet data but not structure. The new
668 * buffer has a reference count of 1. If the allocation fails the
669 * function returns %NULL otherwise the new buffer is returned.
671 * If this function is called from an interrupt gfp_mask() must be
675 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
679 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
680 if (skb_copy_ubufs(skb
, gfp_mask
))
682 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
686 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
687 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
688 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
689 n
->fclone
= SKB_FCLONE_CLONE
;
690 atomic_inc(fclone_ref
);
692 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
696 kmemcheck_annotate_bitfield(n
, flags1
);
697 kmemcheck_annotate_bitfield(n
, flags2
);
698 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
701 return __skb_clone(n
, skb
);
703 EXPORT_SYMBOL(skb_clone
);
705 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
707 #ifndef NET_SKBUFF_DATA_USES_OFFSET
709 * Shift between the two data areas in bytes
711 unsigned long offset
= new->data
- old
->data
;
714 __copy_skb_header(new, old
);
716 #ifndef NET_SKBUFF_DATA_USES_OFFSET
717 /* {transport,network,mac}_header are relative to skb->head */
718 new->transport_header
+= offset
;
719 new->network_header
+= offset
;
720 if (skb_mac_header_was_set(new))
721 new->mac_header
+= offset
;
723 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
724 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
725 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
729 * skb_copy - create private copy of an sk_buff
730 * @skb: buffer to copy
731 * @gfp_mask: allocation priority
733 * Make a copy of both an &sk_buff and its data. This is used when the
734 * caller wishes to modify the data and needs a private copy of the
735 * data to alter. Returns %NULL on failure or the pointer to the buffer
736 * on success. The returned buffer has a reference count of 1.
738 * As by-product this function converts non-linear &sk_buff to linear
739 * one, so that &sk_buff becomes completely private and caller is allowed
740 * to modify all the data of returned buffer. This means that this
741 * function is not recommended for use in circumstances when only
742 * header is going to be modified. Use pskb_copy() instead.
745 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
747 int headerlen
= skb_headroom(skb
);
748 unsigned int size
= (skb_end_pointer(skb
) - skb
->head
) + skb
->data_len
;
749 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
754 /* Set the data pointer */
755 skb_reserve(n
, headerlen
);
756 /* Set the tail pointer and length */
757 skb_put(n
, skb
->len
);
759 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
762 copy_skb_header(n
, skb
);
765 EXPORT_SYMBOL(skb_copy
);
768 * pskb_copy - create copy of an sk_buff with private head.
769 * @skb: buffer to copy
770 * @gfp_mask: allocation priority
772 * Make a copy of both an &sk_buff and part of its data, located
773 * in header. Fragmented data remain shared. This is used when
774 * the caller wishes to modify only header of &sk_buff and needs
775 * private copy of the header to alter. Returns %NULL on failure
776 * or the pointer to the buffer on success.
777 * The returned buffer has a reference count of 1.
780 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
782 unsigned int size
= skb_end_pointer(skb
) - skb
->head
;
783 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
788 /* Set the data pointer */
789 skb_reserve(n
, skb_headroom(skb
));
790 /* Set the tail pointer and length */
791 skb_put(n
, skb_headlen(skb
));
793 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
795 n
->truesize
+= skb
->data_len
;
796 n
->data_len
= skb
->data_len
;
799 if (skb_shinfo(skb
)->nr_frags
) {
802 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
803 if (skb_copy_ubufs(skb
, gfp_mask
)) {
808 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
810 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
811 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
812 skb_frag_ref(skb
, i
);
814 skb_shinfo(n
)->nr_frags
= i
;
817 if (skb_has_frag_list(skb
)) {
818 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
819 skb_clone_fraglist(n
);
822 copy_skb_header(n
, skb
);
826 EXPORT_SYMBOL(pskb_copy
);
829 * pskb_expand_head - reallocate header of &sk_buff
830 * @skb: buffer to reallocate
831 * @nhead: room to add at head
832 * @ntail: room to add at tail
833 * @gfp_mask: allocation priority
835 * Expands (or creates identical copy, if &nhead and &ntail are zero)
836 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
837 * reference count of 1. Returns zero in the case of success or error,
838 * if expansion failed. In the last case, &sk_buff is not changed.
840 * All the pointers pointing into skb header may change and must be
841 * reloaded after call to this function.
844 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
849 int size
= nhead
+ (skb_end_pointer(skb
) - skb
->head
) + ntail
;
858 size
= SKB_DATA_ALIGN(size
);
860 /* Check if we can avoid taking references on fragments if we own
861 * the last reference on skb->head. (see skb_release_data())
866 int delta
= skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1;
867 fastpath
= atomic_read(&skb_shinfo(skb
)->dataref
) == delta
;
871 size
+ sizeof(struct skb_shared_info
) <= ksize(skb
->head
)) {
872 memmove(skb
->head
+ size
, skb_shinfo(skb
),
873 offsetof(struct skb_shared_info
,
874 frags
[skb_shinfo(skb
)->nr_frags
]));
875 memmove(skb
->head
+ nhead
, skb
->head
,
876 skb_tail_pointer(skb
) - skb
->head
);
881 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
885 /* Copy only real data... and, alas, header. This should be
886 * optimized for the cases when header is void.
888 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
890 memcpy((struct skb_shared_info
*)(data
+ size
),
892 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
897 /* copy this zero copy skb frags */
898 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
899 if (skb_copy_ubufs(skb
, gfp_mask
))
901 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
903 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
904 skb_frag_ref(skb
, i
);
906 if (skb_has_frag_list(skb
))
907 skb_clone_fraglist(skb
);
909 skb_release_data(skb
);
911 off
= (data
+ nhead
) - skb
->head
;
916 #ifdef NET_SKBUFF_DATA_USES_OFFSET
920 skb
->end
= skb
->head
+ size
;
922 /* {transport,network,mac}_header and tail are relative to skb->head */
924 skb
->transport_header
+= off
;
925 skb
->network_header
+= off
;
926 if (skb_mac_header_was_set(skb
))
927 skb
->mac_header
+= off
;
928 /* Only adjust this if it actually is csum_start rather than csum */
929 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
930 skb
->csum_start
+= nhead
;
934 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
942 EXPORT_SYMBOL(pskb_expand_head
);
944 /* Make private copy of skb with writable head and some headroom */
946 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
948 struct sk_buff
*skb2
;
949 int delta
= headroom
- skb_headroom(skb
);
952 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
954 skb2
= skb_clone(skb
, GFP_ATOMIC
);
955 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
963 EXPORT_SYMBOL(skb_realloc_headroom
);
966 * skb_copy_expand - copy and expand sk_buff
967 * @skb: buffer to copy
968 * @newheadroom: new free bytes at head
969 * @newtailroom: new free bytes at tail
970 * @gfp_mask: allocation priority
972 * Make a copy of both an &sk_buff and its data and while doing so
973 * allocate additional space.
