2 * linux/arch/arm/mm/ioremap.c
4 * Re-map IO memory to kernel address space so that we can access it.
6 * (C) Copyright 1995 1996 Linus Torvalds
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space. One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once. PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped. (This isn't fully implemented yet.)
23 #include <linux/module.h>
24 #include <linux/errno.h>
26 #include <linux/vmalloc.h>
29 #include <asm/cputype.h>
30 #include <asm/cacheflush.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgalloc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/sizes.h>
36 #include <asm/mach/map.h>
40 * Used by ioremap() and iounmap() code to mark (super)section-mapped
41 * I/O regions in vm_struct->flags field.
43 #define VM_ARM_SECTION_MAPPING 0x80000000
45 int ioremap_page(unsigned long virt
, unsigned long phys
,
46 const struct mem_type
*mtype
)
48 return ioremap_page_range(virt
, virt
+ PAGE_SIZE
, phys
,
49 __pgprot(mtype
->prot_pte
));
51 EXPORT_SYMBOL(ioremap_page
);
53 void __check_kvm_seq(struct mm_struct
*mm
)
58 seq
= init_mm
.context
.kvm_seq
;
59 memcpy(pgd_offset(mm
, VMALLOC_START
),
60 pgd_offset_k(VMALLOC_START
),
61 sizeof(pgd_t
) * (pgd_index(VMALLOC_END
) -
62 pgd_index(VMALLOC_START
)));
63 mm
->context
.kvm_seq
= seq
;
64 } while (seq
!= init_mm
.context
.kvm_seq
);
67 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
69 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
70 * the other CPUs will not see this change until their next context switch.
71 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
72 * which requires the new ioremap'd region to be referenced, the CPU will
73 * reference the _old_ region.
75 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
76 * mask the size back to 1MB aligned or we will overflow in the loop below.
78 static void unmap_area_sections(unsigned long virt
, unsigned long size
)
80 unsigned long addr
= virt
, end
= virt
+ (size
& ~(SZ_1M
- 1));
85 flush_cache_vunmap(addr
, end
);
86 pgd
= pgd_offset_k(addr
);
87 pud
= pud_offset(pgd
, addr
);
88 pmdp
= pmd_offset(pud
, addr
);
94 * Clear the PMD from the page table, and
95 * increment the kvm sequence so others
98 * Note: this is still racy on SMP machines.
101 init_mm
.context
.kvm_seq
++;
104 * Free the page table, if there was one.
106 if ((pmd_val(pmd
) & PMD_TYPE_MASK
) == PMD_TYPE_TABLE
)
107 pte_free_kernel(&init_mm
, pmd_page_vaddr(pmd
));
112 } while (addr
< end
);
115 * Ensure that the active_mm is up to date - we want to
116 * catch any use-after-iounmap cases.
118 if (current
->active_mm
->context
.kvm_seq
!= init_mm
.context
.kvm_seq
)
119 __check_kvm_seq(current
->active_mm
);
121 flush_tlb_kernel_range(virt
, end
);
125 remap_area_sections(unsigned long virt
, unsigned long pfn
,
126 size_t size
, const struct mem_type
*type
)
128 unsigned long addr
= virt
, end
= virt
+ size
;
134 * Remove and free any PTE-based mapping, and
135 * sync the current kernel mapping.
137 unmap_area_sections(virt
, size
);
139 pgd
= pgd_offset_k(addr
);
140 pud
= pud_offset(pgd
, addr
);
141 pmd
= pmd_offset(pud
, addr
);
143 pmd
[0] = __pmd(__pfn_to_phys(pfn
) | type
->prot_sect
);
144 pfn
+= SZ_1M
>> PAGE_SHIFT
;
145 pmd
[1] = __pmd(__pfn_to_phys(pfn
) | type
->prot_sect
);
146 pfn
+= SZ_1M
>> PAGE_SHIFT
;
147 flush_pmd_entry(pmd
);
151 } while (addr
< end
);
157 remap_area_supersections(unsigned long virt
, unsigned long pfn
,
158 size_t size
, const struct mem_type
*type
)
160 unsigned long addr
= virt
, end
= virt
+ size
;
166 * Remove and free any PTE-based mapping, and
167 * sync the current kernel mapping.
