2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device
*dev
);
36 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
37 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
38 u8
*sas_addr
, int include
);
39 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task
)
45 struct sas_task
*task
= (void *) _task
;
48 spin_lock_irqsave(&task
->task_state_lock
, flags
);
49 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
50 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
51 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
53 complete(&task
->completion
);
56 static void smp_task_done(struct sas_task
*task
)
58 if (!del_timer(&task
->timer
))
60 complete(&task
->completion
);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
67 void *resp
, int resp_size
)
70 struct sas_task
*task
= NULL
;
71 struct sas_internal
*i
=
72 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
74 for (retry
= 0; retry
< 3; retry
++) {
75 task
= sas_alloc_task(GFP_KERNEL
);
80 task
->task_proto
= dev
->tproto
;
81 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
82 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
84 task
->task_done
= smp_task_done
;
86 task
->timer
.data
= (unsigned long) task
;
87 task
->timer
.function
= smp_task_timedout
;
88 task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
89 add_timer(&task
->timer
);
91 res
= i
->dft
->lldd_execute_task(task
, 1, GFP_KERNEL
);
94 del_timer(&task
->timer
);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
99 wait_for_completion(&task
->completion
);
101 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i
->dft
->lldd_abort_task(task
);
104 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
109 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
110 task
->task_status
.stat
== SAM_STAT_GOOD
) {
113 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
114 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
115 /* no error, but return the number of bytes of
117 res
= task
->task_status
.residual
;
119 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
120 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__
,
126 SAS_ADDR(dev
->sas_addr
),
127 task
->task_status
.resp
,
128 task
->task_status
.stat
);
134 BUG_ON(retry
== 3 && task
!= NULL
);
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size
)
145 u8
*p
= kzalloc(size
, GFP_KERNEL
);
151 static inline void *alloc_smp_resp(int size
)
153 return kzalloc(size
, GFP_KERNEL
);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
,
161 struct expander_device
*ex
= &dev
->ex_dev
;
162 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
163 struct smp_resp
*resp
= disc_resp
;
164 struct discover_resp
*dr
= &resp
->disc
;
165 struct sas_rphy
*rphy
= dev
->rphy
;
166 int rediscover
= (phy
->phy
!= NULL
);
169 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
171 /* FIXME: error_handling */
175 switch (resp
->result
) {
176 case SMP_RESP_PHY_VACANT
:
177 phy
->phy_state
= PHY_VACANT
;
180 phy
->phy_state
= PHY_NOT_PRESENT
;
182 case SMP_RESP_FUNC_ACC
:
183 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
187 phy
->phy_id
= phy_id
;
188 phy
->attached_dev_type
= dr
->attached_dev_type
;
189 phy
->linkrate
= dr
->linkrate
;
190 phy
->attached_sata_host
= dr
->attached_sata_host
;
191 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
192 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
193 phy
->attached_iproto
= dr
->iproto
<< 1;
194 phy
->attached_tproto
= dr
->tproto
<< 1;
195 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
196 phy
->attached_phy_id
= dr
->attached_phy_id
;
197 phy
->phy_change_count
= dr
->change_count
;
198 phy
->routing_attr
= dr
->routing_attr
;
199 phy
->virtual = dr
->virtual;
200 phy
->last_da_index
= -1;
202 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
203 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
204 phy
->phy
->identify
.phy_identifier
= phy_id
;
205 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
206 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
207 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
208 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
209 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
212 if (sas_phy_add(phy
->phy
)) {
213 sas_phy_free(phy
->phy
);
217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
219 phy
->routing_attr
== TABLE_ROUTING
? 'T' :
220 phy
->routing_attr
== DIRECT_ROUTING
? 'D' :
221 phy
->routing_attr
== SUBTRACTIVE_ROUTING
? 'S' : '?',
222 SAS_ADDR(phy
->attached_sas_addr
));
227 #define DISCOVER_REQ_SIZE 16
228 #define DISCOVER_RESP_SIZE 56
230 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
231 u8
*disc_resp
, int single
)
235 disc_req
[9] = single
;
236 for (i
= 1 ; i
< 3; i
++) {
237 struct discover_resp
*dr
;
239 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
240 disc_resp
, DISCOVER_RESP_SIZE
);
243 /* This is detecting a failure to transmit initial
244 * dev to host FIS as described in section G.5 of
246 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
247 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
,
248 SAS_ADDR_SIZE
) == 0) {
249 sas_printk("Found loopback topology, just ignore it!\n");
252 if (!(dr
->attached_dev_type
== 0 &&
253 dr
->attached_sata_dev
))
255 /* In order to generate the dev to host FIS, we
256 * send a link reset to the expander port */
257 sas_smp_phy_control(dev
, single
, PHY_FUNC_LINK_RESET
, NULL
);
258 /* Wait for the reset to trigger the negotiation */
261 sas_set_ex_phy(dev
, single
, disc_resp
);
265 static int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
267 struct expander_device
*ex
= &dev
->ex_dev
;
272 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
276 disc_resp
= alloc_smp_req(DISCOVER_RESP_SIZE
);
282 disc_req
[1] = SMP_DISCOVER
;
284 if (0 <= single
&& single
< ex
->num_phys
