2 * linux/arch/arm/kernel/ptrace.c
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
15 #include <linux/smp.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/uaccess.h>
22 #include <linux/perf_event.h>
23 #include <linux/hw_breakpoint.h>
24 #include <linux/regset.h>
26 #include <asm/pgtable.h>
27 #include <asm/system.h>
28 #include <asm/traps.h>
33 * does not yet catch signals sent when the child dies.
34 * in exit.c or in signal.c.
39 * Breakpoint SWI instruction: SWI &9F0001
41 #define BREAKINST_ARM 0xef9f0001
42 #define BREAKINST_THUMB 0xdf00 /* fill this in later */
45 * New breakpoints - use an undefined instruction. The ARM architecture
46 * reference manual guarantees that the following instruction space
47 * will produce an undefined instruction exception on all CPUs:
49 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
50 * Thumb: 1101 1110 xxxx xxxx
52 #define BREAKINST_ARM 0xe7f001f0
53 #define BREAKINST_THUMB 0xde01
56 struct pt_regs_offset
{
61 #define REG_OFFSET_NAME(r) \
62 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
63 #define REG_OFFSET_END {.name = NULL, .offset = 0}
65 static const struct pt_regs_offset regoffset_table
[] = {
82 REG_OFFSET_NAME(cpsr
),
83 REG_OFFSET_NAME(ORIG_r0
),
88 * regs_query_register_offset() - query register offset from its name
89 * @name: the name of a register
91 * regs_query_register_offset() returns the offset of a register in struct
92 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
94 int regs_query_register_offset(const char *name
)
96 const struct pt_regs_offset
*roff
;
97 for (roff
= regoffset_table
; roff
->name
!= NULL
; roff
++)
98 if (!strcmp(roff
->name
, name
))
104 * regs_query_register_name() - query register name from its offset
105 * @offset: the offset of a register in struct pt_regs.
107 * regs_query_register_name() returns the name of a register from its
108 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
110 const char *regs_query_register_name(unsigned int offset
)
112 const struct pt_regs_offset
*roff
;
113 for (roff
= regoffset_table
; roff
->name
!= NULL
; roff
++)
114 if (roff
->offset
== offset
)
120 * regs_within_kernel_stack() - check the address in the stack
121 * @regs: pt_regs which contains kernel stack pointer.
122 * @addr: address which is checked.
124 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
125 * If @addr is within the kernel stack, it returns true. If not, returns false.
127 bool regs_within_kernel_stack(struct pt_regs
*regs
, unsigned long addr
)
129 return ((addr
& ~(THREAD_SIZE
- 1)) ==
130 (kernel_stack_pointer(regs
) & ~(THREAD_SIZE
- 1)));
134 * regs_get_kernel_stack_nth() - get Nth entry of the stack
135 * @regs: pt_regs which contains kernel stack pointer.
136 * @n: stack entry number.
138 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
139 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142 unsigned long regs_get_kernel_stack_nth(struct pt_regs
*regs
, unsigned int n
)
144 unsigned long *addr
= (unsigned long *)kernel_stack_pointer(regs
);
146 if (regs_within_kernel_stack(regs
, (unsigned long)addr
))
153 * this routine will get a word off of the processes privileged stack.
154 * the offset is how far from the base addr as stored in the THREAD.
155 * this routine assumes that all the privileged stacks are in our
158 static inline long get_user_reg(struct task_struct
*task
, int offset
)
160 return task_pt_regs(task
)->uregs
[offset
];
164 * this routine will put a word on the processes privileged stack.
165 * the offset is how far from the base addr as stored in the THREAD.
166 * this routine assumes that all the privileged stacks are in our
170 put_user_reg(struct task_struct
*task
, int offset
, long data
)
172 struct pt_regs newregs
, *regs
= task_pt_regs(task
);
176 newregs
.uregs
[offset
] = data
;
178 if (valid_user_regs(&newregs
)) {
179 regs
->uregs
[offset
] = data
;
187 * Called by kernel/ptrace.c when detaching..
