2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
4 * 2005-2010 (c) Aeroflex Gaisler AB
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Contributors: Kristoffer Glembo
25 #include <linux/dma-mapping.h>
26 #include <linux/module.h>
27 #include <linux/uaccess.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/of_device.h>
38 #include <linux/of_platform.h>
39 #include <linux/slab.h>
40 #include <asm/cacheflush.h>
41 #include <asm/byteorder.h>
44 #include <asm/idprom.h>
49 #define GRETH_DEF_MSG_ENABLE \
58 static int greth_debug
= -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
59 module_param(greth_debug
, int, 0);
60 MODULE_PARM_DESC(greth_debug
, "GRETH bitmapped debugging message enable value");
62 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
63 static int macaddr
[6];
64 module_param_array(macaddr
, int, NULL
, 0);
65 MODULE_PARM_DESC(macaddr
, "GRETH Ethernet MAC address");
67 static int greth_edcl
= 1;
68 module_param(greth_edcl
, int, 0);
69 MODULE_PARM_DESC(greth_edcl
, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
71 static int greth_open(struct net_device
*dev
);
72 static netdev_tx_t
greth_start_xmit(struct sk_buff
*skb
,
73 struct net_device
*dev
);
74 static netdev_tx_t
greth_start_xmit_gbit(struct sk_buff
*skb
,
75 struct net_device
*dev
);
76 static int greth_rx(struct net_device
*dev
, int limit
);
77 static int greth_rx_gbit(struct net_device
*dev
, int limit
);
78 static void greth_clean_tx(struct net_device
*dev
);
79 static void greth_clean_tx_gbit(struct net_device
*dev
);
80 static irqreturn_t
greth_interrupt(int irq
, void *dev_id
);
81 static int greth_close(struct net_device
*dev
);
82 static int greth_set_mac_add(struct net_device
*dev
, void *p
);
83 static void greth_set_multicast_list(struct net_device
*dev
);
85 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
86 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
87 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
88 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
90 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
91 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
92 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
94 static void greth_print_rx_packet(void *addr
, int len
)
96 print_hex_dump(KERN_DEBUG
, "RX: ", DUMP_PREFIX_OFFSET
, 16, 1,
100 static void greth_print_tx_packet(struct sk_buff
*skb
)
105 if (skb_shinfo(skb
)->nr_frags
== 0)
108 length
= skb_headlen(skb
);
110 print_hex_dump(KERN_DEBUG
, "TX: ", DUMP_PREFIX_OFFSET
, 16, 1,
111 skb
->data
, length
, true);
113 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
115 print_hex_dump(KERN_DEBUG
, "TX: ", DUMP_PREFIX_OFFSET
, 16, 1,
116 phys_to_virt(page_to_phys(skb_shinfo(skb
)->frags
[i
].page
)) +
117 skb_shinfo(skb
)->frags
[i
].page_offset
,
122 static inline void greth_enable_tx(struct greth_private
*greth
)
125 GRETH_REGORIN(greth
->regs
->control
, GRETH_TXEN
);
128 static inline void greth_disable_tx(struct greth_private
*greth
)
130 GRETH_REGANDIN(greth
->regs
->control
, ~GRETH_TXEN
);
133 static inline void greth_enable_rx(struct greth_private
*greth
)
136 GRETH_REGORIN(greth
->regs
->control
, GRETH_RXEN
);
139 static inline void greth_disable_rx(struct greth_private
*greth
)
141 GRETH_REGANDIN(greth
->regs
->control
, ~GRETH_RXEN
);
144 static inline void greth_enable_irqs(struct greth_private
*greth
)
146 GRETH_REGORIN(greth
->regs
->control
, GRETH_RXI
| GRETH_TXI
);
149 static inline void greth_disable_irqs(struct greth_private
*greth
)
151 GRETH_REGANDIN(greth
->regs
->control
, ~(GRETH_RXI
|GRETH_TXI
));
154 static inline void greth_write_bd(u32
*bd
, u32 val
)
156 __raw_writel(cpu_to_be32(val
), bd
);
159 static inline u32
greth_read_bd(u32
*bd
)
161 return be32_to_cpu(__raw_readl(bd
));
164 static void greth_clean_rings(struct greth_private
*greth
)
167 struct greth_bd
*rx_bdp
= greth
->rx_bd_base
;
168 struct greth_bd
*tx_bdp
= greth
->tx_bd_base
;
170 if (greth
->gbit_mac
) {
172 /* Free and unmap RX buffers */
173 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++, rx_bdp
++) {
174 if (greth
->rx_skbuff
[i
] != NULL
) {
175 dev_kfree_skb(greth
->rx_skbuff
[i
]);
176 dma_unmap_single(greth
->dev
,
177 greth_read_bd(&rx_bdp
->addr
),
178 MAX_FRAME_SIZE
+NET_IP_ALIGN
,
184 while (greth
->tx_free
< GRETH_TXBD_NUM
) {
186 struct sk_buff
*skb
= greth
->tx_skbuff
[greth
->tx_last
];
187 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
188 tx_bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
189 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
191 dma_unmap_single(greth
->dev
,
192 greth_read_bd(&tx_bdp
->addr
),
196 for (i
= 0; i
< nr_frags
; i
++) {