169 unmap_area_sections(virt
, size
);
171 pgd
= pgd_offset_k(virt
);
172 pud
= pud_offset(pgd
, addr
);
173 pmd
= pmd_offset(pud
, addr
);
175 unsigned long super_pmd_val
, i
;
177 super_pmd_val
= __pfn_to_phys(pfn
) | type
->prot_sect
|
179 super_pmd_val
|= ((pfn
>> (32 - PAGE_SHIFT
)) & 0xf) << 20;
181 for (i
= 0; i
< 8; i
++) {
182 pmd
[0] = __pmd(super_pmd_val
);
183 pmd
[1] = __pmd(super_pmd_val
);
184 flush_pmd_entry(pmd
);
190 pfn
+= SUPERSECTION_SIZE
>> PAGE_SHIFT
;
191 } while (addr
< end
);
197 void __iomem
* __arm_ioremap_pfn_caller(unsigned long pfn
,
198 unsigned long offset
, size_t size
, unsigned int mtype
, void *caller
)
200 const struct mem_type
*type
;
203 struct vm_struct
* area
;
205 #ifndef CONFIG_ARM_LPAE
207 * High mappings must be supersection aligned
209 if (pfn
>= 0x100000 && (__pfn_to_phys(pfn
) & ~SUPERSECTION_MASK
))
214 * Don't allow RAM to be mapped - this causes problems with ARMv6+
216 if (WARN_ON(pfn_valid(pfn
)))
219 type
= get_mem_type(mtype
);
224 * Page align the mapping size, taking account of any offset.
226 size
= PAGE_ALIGN(offset
+ size
);
228 area
= get_vm_area_caller(size
, VM_IOREMAP
, caller
);
231 addr
= (unsigned long)area
->addr
;
233 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
234 if (DOMAIN_IO
== 0 &&
235 (((cpu_architecture() >= CPU_ARCH_ARMv6
) && (get_cr() & CR_XP
)) ||
236 cpu_is_xsc3()) && pfn
>= 0x100000 &&
237 !((__pfn_to_phys(pfn
) | size
| addr
) & ~SUPERSECTION_MASK
)) {
238 area
->flags
|= VM_ARM_SECTION_MAPPING
;
239 err
= remap_area_supersections(addr
, pfn
, size
, type
);
240 } else if (!((__pfn_to_phys(pfn
) | size
| addr
) & ~PMD_MASK
)) {
241 area
->flags
|= VM_ARM_SECTION_MAPPING
;
242 err
= remap_area_sections(addr
, pfn
, size
, type
);
245 err
= ioremap_page_range(addr
, addr
+ size
, __pfn_to_phys(pfn
),
246 __pgprot(type
->prot_pte
));
249 vunmap((void *)addr
);
253 flush_cache_vmap(addr
, addr
+ size
);
254 return (void __iomem
*) (offset
+ addr
);
257 void __iomem
*__arm_ioremap_caller(unsigned long phys_addr
, size_t size
,
258 unsigned int mtype
, void *caller
)
260 unsigned long last_addr
;
261 unsigned long offset
= phys_addr
& ~PAGE_MASK
;
262 unsigned long pfn
= __phys_to_pfn(phys_addr
);
265 * Don't allow wraparound or zero size
267 last_addr
= phys_addr
+ size
- 1;
268 if (!size
|| last_addr
< phys_addr
)
271 return __arm_ioremap_pfn_caller(pfn
, offset
, size
, mtype
,
276 * Remap an arbitrary physical address space into the kernel virtual
277 * address space. Needed when the kernel wants to access high addresses
280 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
281 * have to convert them into an offset in a page-aligned mapping, but the
282 * caller shouldn't need to know that small detail.
285 __arm_ioremap_pfn(unsigned long pfn
, unsigned long offset
, size_t size
,
288 return __arm_ioremap_pfn_caller(pfn
, offset
, size
, mtype
,
289 __builtin_return_address(0));
291 EXPORT_SYMBOL(__arm_ioremap_pfn
);
294 __arm_ioremap(unsigned long phys_addr
, size_t size
, unsigned int mtype
)
296 return __arm_ioremap_caller(phys_addr
, size
, mtype
,
297 __builtin_return_address(0));
299 EXPORT_SYMBOL(__arm_ioremap
);
301 void __iounmap(volatile void __iomem
*io_addr
)
303 void *addr
= (void *)(PAGE_MASK
& (unsigned long)io_addr
);
304 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
305 struct vm_struct
**p
, *tmp
;
308 * If this is a section based mapping we need to handle it
309 * specially as the VM subsystem does not know how to handle
310 * such a beast. We need the lock here b/c we need to clear
311 * all the mappings before the area can be reclaimed
314 write_lock(&vmlist_lock
);
315 for (p
= &vmlist
; (tmp
= *p
) ; p
= &tmp
->next
) {
316 if ((tmp
->flags
& VM_IOREMAP
) && (tmp
->addr
== addr
)) {
317 if (tmp
->flags
& VM_ARM_SECTION_MAPPING
) {
318 unmap_area_sections((unsigned long)tmp
->addr
,
324 write_unlock(&vmlist_lock
);
329 EXPORT_SYMBOL(__iounmap
);