189 void ptrace_disable(struct task_struct
*child
)
195 * Handle hitting a breakpoint.
197 void ptrace_break(struct task_struct
*tsk
, struct pt_regs
*regs
)
201 info
.si_signo
= SIGTRAP
;
203 info
.si_code
= TRAP_BRKPT
;
204 info
.si_addr
= (void __user
*)instruction_pointer(regs
);
206 force_sig_info(SIGTRAP
, &info
, tsk
);
209 static int break_trap(struct pt_regs
*regs
, unsigned int instr
)
211 ptrace_break(current
, regs
);
215 static struct undef_hook arm_break_hook
= {
216 .instr_mask
= 0x0fffffff,
217 .instr_val
= 0x07f001f0,
218 .cpsr_mask
= PSR_T_BIT
,
223 static struct undef_hook thumb_break_hook
= {
224 .instr_mask
= 0xffff,
226 .cpsr_mask
= PSR_T_BIT
,
227 .cpsr_val
= PSR_T_BIT
,
231 static struct undef_hook thumb2_break_hook
= {
232 .instr_mask
= 0xffffffff,
233 .instr_val
= 0xf7f0a000,
234 .cpsr_mask
= PSR_T_BIT
,
235 .cpsr_val
= PSR_T_BIT
,
239 static int __init
ptrace_break_init(void)
241 register_undef_hook(&arm_break_hook
);
242 register_undef_hook(&thumb_break_hook
);
243 register_undef_hook(&thumb2_break_hook
);
247 core_initcall(ptrace_break_init
);
250 * Read the word at offset "off" into the "struct user". We
251 * actually access the pt_regs stored on the kernel stack.
253 static int ptrace_read_user(struct task_struct
*tsk
, unsigned long off
,
254 unsigned long __user
*ret
)
258 if (off
& 3 || off
>= sizeof(struct user
))
262 if (off
== PT_TEXT_ADDR
)
263 tmp
= tsk
->mm
->start_code
;
264 else if (off
== PT_DATA_ADDR
)
265 tmp
= tsk
->mm
->start_data
;
266 else if (off
== PT_TEXT_END_ADDR
)
267 tmp
= tsk
->mm
->end_code
;
268 else if (off
< sizeof(struct pt_regs
))
269 tmp
= get_user_reg(tsk
, off
>> 2);
271 return put_user(tmp
, ret
);
275 * Write the word at offset "off" into "struct user". We
276 * actually access the pt_regs stored on the kernel stack.
278 static int ptrace_write_user(struct task_struct
*tsk
, unsigned long off
,
281 if (off
& 3 || off
>= sizeof(struct user
))
284 if (off
>= sizeof(struct pt_regs
))
287 return put_user_reg(tsk
, off
>> 2, val
);
293 * Get the child iWMMXt state.
295 static int ptrace_getwmmxregs(struct task_struct
*tsk
, void __user
*ufp
)
297 struct thread_info
*thread
= task_thread_info(tsk
);
299 if (!test_ti_thread_flag(thread
, TIF_USING_IWMMXT
))
301 iwmmxt_task_disable(thread
); /* force it to ram */
302 return copy_to_user(ufp
, &thread
->fpstate
.iwmmxt
, IWMMXT_SIZE
)
307 * Set the child iWMMXt state.
309 static int ptrace_setwmmxregs(struct task_struct
*tsk
, void __user
*ufp
)
311 struct thread_info
*thread
= task_thread_info(tsk
);
313 if (!test_ti_thread_flag(thread
, TIF_USING_IWMMXT
))
315 iwmmxt_task_release(thread
); /* force a reload */
316 return copy_from_user(&thread
->fpstate
.iwmmxt
, ufp
, IWMMXT_SIZE
)
324 * Get the child Crunch state.