975 * This is used when the caller wishes to modify the data and needs a
976 * private copy of the data to alter as well as more space for new fields.
977 * Returns %NULL on failure or the pointer to the buffer
978 * on success. The returned buffer has a reference count of 1.
980 * You must pass %GFP_ATOMIC as the allocation priority if this function
981 * is called from an interrupt.
983 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
984 int newheadroom
, int newtailroom
,
988 * Allocate the copy buffer
990 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
992 int oldheadroom
= skb_headroom(skb
);
993 int head_copy_len
, head_copy_off
;
999 skb_reserve(n
, newheadroom
);
1001 /* Set the tail pointer and length */
1002 skb_put(n
, skb
->len
);
1004 head_copy_len
= oldheadroom
;
1006 if (newheadroom
<= head_copy_len
)
1007 head_copy_len
= newheadroom
;
1009 head_copy_off
= newheadroom
- head_copy_len
;
1011 /* Copy the linear header and data. */
1012 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1013 skb
->len
+ head_copy_len
))
1016 copy_skb_header(n
, skb
);
1018 off
= newheadroom
- oldheadroom
;
1019 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1020 n
->csum_start
+= off
;
1021 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1022 n
->transport_header
+= off
;
1023 n
->network_header
+= off
;
1024 if (skb_mac_header_was_set(skb
))
1025 n
->mac_header
+= off
;
1030 EXPORT_SYMBOL(skb_copy_expand
);
1033 * skb_pad - zero pad the tail of an skb
1034 * @skb: buffer to pad
1035 * @pad: space to pad
1037 * Ensure that a buffer is followed by a padding area that is zero
1038 * filled. Used by network drivers which may DMA or transfer data
1039 * beyond the buffer end onto the wire.
1041 * May return error in out of memory cases. The skb is freed on error.
1044 int skb_pad(struct sk_buff
*skb
, int pad
)
1049 /* If the skbuff is non linear tailroom is always zero.. */
1050 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1051 memset(skb
->data
+skb
->len
, 0, pad
);
1055 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1056 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1057 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1062 /* FIXME: The use of this function with non-linear skb's really needs
1065 err
= skb_linearize(skb
);
1069 memset(skb
->data
+ skb
->len
, 0, pad
);
1076 EXPORT_SYMBOL(skb_pad
);
1079 * skb_put - add data to a buffer
1080 * @skb: buffer to use
1081 * @len: amount of data to add
1083 * This function extends the used data area of the buffer. If this would
1084 * exceed the total buffer size the kernel will panic. A pointer to the
1085 * first byte of the extra data is returned.
1087 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1089 unsigned char *tmp
= skb_tail_pointer(skb
);
1090 SKB_LINEAR_ASSERT(skb
);
1093 if (unlikely(skb
->tail
> skb
->end
))
1094 skb_over_panic(skb
, len
, __builtin_return_address(0));
1097 EXPORT_SYMBOL(skb_put
);
1100 * skb_push - add data to the start of a buffer
1101 * @skb: buffer to use
1102 * @len: amount of data to add
1104 * This function extends the used data area of the buffer at the buffer
1105 * start. If this would exceed the total buffer headroom the kernel will
1106 * panic. A pointer to the first byte of the extra data is returned.
1108 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1112 if (unlikely(skb
->data
<skb
->head
))
1113 skb_under_panic(skb
, len
, __builtin_return_address(0));
1116 EXPORT_SYMBOL(skb_push
);
1119 * skb_pull - remove data from the start of a buffer
1120 * @skb: buffer to use
1121 * @len: amount of data to remove
1123 * This function removes data from the start of a buffer, returning
1124 * the memory to the headroom. A pointer to the next data in the buffer
1125 * is returned. Once the data has been pulled future pushes will overwrite
1128 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1130 return skb_pull_inline(skb
, len
);
1132 EXPORT_SYMBOL(skb_pull
);
1135 * skb_trim - remove end from a buffer
1136 * @skb: buffer to alter
1139 * Cut the length of a buffer down by removing data from the tail. If
1140 * the buffer is already under the length specified it is not modified.
1141 * The skb must be linear.
1143 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1146 __skb_trim(skb
, len
);
1148 EXPORT_SYMBOL(skb_trim
);
1150 /* Trims skb to length len. It can change skb pointers.
1153 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1155 struct sk_buff
**fragp
;
1156 struct sk_buff
*frag
;
1157 int offset
= skb_headlen(skb
);
1158 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1162 if (skb_cloned(skb
) &&
1163 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1170 for (; i
< nfrags
; i
++) {
1171 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
1178 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
1181 skb_shinfo(skb
)->nr_frags
= i
;
1183 for (; i
< nfrags
; i
++)
1184 skb_frag_unref(skb
, i
);
1186 if (skb_has_frag_list(skb
))
1187 skb_drop_fraglist(skb
);
1191 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1192 fragp
= &frag
->next
) {
1193 int end
= offset
+ frag
->len
;
1195 if (skb_shared(frag
)) {
1196 struct sk_buff
*nfrag
;
1198 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1199 if (unlikely(!nfrag
))
1202 nfrag
->next
= frag
->next
;
1214 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1218 skb_drop_list(&frag
->next
);
1223 if (len
> skb_headlen(skb
)) {
1224 skb
->data_len
-= skb
->len
- len
;
1229 skb_set_tail_pointer(skb
, len
);
1234 EXPORT_SYMBOL(___pskb_trim
);
1237 * __pskb_pull_tail - advance tail of skb header
1238 * @skb: buffer to reallocate
1239 * @delta: number of bytes to advance tail
1241 * The function makes a sense only on a fragmented &sk_buff,
1242 * it expands header moving its tail forward and copying necessary
1243 * data from fragmented part.
1245 * &sk_buff MUST have reference count of 1.
1247 * Returns %NULL (and &sk_buff does not change) if pull failed
1248 * or value of new tail of skb in the case of success.
1250 * All the pointers pointing into skb header may change and must be
1251 * reloaded after call to this function.
1254 /* Moves tail of skb head forward, copying data from fragmented part,
1255 * when it is necessary.
1256 * 1. It may fail due to malloc failure.
1257 * 2. It may change skb pointers.
1259 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1261 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1263 /* If skb has not enough free space at tail, get new one
1264 * plus 128 bytes for future expansions. If we have enough
1265 * room at tail, reallocate without expansion only if skb is cloned.
1267 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1269 if (eat
> 0 || skb_cloned(skb
)) {
1270 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1275 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1278 /* Optimization: no fragments, no reasons to preestimate
1279 * size of pulled pages. Superb.