) {
285 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
289 for (i
= 0; i
< ex
->num_phys
; i
++) {
290 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
302 static int sas_expander_discover(struct domain_device
*dev
)
304 struct expander_device
*ex
= &dev
->ex_dev
;
307 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
311 res
= sas_ex_phy_discover(dev
, -1);
322 #define MAX_EXPANDER_PHYS 128
324 static void ex_assign_report_general(struct domain_device
*dev
,
325 struct smp_resp
*resp
)
327 struct report_general_resp
*rg
= &resp
->rg
;
329 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
330 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
331 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
332 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
333 dev
->ex_dev
.configuring
= rg
->configuring
;
334 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
337 #define RG_REQ_SIZE 8
338 #define RG_RESP_SIZE 32
340 static int sas_ex_general(struct domain_device
*dev
)
343 struct smp_resp
*rg_resp
;
347 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
351 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
357 rg_req
[1] = SMP_REPORT_GENERAL
;
359 for (i
= 0; i
< 5; i
++) {
360 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
364 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
365 SAS_ADDR(dev
->sas_addr
), res
);
367 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
368 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
369 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
370 res
= rg_resp
->result
;
374 ex_assign_report_general(dev
, rg_resp
);
376 if (dev
->ex_dev
.configuring
) {
377 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
378 SAS_ADDR(dev
->sas_addr
));
379 schedule_timeout_interruptible(5*HZ
);
389 static void ex_assign_manuf_info(struct domain_device
*dev
, void
392 u8
*mi_resp
= _mi_resp
;
393 struct sas_rphy
*rphy
= dev
->rphy
;
394 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
396 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
397 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
398 memcpy(edev
->product_rev
, mi_resp
+ 36,
399 SAS_EXPANDER_PRODUCT_REV_LEN
);
401 if (mi_resp
[8] & 1) {
402 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
403 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
404 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
405 edev
->component_revision_id
= mi_resp
[50];
409 #define MI_REQ_SIZE 8
410 #define MI_RESP_SIZE 64
412 static int sas_ex_manuf_info(struct domain_device
*dev
)
418 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
422 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
428 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
430 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
432 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
433 SAS_ADDR(dev
->sas_addr
), res
);
435 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
436 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
437 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
441 ex_assign_manuf_info(dev
, mi_resp
);
448 #define PC_REQ_SIZE 44
449 #define PC_RESP_SIZE 8
451 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
452 enum phy_func phy_func
,
453 struct sas_phy_linkrates
*rates
)
459 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
463 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
469 pc_req
[1] = SMP_PHY_CONTROL
;
471 pc_req
[10]= phy_func
;
473 pc_req
[32] = rates
->minimum_linkrate
<< 4;
474 pc_req
[33] = rates
->maximum_linkrate
<< 4;
477 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
484 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
486 struct expander_device
*ex
= &dev
->ex_dev
;
487 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
489 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
490 phy
->linkrate
= SAS_PHY_DISABLED
;
493 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
495 struct expander_device
*ex
= &dev
->ex_dev
;
498 for (i
= 0; i
< ex
->num_phys
; i
++) {
499 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
501 if (phy
->phy_state
== PHY_VACANT
||
502 phy
->phy_state
== PHY_NOT_PRESENT
)
505 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
506 sas_ex_disable_phy(dev
, i
);
510 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
513 struct domain_device
*dev
;
515 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
517 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
518 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
524 #define RPEL_REQ_SIZE 16
525 #define RPEL_RESP_SIZE 32
526 int sas_smp_get_phy_events(struct sas_phy
*phy
)
531 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
532 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
534 req
= alloc_smp_req(RPEL_REQ_SIZE
);
538 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
544 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
545 req
[9] = phy
->number
;
547 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
548 resp
, RPEL_RESP_SIZE
);
553 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
554 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
555 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
556 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
564 #ifdef CONFIG_SCSI_SAS_ATA
566 #define RPS_REQ_SIZE 16
567 #define RPS_RESP_SIZE 60
569 static int sas_get_report_phy_sata(struct domain_device
*dev
,
571 struct smp_resp
*rps_resp
)
574 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
575 u8
*resp
= (u8
*)rps_resp
;
580 rps_req
[1] = SMP_REPORT_PHY_SATA
;
583 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
584 rps_resp
, RPS_RESP_SIZE
);
586 /* 0x34 is the FIS type for the D2H fis. There's a potential
587 * standards cockup here. sas-2 explicitly specifies the FIS
588 * should be encoded so that FIS type is in resp[24].