326 static int ptrace_getcrunchregs(struct task_struct
*tsk
, void __user
*ufp
)
328 struct thread_info
*thread
= task_thread_info(tsk
);
330 crunch_task_disable(thread
); /* force it to ram */
331 return copy_to_user(ufp
, &thread
->crunchstate
, CRUNCH_SIZE
)
336 * Set the child Crunch state.
338 static int ptrace_setcrunchregs(struct task_struct
*tsk
, void __user
*ufp
)
340 struct thread_info
*thread
= task_thread_info(tsk
);
342 crunch_task_release(thread
); /* force a reload */
343 return copy_from_user(&thread
->crunchstate
, ufp
, CRUNCH_SIZE
)
348 #ifdef CONFIG_HAVE_HW_BREAKPOINT
350 * Convert a virtual register number into an index for a thread_info
351 * breakpoint array. Breakpoints are identified using positive numbers
352 * whilst watchpoints are negative. The registers are laid out as pairs
353 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
354 * Register 0 is reserved for describing resource information.
356 static int ptrace_hbp_num_to_idx(long num
)
359 num
= (ARM_MAX_BRP
<< 1) - num
;
360 return (num
- 1) >> 1;
364 * Returns the virtual register number for the address of the
365 * breakpoint at index idx.
367 static long ptrace_hbp_idx_to_num(int idx
)
369 long mid
= ARM_MAX_BRP
<< 1;
370 long num
= (idx
<< 1) + 1;
371 return num
> mid
? mid
- num
: num
;
375 * Handle hitting a HW-breakpoint.
377 static void ptrace_hbptriggered(struct perf_event
*bp
,
378 struct perf_sample_data
*data
,
379 struct pt_regs
*regs
)
381 struct arch_hw_breakpoint
*bkpt
= counter_arch_bp(bp
);
386 for (i
= 0; i
< ARM_MAX_HBP_SLOTS
; ++i
)
387 if (current
->thread
.debug
.hbp
[i
] == bp
)
390 num
= (i
== ARM_MAX_HBP_SLOTS
) ? 0 : ptrace_hbp_idx_to_num(i
);
392 info
.si_signo
= SIGTRAP
;
393 info
.si_errno
= (int)num
;
394 info
.si_code
= TRAP_HWBKPT
;
395 info
.si_addr
= (void __user
*)(bkpt
->trigger
);
397 force_sig_info(SIGTRAP
, &info
, current
);
401 * Set ptrace breakpoint pointers to zero for this task.
402 * This is required in order to prevent child processes from unregistering
403 * breakpoints held by their parent.
405 void clear_ptrace_hw_breakpoint(struct task_struct
*tsk
)
407 memset(tsk
->thread
.debug
.hbp
, 0, sizeof(tsk
->thread
.debug
.hbp
));
411 * Unregister breakpoints from this task and reset the pointers in
414 void flush_ptrace_hw_breakpoint(struct task_struct
*tsk
)
417 struct thread_struct
*t
= &tsk
->thread
;
419 for (i
= 0; i
< ARM_MAX_HBP_SLOTS
; i
++) {
420 if (t
->debug
.hbp
[i
]) {
421 unregister_hw_breakpoint(t
->debug
.hbp
[i
]);
422 t
->debug
.hbp
[i
] = NULL
;
427 static u32
ptrace_get_hbp_resource_info(void)
429 u8 num_brps
, num_wrps
, debug_arch
, wp_len
;
432 num_brps
= hw_breakpoint_slots(TYPE_INST
);
433 num_wrps
= hw_breakpoint_slots(TYPE_DATA
);
434 debug_arch
= arch_get_debug_arch();
435 wp_len
= arch_get_max_wp_len();
448 static struct perf_event
*ptrace_hbp_create(struct task_struct
*tsk
, int type
)
450 struct perf_event_attr attr
;
452 ptrace_breakpoint_init(&attr
);
454 /* Initialise fields to sane defaults. */
456 attr
.bp_len
= HW_BREAKPOINT_LEN_4
;
460 return register_user_hw_breakpoint(&attr
, ptrace_hbptriggered
, NULL
,
464 static int ptrace_gethbpregs(struct task_struct
*tsk
, long num
,
465 unsigned long __user
*data
)
469 struct perf_event
*bp
;
470 struct arch_hw_breakpoint_ctrl arch_ctrl
;
473 reg
= ptrace_get_hbp_resource_info();
475 idx
= ptrace_hbp_num_to_idx(num
);
476 if (idx
< 0 || idx
>= ARM_MAX_HBP_SLOTS
) {
481 bp
= tsk
->thread
.debug
.hbp
[idx
];
487 arch_ctrl
= counter_arch_bp(bp
)->ctrl
;
490 * Fix up the len because we may have adjusted it
491 * to compensate for an unaligned address.