197 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
198 tx_bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
200 dma_unmap_page(greth
->dev
,
201 greth_read_bd(&tx_bdp
->addr
),
205 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
207 greth
->tx_free
+= nr_frags
+1;
212 } else { /* 10/100 Mbps MAC */
214 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++, rx_bdp
++) {
215 kfree(greth
->rx_bufs
[i
]);
216 dma_unmap_single(greth
->dev
,
217 greth_read_bd(&rx_bdp
->addr
),
221 for (i
= 0; i
< GRETH_TXBD_NUM
; i
++, tx_bdp
++) {
222 kfree(greth
->tx_bufs
[i
]);
223 dma_unmap_single(greth
->dev
,
224 greth_read_bd(&tx_bdp
->addr
),
231 static int greth_init_rings(struct greth_private
*greth
)
234 struct greth_bd
*rx_bd
, *tx_bd
;
238 rx_bd
= greth
->rx_bd_base
;
239 tx_bd
= greth
->tx_bd_base
;
241 /* Initialize descriptor rings and buffers */
242 if (greth
->gbit_mac
) {
244 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++) {
245 skb
= netdev_alloc_skb(greth
->netdev
, MAX_FRAME_SIZE
+NET_IP_ALIGN
);
247 if (netif_msg_ifup(greth
))
248 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
251 skb_reserve(skb
, NET_IP_ALIGN
);
252 dma_addr
= dma_map_single(greth
->dev
,
254 MAX_FRAME_SIZE
+NET_IP_ALIGN
,
257 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
258 if (netif_msg_ifup(greth
))
259 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
262 greth
->rx_skbuff
[i
] = skb
;
263 greth_write_bd(&rx_bd
[i
].addr
, dma_addr
);
264 greth_write_bd(&rx_bd
[i
].stat
, GRETH_BD_EN
| GRETH_BD_IE
);
269 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
270 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++) {
272 greth
->rx_bufs
[i
] = kmalloc(MAX_FRAME_SIZE
, GFP_KERNEL
);
274 if (greth
->rx_bufs
[i
] == NULL
) {
275 if (netif_msg_ifup(greth
))
276 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
280 dma_addr
= dma_map_single(greth
->dev
,
285 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
286 if (netif_msg_ifup(greth
))
287 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
290 greth_write_bd(&rx_bd
[i
].addr
, dma_addr
);
291 greth_write_bd(&rx_bd
[i
].stat
, GRETH_BD_EN
| GRETH_BD_IE
);
293 for (i
= 0; i
< GRETH_TXBD_NUM
; i
++) {
295 greth
->tx_bufs
[i
] = kmalloc(MAX_FRAME_SIZE
, GFP_KERNEL
);
297 if (greth
->tx_bufs
[i
] == NULL
) {
298 if (netif_msg_ifup(greth
))
299 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
303 dma_addr
= dma_map_single(greth
->dev
,
308 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
309 if (netif_msg_ifup(greth
))
310 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
313 greth_write_bd(&tx_bd
[i
].addr
, dma_addr
);
314 greth_write_bd(&tx_bd
[i
].stat
, 0);
317 greth_write_bd(&rx_bd
[GRETH_RXBD_NUM
- 1].stat
,
318 greth_read_bd(&rx_bd
[GRETH_RXBD_NUM
- 1].stat
) | GRETH_BD_WR
);
320 /* Initialize pointers. */
324 greth
->tx_free
= GRETH_TXBD_NUM
;
326 /* Initialize descriptor base address */
327 GRETH_REGSAVE(greth
->regs
->tx_desc_p
, greth
->tx_bd_base_phys
);
328 GRETH_REGSAVE(greth
->regs
->rx_desc_p
, greth
->rx_bd_base_phys
);
333 greth_clean_rings(greth
);
337 static int greth_open(struct net_device
*dev
)
339 struct greth_private
*greth
= netdev_priv(dev
);
342 err
= greth_init_rings(greth
);
344 if (netif_msg_ifup(greth
))
345 dev_err(&dev
->dev
, "Could not allocate memory for DMA rings\n");
349 err
= request_irq(greth
->irq
, greth_interrupt
, 0, "eth", (void *) dev
);
351 if (netif_msg_ifup(greth
))
352 dev_err(&dev
->dev
, "Could not allocate interrupt %d\n", dev
->irq
);
353 greth_clean_rings(greth
);
357 if (netif_msg_ifup(greth
))
358 dev_dbg(&dev
->dev
, " starting queue\n");
359 netif_start_queue(dev
);
361 GRETH_REGSAVE(greth
->regs
->status
, 0xFF);
363 napi_enable(&greth
->napi
);
365 greth_enable_irqs(greth
);
366 greth_enable_tx(greth
);
367 greth_enable_rx(greth
);
372 static int greth_close(struct net_device
*dev
)
374 struct greth_private
*greth
= netdev_priv(dev
);
376 napi_disable(&greth
->napi
);
378 greth_disable_irqs(greth
);
379 greth_disable_tx(greth
);
380 greth_disable_rx(greth
);
382 netif_stop_queue(dev
);
384 free_irq(greth
->irq
, (void *) dev
);
386 greth_clean_rings(greth
);
392 greth_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
394 struct greth_private
*greth
= netdev_priv(dev
);
395 struct greth_bd
*bdp
;
396 int err
= NETDEV_TX_OK
;
397 u32 status
, dma_addr
, ctrl
;
401 greth_clean_tx(greth
->netdev
);
403 if (unlikely(greth
->tx_free
<= 0)) {
404 spin_lock_irqsave(&greth
->devlock
, flags
);/*save from poll/irq*/
405 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
406 /* Enable TX IRQ only if not already in poll() routine */
407 if (ctrl
& GRETH_RXI
)