589 * However, some expanders endian reverse this. Undo the
591 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
594 for (i
= 0; i
< 5; i
++) {
599 resp
[j
+ 0] = resp
[j
+ 3];
600 resp
[j
+ 1] = resp
[j
+ 2];
611 static void sas_ex_get_linkrate(struct domain_device
*parent
,
612 struct domain_device
*child
,
613 struct ex_phy
*parent_phy
)
615 struct expander_device
*parent_ex
= &parent
->ex_dev
;
616 struct sas_port
*port
;
621 port
= parent_phy
->port
;
623 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
624 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
626 if (phy
->phy_state
== PHY_VACANT
||
627 phy
->phy_state
== PHY_NOT_PRESENT
)
630 if (SAS_ADDR(phy
->attached_sas_addr
) ==
631 SAS_ADDR(child
->sas_addr
)) {
633 child
->min_linkrate
= min(parent
->min_linkrate
,
635 child
->max_linkrate
= max(parent
->max_linkrate
,
638 sas_port_add_phy(port
, phy
->phy
);
641 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
642 child
->pathways
= min(child
->pathways
, parent
->pathways
);
645 static struct domain_device
*sas_ex_discover_end_dev(
646 struct domain_device
*parent
, int phy_id
)
648 struct expander_device
*parent_ex
= &parent
->ex_dev
;
649 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
650 struct domain_device
*child
= NULL
;
651 struct sas_rphy
*rphy
;
654 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
657 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
661 child
->parent
= parent
;
662 child
->port
= parent
->port
;
663 child
->iproto
= phy
->attached_iproto
;
664 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
665 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
667 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
668 if (unlikely(!phy
->port
))
670 if (unlikely(sas_port_add(phy
->port
) != 0)) {
671 sas_port_free(phy
->port
);
675 sas_ex_get_linkrate(parent
, child
, phy
);
677 #ifdef CONFIG_SCSI_SAS_ATA
678 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
679 child
->dev_type
= SATA_DEV
;
680 if (phy
->attached_tproto
& SAS_PROTOCOL_STP
)
681 child
->tproto
= phy
->attached_tproto
;
682 if (phy
->attached_sata_dev
)
683 child
->tproto
|= SATA_DEV
;
684 res
= sas_get_report_phy_sata(parent
, phy_id
,
685 &child
->sata_dev
.rps_resp
);
687 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
688 "0x%x\n", SAS_ADDR(parent
->sas_addr
),
692 memcpy(child
->frame_rcvd
, &child
->sata_dev
.rps_resp
.rps
.fis
,
693 sizeof(struct dev_to_host_fis
));
695 rphy
= sas_end_device_alloc(phy
->port
);
703 spin_lock_irq(&parent
->port
->dev_list_lock
);
704 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
705 spin_unlock_irq(&parent
->port
->dev_list_lock
);
707 res
= sas_discover_sata(child
);
709 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
710 "%016llx:0x%x returned 0x%x\n",
711 SAS_ADDR(child
->sas_addr
),
712 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
717 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
718 child
->dev_type
= SAS_END_DEV
;
719 rphy
= sas_end_device_alloc(phy
->port
);
720 /* FIXME: error handling */
723 child
->tproto
= phy
->attached_tproto
;
727 sas_fill_in_rphy(child
, rphy
);
729 spin_lock_irq(&parent
->port
->dev_list_lock
);
730 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
731 spin_unlock_irq(&parent
->port
->dev_list_lock
);
733 res
= sas_discover_end_dev(child
);
735 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
736 "at %016llx:0x%x returned 0x%x\n",
737 SAS_ADDR(child
->sas_addr
),
738 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
742 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
743 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
748 list_add_tail(&child
->siblings
, &parent_ex
->children
);
752 sas_rphy_free(child
->rphy
);
754 list_del(&child
->dev_list_node
);
756 sas_port_delete(phy
->port
);
763 /* See if this phy is part of a wide port */
764 static int sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
766 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
769 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
770 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
775 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
776 SAS_ADDR_SIZE
) && ephy
->port
) {
777 sas_port_add_phy(ephy
->port
, phy
->phy
);
778 phy
->port
= ephy
->port
;
779 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
787 static struct domain_device
*sas_ex_discover_expander(
788 struct domain_device
*parent
, int phy_id
)
790 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