1281 if (!skb_has_frag_list(skb
))
1284 /* Estimate size of pulled pages. */
1286 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1287 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
1289 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1292 /* If we need update frag list, we are in troubles.
1293 * Certainly, it possible to add an offset to skb data,
1294 * but taking into account that pulling is expected to
1295 * be very rare operation, it is worth to fight against
1296 * further bloating skb head and crucify ourselves here instead.
1297 * Pure masohism, indeed. 8)8)
1300 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1301 struct sk_buff
*clone
= NULL
;
1302 struct sk_buff
*insp
= NULL
;
1307 if (list
->len
<= eat
) {
1308 /* Eaten as whole. */
1313 /* Eaten partially. */
1315 if (skb_shared(list
)) {
1316 /* Sucks! We need to fork list. :-( */
1317 clone
= skb_clone(list
, GFP_ATOMIC
);
1323 /* This may be pulled without
1327 if (!pskb_pull(list
, eat
)) {
1335 /* Free pulled out fragments. */
1336 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1337 skb_shinfo(skb
)->frag_list
= list
->next
;
1340 /* And insert new clone at head. */
1343 skb_shinfo(skb
)->frag_list
= clone
;
1346 /* Success! Now we may commit changes to skb data. */
1351 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1352 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1353 skb_frag_unref(skb
, i
);
1354 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1356 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1358 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1359 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1365 skb_shinfo(skb
)->nr_frags
= k
;
1368 skb
->data_len
-= delta
;
1370 return skb_tail_pointer(skb
);
1372 EXPORT_SYMBOL(__pskb_pull_tail
);
1375 * skb_copy_bits - copy bits from skb to kernel buffer
1377 * @offset: offset in source
1378 * @to: destination buffer
1379 * @len: number of bytes to copy
1381 * Copy the specified number of bytes from the source skb to the
1382 * destination buffer.
1385 * If its prototype is ever changed,
1386 * check arch/{*}/net/{*}.S files,
1387 * since it is called from BPF assembly code.
1389 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1391 int start
= skb_headlen(skb
);
1392 struct sk_buff
*frag_iter
;
1395 if (offset
> (int)skb
->len
- len
)
1399 if ((copy
= start
- offset
) > 0) {
1402 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1403 if ((len
-= copy
) == 0)
1409 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1412 WARN_ON(start
> offset
+ len
);
1414 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1415 if ((copy
= end
- offset
) > 0) {
1421 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1423 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1424 offset
- start
, copy
);
1425 kunmap_skb_frag(vaddr
);
1427 if ((len
-= copy
) == 0)
1435 skb_walk_frags(skb
, frag_iter
) {
1438 WARN_ON(start
> offset
+ len
);
1440 end
= start
+ frag_iter
->len
;
1441 if ((copy
= end
- offset
) > 0) {
1444 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1446 if ((len
-= copy
) == 0)
1460 EXPORT_SYMBOL(skb_copy_bits
);
1463 * Callback from splice_to_pipe(), if we need to release some pages
1464 * at the end of the spd in case we error'ed out in filling the pipe.
1466 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1468 put_page(spd
->pages
[i
]);
1471 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1472 unsigned int *offset
,
1473 struct sk_buff
*skb
, struct sock
*sk
)
1475 struct page
*p
= sk
->sk_sndmsg_page
;
1480 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1484 off
= sk
->sk_sndmsg_off
= 0;
1485 /* hold one ref to this page until it's full */
1489 off
= sk
->sk_sndmsg_off
;
1490 mlen
= PAGE_SIZE
- off
;
1491 if (mlen
< 64 && mlen
< *len
) {
1496 *len
= min_t(unsigned int, *len
, mlen
);
1499 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1500 sk
->sk_sndmsg_off
+= *len
;
1508 * Fill page/offset/length into spd, if it can hold more pages.
1510 static inline int spd_fill_page(struct splice_pipe_desc
*spd
,
1511 struct pipe_inode_info
*pipe
, struct page
*page
,
1512 unsigned int *len
, unsigned int offset
,
1513 struct sk_buff
*skb
, int linear
,
1516 if (unlikely(spd
->nr_pages
== pipe
->buffers
))
1520 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1526 spd
->pages
[spd
->nr_pages
] = page
;
1527 spd
->partial
[spd
->nr_pages
].len
= *len
;
1528 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1534 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1535 unsigned int *plen
, unsigned int off
)
1540 n
= *poff
/ PAGE_SIZE
;
1542 *page
= nth_page(*page
, n
);
1544 *poff
= *poff
% PAGE_SIZE
;
1548 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1549 unsigned int plen
, unsigned int *off
,
1550 unsigned int *len
, struct sk_buff
*skb
,
1551 struct splice_pipe_desc
*spd
, int linear
,
1553 struct pipe_inode_info
*pipe
)
1558 /* skip this segment if already processed */
1564 /* ignore any bits we already processed */
1566 __segment_seek(&page
, &poff
, &plen
, *off
);
1571 unsigned int flen
= min(*len
, plen
);
1573 /* the linear region may spread across several pages */
1574 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1576 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1579 __segment_seek(&page
, &poff
, &plen
, flen
);
1582 } while (*len
&& plen
);
1588 * Map linear and fragment data from the skb to spd. It reports failure if the
1589 * pipe is full or if we already spliced the requested length.
1591 static int __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1592 unsigned int *offset
, unsigned int *len
,
1593 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1598 * map the linear part
1600 if (__splice_segment(virt_to_page(skb
->data
),
1601 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1603 offset
, len
, skb
, spd
, 1, sk
, pipe
))
1607 * then map the fragments
1609 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1610 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1612 if (__splice_segment(skb_frag_page(f
),
1613 f
->page_offset
, f
->size
,
1614 offset
, len
, skb
, spd
, 0, sk
, pipe
))
1622 * Map data from the skb to a pipe. Should handle both the linear part,
1623 * the fragments, and the frag list. It does NOT handle frag lists within
1624 * the frag list, if such a thing exists. We'd probably need to recurse to
1625 * handle that cleanly.
1627 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1628 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1631 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1632 struct page
*pages
[PIPE_DEF_BUFFERS
];
1633 struct splice_pipe_desc spd
= {
1637 .ops
= &sock_pipe_buf_ops
,
1638 .spd_release
= sock_spd_release
,
1640 struct sk_buff
*frag_iter
;
1641 struct sock
*sk
= skb
->sk
;
1644 if (splice_grow_spd(pipe
, &spd
))
1648 * __skb_splice_bits() only fails if the output has no room left,
1649 * so no point in going over the frag_list for the error case.