408 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_TXI
);
409 netif_stop_queue(dev
);
410 spin_unlock_irqrestore(&greth
->devlock
, flags
);
411 return NETDEV_TX_BUSY
;
414 if (netif_msg_pktdata(greth
))
415 greth_print_tx_packet(skb
);
418 if (unlikely(skb
->len
> MAX_FRAME_SIZE
)) {
419 dev
->stats
.tx_errors
++;
423 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
424 dma_addr
= greth_read_bd(&bdp
->addr
);
426 memcpy((unsigned char *) phys_to_virt(dma_addr
), skb
->data
, skb
->len
);
428 dma_sync_single_for_device(greth
->dev
, dma_addr
, skb
->len
, DMA_TO_DEVICE
);
430 status
= GRETH_BD_EN
| GRETH_BD_IE
| (skb
->len
& GRETH_BD_LEN
);
432 /* Wrap around descriptor ring */
433 if (greth
->tx_next
== GRETH_TXBD_NUM_MASK
) {
434 status
|= GRETH_BD_WR
;
437 greth
->tx_next
= NEXT_TX(greth
->tx_next
);
440 /* Write descriptor control word and enable transmission */
441 greth_write_bd(&bdp
->stat
, status
);
442 spin_lock_irqsave(&greth
->devlock
, flags
); /*save from poll/irq*/
443 greth_enable_tx(greth
);
444 spin_unlock_irqrestore(&greth
->devlock
, flags
);
453 greth_start_xmit_gbit(struct sk_buff
*skb
, struct net_device
*dev
)
455 struct greth_private
*greth
= netdev_priv(dev
);
456 struct greth_bd
*bdp
;
457 u32 status
= 0, dma_addr
, ctrl
;
458 int curr_tx
, nr_frags
, i
, err
= NETDEV_TX_OK
;
461 nr_frags
= skb_shinfo(skb
)->nr_frags
;
464 greth_clean_tx_gbit(dev
);
466 if (greth
->tx_free
< nr_frags
+ 1) {
467 spin_lock_irqsave(&greth
->devlock
, flags
);/*save from poll/irq*/
468 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
469 /* Enable TX IRQ only if not already in poll() routine */
470 if (ctrl
& GRETH_RXI
)
471 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_TXI
);
472 netif_stop_queue(dev
);
473 spin_unlock_irqrestore(&greth
->devlock
, flags
);
474 err
= NETDEV_TX_BUSY
;
478 if (netif_msg_pktdata(greth
))
479 greth_print_tx_packet(skb
);
481 if (unlikely(skb
->len
> MAX_FRAME_SIZE
)) {
482 dev
->stats
.tx_errors
++;
486 /* Save skb pointer. */
487 greth
->tx_skbuff
[greth
->tx_next
] = skb
;
491 status
= GRETH_TXBD_MORE
;
493 status
|= GRETH_TXBD_CSALL
;
494 status
|= skb_headlen(skb
) & GRETH_BD_LEN
;
495 if (greth
->tx_next
== GRETH_TXBD_NUM_MASK
)
496 status
|= GRETH_BD_WR
;
499 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
500 greth_write_bd(&bdp
->stat
, status
);
501 dma_addr
= dma_map_single(greth
->dev
, skb
->data
, skb_headlen(skb
), DMA_TO_DEVICE
);
503 if (unlikely(dma_mapping_error(greth
->dev
, dma_addr
)))
506 greth_write_bd(&bdp
->addr
, dma_addr
);
508 curr_tx
= NEXT_TX(greth
->tx_next
);
511 for (i
= 0; i
< nr_frags
; i
++) {
512 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
513 greth
->tx_skbuff
[curr_tx
] = NULL
;
514 bdp
= greth
->tx_bd_base
+ curr_tx
;
516 status
= GRETH_TXBD_CSALL
| GRETH_BD_EN
;
517 status
|= frag
->size
& GRETH_BD_LEN
;
519 /* Wrap around descriptor ring */
520 if (curr_tx
== GRETH_TXBD_NUM_MASK
)
521 status
|= GRETH_BD_WR
;
523 /* More fragments left */
524 if (i
< nr_frags
- 1)
525 status
|= GRETH_TXBD_MORE
;
527 status
|= GRETH_BD_IE
; /* enable IRQ on last fragment */
529 greth_write_bd(&bdp
->stat
, status
);
531 dma_addr
= dma_map_page(greth
->dev
,
537 if (unlikely(dma_mapping_error(greth
->dev
, dma_addr
)))
540 greth_write_bd(&bdp
->addr
, dma_addr
);
542 curr_tx
= NEXT_TX(curr_tx
);
547 /* Enable the descriptor chain by enabling the first descriptor */
548 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
549 greth_write_bd(&bdp
->stat
, greth_read_bd(&bdp
->stat
) | GRETH_BD_EN
);
550 greth
->tx_next
= curr_tx
;
551 greth
->tx_free
-= nr_frags
+ 1;
555 spin_lock_irqsave(&greth
->devlock
, flags
); /*save from poll/irq*/
556 greth_enable_tx(greth
);
557 spin_unlock_irqrestore(&greth
->devlock
, flags
);
562 /* Unmap SKB mappings that succeeded and disable descriptor */
563 for (i
= 0; greth
->tx_next
+ i
!= curr_tx
; i
++) {
564 bdp
= greth
->tx_bd_base
+ greth
->tx_next
+ i
;
565 dma_unmap_single(greth
->dev
,
566 greth_read_bd(&bdp
->addr
),
567 greth_read_bd(&bdp
->stat
) & GRETH_BD_LEN
,
569 greth_write_bd(&bdp
->stat
, 0);
573 dev_warn(greth
->dev
, "Could not create TX DMA mapping\n");
579 static irqreturn_t
greth_interrupt(int irq
, void *dev_id
)
581 struct net_device
*dev
= dev_id
;
582 struct greth_private
*greth
;
584 irqreturn_t retval
= IRQ_NONE
;
586 greth
= netdev_priv(dev
);
588 spin_lock(&greth
->devlock
);
590 /* Get the interrupt events that caused us to be here. */
591 status
= GRETH_REGLOAD(greth
->regs
->status
);
593 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
594 * set regardless of whether IRQ is enabled or not. Especially
595 * important when shared IRQ.