791 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
792 struct domain_device
*child
= NULL
;
793 struct sas_rphy
*rphy
;
794 struct sas_expander_device
*edev
;
795 struct asd_sas_port
*port
;
798 if (phy
->routing_attr
== DIRECT_ROUTING
) {
799 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
801 SAS_ADDR(parent
->sas_addr
), phy_id
,
802 SAS_ADDR(phy
->attached_sas_addr
),
803 phy
->attached_phy_id
);
806 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
810 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
811 /* FIXME: better error handling */
812 BUG_ON(sas_port_add(phy
->port
) != 0);
815 switch (phy
->attached_dev_type
) {
817 rphy
= sas_expander_alloc(phy
->port
,
818 SAS_EDGE_EXPANDER_DEVICE
);
821 rphy
= sas_expander_alloc(phy
->port
,
822 SAS_FANOUT_EXPANDER_DEVICE
);
825 rphy
= NULL
; /* shut gcc up */
830 edev
= rphy_to_expander_device(rphy
);
831 child
->dev_type
= phy
->attached_dev_type
;
832 child
->parent
= parent
;
834 child
->iproto
= phy
->attached_iproto
;
835 child
->tproto
= phy
->attached_tproto
;
836 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
837 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
838 sas_ex_get_linkrate(parent
, child
, phy
);
839 edev
->level
= parent_ex
->level
+ 1;
840 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
843 sas_fill_in_rphy(child
, rphy
);
846 spin_lock_irq(&parent
->port
->dev_list_lock
);
847 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
848 spin_unlock_irq(&parent
->port
->dev_list_lock
);
850 res
= sas_discover_expander(child
);
852 spin_lock_irq(&parent
->port
->dev_list_lock
);
853 list_del(&child
->dev_list_node
);
854 spin_unlock_irq(&parent
->port
->dev_list_lock
);
858 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
862 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
864 struct expander_device
*ex
= &dev
->ex_dev
;
865 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
866 struct domain_device
*child
= NULL
;
870 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
871 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
872 res
= sas_ex_phy_discover(dev
, phy_id
);
877 /* Parent and domain coherency */
878 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
879 SAS_ADDR(dev
->port
->sas_addr
))) {
880 sas_add_parent_port(dev
, phy_id
);
883 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
884 SAS_ADDR(dev
->parent
->sas_addr
))) {
885 sas_add_parent_port(dev
, phy_id
);
886 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
887 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
891 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
892 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
894 if (ex_phy
->attached_dev_type
== NO_DEVICE
) {
895 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
896 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
897 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
900 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
903 if (ex_phy
->attached_dev_type
!= SAS_END_DEV
&&
904 ex_phy
->attached_dev_type
!= FANOUT_DEV
&&
905 ex_phy
->attached_dev_type
!= EDGE_DEV
) {
906 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
907 "phy 0x%x\n", ex_phy
->attached_dev_type
,
908 SAS_ADDR(dev
->sas_addr
),
913 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
915 SAS_DPRINTK("configure routing for dev %016llx "
916 "reported 0x%x. Forgotten\n",
917 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
918 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
922 res
= sas_ex_join_wide_port(dev
, phy_id
);
924 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
925 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
929 switch (ex_phy
->attached_dev_type
) {
931 child
= sas_ex_discover_end_dev(dev
, phy_id
);
934 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
935 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
936 "attached to ex %016llx phy 0x%x\n",
937 SAS_ADDR(ex_phy
->attached_sas_addr
),
938 ex_phy
->attached_phy_id
,
939 SAS_ADDR(dev
->sas_addr
),
941 sas_ex_disable_phy(dev
, phy_id
);
944 memcpy(dev
->port
->disc
.fanout_sas_addr
,
945 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
948 child
= sas_ex_discover_expander(dev
, phy_id
);
957 for (i
= 0; i
< ex
->num_phys
; i
++) {
958 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
959 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
962 * Due to races, the phy might not get added to the
963 * wide port, so we add the phy to the wide port here.