1651 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1657 * now see if we have a frag_list to map
1659 skb_walk_frags(skb
, frag_iter
) {
1662 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1669 * Drop the socket lock, otherwise we have reverse
1670 * locking dependencies between sk_lock and i_mutex
1671 * here as compared to sendfile(). We enter here
1672 * with the socket lock held, and splice_to_pipe() will
1673 * grab the pipe inode lock. For sendfile() emulation,
1674 * we call into ->sendpage() with the i_mutex lock held
1675 * and networking will grab the socket lock.
1678 ret
= splice_to_pipe(pipe
, &spd
);
1682 splice_shrink_spd(pipe
, &spd
);
1687 * skb_store_bits - store bits from kernel buffer to skb
1688 * @skb: destination buffer
1689 * @offset: offset in destination
1690 * @from: source buffer
1691 * @len: number of bytes to copy
1693 * Copy the specified number of bytes from the source buffer to the
1694 * destination skb. This function handles all the messy bits of
1695 * traversing fragment lists and such.
1698 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1700 int start
= skb_headlen(skb
);
1701 struct sk_buff
*frag_iter
;
1704 if (offset
> (int)skb
->len
- len
)
1707 if ((copy
= start
- offset
) > 0) {
1710 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1711 if ((len
-= copy
) == 0)
1717 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1718 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1721 WARN_ON(start
> offset
+ len
);
1723 end
= start
+ frag
->size
;
1724 if ((copy
= end
- offset
) > 0) {
1730 vaddr
= kmap_skb_frag(frag
);
1731 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1733 kunmap_skb_frag(vaddr
);
1735 if ((len
-= copy
) == 0)
1743 skb_walk_frags(skb
, frag_iter
) {
1746 WARN_ON(start
> offset
+ len
);
1748 end
= start
+ frag_iter
->len
;
1749 if ((copy
= end
- offset
) > 0) {
1752 if (skb_store_bits(frag_iter
, offset
- start
,
1755 if ((len
-= copy
) == 0)
1768 EXPORT_SYMBOL(skb_store_bits
);
1770 /* Checksum skb data. */
1772 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1773 int len
, __wsum csum
)
1775 int start
= skb_headlen(skb
);
1776 int i
, copy
= start
- offset
;
1777 struct sk_buff
*frag_iter
;
1780 /* Checksum header. */
1784 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1785 if ((len
-= copy
) == 0)
1791 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1794 WARN_ON(start
> offset
+ len
);
1796 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1797 if ((copy
= end
- offset
) > 0) {
1800 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1804 vaddr
= kmap_skb_frag(frag
);
1805 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1806 offset
- start
, copy
, 0);
1807 kunmap_skb_frag(vaddr
);
1808 csum
= csum_block_add(csum
, csum2
, pos
);
1817 skb_walk_frags(skb
, frag_iter
) {
1820 WARN_ON(start
> offset
+ len
);
1822 end
= start
+ frag_iter
->len
;
1823 if ((copy
= end
- offset
) > 0) {
1827 csum2
= skb_checksum(frag_iter
, offset
- start
,
1829 csum
= csum_block_add(csum
, csum2
, pos
);
1830 if ((len
-= copy
) == 0)
1841 EXPORT_SYMBOL(skb_checksum
);
1843 /* Both of above in one bottle. */
1845 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1846 u8
*to
, int len
, __wsum csum
)
1848 int start
= skb_headlen(skb
);
1849 int i
, copy
= start
- offset
;
1850 struct sk_buff
*frag_iter
;
1857 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1859 if ((len
-= copy
) == 0)
1866 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1869 WARN_ON(start
> offset
+ len
);
1871 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1872 if ((copy
= end
- offset
) > 0) {
1875 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1879 vaddr
= kmap_skb_frag(frag
);
1880 csum2
= csum_partial_copy_nocheck(vaddr
+
1884 kunmap_skb_frag(vaddr
);
1885 csum
= csum_block_add(csum
, csum2
, pos
);
1895 skb_walk_frags(skb
, frag_iter
) {
1899 WARN_ON(start
> offset
+ len
);
1901 end
= start
+ frag_iter
->len
;
1902 if ((copy
= end
- offset
) > 0) {
1905 csum2
= skb_copy_and_csum_bits(frag_iter
,
1908 csum
= csum_block_add(csum
, csum2
, pos
);
1909 if ((len
-= copy
) == 0)
1920 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1922 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1927 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1928 csstart
= skb_checksum_start_offset(skb
);
1930 csstart
= skb_headlen(skb
);
1932 BUG_ON(csstart
> skb_headlen(skb
));
1934 skb_copy_from_linear_data(skb
, to
, csstart
);
1937 if (csstart
!= skb
->len
)
1938 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1939 skb
->len
- csstart
, 0);
1941 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1942 long csstuff
= csstart
+ skb
->csum_offset
;
1944 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1947 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1950 * skb_dequeue - remove from the head of the queue
1951 * @list: list to dequeue from
1953 * Remove the head of the list. The list lock is taken so the function
1954 * may be used safely with other locking list functions. The head item is
1955 * returned or %NULL if the list is empty.
1958 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1960 unsigned long flags
;
1961 struct sk_buff
*result
;
1963 spin_lock_irqsave(&list
->lock
, flags
);
1964 result
= __skb_dequeue(list
);
1965 spin_unlock_irqrestore(&list
->lock
, flags
);
1968 EXPORT_SYMBOL(skb_dequeue
);
1971 * skb_dequeue_tail - remove from the tail of the queue
1972 * @list: list to dequeue from
1974 * Remove the tail of the list. The list lock is taken so the function
1975 * may be used safely with other locking list functions. The tail item is
1976 * returned or %NULL if the list is empty.
1978 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1980 unsigned long flags
;
1981 struct sk_buff
*result
;
1983 spin_lock_irqsave(&list
->lock
, flags
);
1984 result
= __skb_dequeue_tail(list
);
1985 spin_unlock_irqrestore(&list
->lock
, flags
);
1988 EXPORT_SYMBOL(skb_dequeue_tail
);
1991 * skb_queue_purge - empty a list
1992 * @list: list to empty
1994 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1995 * the list and one reference dropped. This function takes the list
1996 * lock and is atomic with respect to other list locking functions.
1998 void skb_queue_purge(struct sk_buff_head
*list
)
2000 struct sk_buff
*skb
;
2001 while ((skb
= skb_dequeue(list
)) != NULL
)
2004 EXPORT_SYMBOL(skb_queue_purge
);
2007 * skb_queue_head - queue a buffer at the list head
2008 * @list: list to use
2009 * @newsk: buffer to queue
2011 * Queue a buffer at the start of the list. This function takes the
2012 * list lock and can be used safely with other locking &sk_buff functions
2015 * A buffer cannot be placed on two lists at the same time.
