2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
7 * Copyright (C) 1997, 1998, 1999, 2000 Ralf Baechle ralf@gnu.org
8 * Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2002 MIPS Technologies, Inc. All rights reserved.
11 #include <linux/init.h>
12 #include <linux/sched.h>
16 #include <asm/bootinfo.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/system.h>
21 extern void build_tlb_refill_handler(void);
24 * Make sure all entries differ. If they're not different
25 * MIPS32 will take revenge ...
27 #define UNIQUE_ENTRYHI(idx) (CKSEG0 + ((idx) << (PAGE_SHIFT + 1)))
29 /* Atomicity and interruptability */
30 #ifdef CONFIG_MIPS_MT_SMTC
33 #include <asm/mipsmtregs.h>
35 #define ENTER_CRITICAL(flags) \
37 unsigned int mvpflags; \
38 local_irq_save(flags);\
40 #define EXIT_CRITICAL(flags) \
42 local_irq_restore(flags); \
46 #define ENTER_CRITICAL(flags) local_irq_save(flags)
47 #define EXIT_CRITICAL(flags) local_irq_restore(flags)
49 #endif /* CONFIG_MIPS_MT_SMTC */
51 #if defined(CONFIG_CPU_LOONGSON2)
53 * LOONGSON2 has a 4 entry itlb which is a subset of dtlb,
54 * unfortrunately, itlb is not totally transparent to software.
56 #define FLUSH_ITLB write_c0_diag(4);
58 #define FLUSH_ITLB_VM(vma) { if ((vma)->vm_flags & VM_EXEC) write_c0_diag(4); }
63 #define FLUSH_ITLB_VM(vma)
67 void local_flush_tlb_all(void)
70 unsigned long old_ctx
;
73 ENTER_CRITICAL(flags
);
74 /* Save old context and create impossible VPN2 value */
75 old_ctx
= read_c0_entryhi();
79 entry
= read_c0_wired();
81 /* Blast 'em all away. */
82 while (entry
< current_cpu_data
.tlbsize
) {
83 /* Make sure all entries differ. */
84 write_c0_entryhi(UNIQUE_ENTRYHI(entry
));
85 write_c0_index(entry
);
91 write_c0_entryhi(old_ctx
);
96 /* All entries common to a mm share an asid. To effectively flush
97 these entries, we just bump the asid. */
98 void local_flush_tlb_mm(struct mm_struct
*mm
)
104 cpu
= smp_processor_id();
106 if (cpu_context(cpu
, mm
) != 0) {
107 drop_mmu_context(mm
, cpu
);
113 void local_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
116 struct mm_struct
*mm
= vma
->vm_mm
;
117 int cpu
= smp_processor_id();
119 if (cpu_context(cpu
, mm
) != 0) {
123 ENTER_CRITICAL(flags
);
124 size
= (end
- start
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
125 size
= (size
+ 1) >> 1;
126 if (size
<= current_cpu_data
.tlbsize
/2) {
127 int oldpid
= read_c0_entryhi();
128 int newpid
= cpu_asid(cpu
, mm
);
130 start
&= (PAGE_MASK
<< 1);
131 end
+= ((PAGE_SIZE
<< 1) - 1);
132 end
&= (PAGE_MASK
<< 1);
133 while (start
< end
) {
136 write_c0_entryhi(start
| newpid
);
137 start
+= (PAGE_SIZE
<< 1);
141 idx
= read_c0_index();
142 write_c0_entrylo0(0);
143 write_c0_entrylo1(0);
146 /* Make sure all entries differ. */
147 write_c0_entryhi(UNIQUE_ENTRYHI(idx
));
152 write_c0_entryhi(oldpid
);
154 drop_mmu_context(mm
, cpu
);
157 EXIT_CRITICAL(flags
);
161 void local_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
166 ENTER_CRITICAL(flags
);
167 size
= (end
- start
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
168 size
= (size
+ 1) >> 1;
169 if (size
<= current_cpu_data
.tlbsize
/ 2) {
170 int pid
= read_c0_entryhi();
172 start
&= (PAGE_MASK
<< 1);
173 end
+= ((PAGE_SIZE
<< 1) - 1);
174 end
&= (PAGE_MASK
<< 1);
176 while (start
< end
) {
179 write_c0_entryhi(start
);
180 start
+= (PAGE_SIZE
<< 1);
184 idx
= read_c0_index();
185 write_c0_entrylo0(0);
186 write_c0_entrylo1(0);
189 /* Make sure all entries differ. */
190 write_c0_entryhi(UNIQUE_ENTRYHI(idx
));
195 write_c0_entryhi(pid
);
197 local_flush_tlb_all();
200 EXIT_CRITICAL(flags
);
203 void local_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
205 int cpu
= smp_processor_id();
207 if (cpu_context(cpu
, vma
->vm_mm
) != 0) {
209 int oldpid
, newpid
, idx
;
211 newpid
= cpu_asid(cpu
, vma
->vm_mm
);
212 page
&= (PAGE_MASK
<< 1);
213 ENTER_CRITICAL(flags
);
214 oldpid
= read_c0_entryhi();
215 write_c0_entryhi(page
| newpid
);
219 idx
= read_c0_index();
220 write_c0_entrylo0(0);
221 write_c0_entrylo1(0);
224 /* Make sure all entries differ. */
225 write_c0_entryhi(UNIQUE_ENTRYHI(idx
));
231 write_c0_entryhi(oldpid
);
233 EXIT_CRITICAL(flags
);
238 * This one is only used for pages with the global bit set so we don't care
239 * much about the ASID.