597 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
599 /* Handle rx and tx interrupts through poll */
600 if (((status
& (GRETH_INT_RE
| GRETH_INT_RX
)) && (ctrl
& GRETH_RXI
)) ||
601 ((status
& (GRETH_INT_TE
| GRETH_INT_TX
)) && (ctrl
& GRETH_TXI
))) {
602 retval
= IRQ_HANDLED
;
604 /* Disable interrupts and schedule poll() */
605 greth_disable_irqs(greth
);
606 napi_schedule(&greth
->napi
);
610 spin_unlock(&greth
->devlock
);
615 static void greth_clean_tx(struct net_device
*dev
)
617 struct greth_private
*greth
;
618 struct greth_bd
*bdp
;
621 greth
= netdev_priv(dev
);
624 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
625 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_TE
| GRETH_INT_TX
);
627 stat
= greth_read_bd(&bdp
->stat
);
629 if (unlikely(stat
& GRETH_BD_EN
))
632 if (greth
->tx_free
== GRETH_TXBD_NUM
)
635 /* Check status for errors */
636 if (unlikely(stat
& GRETH_TXBD_STATUS
)) {
637 dev
->stats
.tx_errors
++;
638 if (stat
& GRETH_TXBD_ERR_AL
)
639 dev
->stats
.tx_aborted_errors
++;
640 if (stat
& GRETH_TXBD_ERR_UE
)
641 dev
->stats
.tx_fifo_errors
++;
643 dev
->stats
.tx_packets
++;
644 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
648 if (greth
->tx_free
> 0) {
649 netif_wake_queue(dev
);
654 static inline void greth_update_tx_stats(struct net_device
*dev
, u32 stat
)
656 /* Check status for errors */
657 if (unlikely(stat
& GRETH_TXBD_STATUS
)) {
658 dev
->stats
.tx_errors
++;
659 if (stat
& GRETH_TXBD_ERR_AL
)
660 dev
->stats
.tx_aborted_errors
++;
661 if (stat
& GRETH_TXBD_ERR_UE
)
662 dev
->stats
.tx_fifo_errors
++;
663 if (stat
& GRETH_TXBD_ERR_LC
)
664 dev
->stats
.tx_aborted_errors
++;
666 dev
->stats
.tx_packets
++;
669 static void greth_clean_tx_gbit(struct net_device
*dev
)
671 struct greth_private
*greth
;
672 struct greth_bd
*bdp
, *bdp_last_frag
;
677 greth
= netdev_priv(dev
);
679 while (greth
->tx_free
< GRETH_TXBD_NUM
) {
681 skb
= greth
->tx_skbuff
[greth
->tx_last
];
683 nr_frags
= skb_shinfo(skb
)->nr_frags
;
685 /* We only clean fully completed SKBs */
686 bdp_last_frag
= greth
->tx_bd_base
+ SKIP_TX(greth
->tx_last
, nr_frags
);
688 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_TE
| GRETH_INT_TX
);
690 stat
= greth_read_bd(&bdp_last_frag
->stat
);
692 if (stat
& GRETH_BD_EN
)
695 greth
->tx_skbuff
[greth
->tx_last
] = NULL
;
697 greth_update_tx_stats(dev
, stat
);
699 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
701 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
703 dma_unmap_single(greth
->dev
,
704 greth_read_bd(&bdp
->addr
),
708 for (i
= 0; i
< nr_frags
; i
++) {
709 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
710 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
712 dma_unmap_page(greth
->dev
,
713 greth_read_bd(&bdp
->addr
),
717 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
719 greth
->tx_free
+= nr_frags
+1;
723 if (netif_queue_stopped(dev
) && (greth
->tx_free
> (MAX_SKB_FRAGS
+1)))
724 netif_wake_queue(dev
);
727 static int greth_rx(struct net_device
*dev
, int limit
)
729 struct greth_private
*greth
;
730 struct greth_bd
*bdp
;
734 u32 status
, dma_addr
;
737 greth
= netdev_priv(dev
);
739 for (count
= 0; count
< limit
; ++count
) {
741 bdp
= greth
->rx_bd_base
+ greth
->rx_cur
;
742 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_RE
| GRETH_INT_RX
);
744 status
= greth_read_bd(&bdp
->stat
);
746 if (unlikely(status
& GRETH_BD_EN
)) {
750 dma_addr
= greth_read_bd(&bdp
->addr
);
753 /* Check status for errors. */
754 if (unlikely(status
& GRETH_RXBD_STATUS
)) {
755 if (status
& GRETH_RXBD_ERR_FT
) {
756 dev
->stats
.rx_length_errors
++;
759 if (status
& (GRETH_RXBD_ERR_AE
| GRETH_RXBD_ERR_OE
)) {
760 dev
->stats
.rx_frame_errors
++;
763 if (status
& GRETH_RXBD_ERR_CRC
) {
764 dev
->stats
.rx_crc_errors
++;
769 dev
->stats
.rx_errors
++;
773 pkt_len
= status
& GRETH_BD_LEN
;
775 skb
= netdev_alloc_skb(dev
, pkt_len
+ NET_IP_ALIGN
);
777 if (unlikely(skb
== NULL
)) {
780 dev_warn(&dev
->dev
, "low on memory - " "packet dropped\n");
782 dev
->stats
.rx_dropped
++;
785 skb_reserve(skb
, NET_IP_ALIGN
);
788 dma_sync_single_for_cpu(greth
->dev
,
793 if (netif_msg_pktdata(greth
))
794 greth_print_rx_packet(phys_to_virt(dma_addr
), pkt_len
);
796 memcpy(skb_put(skb
, pkt_len
), phys_to_virt(dma_addr
), pkt_len
);
798 skb
->protocol
= eth_type_trans(skb
, dev
);
799 dev
->stats
.rx_packets
++;
800 netif_receive_skb(skb
);
804 status
= GRETH_BD_EN
| GRETH_BD_IE
;
805 if (greth
->rx_cur
== GRETH_RXBD_NUM_MASK
) {
806 status
|= GRETH_BD_WR
;
810 greth_write_bd(&bdp
->stat
, status
);
812 dma_sync_single_for_device(greth
->dev
, dma_addr
, MAX_FRAME_SIZE
, DMA_FROM_DEVICE
);
814 spin_lock_irqsave(&greth
->devlock
, flags
); /* save from XMIT */
815 greth_enable_rx(greth
);
816 spin_unlock_irqrestore(&greth
->devlock
, flags
);
818 greth
->rx_cur
= NEXT_RX(greth
->rx_cur
);
824 static inline int hw_checksummed(u32 status
)
827 if (status
& GRETH_RXBD_IP_FRAG
)
830 if (status
& GRETH_RXBD_IP
&& status
& GRETH_RXBD_IP_CSERR
)
833 if (status
& GRETH_RXBD_UDP
&& status
& GRETH_RXBD_UDP_CSERR
)
836 if (status
& GRETH_RXBD_TCP
&& status
& GRETH_RXBD_TCP_CSERR
)
842 static int greth_rx_gbit(struct net_device
*dev
, int limit
)
844 struct greth_private
*greth
;
845 struct greth_bd
*bdp
;
846 struct sk_buff
*skb
, *newskb
;
849 u32 status