965 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
966 SAS_ADDR(child
->sas_addr
)) {
967 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
968 res
= sas_ex_join_wide_port(dev
, i
);
970 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
971 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
980 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
982 struct expander_device
*ex
= &dev
->ex_dev
;
985 for (i
= 0; i
< ex
->num_phys
; i
++) {
986 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
988 if (phy
->phy_state
== PHY_VACANT
||
989 phy
->phy_state
== PHY_NOT_PRESENT
)
992 if ((phy
->attached_dev_type
== EDGE_DEV
||
993 phy
->attached_dev_type
== FANOUT_DEV
) &&
994 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
996 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1004 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1006 struct expander_device
*ex
= &dev
->ex_dev
;
1007 struct domain_device
*child
;
1008 u8 sub_addr
[8] = {0, };
1010 list_for_each_entry(child
, &ex
->children
, siblings
) {
1011 if (child
->dev_type
!= EDGE_DEV
&&
1012 child
->dev_type
!= FANOUT_DEV
)
1014 if (sub_addr
[0] == 0) {
1015 sas_find_sub_addr(child
, sub_addr
);
1020 if (sas_find_sub_addr(child
, s2
) &&
1021 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1023 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024 "diverges from subtractive "
1025 "boundary %016llx\n",
1026 SAS_ADDR(dev
->sas_addr
),
1027 SAS_ADDR(child
->sas_addr
),
1029 SAS_ADDR(sub_addr
));
1031 sas_ex_disable_port(child
, s2
);
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1045 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1047 struct expander_device
*ex
= &dev
->ex_dev
;
1048 int i
= 0, end
= ex
->num_phys
;
1051 if (0 <= single
&& single
< end
) {
1056 for ( ; i
< end
; i
++) {
1057 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1059 if (ex_phy
->phy_state
== PHY_VACANT
||
1060 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1061 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1064 switch (ex_phy
->linkrate
) {
1065 case SAS_PHY_DISABLED
:
1066 case SAS_PHY_RESET_PROBLEM
:
1067 case SAS_SATA_PORT_SELECTOR
:
1070 res
= sas_ex_discover_dev(dev
, i
);
1078 sas_check_level_subtractive_boundary(dev
);
1083 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1085 struct expander_device
*ex
= &dev
->ex_dev
;
1087 u8
*sub_sas_addr
= NULL
;
1089 if (dev
->dev_type
!= EDGE_DEV
)
1092 for (i
= 0; i
< ex
->num_phys
; i
++) {
1093 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1095 if (phy
->phy_state
== PHY_VACANT
||
1096 phy
->phy_state
== PHY_NOT_PRESENT
)
1099 if ((phy
->attached_dev_type
== FANOUT_DEV
||
1100 phy
->attached_dev_type
== EDGE_DEV
) &&
1101 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1104 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1105 else if (SAS_ADDR(sub_sas_addr
) !=
1106 SAS_ADDR(phy
->attached_sas_addr
)) {
1108 SAS_DPRINTK("ex %016llx phy 0x%x "
1109 "diverges(%016llx) on subtractive "
1110 "boundary(%016llx). Disabled\n",
1111 SAS_ADDR(dev
->sas_addr
), i
,
1112 SAS_ADDR(phy
->attached_sas_addr
),
1113 SAS_ADDR(sub_sas_addr
));
1114 sas_ex_disable_phy(dev
, i
);
1121 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1122 struct ex_phy
*parent_phy
,
1123 struct ex_phy
*child_phy
)
1125 static const char ra_char
[] = {
1126 [DIRECT_ROUTING
] = 'D',
1127 [SUBTRACTIVE_ROUTING
] = 'S',
1128 [TABLE_ROUTING
] = 'T',
1130 static const char *ex_type
[] = {
1131 [EDGE_DEV
] = "edge",
1132 [FANOUT_DEV
] = "fanout",
1134 struct domain_device
*parent
= child
->parent
;
1136 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137 "has %c:%c routing link!\n",
1139 ex_type
[parent
->dev_type
],
1140 SAS_ADDR(parent
->sas_addr
),
1143 ex_type
[child
->dev_type
],
1144 SAS_ADDR(child
->sas_addr
),
1147 ra_char
[parent_phy
->routing_attr
],
1148 ra_char
[child_phy
->routing_attr
]);
1151 static int sas_check_eeds(struct domain_device
*child
,
1152 struct ex_phy
*parent_phy
,
1153 struct ex_phy
*child_phy
)
1156 struct domain_device
*parent
= child
->parent
;
1158 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1160 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161 "phy S:0x%x, while there is a fanout ex %016llx\n",
1162 SAS_ADDR(parent
->sas_addr
),
1164 SAS_ADDR(child
->sas_addr
),
1166 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1167 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1168 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1170 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1172 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1173 SAS_ADDR(parent
->sas_addr
)) ||
1174 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1175 SAS_ADDR(child
->sas_addr
)))
1177 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1178 SAS_ADDR(parent
->sas_addr
)) ||
1179 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1180 SAS_ADDR(child
->sas_addr
))))
1184 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185 "phy 0x%x link forms a third EEDS!\n",
1186 SAS_ADDR(parent
->sas_addr
),
1188 SAS_ADDR(child
->sas_addr
),
1195 /* Here we spill over 80 columns. It is intentional.