241 void local_flush_tlb_one(unsigned long page
)
246 ENTER_CRITICAL(flags
);
247 oldpid
= read_c0_entryhi();
248 page
&= (PAGE_MASK
<< 1);
249 write_c0_entryhi(page
);
253 idx
= read_c0_index();
254 write_c0_entrylo0(0);
255 write_c0_entrylo1(0);
257 /* Make sure all entries differ. */
258 write_c0_entryhi(UNIQUE_ENTRYHI(idx
));
263 write_c0_entryhi(oldpid
);
265 EXIT_CRITICAL(flags
);
269 * We will need multiple versions of update_mmu_cache(), one that just
270 * updates the TLB with the new pte(s), and another which also checks
271 * for the R4k "end of page" hardware bug and does the needy.
273 void __update_tlb(struct vm_area_struct
* vma
, unsigned long address
, pte_t pte
)
283 * Handle debugger faulting in for debugee.
285 if (current
->active_mm
!= vma
->vm_mm
)
288 ENTER_CRITICAL(flags
);
290 pid
= read_c0_entryhi() & ASID_MASK
;
291 address
&= (PAGE_MASK
<< 1);
292 write_c0_entryhi(address
| pid
);
293 pgdp
= pgd_offset(vma
->vm_mm
, address
);
297 pudp
= pud_offset(pgdp
, address
);
298 pmdp
= pmd_offset(pudp
, address
);
299 idx
= read_c0_index();
300 ptep
= pte_offset_map(pmdp
, address
);
302 #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
303 write_c0_entrylo0(ptep
->pte_high
);
305 write_c0_entrylo1(ptep
->pte_high
);
307 write_c0_entrylo0(pte_val(*ptep
++) >> 6);
308 write_c0_entrylo1(pte_val(*ptep
) >> 6);
317 EXIT_CRITICAL(flags
);
321 static void r4k_update_mmu_cache_hwbug(struct vm_area_struct
* vma
,
322 unsigned long address
, pte_t pte
)
331 ENTER_CRITICAL(flags
);
332 address
&= (PAGE_MASK
<< 1);
333 asid
= read_c0_entryhi() & ASID_MASK
;
334 write_c0_entryhi(address
| asid
);
335 pgdp
= pgd_offset(vma
->vm_mm
, address
);
339 pmdp
= pmd_offset(pgdp
, address
);
340 idx
= read_c0_index();
341 ptep
= pte_offset_map(pmdp
, address
);
342 write_c0_entrylo0(pte_val(*ptep
++) >> 6);
343 write_c0_entrylo1(pte_val(*ptep
) >> 6);
350 EXIT_CRITICAL(flags
);
354 void __init
add_wired_entry(unsigned long entrylo0
, unsigned long entrylo1
,
355 unsigned long entryhi
, unsigned long pagemask
)
359 unsigned long old_pagemask
;
360 unsigned long old_ctx
;
362 ENTER_CRITICAL(flags
);
363 /* Save old context and create impossible VPN2 value */
364 old_ctx
= read_c0_entryhi();
365 old_pagemask
= read_c0_pagemask();
366 wired
= read_c0_wired();
367 write_c0_wired(wired
+ 1);
368 write_c0_index(wired
);
369 tlbw_use_hazard(); /* What is the hazard here? */
370 write_c0_pagemask(pagemask
);
371 write_c0_entryhi(entryhi
);
372 write_c0_entrylo0(entrylo0
);
373 write_c0_entrylo1(entrylo1
);
378 write_c0_entryhi(old_ctx
);
379 tlbw_use_hazard(); /* What is the hazard here? */
380 write_c0_pagemask(old_pagemask
);
381 local_flush_tlb_all();
382 EXIT_CRITICAL(flags
);
386 * Used for loading TLB entries before trap_init() has started, when we