493 while (!(arch_ctrl
.len
& 0x1))
497 reg
= bp
->attr
.bp_addr
;
499 reg
= encode_ctrl_reg(arch_ctrl
);
503 if (put_user(reg
, data
))
510 static int ptrace_sethbpregs(struct task_struct
*tsk
, long num
,
511 unsigned long __user
*data
)
513 int idx
, gen_len
, gen_type
, implied_type
, ret
= 0;
515 struct perf_event
*bp
;
516 struct arch_hw_breakpoint_ctrl ctrl
;
517 struct perf_event_attr attr
;
522 implied_type
= HW_BREAKPOINT_RW
;
524 implied_type
= HW_BREAKPOINT_X
;
526 idx
= ptrace_hbp_num_to_idx(num
);
527 if (idx
< 0 || idx
>= ARM_MAX_HBP_SLOTS
) {
532 if (get_user(user_val
, data
)) {
537 bp
= tsk
->thread
.debug
.hbp
[idx
];
539 bp
= ptrace_hbp_create(tsk
, implied_type
);
544 tsk
->thread
.debug
.hbp
[idx
] = bp
;
551 attr
.bp_addr
= user_val
;
554 decode_ctrl_reg(user_val
, &ctrl
);
555 ret
= arch_bp_generic_fields(ctrl
, &gen_len
, &gen_type
);
559 if ((gen_type
& implied_type
) != gen_type
) {
564 attr
.bp_len
= gen_len
;
565 attr
.bp_type
= gen_type
;
566 attr
.disabled
= !ctrl
.enabled
;
569 ret
= modify_user_hw_breakpoint(bp
, &attr
);
575 /* regset get/set implementations */
577 static int gpr_get(struct task_struct
*target
,
578 const struct user_regset
*regset
,
579 unsigned int pos
, unsigned int count
,
580 void *kbuf
, void __user
*ubuf
)
582 struct pt_regs
*regs
= task_pt_regs(target
);
584 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
589 static int gpr_set(struct task_struct
*target
,
590 const struct user_regset
*regset
,
591 unsigned int pos
, unsigned int count
,
592 const void *kbuf
, const void __user
*ubuf
)
595 struct pt_regs newregs
;
597 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
603 if (!valid_user_regs(&newregs
))
606 *task_pt_regs(target
) = newregs
;
610 static int fpa_get(struct task_struct
*target
,
611 const struct user_regset
*regset
,
612 unsigned int pos
, unsigned int count
,
613 void *kbuf
, void __user
*ubuf
)
615 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
616 &task_thread_info(target
)->fpstate
,
617 0, sizeof(struct user_fp
));
620 static int fpa_set(struct task_struct
*target
,
621 const struct user_regset
*regset
,
622 unsigned int pos
, unsigned int count
,
623 const void *kbuf
, const void __user
*ubuf
)
625 struct thread_info
*thread
= task_thread_info(target
);
627 thread
->used_cp
[1] = thread
->used_cp
[2] = 1;
629 return user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
631 0, sizeof(struct user_fp
));
636 * VFP register get/set implementations.