2017 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2019 unsigned long flags
;
2021 spin_lock_irqsave(&list
->lock
, flags
);
2022 __skb_queue_head(list
, newsk
);
2023 spin_unlock_irqrestore(&list
->lock
, flags
);
2025 EXPORT_SYMBOL(skb_queue_head
);
2028 * skb_queue_tail - queue a buffer at the list tail
2029 * @list: list to use
2030 * @newsk: buffer to queue
2032 * Queue a buffer at the tail of the list. This function takes the
2033 * list lock and can be used safely with other locking &sk_buff functions
2036 * A buffer cannot be placed on two lists at the same time.
2038 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2040 unsigned long flags
;
2042 spin_lock_irqsave(&list
->lock
, flags
);
2043 __skb_queue_tail(list
, newsk
);
2044 spin_unlock_irqrestore(&list
->lock
, flags
);
2046 EXPORT_SYMBOL(skb_queue_tail
);
2049 * skb_unlink - remove a buffer from a list
2050 * @skb: buffer to remove
2051 * @list: list to use
2053 * Remove a packet from a list. The list locks are taken and this
2054 * function is atomic with respect to other list locked calls
2056 * You must know what list the SKB is on.
2058 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2060 unsigned long flags
;
2062 spin_lock_irqsave(&list
->lock
, flags
);
2063 __skb_unlink(skb
, list
);
2064 spin_unlock_irqrestore(&list
->lock
, flags
);
2066 EXPORT_SYMBOL(skb_unlink
);
2069 * skb_append - append a buffer
2070 * @old: buffer to insert after
2071 * @newsk: buffer to insert
2072 * @list: list to use
2074 * Place a packet after a given packet in a list. The list locks are taken
2075 * and this function is atomic with respect to other list locked calls.
2076 * A buffer cannot be placed on two lists at the same time.
2078 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2080 unsigned long flags
;
2082 spin_lock_irqsave(&list
->lock
, flags
);
2083 __skb_queue_after(list
, old
, newsk
);
2084 spin_unlock_irqrestore(&list
->lock
, flags
);
2086 EXPORT_SYMBOL(skb_append
);
2089 * skb_insert - insert a buffer
2090 * @old: buffer to insert before
2091 * @newsk: buffer to insert
2092 * @list: list to use
2094 * Place a packet before a given packet in a list. The list locks are
2095 * taken and this function is atomic with respect to other list locked
2098 * A buffer cannot be placed on two lists at the same time.
2100 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2102 unsigned long flags
;
2104 spin_lock_irqsave(&list
->lock
, flags
);
2105 __skb_insert(newsk
, old
->prev
, old
, list
);
2106 spin_unlock_irqrestore(&list
->lock
, flags
);
2108 EXPORT_SYMBOL(skb_insert
);
2110 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2111 struct sk_buff
* skb1
,
2112 const u32 len
, const int pos
)
2116 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2118 /* And move data appendix as is. */
2119 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2120 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2122 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2123 skb_shinfo(skb
)->nr_frags
= 0;
2124 skb1
->data_len
= skb
->data_len
;
2125 skb1
->len
+= skb1
->data_len
;
2128 skb_set_tail_pointer(skb
, len
);
2131 static inline void skb_split_no_header(struct sk_buff
*skb
,
2132 struct sk_buff
* skb1
,
2133 const u32 len
, int pos
)
2136 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2138 skb_shinfo(skb
)->nr_frags
= 0;
2139 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2141 skb
->data_len
= len
- pos
;
2143 for (i
= 0; i
< nfrags
; i
++) {
2144 int size
= skb_shinfo(skb
)->frags
[i
].size
;
2146 if (pos
+ size
> len
) {
2147 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2151 * We have two variants in this case:
2152 * 1. Move all the frag to the second
2153 * part, if it is possible. F.e.
2154 * this approach is mandatory for TUX,
2155 * where splitting is expensive.
2156 * 2. Split is accurately. We make this.
2158 skb_frag_ref(skb
, i
);
2159 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2160 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
2161 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
2162 skb_shinfo(skb
)->nr_frags
++;
2166 skb_shinfo(skb
)->nr_frags
++;
2169 skb_shinfo(skb1
)->nr_frags
= k
;
2173 * skb_split - Split fragmented skb to two parts at length len.
2174 * @skb: the buffer to split
2175 * @skb1: the buffer to receive the second part
2176 * @len: new length for skb
2178 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2180 int pos
= skb_headlen(skb
);
2182 if (len
< pos
) /* Split line is inside header. */
2183 skb_split_inside_header(skb
, skb1
, len
, pos
);
2184 else /* Second chunk has no header, nothing to copy. */
2185 skb_split_no_header(skb
, skb1
, len
, pos
);
2187 EXPORT_SYMBOL(skb_split
);
2189 /* Shifting from/to a cloned skb is a no-go.
2191 * Caller cannot keep skb_shinfo related pointers past calling here!
2193 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2195 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2199 * skb_shift - Shifts paged data partially from skb to another
2200 * @tgt: buffer into which tail data gets added
2201 * @skb: buffer from which the paged data comes from
2202 * @shiftlen: shift up to this many bytes
2204 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2205 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2206 * It's up to caller to free skb if everything was shifted.
2208 * If @tgt runs out of frags, the whole operation is aborted.
2210 * Skb cannot include anything else but paged data while tgt is allowed
2211 * to have non-paged data as well.
2213 * TODO: full sized shift could be optimized but that would need
2214 * specialized skb free'er to handle frags without up-to-date nr_frags.