1197 static int sas_check_parent_topology(struct domain_device
*child
)
1199 struct expander_device
*child_ex
= &child
->ex_dev
;
1200 struct expander_device
*parent_ex
;
1207 if (child
->parent
->dev_type
!= EDGE_DEV
&&
1208 child
->parent
->dev_type
!= FANOUT_DEV
)
1211 parent_ex
= &child
->parent
->ex_dev
;
1213 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1214 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1215 struct ex_phy
*child_phy
;
1217 if (parent_phy
->phy_state
== PHY_VACANT
||
1218 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1221 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1224 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1226 switch (child
->parent
->dev_type
) {
1228 if (child
->dev_type
== FANOUT_DEV
) {
1229 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1230 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1231 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1234 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1235 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1236 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1237 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1238 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1241 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
&&
1242 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1243 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1248 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1249 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1250 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1262 #define RRI_REQ_SIZE 16
1263 #define RRI_RESP_SIZE 44
1265 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1266 u8
*sas_addr
, int *index
, int *present
)
1269 struct expander_device
*ex
= &dev
->ex_dev
;
1270 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1277 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1281 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1287 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1288 rri_req
[9] = phy_id
;
1290 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1291 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1292 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1297 if (res
== SMP_RESP_NO_INDEX
) {
1298 SAS_DPRINTK("overflow of indexes: dev %016llx "
1299 "phy 0x%x index 0x%x\n",
1300 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1302 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1303 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304 "result 0x%x\n", __func__
,
1305 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1308 if (SAS_ADDR(sas_addr
) != 0) {
1309 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1311 if ((rri_resp
[12] & 0x80) == 0x80)
1316 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1321 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1322 phy
->last_da_index
< i
) {
1323 phy
->last_da_index
= i
;
1336 #define CRI_REQ_SIZE 44
1337 #define CRI_RESP_SIZE 8
1339 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1340 u8
*sas_addr
, int index
, int include
)
1346 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1350 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1356 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1357 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1358 cri_req
[9] = phy_id
;
1359 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1360 cri_req
[12] |= 0x80;
1361 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1363 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1368 if (res
== SMP_RESP_NO_INDEX
) {
1369 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1371 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1379 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1380 u8
*sas_addr
, int include
)
1386 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1389 if (include
^ present
)
1390 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
1401 static int sas_configure_parent(struct domain_device
*parent
,
1402 struct domain_device
*child
,
1403 u8
*sas_addr
, int include
)
1405 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1409 if (parent
->parent
) {
1410 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1416 if (ex_parent
->conf_route_table
== 0) {
1417 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418 SAS_ADDR(parent
->sas_addr
));
1422 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1423 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1425 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1426 (SAS_ADDR(phy
->attached_sas_addr
) ==
1427 SAS_ADDR(child
->sas_addr
))) {
1428 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1442 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1445 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1449 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1452 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1460 * See comment in sas_discover_sata().
1462 static int sas_discover_expander(struct domain_device
*dev
)
1466 res
= sas_notify_lldd_dev_found(dev
);
1470 res
= sas_ex_general(dev
);
1473 res
= sas_ex_manuf_info(dev
);
1477 res
= sas_expander_discover(dev
);
1479 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480 SAS_ADDR(dev
->sas_addr
), res
);
1484 sas_check_ex_subtractive_boundary(dev
);
1485 res
= sas_check_parent_topology(dev
);
1490 sas_notify_lldd_dev_gone(dev
);
1494 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1497 struct domain_device
*dev
;
1499 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1500 if (dev