638 * With respect to the kernel, struct user_fp is divided into three chunks:
639 * 16 or 32 real VFP registers (d0-d15 or d0-31)
640 * These are transferred to/from the real registers in the task's
641 * vfp_hard_struct. The number of registers depends on the kernel
644 * 16 or 0 fake VFP registers (d16-d31 or empty)
645 * i.e., the user_vfp structure has space for 32 registers even if
646 * the kernel doesn't have them all.
648 * vfp_get() reads this chunk as zero where applicable
649 * vfp_set() ignores this chunk
651 * 1 word for the FPSCR
653 * The bounds-checking logic built into user_regset_copyout and friends
654 * means that we can make a simple sequence of calls to map the relevant data
655 * to/from the specified slice of the user regset structure.
657 static int vfp_get(struct task_struct
*target
,
658 const struct user_regset
*regset
,
659 unsigned int pos
, unsigned int count
,
660 void *kbuf
, void __user
*ubuf
)
663 struct thread_info
*thread
= task_thread_info(target
);
664 struct vfp_hard_struct
const *vfp
= &thread
->vfpstate
.hard
;
665 const size_t user_fpregs_offset
= offsetof(struct user_vfp
, fpregs
);
666 const size_t user_fpscr_offset
= offsetof(struct user_vfp
, fpscr
);
668 vfp_sync_hwstate(thread
);
670 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
673 user_fpregs_offset
+ sizeof(vfp
->fpregs
));
677 ret
= user_regset_copyout_zero(&pos
, &count
, &kbuf
, &ubuf
,
678 user_fpregs_offset
+ sizeof(vfp
->fpregs
),
683 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
686 user_fpscr_offset
+ sizeof(vfp
->fpscr
));
690 * For vfp_set() a read-modify-write is done on the VFP registers,
691 * in order to avoid writing back a half-modified set of registers on
694 static int vfp_set(struct task_struct
*target
,
695 const struct user_regset
*regset
,
696 unsigned int pos
, unsigned int count
,
697 const void *kbuf
, const void __user
*ubuf
)
700 struct thread_info
*thread
= task_thread_info(target
);
701 struct vfp_hard_struct new_vfp
= thread
->vfpstate
.hard
;
702 const size_t user_fpregs_offset
= offsetof(struct user_vfp
, fpregs
);
703 const size_t user_fpscr_offset
= offsetof(struct user_vfp
, fpscr
);
705 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
708 user_fpregs_offset
+ sizeof(new_vfp
.fpregs
));
712 ret
= user_regset_copyin_ignore(&pos
, &count
, &kbuf
, &ubuf
,
713 user_fpregs_offset
+ sizeof(new_vfp
.fpregs
),
718 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
721 user_fpscr_offset
+ sizeof(new_vfp
.fpscr
));
725 vfp_sync_hwstate(thread
);
726 thread
->vfpstate
.hard
= new_vfp
;
727 vfp_flush_hwstate(thread
);
731 #endif /* CONFIG_VFP */
741 static const struct user_regset arm_regsets
[] = {
743 .core_note_type
= NT_PRSTATUS
,
746 .align
= sizeof(u32
),
752 * For the FPA regs in fpstate, the real fields are a mixture
753 * of sizes, so pretend that the registers are word-sized:
755 .core_note_type
= NT_PRFPREG
,
756 .n
= sizeof(struct user_fp
) / sizeof(u32
),
758 .align
= sizeof(u32
),
765 * Pretend that the VFP regs are word-sized, since the FPSCR is
766 * a single word dangling at the end of struct user_vfp:
768 .core_note_type