, dma_addr
;
852 greth
= netdev_priv(dev
);
854 for (count
= 0; count
< limit
; ++count
) {
856 bdp
= greth
->rx_bd_base
+ greth
->rx_cur
;
857 skb
= greth
->rx_skbuff
[greth
->rx_cur
];
858 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_RE
| GRETH_INT_RX
);
860 status
= greth_read_bd(&bdp
->stat
);
863 if (status
& GRETH_BD_EN
)
866 /* Check status for errors. */
867 if (unlikely(status
& GRETH_RXBD_STATUS
)) {
869 if (status
& GRETH_RXBD_ERR_FT
) {
870 dev
->stats
.rx_length_errors
++;
873 (GRETH_RXBD_ERR_AE
| GRETH_RXBD_ERR_OE
| GRETH_RXBD_ERR_LE
)) {
874 dev
->stats
.rx_frame_errors
++;
876 } else if (status
& GRETH_RXBD_ERR_CRC
) {
877 dev
->stats
.rx_crc_errors
++;
882 /* Allocate new skb to replace current, not needed if the
883 * current skb can be reused */
884 if (!bad
&& (newskb
=netdev_alloc_skb(dev
, MAX_FRAME_SIZE
+ NET_IP_ALIGN
))) {
885 skb_reserve(newskb
, NET_IP_ALIGN
);
887 dma_addr
= dma_map_single(greth
->dev
,
889 MAX_FRAME_SIZE
+ NET_IP_ALIGN
,
892 if (!dma_mapping_error(greth
->dev
, dma_addr
)) {
893 /* Process the incoming frame. */
894 pkt_len
= status
& GRETH_BD_LEN
;
896 dma_unmap_single(greth
->dev
,
897 greth_read_bd(&bdp
->addr
),
898 MAX_FRAME_SIZE
+ NET_IP_ALIGN
,
901 if (netif_msg_pktdata(greth
))
902 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp
->addr
)), pkt_len
);
904 skb_put(skb
, pkt_len
);
906 if (dev
->features
& NETIF_F_RXCSUM
&& hw_checksummed(status
))
907 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
909 skb_checksum_none_assert(skb
);
911 skb
->protocol
= eth_type_trans(skb
, dev
);
912 dev
->stats
.rx_packets
++;
913 netif_receive_skb(skb
);
915 greth
->rx_skbuff
[greth
->rx_cur
] = newskb
;
916 greth_write_bd(&bdp
->addr
, dma_addr
);
919 dev_warn(greth
->dev
, "Could not create DMA mapping, dropping packet\n");
920 dev_kfree_skb(newskb
);
921 /* reusing current skb, so it is a drop */
922 dev
->stats
.rx_dropped
++;
925 /* Bad Frame transfer, the skb is reused */
926 dev
->stats
.rx_dropped
++;
928 /* Failed Allocating a new skb. This is rather stupid
929 * but the current "filled" skb is reused, as if
930 * transfer failure. One could argue that RX descriptor
931 * table handling should be divided into cleaning and
932 * filling as the TX part of the driver
935 dev_warn(greth
->dev
, "Could not allocate SKB, dropping packet\n");
936 /* reusing current skb, so it is a drop */
937 dev
->stats
.rx_dropped
++;
940 status
= GRETH_BD_EN
| GRETH_BD_IE
;
941 if (greth
->rx_cur
== GRETH_RXBD_NUM_MASK
) {
942 status
|= GRETH_BD_WR
;
946 greth_write_bd(&bdp
->stat
, status
);
947 spin_lock_irqsave(&greth
->devlock
, flags
);
948 greth_enable_rx(greth
);
949 spin_unlock_irqrestore(&greth
->devlock
, flags
);
950 greth
->rx_cur
= NEXT_RX(greth
->rx_cur
);
957 static int greth_poll(struct napi_struct
*napi
, int budget
)
959 struct greth_private
*greth
;
963 greth
= container_of(napi
, struct greth_private
, napi
);
966 if (netif_queue_stopped(greth
->netdev
)) {
968 greth_clean_tx_gbit(greth
->netdev
);
970 greth_clean_tx(greth
->netdev
);
973 if (greth
->gbit_mac
) {
974 work_done
+= greth_rx_gbit(greth
->netdev
, budget
- work_done
);
976 work_done
+= greth_rx(greth
->netdev
, budget
- work_done
);
979 if (work_done
< budget
) {
981 spin_lock_irqsave(&greth
->devlock
, flags
);
983 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
984 if (netif_queue_stopped(greth
->netdev
)) {
985 GRETH_REGSAVE(greth
->regs
->control
,
986 ctrl
| GRETH_TXI
| GRETH_RXI
);
987 mask
= GRETH_INT_RX
| GRETH_INT_RE
|
988 GRETH_INT_TX
| GRETH_INT_TE
;
990 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_RXI
);
991 mask
= GRETH_INT_RX
| GRETH_INT_RE
;
994 if (GRETH_REGLOAD(greth
->regs
->status
) & mask
) {
995 GRETH_REGSAVE(greth
->regs
->control
, ctrl
);
996 spin_unlock_irqrestore(&greth
->devlock
, flags
);
997 goto restart_txrx_poll
;
999 __napi_complete(napi
);
1000 spin_unlock_irqrestore(&greth
->devlock
, flags
);
1007 static int greth_set_mac_add(struct net_device
*dev
, void *p
)
1009 struct sockaddr
*addr
= p
;
1010 struct greth_private
*greth
;
1011 struct greth_regs
*regs
;
1013 greth
= netdev_priv(dev
);
1014 regs
= (struct greth_regs
*) greth
->regs
;
1016 if (!is_valid_ether_addr(addr
->sa_data
))
1019 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1020 GRETH_REGSAVE(regs
->esa_msb
, dev
->dev_addr
[0] << 8 | dev
->dev_addr
[1]);
1021 GRETH_REGSAVE(regs
->esa_lsb
, dev
->dev_addr
[2] << 24 | dev
->dev_addr
[3] << 16 |
1022 dev
->dev_addr
[4] << 8 | dev
->dev_addr
[5]);
1027 static u32
greth_hash_get_index(__u8
*addr
)
1029 return (ether_crc(6, addr
)) & 0x3F;
1032 static void greth_set_hash_filter(struct net_device
*dev
)
1034 struct netdev_hw_addr
*ha
;
1035 struct greth_private
*greth
= netdev_priv(dev
);
1036 struct greth_regs
*regs
= (struct greth_regs
*) greth
->regs
;
1040 mc_filter
[0] = mc_filter
[1] = 0;
1042 netdev_for_each_mc_addr(ha
, dev
) {
1043 bitnr
= greth_hash_get_index(ha
->addr
);
1044 mc_filter
[bitnr
>> 5] |= 1 << (bitnr
& 31);
1047 GRETH_REGSAVE(regs
->hash_msb
, mc_filter
[1]);
1048 GRETH_REGSAVE(regs
->hash_lsb
, mc_filter
[0]);
1051 static void greth_set_multicast_list(struct net_device
*dev
)
1054 struct greth_private
*greth
= netdev_priv(dev
);
1055 struct greth_regs
*regs
= (struct greth_regs
*) greth
->regs
;
1057 cfg
= GRETH_REGLOAD(regs
->control