387 * don't actually want to add a wired entry which remains throughout the
388 * lifetime of the system
391 static int temp_tlb_entry __cpuinitdata
;
393 __init
int add_temporary_entry(unsigned long entrylo0
, unsigned long entrylo1
,
394 unsigned long entryhi
, unsigned long pagemask
)
399 unsigned long old_pagemask
;
400 unsigned long old_ctx
;
402 ENTER_CRITICAL(flags
);
403 /* Save old context and create impossible VPN2 value */
404 old_ctx
= read_c0_entryhi();
405 old_pagemask
= read_c0_pagemask();
406 wired
= read_c0_wired();
407 if (--temp_tlb_entry
< wired
) {
409 "No TLB space left for add_temporary_entry\n");
414 write_c0_index(temp_tlb_entry
);
415 write_c0_pagemask(pagemask
);
416 write_c0_entryhi(entryhi
);
417 write_c0_entrylo0(entrylo0
);
418 write_c0_entrylo1(entrylo1
);
423 write_c0_entryhi(old_ctx
);
424 write_c0_pagemask(old_pagemask
);
426 EXIT_CRITICAL(flags
);
430 static void __cpuinit
probe_tlb(unsigned long config
)
432 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
436 * If this isn't a MIPS32 / MIPS64 compliant CPU. Config 1 register
437 * is not supported, we assume R4k style. Cpu probing already figured
438 * out the number of tlb entries.
440 if ((c
->processor_id
& 0xff0000) == PRID_COMP_LEGACY
)
442 #ifdef CONFIG_MIPS_MT_SMTC
444 * If TLB is shared in SMTC system, total size already
445 * has been calculated and written into cpu_data tlbsize
447 if((smtc_status
& SMTC_TLB_SHARED
) == SMTC_TLB_SHARED
)
449 #endif /* CONFIG_MIPS_MT_SMTC */
451 reg
= read_c0_config1();
452 if (!((config
>> 7) & 3))
453 panic("No TLB present");
455 c
->tlbsize
= ((reg
>> 25) & 0x3f) + 1;
458 static int __cpuinitdata ntlb
= 0;
459 static int __init
set_ntlb(char *str
)
461 get_option(&str
, &ntlb
);
465 __setup("ntlb=", set_ntlb
);
467 void __cpuinit
tlb_init(void)
469 unsigned int config
= read_c0_config();
472 * You should never change this register:
473 * - On R4600 1.7 the tlbp never hits for pages smaller than
474 * the value in the c0_pagemask register.
475 * - The entire mm handling assumes the c0_pagemask register to
476 * be set to fixed-size pages.
479 write_c0_pagemask(PM_DEFAULT_MASK
);
481 if (current_cpu_type() == CPU_R10000
||
482 current_cpu_type() == CPU_R12000
||
483 current_cpu_type() == CPU_R14000
)
484 write_c0_framemask(0);
485 temp_tlb_entry
= current_cpu_data
.tlbsize
- 1;
487 /* From this point on the ARC firmware is dead. */
488 local_flush_tlb_all();
490 /* Did I tell you that ARC SUCKS? */
493 if (ntlb
> 1 && ntlb
<= current_cpu_data
.tlbsize
) {
494 int wired
= current_cpu_data
.tlbsize
- ntlb
;
495 write_c0_wired(wired
);
496 write_c0_index(wired
-1);
497 printk("Restricting TLB to %d entries\n", ntlb
);
499 printk("Ignoring invalid argument ntlb=%d\n", ntlb
);
502 build_tlb_refill_handler();