2216 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2218 int from
, to
, merge
, todo
;
2219 struct skb_frag_struct
*fragfrom
, *fragto
;
2221 BUG_ON(shiftlen
> skb
->len
);
2222 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2226 to
= skb_shinfo(tgt
)->nr_frags
;
2227 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2229 /* Actual merge is delayed until the point when we know we can
2230 * commit all, so that we don't have to undo partial changes
2233 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2234 fragfrom
->page_offset
)) {
2239 todo
-= fragfrom
->size
;
2241 if (skb_prepare_for_shift(skb
) ||
2242 skb_prepare_for_shift(tgt
))
2245 /* All previous frag pointers might be stale! */
2246 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2247 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2249 fragto
->size
+= shiftlen
;
2250 fragfrom
->size
-= shiftlen
;
2251 fragfrom
->page_offset
+= shiftlen
;
2259 /* Skip full, not-fitting skb to avoid expensive operations */
2260 if ((shiftlen
== skb
->len
) &&
2261 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2264 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2267 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2268 if (to
== MAX_SKB_FRAGS
)
2271 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2272 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2274 if (todo
>= fragfrom
->size
) {
2275 *fragto
= *fragfrom
;
2276 todo
-= fragfrom
->size
;
2281 __skb_frag_ref(fragfrom
);
2282 fragto
->page
= fragfrom
->page
;
2283 fragto
->page_offset
= fragfrom
->page_offset
;
2284 fragto
->size
= todo
;
2286 fragfrom
->page_offset
+= todo
;
2287 fragfrom
->size
-= todo
;
2295 /* Ready to "commit" this state change to tgt */
2296 skb_shinfo(tgt
)->nr_frags
= to
;
2299 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2300 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2302 fragto
->size
+= fragfrom
->size
;
2303 __skb_frag_unref(fragfrom
);
2306 /* Reposition in the original skb */
2308 while (from
< skb_shinfo(skb
)->nr_frags
)
2309 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2310 skb_shinfo(skb
)->nr_frags
= to
;
2312 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2315 /* Most likely the tgt won't ever need its checksum anymore, skb on
2316 * the other hand might need it if it needs to be resent
2318 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2319 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2321 /* Yak, is it really working this way? Some helper please? */
2322 skb
->len
-= shiftlen
;
2323 skb
->data_len
-= shiftlen
;
2324 skb
->truesize
-= shiftlen
;
2325 tgt
->len
+= shiftlen
;
2326 tgt
->data_len
+= shiftlen
;
2327 tgt
->truesize
+= shiftlen
;
2333 * skb_prepare_seq_read - Prepare a sequential read of skb data
2334 * @skb: the buffer to read
2335 * @from: lower offset of data to be read
2336 * @to: upper offset of data to be read
2337 * @st: state variable
2339 * Initializes the specified state variable. Must be called before
2340 * invoking skb_seq_read() for the first time.
2342 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2343 unsigned int to
, struct skb_seq_state
*st
)
2345 st
->lower_offset
= from
;
2346 st
->upper_offset
= to
;
2347 st
->root_skb
= st
->cur_skb
= skb
;
2348 st
->frag_idx
= st
->stepped_offset
= 0;
2349 st
->frag_data
= NULL
;
2351 EXPORT_SYMBOL(skb_prepare_seq_read
);
2354 * skb_seq_read - Sequentially read skb data
2355 * @consumed: number of bytes consumed by the caller so far
2356 * @data: destination pointer for data to be returned
2357 * @st: state variable
2359 * Reads a block of skb data at &consumed relative to the
2360 * lower offset specified to skb_prepare_seq_read(). Assigns
2361 * the head of the data block to &data and returns the length
2362 * of the block or 0 if the end of the skb data or the upper
2363 * offset has been reached.
2365 * The caller is not required to consume all of the data
2366 * returned, i.e. &consumed is typically set to the number
2367 * of bytes already consumed and the next call to
2368 * skb_seq_read() will return the remaining part of the block.
2370 * Note 1: The size of each block of data returned can be arbitrary,
2371 * this limitation is the cost for zerocopy seqeuental
2372 * reads of potentially non linear data.
2374 * Note 2: Fragment lists within fragments are not implemented
2375 * at the moment, state->root_skb could be replaced with
2376 * a stack for this purpose.
2378 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2379 struct skb_seq_state
*st
)
2381 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2384 if (unlikely(abs_offset
>= st
->upper_offset
))
2388 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2390 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2391 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2392 return block_limit
- abs_offset
;
2395 if (st
->frag_idx
== 0 && !st
->frag_data
)
2396 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2398 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2399 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2400 block_limit
= frag
->size
+ st
->stepped_offset
;
2402 if (abs_offset
< block_limit
) {
2404 st
->frag_data
= kmap_skb_frag(frag
);
2406 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2407 (abs_offset
- st
->stepped_offset
);
2409 return block_limit
- abs_offset
;
2412 if (st
->frag_data
) {
2413 kunmap_skb_frag(st
->frag_data
);
2414 st
->frag_data
= NULL
;
2418 st
->stepped_offset
+= frag
->size
;
2421 if (st
->frag_data
) {
2422 kunmap_skb_frag(st
->frag_data
);
2423 st
->frag_data
= NULL
;
2426 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2427 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2430 } else if (st
->cur_skb
->next
) {
2431 st
->cur_skb
= st
->cur_skb
->next
;
2438 EXPORT_SYMBOL(skb_seq_read
);
2441 * skb_abort_seq_read - Abort a sequential read of skb data
2442 * @st: state variable
2444 * Must be called if skb_seq_read() was not called until it
2447 void skb_abort_seq_read(struct skb_seq_state
*st
)
2450 kunmap_skb_frag(st
->frag_data
);
2452 EXPORT_SYMBOL(skb_abort_seq_read
);
2454 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2456 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2457 struct ts_config
*conf
,
2458 struct ts_state
*state
)
2460 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2463 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2465 skb_abort_seq_read(TS_SKB_CB(state
));
2469 * skb_find_text - Find a text pattern in skb data
2470 * @skb: the buffer to look in
2471 * @from: search offset
2473 * @config: textsearch configuration
2474 * @state: uninitialized textsearch state variable
2476 * Finds a pattern in the skb data according to the specified
2477 * textsearch configuration. Use textsearch_next() to retrieve
2478 * subsequent occurrences of the pattern. Returns the offset
2479 * to the first occurrence or UINT_MAX if no match was found.
2481 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2482 unsigned int to
, struct ts_config
*config
,
2483 struct ts_state
*state
)
2487 config
->get_next_block
= skb_ts_get_next_block
;
2488 config
->finish
= skb_ts_finish
;
2490 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2492 ret
= textsearch_find(config
, state
);
2493 return (ret
<= to
- from
? ret
: UINT_MAX
);
2495 EXPORT_SYMBOL(skb_find_text
);
2498 * skb_append_datato_frags: - append the user data to a skb
2499 * @sk: sock structure
2500 * @skb: skb structure to be appened with user data.
2501 * @getfrag: call back function to be used for getting the user data
2502 * @from: pointer to user message iov
2503 * @length: length of the iov message
2505 * Description: This procedure append the user data in the fragment part
2506 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2508 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2509 int (*getfrag
)(void *from
, char *to
, int offset
,
2510 int len
, int odd
, struct sk_buff
*skb
),
2511 void *from
, int length
)
2514 skb_frag_t
*frag
= NULL
;
2515 struct page
*page
= NULL
;
2521 /* Return error if we don't have space for new frag */
2522 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2523 if (frg_cnt
>= MAX_SKB_FRAGS
)
2526 /* allocate a new page for next frag */
2527 page
= alloc_pages(sk
->sk_allocation
, 0);
2529 /* If alloc_page fails just return failure and caller will
2530 * free previous allocated pages by doing kfree_skb()
2535 /* initialize the next frag */
2536 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2537 skb
->truesize
+= PAGE_SIZE
;
2538 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2540 /* get the new initialized frag */
2541 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2542 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2544 /* copy the user data to page */
2545 left
= PAGE_SIZE
- frag
->page_offset
;
2546 copy
= (length
> left
)? left
: length
;
2548 ret
= getfrag(from
, skb_frag_address(frag
) + frag
->size
,
2549 offset
, copy
, 0, skb
);
2553 /* copy was successful so update the size parameters */
2556 skb
->data_len
+= copy
;
2560 } while (length
> 0);
2564 EXPORT_SYMBOL(skb_append_datato_frags
);
2567 * skb_pull_rcsum - pull skb and update receive checksum
2568 * @skb: buffer to update
2569 * @len: length of data pulled
2571 * This function performs an skb_pull on the packet and updates
2572 * the CHECKSUM_COMPLETE checksum. It should be used on
2573 * receive path processing instead of skb_pull unless you know
2574 * that the checksum difference is zero (e.g., a valid IP header)
2575 * or you are setting ip_summed to CHECKSUM_NONE.