);
1058 if (dev
->flags
& IFF_PROMISC
)
1059 cfg
|= GRETH_CTRL_PR
;
1061 cfg
&= ~GRETH_CTRL_PR
;
1063 if (greth
->multicast
) {
1064 if (dev
->flags
& IFF_ALLMULTI
) {
1065 GRETH_REGSAVE(regs
->hash_msb
, -1);
1066 GRETH_REGSAVE(regs
->hash_lsb
, -1);
1067 cfg
|= GRETH_CTRL_MCEN
;
1068 GRETH_REGSAVE(regs
->control
, cfg
);
1072 if (netdev_mc_empty(dev
)) {
1073 cfg
&= ~GRETH_CTRL_MCEN
;
1074 GRETH_REGSAVE(regs
->control
, cfg
);
1078 /* Setup multicast filter */
1079 greth_set_hash_filter(dev
);
1080 cfg
|= GRETH_CTRL_MCEN
;
1082 GRETH_REGSAVE(regs
->control
, cfg
);
1085 static u32
greth_get_msglevel(struct net_device
*dev
)
1087 struct greth_private
*greth
= netdev_priv(dev
);
1088 return greth
->msg_enable
;
1091 static void greth_set_msglevel(struct net_device
*dev
, u32 value
)
1093 struct greth_private
*greth
= netdev_priv(dev
);
1094 greth
->msg_enable
= value
;
1096 static int greth_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1098 struct greth_private
*greth
= netdev_priv(dev
);
1099 struct phy_device
*phy
= greth
->phy
;
1104 return phy_ethtool_gset(phy
, cmd
);
1107 static int greth_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1109 struct greth_private
*greth
= netdev_priv(dev
);
1110 struct phy_device
*phy
= greth
->phy
;
1115 return phy_ethtool_sset(phy
, cmd
);
1118 static int greth_get_regs_len(struct net_device
*dev
)
1120 return sizeof(struct greth_regs
);
1123 static void greth_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1125 struct greth_private
*greth
= netdev_priv(dev
);
1127 strncpy(info
->driver
, dev_driver_string(greth
->dev
), 32);
1128 strncpy(info
->version
, "revision: 1.0", 32);
1129 strncpy(info
->bus_info
, greth
->dev
->bus
->name
, 32);
1130 strncpy(info
->fw_version
, "N/A", 32);
1131 info
->eedump_len
= 0;
1132 info
->regdump_len
= sizeof(struct greth_regs
);
1135 static void greth_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *p
)
1138 struct greth_private
*greth
= netdev_priv(dev
);
1139 u32 __iomem
*greth_regs
= (u32 __iomem
*) greth
->regs
;
1142 for (i
= 0; i
< sizeof(struct greth_regs
) / sizeof(u32
); i
++)
1143 buff
[i
] = greth_read_bd(&greth_regs
[i
]);
1146 static const struct ethtool_ops greth_ethtool_ops
= {
1147 .get_msglevel
= greth_get_msglevel
,
1148 .set_msglevel
= greth_set_msglevel
,
1149 .get_settings
= greth_get_settings
,
1150 .set_settings
= greth_set_settings
,
1151 .get_drvinfo
= greth_get_drvinfo
,
1152 .get_regs_len
= greth_get_regs_len
,
1153 .get_regs
= greth_get_regs
,
1154 .get_link
= ethtool_op_get_link
,
1157 static struct net_device_ops greth_netdev_ops
= {
1158 .ndo_open
= greth_open
,
1159 .ndo_stop
= greth_close
,
1160 .ndo_start_xmit
= greth_start_xmit
,
1161 .ndo_set_mac_address
= greth_set_mac_add
,
1162 .ndo_validate_addr
= eth_validate_addr
,
1165 static inline int wait_for_mdio(struct greth_private
*greth
)
1167 unsigned long timeout
= jiffies
+ 4*HZ
/100;
1168 while (GRETH_REGLOAD(greth
->regs
->mdio
) & GRETH_MII_BUSY
) {
1169 if (time_after(jiffies
, timeout
))
1175 static int greth_mdio_read(struct mii_bus
*bus
, int phy
, int reg
)
1177 struct greth_private
*greth
= bus
->priv
;
1180 if (!wait_for_mdio(greth
))
1183 GRETH_REGSAVE(greth
->regs
->mdio
, ((phy
& 0x1F) << 11) | ((reg
& 0x1F) << 6) | 2);
1185 if (!wait_for_mdio(greth
))
1188 if (!(GRETH_REGLOAD(greth
->regs
->mdio
) & GRETH_MII_NVALID
)) {
1189 data
= (GRETH_REGLOAD(greth
->regs
->mdio
) >> 16) & 0xFFFF;
1197 static int greth_mdio_write(struct mii_bus
*bus
, int phy
, int reg
, u16 val
)
1199 struct greth_private
*greth
= bus
->priv
;
1201 if (!wait_for_mdio(greth
))
1204 GRETH_REGSAVE(greth
->regs
->mdio
,
1205 ((val
& 0xFFFF) << 16) | ((phy
& 0x1F) << 11) | ((reg
& 0x1F) << 6) | 1);
1207 if (!wait_for_mdio(greth
))
1213 static int greth_mdio_reset(struct mii_bus
*bus
)
1218 static void greth_link_change(struct net_device
*dev
)
1220 struct greth_private
*greth
= netdev_priv(dev
);
1221 struct phy_device
*phydev
= greth
->phy
;
1222 unsigned long flags
;
1223 int status_change
= 0;
1226 spin_lock_irqsave(&greth
->devlock
, flags
);
1230 if ((greth
->speed
!= phydev
->speed
) || (greth
->duplex
!= phydev
->duplex
)) {
1231 ctrl
= GRETH_REGLOAD(greth
->regs
->control
) &
1232 ~(GRETH_CTRL_FD
| GRETH_CTRL_SP
| GRETH_CTRL_GB
);
1235 ctrl
|= GRETH_CTRL_FD
;
1237 if (phydev
->speed
== SPEED_100
)
1238 ctrl
|= GRETH_CTRL_SP
;
1239 else if (phydev
->speed
== SPEED_1000
)
1240 ctrl
|= GRETH_CTRL_GB
;
1242 GRETH_REGSAVE(greth
->regs
->control
, ctrl
);
1243 greth
->speed
= phydev
->speed
;
1244 greth
->duplex
= phydev
->duplex
;
1249 if (phydev
->link
!= greth
->link
) {
1250 if (!phydev
->link
) {
1254 greth
->link
= phydev
->link
;
1259 spin_unlock_irqrestore(&greth
->devlock
, flags
);
1261 if (status_change
) {
1263 pr_debug("%s: link up (%d/%s)\n",
1264 dev
->name
, phydev
->speed
,
1265 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
1267 pr_debug("%s: link down\n", dev
->name
);
1271 static int greth_mdio_probe(struct net_device
*dev
)
1273 struct greth_private
*greth
= netdev_priv(dev
);
1274 struct phy_device
*phy
= NULL
;
1277 /* Find the first PHY */
1278 phy
= phy_find_first(greth
->mdio
);
1281 if (netif_msg_probe(greth
))
1282 dev_err(&dev
->dev
, "no PHY found\n");
1286 ret
= phy_connect_direct(dev
, phy
, &greth_link_change
,
1287 0, greth
->gbit_mac
?