->dev_type
== EDGE_DEV
||
1501 dev
->dev_type
== FANOUT_DEV
) {
1502 struct sas_expander_device
*ex
=
1503 rphy_to_expander_device(dev
->rphy
);
1505 if (level
== ex
->level
)
1506 res
= sas_ex_discover_devices(dev
, -1);
1508 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1516 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1522 level
= port
->disc
.max_level
;
1523 res
= sas_ex_level_discovery(port
, level
);
1525 } while (level
< port
->disc
.max_level
);
1530 int sas_discover_root_expander(struct domain_device
*dev
)
1533 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1535 res
= sas_rphy_add(dev
->rphy
);
1539 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1540 res
= sas_discover_expander(dev
);
1544 sas_ex_bfs_disc(dev
->port
);
1549 sas_rphy_remove(dev
->rphy
);
1554 /* ---------- Domain revalidation ---------- */
1556 static int sas_get_phy_discover(struct domain_device
*dev
,
1557 int phy_id
, struct smp_resp
*disc_resp
)
1562 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1566 disc_req
[1] = SMP_DISCOVER
;
1567 disc_req
[9] = phy_id
;
1569 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1570 disc_resp
, DISCOVER_RESP_SIZE
);
1573 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1574 res
= disc_resp
->result
;
1582 static int sas_get_phy_change_count(struct domain_device
*dev
,
1583 int phy_id
, int *pcc
)
1586 struct smp_resp
*disc_resp
;
1588 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1592 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1594 *pcc
= disc_resp
->disc
.change_count
;
1600 static int sas_get_phy_attached_sas_addr(struct domain_device
*dev
,
1601 int phy_id
, u8
*attached_sas_addr
)
1604 struct smp_resp
*disc_resp
;
1605 struct discover_resp
*dr
;
1607 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1610 dr
= &disc_resp
->disc
;
1612 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1614 memcpy(attached_sas_addr
,disc_resp
->disc
.attached_sas_addr
,8);
1615 if (dr
->attached_dev_type
== 0)
1616 memset(attached_sas_addr
, 0, 8);
1622 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1623 int from_phy
, bool update
)
1625 struct expander_device
*ex
= &dev
->ex_dev
;
1629 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1630 int phy_change_count
= 0;
1632 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1635 else if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1637 ex
->ex_phy
[i
].phy_change_count
=
1647 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1651 struct smp_resp
*rg_resp
;
1653 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1657 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1663 rg_req
[1] = SMP_REPORT_GENERAL
;
1665 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1669 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1670 res
= rg_resp
->result
;
1674 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1681 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1695 static int sas_find_bcast_dev(struct domain_device
*dev
,
1696 struct domain_device
**src_dev
)
1698 struct expander_device
*ex
= &dev
->ex_dev
;
1699 int ex_change_count
= -1;
1702 struct domain_device
*ch
;
1704 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1707 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1708 /* Just detect if this expander phys phy change count changed,
1709 * in order to determine if this expander originate BROADCAST,
1710 * and do not update phy change count field in our structure.
1712 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1715 ex
->ex_change_count
= ex_change_count
;
1716 SAS_DPRINTK("Expander phy change count has changed\n");
1719 SAS_DPRINTK("Expander phys DID NOT change\n");
1721 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1722 if (ch
->dev_type
== EDGE_DEV
|| ch
->dev_type
== FANOUT_DEV
) {
1723 res
= sas_find_bcast_dev(ch
, src_dev
);
1732 static void sas_unregister_ex_tree(struct domain_device
*dev
)
1734 struct expander_device
*ex
= &dev
->ex_dev
;
1735 struct domain_device
*child
, *n
;
1737 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1739 if (child
->dev_type
== EDGE_DEV
||
1740 child
->dev_type
== FANOUT_DEV
)
1741 sas_unregister_ex_tree(child
);
1743 sas_unregister_dev(child
);
1745 sas_unregister_dev(dev
);
1748 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1749 int phy_id
, bool last
)
1751 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1752 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1753 struct domain_device
*child
, *n
;
1755 list_for_each_entry_safe(child
, n
,
1756 &ex_dev
->children
, siblings
) {
1757 if (SAS_ADDR(child
->sas_addr
) ==
1758 SAS_ADDR(phy
->attached_sas_addr
)) {
1760 if (child
->dev_type
== EDGE_DEV
||
1761 child
->dev_type
== FANOUT_DEV
)
1762 sas_unregister_ex_tree(child
);
1764 sas_unregister_dev(child
);
1769 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1771 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1772 sas_port_delete_phy(phy
->port
, phy
->phy
);
1773 if (phy
->port
->num_phys
== 0)
1774 sas_port_delete(phy
->port
);
1778 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1781 struct expander_device
*ex_root
= &root
->ex_dev
;
1782 struct domain_device
*child
;
1785 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1786 if (child
->dev_type
== EDGE_DEV
||
1787 child
->dev_type
== FANOUT_DEV
) {
1788 struct sas_expander_device
*ex
=
1789 rphy_to_expander_device(child
->rphy
);
1791 if (level
> ex
->level
)
1792 res
= sas_discover_bfs_by_root_level(child
,
1794 else if (level
== ex
->level
)