= NT_ARM_VFP
,
769 .n
= ARM_VFPREGS_SIZE
/ sizeof(u32
),
771 .align
= sizeof(u32
),
775 #endif /* CONFIG_VFP */
778 static const struct user_regset_view user_arm_view
= {
779 .name
= "arm", .e_machine
= ELF_ARCH
, .ei_osabi
= ELF_OSABI
,
780 .regsets
= arm_regsets
, .n
= ARRAY_SIZE(arm_regsets
)
783 const struct user_regset_view
*task_user_regset_view(struct task_struct
*task
)
785 return &user_arm_view
;
788 long arch_ptrace(struct task_struct
*child
, long request
,
789 unsigned long addr
, unsigned long data
)
792 unsigned long __user
*datap
= (unsigned long __user
*) data
;
796 ret
= ptrace_read_user(child
, addr
, datap
);
800 ret
= ptrace_write_user(child
, addr
, data
);
804 ret
= copy_regset_to_user(child
,
805 &user_arm_view
, REGSET_GPR
,
806 0, sizeof(struct pt_regs
),
811 ret
= copy_regset_from_user(child
,
812 &user_arm_view
, REGSET_GPR
,
813 0, sizeof(struct pt_regs
),
817 case PTRACE_GETFPREGS
:
818 ret
= copy_regset_to_user(child
,
819 &user_arm_view
, REGSET_FPR
,
820 0, sizeof(union fp_state
),
824 case PTRACE_SETFPREGS
:
825 ret
= copy_regset_from_user(child
,
826 &user_arm_view
, REGSET_FPR
,
827 0, sizeof(union fp_state
),
832 case PTRACE_GETWMMXREGS
:
833 ret
= ptrace_getwmmxregs(child
, datap
);
836 case PTRACE_SETWMMXREGS
:
837 ret
= ptrace_setwmmxregs(child
, datap
);
841 case PTRACE_GET_THREAD_AREA
:
842 ret
= put_user(task_thread_info(child
)->tp_value
,
846 case PTRACE_SET_SYSCALL
:
847 task_thread_info(child
)->syscall
= data
;
852 case PTRACE_GETCRUNCHREGS
:
853 ret
= ptrace_getcrunchregs(child
, datap
);
856 case PTRACE_SETCRUNCHREGS
:
857 ret
= ptrace_setcrunchregs(child
, datap
);
862 case PTRACE_GETVFPREGS
:
863 ret
= copy_regset_to_user(child
,
864 &user_arm_view
, REGSET_VFP
,
869 case PTRACE_SETVFPREGS
:
870 ret
= copy_regset_from_user(child
,
871 &user_arm_view
, REGSET_VFP
,
877 #ifdef CONFIG_HAVE_HW_BREAKPOINT
878 case PTRACE_GETHBPREGS
:
879 if (ptrace_get_breakpoints(child
) < 0)
882 ret
= ptrace_gethbpregs(child
, addr
,
883 (unsigned long __user
*)data
);
884 ptrace_put_breakpoints(child
);
886 case PTRACE_SETHBPREGS
:
887 if (ptrace_get_breakpoints(child
) < 0)
890 ret
= ptrace_sethbpregs(child
, addr
,
891 (unsigned long __user
*)data
);
892 ptrace_put_breakpoints(child
);
897 ret
= ptrace_request(child
, request
, addr
, data
);
904 asmlinkage
int syscall_trace(int why
, struct pt_regs
*regs
, int scno
)
908 if (!test_thread_flag(TIF_SYSCALL_TRACE
))
910 if (!(current
->ptrace
& PT_PTRACED
))
914 * Save IP. IP is used to denote syscall entry/exit:
915 * IP = 0 -> entry, = 1 -> exit
920 current_thread_info()->syscall
= scno
;
922 /* the 0x80 provides a way for the tracing parent to distinguish
923 between a syscall stop and SIGTRAP delivery */
924 ptrace_notify(SIGTRAP
| ((current
->ptrace
& PT_TRACESYSGOOD
)
927 * this isn't the same as continuing with a signal, but it will do
928 * for normal use. strace only continues with a signal if the
929 * stopping signal is not SIGTRAP. -brl
931 if (current
->exit_code
) {
932 send_sig(current
->exit_code
, current
, 1);
933 current
->exit_code
= 0;
937 return current_thread_info()->syscall
;