1288 PHY_INTERFACE_MODE_GMII
:
1289 PHY_INTERFACE_MODE_MII
);
1291 if (netif_msg_ifup(greth
))
1292 dev_err(&dev
->dev
, "could not attach to PHY\n");
1296 if (greth
->gbit_mac
)
1297 phy
->supported
&= PHY_GBIT_FEATURES
;
1299 phy
->supported
&= PHY_BASIC_FEATURES
;
1301 phy
->advertising
= phy
->supported
;
1311 static inline int phy_aneg_done(struct phy_device
*phydev
)
1315 retval
= phy_read(phydev
, MII_BMSR
);
1317 return (retval
< 0) ? retval
: (retval
& BMSR_ANEGCOMPLETE
);
1320 static int greth_mdio_init(struct greth_private
*greth
)
1323 unsigned long timeout
;
1325 greth
->mdio
= mdiobus_alloc();
1330 greth
->mdio
->name
= "greth-mdio";
1331 snprintf(greth
->mdio
->id
, MII_BUS_ID_SIZE
, "%s-%d", greth
->mdio
->name
, greth
->irq
);
1332 greth
->mdio
->read
= greth_mdio_read
;
1333 greth
->mdio
->write
= greth_mdio_write
;
1334 greth
->mdio
->reset
= greth_mdio_reset
;
1335 greth
->mdio
->priv
= greth
;
1337 greth
->mdio
->irq
= greth
->mdio_irqs
;
1339 for (phy
= 0; phy
< PHY_MAX_ADDR
; phy
++)
1340 greth
->mdio
->irq
[phy
] = PHY_POLL
;
1342 ret
= mdiobus_register(greth
->mdio
);
1347 ret
= greth_mdio_probe(greth
->netdev
);
1349 if (netif_msg_probe(greth
))
1350 dev_err(&greth
->netdev
->dev
, "failed to probe MDIO bus\n");
1354 phy_start(greth
->phy
);
1356 /* If Ethernet debug link is used make autoneg happen right away */
1357 if (greth
->edcl
&& greth_edcl
== 1) {
1358 phy_start_aneg(greth
->phy
);
1359 timeout
= jiffies
+ 6*HZ
;
1360 while (!phy_aneg_done(greth
->phy
) && time_before(jiffies
, timeout
)) {
1362 genphy_read_status(greth
->phy
);
1363 greth_link_change(greth
->netdev
);
1369 mdiobus_unregister(greth
->mdio
);
1371 mdiobus_free(greth
->mdio
);
1375 /* Initialize the GRETH MAC */
1376 static int __devinit
greth_of_probe(struct platform_device
*ofdev
)
1378 struct net_device
*dev
;
1379 struct greth_private
*greth
;
1380 struct greth_regs
*regs
;
1385 unsigned long timeout
;
1387 dev
= alloc_etherdev(sizeof(struct greth_private
));
1392 greth
= netdev_priv(dev
);
1393 greth
->netdev
= dev
;
1394 greth
->dev
= &ofdev
->dev
;
1396 if (greth_debug
> 0)
1397 greth
->msg_enable
= greth_debug
;
1399 greth
->msg_enable
= GRETH_DEF_MSG_ENABLE
;
1401 spin_lock_init(&greth
->devlock
);
1403 greth
->regs
= of_ioremap(&ofdev
->resource
[0], 0,
1404 resource_size(&ofdev
->resource
[0]),
1405 "grlib-greth regs");
1407 if (greth
->regs
== NULL
) {
1408 if (netif_msg_probe(greth
))
1409 dev_err(greth
->dev
, "ioremap failure.\n");
1414 regs
= (struct greth_regs
*) greth
->regs
;
1415 greth
->irq
= ofdev
->archdata
.irqs
[0];
1417 dev_set_drvdata(greth
->dev
, dev
);
1418 SET_NETDEV_DEV(dev
, greth
->dev
);
1420 if (netif_msg_probe(greth
))
1421 dev_dbg(greth
->dev
, "reseting controller.\n");
1423 /* Reset the controller. */
1424 GRETH_REGSAVE(regs
->control
, GRETH_RESET
);
1426 /* Wait for MAC to reset itself */
1427 timeout
= jiffies
+ HZ
/100;
1428 while (GRETH_REGLOAD(regs
->control
) & GRETH_RESET
) {
1429 if (time_after(jiffies
, timeout
)) {
1431 if (netif_msg_probe(greth
))
1432 dev_err(greth
->dev
, "timeout when waiting for reset.\n");
1437 /* Get default PHY address */
1438 greth
->phyaddr
= (GRETH_REGLOAD(regs
->mdio
) >> 11) & 0x1F;
1440 /* Check if we have GBIT capable MAC */
1441 tmp
= GRETH_REGLOAD(regs
->control
);
1442 greth
->gbit_mac
= (tmp
>> 27) & 1;
1444 /* Check for multicast capability */
1445 greth
->multicast
= (tmp
>> 25) & 1;
1447 greth
->edcl
= (tmp
>> 31) & 1;
1449 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1450 * it doesn't interfere with the software */
1451 if (greth
->edcl
!= 0)
1452 GRETH_REGORIN(regs
->control
, GRETH_CTRL_DISDUPLEX
);
1454 /* Check if MAC can handle MDIO interrupts */
1455 greth
->mdio_int_en
= (tmp
>> 26) & 1;
1457 err
= greth_mdio_init(greth
);
1459 if (netif_msg_probe(greth
))
1460 dev_err(greth
->dev
, "failed to register MDIO bus\n");
1464 /* Allocate TX descriptor ring in coherent memory */
1465 greth
->tx_bd_base
= (struct greth_bd