2577 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2579 BUG_ON(len
> skb
->len
);
2581 BUG_ON(skb
->len
< skb
->data_len
);
2582 skb_postpull_rcsum(skb
, skb
->data
, len
);
2583 return skb
->data
+= len
;
2585 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2588 * skb_segment - Perform protocol segmentation on skb.
2589 * @skb: buffer to segment
2590 * @features: features for the output path (see dev->features)
2592 * This function performs segmentation on the given skb. It returns
2593 * a pointer to the first in a list of new skbs for the segments.
2594 * In case of error it returns ERR_PTR(err).
2596 struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
)
2598 struct sk_buff
*segs
= NULL
;
2599 struct sk_buff
*tail
= NULL
;
2600 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2601 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2602 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2603 unsigned int offset
= doffset
;
2604 unsigned int headroom
;
2606 int sg
= !!(features
& NETIF_F_SG
);
2607 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2612 __skb_push(skb
, doffset
);
2613 headroom
= skb_headroom(skb
);
2614 pos
= skb_headlen(skb
);
2617 struct sk_buff
*nskb
;
2622 len
= skb
->len
- offset
;
2626 hsize
= skb_headlen(skb
) - offset
;
2629 if (hsize
> len
|| !sg
)
2632 if (!hsize
&& i
>= nfrags
) {
2633 BUG_ON(fskb
->len
!= len
);
2636 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2639 if (unlikely(!nskb
))
2642 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2643 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2648 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2650 skb_release_head_state(nskb
);
2651 __skb_push(nskb
, doffset
);
2653 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2656 if (unlikely(!nskb
))
2659 skb_reserve(nskb
, headroom
);
2660 __skb_put(nskb
, doffset
);
2669 __copy_skb_header(nskb
, skb
);
2670 nskb
->mac_len
= skb
->mac_len
;
2672 /* nskb and skb might have different headroom */
2673 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2674 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2676 skb_reset_mac_header(nskb
);
2677 skb_set_network_header(nskb
, skb
->mac_len
);
2678 nskb
->transport_header
= (nskb
->network_header
+
2679 skb_network_header_len(skb
));
2680 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2682 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2686 nskb
->ip_summed
= CHECKSUM_NONE
;
2687 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2693 frag
= skb_shinfo(nskb
)->frags
;
2695 skb_copy_from_linear_data_offset(skb
, offset
,
2696 skb_put(nskb
, hsize
), hsize
);
2698 while (pos
< offset
+ len
&& i
< nfrags
) {
2699 *frag
= skb_shinfo(skb
)->frags
[i
];
2700 __skb_frag_ref(frag
);
2704 frag
->page_offset
+= offset
- pos
;
2705 frag
->size
-= offset
- pos
;
2708 skb_shinfo(nskb
)->nr_frags
++;
2710 if (pos
+ size
<= offset
+ len
) {
2714 frag
->size
-= pos
+ size
- (offset
+ len
);
2721 if (pos
< offset
+ len
) {
2722 struct sk_buff
*fskb2
= fskb
;
2724 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2730 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2736 SKB_FRAG_ASSERT(nskb
);
2737 skb_shinfo(nskb
)->frag_list
= fskb2
;
2741 nskb
->data_len
= len
- hsize
;
2742 nskb
->len
+= nskb
->data_len
;
2743 nskb
->truesize
+= nskb
->data_len
;
2744 } while ((offset
+= len
) < skb
->len
);
2749 while ((skb
= segs
)) {
2753 return ERR_PTR(err
);
2755 EXPORT_SYMBOL_GPL(skb_segment
);
2757 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2759 struct sk_buff
*p
= *head
;
2760 struct sk_buff
*nskb
;
2761 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2762 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2763 unsigned int headroom
;
2764 unsigned int len
= skb_gro_len(skb
);
2765 unsigned int offset
= skb_gro_offset(skb
);
2766 unsigned int headlen
= skb_headlen(skb
);
2768 if (p
->len
+ len
>= 65536)
2771 if (pinfo
->frag_list
)
2773 else if (headlen
<= offset
) {
2776 int i
= skbinfo
->nr_frags
;
2777 int nr_frags
= pinfo
->nr_frags
+ i
;
2781 if (nr_frags
> MAX_SKB_FRAGS
)
2784 pinfo
->nr_frags
= nr_frags
;
2785 skbinfo
->nr_frags
= 0;
2787 frag
= pinfo
->frags
+ nr_frags
;
2788 frag2
= skbinfo
->frags
+ i
;
2793 frag
->page_offset
+= offset
;
2794 frag
->size
-= offset
;
2796 skb
->truesize
-= skb
->data_len
;
2797 skb
->len
-= skb
->data_len
;
2800 NAPI_GRO_CB(skb
)->free
= 1;
2802 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2805 headroom
= skb_headroom(p
);
2806 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2807 if (unlikely(!nskb
))
2810 __copy_skb_header(nskb
, p
);
2811 nskb
->mac_len
= p
->mac_len
;
2813 skb_reserve(nskb
, headroom
);
2814 __skb_put(nskb
, skb_gro_offset(p
));
2816 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2817 skb_set_network_header(nskb
, skb_network_offset(p
));
2818 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2820 __skb_pull(p
, skb_gro_offset(p
));
2821 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2822 p
->data
- skb_mac_header(p
));
2824 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2825 skb_shinfo(nskb
)->frag_list
= p
;
2826 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
2827 pinfo
->gso_size
= 0;
2828 skb_header_release(p
);
2831 nskb
->data_len
+= p
->len
;
2832 nskb
->truesize
+= p
->len
;
2833 nskb
->len
+= p
->len
;
2836 nskb
->next
= p
->next
;
2842 if (offset
> headlen
) {
2843 unsigned int eat
= offset
- headlen
;
2845 skbinfo
->frags
[0].page_offset
+= eat
;
2846 skbinfo
->frags
[0].size
-= eat
;
2847 skb
->data_len
-= eat
;
2852 __skb_pull(skb
, offset
);
2854 p
->prev
->next
= skb
;
2856 skb_header_release(skb
);
2859 NAPI_GRO_CB(p
)->count
++;
2864 NAPI_GRO_CB(skb
)->same_flow
= 1;
2867 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2869 void __init
skb_init(void)
2871 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2872 sizeof(struct sk_buff
),
2874 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2876 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2877 (2*sizeof(struct sk_buff
)) +
2880 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2885 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2886 * @skb: Socket buffer containing the buffers to be mapped
2887 * @sg: The scatter-gather list to map into
2888 * @offset: The offset into the buffer's contents to start mapping
2889 * @len: Length of buffer space to be mapped
2891 * Fill the specified scatter-gather list with mappings/pointers into a
2892 * region of the buffer space attached to a socket buffer.