1795 res
= sas_ex_discover_devices(child
, -1);
1801 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1804 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1805 int level
= ex
->level
+1;
1807 res
= sas_ex_discover_devices(dev
, -1);
1811 res
= sas_discover_bfs_by_root_level(dev
, level
);
1814 } while (level
<= dev
->port
->disc
.max_level
);
1819 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1821 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1822 struct domain_device
*child
;
1826 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1827 SAS_ADDR(dev
->sas_addr
), phy_id
);
1828 res
= sas_ex_phy_discover(dev
, phy_id
);
1831 /* to support the wide port inserted */
1832 for (i
= 0; i
< dev
->ex_dev
.num_phys
; i
++) {
1833 struct ex_phy
*ex_phy_temp
= &dev
->ex_dev
.ex_phy
[i
];
1836 if (SAS_ADDR(ex_phy_temp
->attached_sas_addr
) ==
1837 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1843 sas_ex_join_wide_port(dev
, phy_id
);
1846 res
= sas_ex_discover_devices(dev
, phy_id
);
1849 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1850 if (SAS_ADDR(child
->sas_addr
) ==
1851 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1852 if (child
->dev_type
== EDGE_DEV
||
1853 child
->dev_type
== FANOUT_DEV
)
1854 res
= sas_discover_bfs_by_root(child
);
1862 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
1864 struct expander_device
*ex
= &dev
->ex_dev
;
1865 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1866 u8 attached_sas_addr
[8];
1869 res
= sas_get_phy_attached_sas_addr(dev
, phy_id
, attached_sas_addr
);
1871 case SMP_RESP_NO_PHY
:
1872 phy
->phy_state
= PHY_NOT_PRESENT
;
1873 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1875 case SMP_RESP_PHY_VACANT
:
1876 phy
->phy_state
= PHY_VACANT
;
1877 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1879 case SMP_RESP_FUNC_ACC
:
1883 if (SAS_ADDR(attached_sas_addr
) == 0) {
1884 phy
->phy_state
= PHY_EMPTY
;
1885 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1886 } else if (SAS_ADDR(attached_sas_addr
) ==
1887 SAS_ADDR(phy
->attached_sas_addr
)) {
1888 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1889 SAS_ADDR(dev
->sas_addr
), phy_id
);
1890 sas_ex_phy_discover(dev
, phy_id
);
1892 res
= sas_discover_new(dev
, phy_id
);
1898 * sas_rediscover - revalidate the domain.
1899 * @dev:domain device to be detect.
1900 * @phy_id: the phy id will be detected.
1902 * NOTE: this process _must_ quit (return) as soon as any connection
1903 * errors are encountered. Connection recovery is done elsewhere.
1904 * Discover process only interrogates devices in order to discover the
1905 * domain.For plugging out, we un-register the device only when it is
1906 * the last phy in the port, for other phys in this port, we just delete it
1907 * from the port.For inserting, we do discovery when it is the
1908 * first phy,for other phys in this port, we add it to the port to
1909 * forming the wide-port.
1911 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
1913 struct expander_device
*ex
= &dev
->ex_dev
;
1914 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
1917 bool last
= true; /* is this the last phy of the port */
1919 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1920 SAS_ADDR(dev
->sas_addr
), phy_id
);
1922 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
1923 for (i
= 0; i
< ex
->num_phys
; i
++) {
1924 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1928 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1929 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
1930 SAS_DPRINTK("phy%d part of wide port with "
1931 "phy%d\n", phy_id
, i
);
1936 res
= sas_rediscover_dev(dev
, phy_id
, last
);
1938 res
= sas_discover_new(dev
, phy_id
);
1943 * sas_revalidate_domain -- revalidate the domain
1944 * @port: port to the domain of interest
1946 * NOTE: this process _must_ quit (return) as soon as any connection
1947 * errors are encountered. Connection recovery is done elsewhere.
1948 * Discover process only interrogates devices in order to discover the
1951 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
1954 struct domain_device
*dev
= NULL
;
1956 res
= sas_find_bcast_dev(port_dev
, &dev
);
1960 struct expander_device
*ex
= &dev
->ex_dev
;
1965 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
1968 res
= sas_rediscover(dev
, phy_id
);
1970 } while (i
< ex
->num_phys
);
1976 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
1977 struct request
*req
)
1979 struct domain_device
*dev
;
1981 struct request
*rsp
= req
->next_rq
;
1984 printk("%s: space for a smp response is missing\n",
1989 /* no rphy means no smp target support (ie aic94xx host) */
1991 return sas_smp_host_handler(shost
, req
, rsp
);
1993 type
= rphy
->identify
.device_type
;
1995 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1996 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
1997 printk("%s: can we send a smp request to a device?\n",
2002 dev
= sas_find_dev_by_rphy(rphy
);
2004 printk("%s: fail to find a domain_device?\n", __func__
);
2008 /* do we need to support multiple segments? */
2009 if (req
->bio
->bi_vcnt
> 1 || rsp
->bio
->bi_vcnt
> 1) {
2010 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2011 __func__
, req
->bio
->bi_vcnt
, blk_rq_bytes(req
),
2012 rsp
->bio
->bi_vcnt
, blk_rq_bytes(rsp
));
2016 ret
= smp_execute_task(dev
, bio_data(req
->bio
), blk_rq_bytes(req
),
2017 bio_data(rsp
->bio
), blk_rq_bytes(rsp
));
2019 /* positive number is the untransferred residual */
2020 rsp
->resid_len
= ret
;
2023 } else if (ret
== 0) {