*) dma_alloc_coherent(greth
->dev
,
1467 &greth
->tx_bd_base_phys
,
1470 if (!greth
->tx_bd_base
) {
1471 if (netif_msg_probe(greth
))
1472 dev_err(&dev
->dev
, "could not allocate descriptor memory.\n");
1477 memset(greth
->tx_bd_base
, 0, 1024);
1479 /* Allocate RX descriptor ring in coherent memory */
1480 greth
->rx_bd_base
= (struct greth_bd
*) dma_alloc_coherent(greth
->dev
,
1482 &greth
->rx_bd_base_phys
,
1485 if (!greth
->rx_bd_base
) {
1486 if (netif_msg_probe(greth
))
1487 dev_err(greth
->dev
, "could not allocate descriptor memory.\n");
1492 memset(greth
->rx_bd_base
, 0, 1024);
1494 /* Get MAC address from: module param, OF property or ID prom */
1495 for (i
= 0; i
< 6; i
++) {
1496 if (macaddr
[i
] != 0)
1500 const unsigned char *addr
;
1502 addr
= of_get_property(ofdev
->dev
.of_node
, "local-mac-address",
1504 if (addr
!= NULL
&& len
== 6) {
1505 for (i
= 0; i
< 6; i
++)
1506 macaddr
[i
] = (unsigned int) addr
[i
];
1509 for (i
= 0; i
< 6; i
++)
1510 macaddr
[i
] = (unsigned int) idprom
->id_ethaddr
[i
];
1515 for (i
= 0; i
< 6; i
++)
1516 dev
->dev_addr
[i
] = macaddr
[i
];
1520 if (!is_valid_ether_addr(&dev
->dev_addr
[0])) {
1521 if (netif_msg_probe(greth
))
1522 dev_err(greth
->dev
, "no valid ethernet address, aborting.\n");
1527 GRETH_REGSAVE(regs
->esa_msb
, dev
->dev_addr
[0] << 8 | dev
->dev_addr
[1]);
1528 GRETH_REGSAVE(regs
->esa_lsb
, dev
->dev_addr
[2] << 24 | dev
->dev_addr
[3] << 16 |
1529 dev
->dev_addr
[4] << 8 | dev
->dev_addr
[5]);
1531 /* Clear all pending interrupts except PHY irq */
1532 GRETH_REGSAVE(regs
->status
, 0xFF);
1534 if (greth
->gbit_mac
) {
1535 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
1537 dev
->features
= dev
->hw_features
| NETIF_F_HIGHDMA
;
1538 greth_netdev_ops
.ndo_start_xmit
= greth_start_xmit_gbit
;
1541 if (greth
->multicast
) {
1542 greth_netdev_ops
.ndo_set_multicast_list
= greth_set_multicast_list
;
1543 dev
->flags
|= IFF_MULTICAST
;
1545 dev
->flags
&= ~IFF_MULTICAST
;
1548 dev
->netdev_ops
= &greth_netdev_ops
;
1549 dev
->ethtool_ops
= &greth_ethtool_ops
;
1551 err
= register_netdev(dev
);
1553 if (netif_msg_probe(greth
))
1554 dev_err(greth
->dev
, "netdevice registration failed.\n");
1559 netif_napi_add(dev
, &greth
->napi
, greth_poll
, 64);
1564 dma_free_coherent(greth
->dev
, 1024, greth
->rx_bd_base
, greth
->rx_bd_base_phys
);
1566 dma_free_coherent(greth
->dev
, 1024, greth
->tx_bd_base
, greth
->tx_bd_base_phys
);
1568 mdiobus_unregister(greth
->mdio
);
1570 of_iounmap(&ofdev
->resource
[0], greth
->regs
, resource_size(&ofdev
->resource
[0]));
1576 static int __devexit
greth_of_remove(struct platform_device
*of_dev
)
1578 struct net_device
*ndev
= dev_get_drvdata(&of_dev
->dev
);
1579 struct greth_private
*greth
= netdev_priv(ndev
);
1581 /* Free descriptor areas */
1582 dma_free_coherent(&of_dev
->dev
, 1024, greth
->rx_bd_base
, greth
->rx_bd_base_phys
);
1584 dma_free_coherent(&of_dev
->dev
, 1024, greth
->tx_bd_base
, greth
->tx_bd_base_phys
);
1586 dev_set_drvdata(&of_dev
->dev
, NULL
);
1589 phy_stop(greth
->phy
);
1590 mdiobus_unregister(greth
->mdio
);
1592 unregister_netdev(ndev
);
1595 of_iounmap(&of_dev
->resource
[0], greth
->regs
, resource_size(&of_dev
->resource
[0]));
1600 static struct of_device_id greth_of_match
[] = {
1602 .name
= "GAISLER_ETHMAC",
1610 MODULE_DEVICE_TABLE(of
, greth_of_match
);
1612 static struct platform_driver greth_of_driver
= {
1614 .name
= "grlib-greth",
1615 .owner
= THIS_MODULE
,
1616 .of_match_table
= greth_of_match
,
1618 .probe
= greth_of_probe
,
1619 .remove
= __devexit_p(greth_of_remove
),
1622 static int __init
greth_init(void)
1624 return platform_driver_register(&greth_of_driver
);
1627 static void __exit
greth_cleanup(void)
1629 platform_driver_unregister(&greth_of_driver
);
1632 module_init(greth_init
);
1633 module_exit(greth_cleanup
);
1635 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1636 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1637 MODULE_LICENSE("GPL");