2895 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2897 int start
= skb_headlen(skb
);
2898 int i
, copy
= start
- offset
;
2899 struct sk_buff
*frag_iter
;
2905 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2907 if ((len
-= copy
) == 0)
2912 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2915 WARN_ON(start
> offset
+ len
);
2917 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2918 if ((copy
= end
- offset
) > 0) {
2919 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2923 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
2924 frag
->page_offset
+offset
-start
);
2933 skb_walk_frags(skb
, frag_iter
) {
2936 WARN_ON(start
> offset
+ len
);
2938 end
= start
+ frag_iter
->len
;
2939 if ((copy
= end
- offset
) > 0) {
2942 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
2944 if ((len
-= copy
) == 0)
2954 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2956 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2958 sg_mark_end(&sg
[nsg
- 1]);
2962 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2965 * skb_cow_data - Check that a socket buffer's data buffers are writable
2966 * @skb: The socket buffer to check.
2967 * @tailbits: Amount of trailing space to be added
2968 * @trailer: Returned pointer to the skb where the @tailbits space begins
2970 * Make sure that the data buffers attached to a socket buffer are
2971 * writable. If they are not, private copies are made of the data buffers
2972 * and the socket buffer is set to use these instead.
2974 * If @tailbits is given, make sure that there is space to write @tailbits
2975 * bytes of data beyond current end of socket buffer. @trailer will be
2976 * set to point to the skb in which this space begins.
2978 * The number of scatterlist elements required to completely map the
2979 * COW'd and extended socket buffer will be returned.
2981 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2985 struct sk_buff
*skb1
, **skb_p
;
2987 /* If skb is cloned or its head is paged, reallocate
2988 * head pulling out all the pages (pages are considered not writable
2989 * at the moment even if they are anonymous).
2991 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
2992 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
2995 /* Easy case. Most of packets will go this way. */
2996 if (!skb_has_frag_list(skb
)) {
2997 /* A little of trouble, not enough of space for trailer.
2998 * This should not happen, when stack is tuned to generate
2999 * good frames. OK, on miss we reallocate and reserve even more
3000 * space, 128 bytes is fair. */
3002 if (skb_tailroom(skb
) < tailbits
&&
3003 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3011 /* Misery. We are in troubles, going to mincer fragments... */
3014 skb_p
= &skb_shinfo(skb
)->frag_list
;
3017 while ((skb1
= *skb_p
) != NULL
) {
3020 /* The fragment is partially pulled by someone,
3021 * this can happen on input. Copy it and everything
3024 if (skb_shared(skb1
))
3027 /* If the skb is the last, worry about trailer. */
3029 if (skb1
->next
== NULL
&& tailbits
) {
3030 if (skb_shinfo(skb1
)->nr_frags
||
3031 skb_has_frag_list(skb1
) ||
3032 skb_tailroom(skb1
) < tailbits
)
3033 ntail
= tailbits
+ 128;
3039 skb_shinfo(skb1
)->nr_frags
||
3040 skb_has_frag_list(skb1
)) {
3041 struct sk_buff
*skb2
;
3043 /* Fuck, we are miserable poor guys... */
3045 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3047 skb2
= skb_copy_expand(skb1
,
3051 if (unlikely(skb2
== NULL
))
3055 skb_set_owner_w(skb2
, skb1
->sk
);
3057 /* Looking around. Are we still alive?
3058 * OK, link new skb, drop old one */
3060 skb2
->next
= skb1
->next
;
3067 skb_p
= &skb1
->next
;
3072 EXPORT_SYMBOL_GPL(skb_cow_data
);
3074 static void sock_rmem_free(struct sk_buff
*skb
)
3076 struct sock
*sk
= skb
->sk
;
3078 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3082 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3084 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3086 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3087 (unsigned)sk
->sk_rcvbuf
)
3092 skb
->destructor
= sock_rmem_free
;
3093 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3095 /* before exiting rcu section, make sure dst is refcounted */
3098 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3099 if (!sock_flag(sk
, SOCK_DEAD
))
3100 sk
->sk_data_ready(sk
, skb
->len
);
3103 EXPORT_SYMBOL(sock_queue_err_skb
);
3105 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3106 struct skb_shared_hwtstamps
*hwtstamps
)
3108 struct sock
*sk
= orig_skb
->sk
;
3109 struct sock_exterr_skb
*serr
;
3110 struct sk_buff
*skb
;
3116 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3121 *skb_hwtstamps(skb
) =
3125 * no hardware time stamps available,
3126 * so keep the shared tx_flags and only
3127 * store software time stamp
3129 skb
->tstamp
= ktime_get_real();
3132 serr
= SKB_EXT_ERR(skb
);
3133 memset(serr
, 0, sizeof(*serr
));
3134 serr
->ee
.ee_errno
= ENOMSG
;
3135 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3137 err
= sock_queue_err_skb(sk
, skb
);
3142 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3146 * skb_partial_csum_set - set up and verify partial csum values for packet
3147 * @skb: the skb to set
3148 * @start: the number of bytes after skb->data to start checksumming.
3149 * @off: the offset from start to place the checksum.
3151 * For untrusted partially-checksummed packets, we need to make sure the values
3152 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3154 * This function checks and sets those values and skb->ip_summed: if this
3155 * returns false you should drop the packet.
3157 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3159 if (unlikely(start
> skb_headlen(skb
)) ||
3160 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3161 if (net_ratelimit())
3163 "bad partial csum: csum=%u/%u len=%u\n",
3164 start
, off
, skb_headlen(skb
));
3167 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3168 skb
->csum_start
= skb_headroom(skb
) + start
;
3169 skb
->csum_offset
= off
;
3172 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3174 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3176 if (net_ratelimit())
3177 pr_warning("%s: received packets cannot be forwarded"
3178 " while LRO is enabled\n", skb
->dev
->name
);
3180 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);