MERGE-master-patchset-edits
[linux-2.6/openmoko-kernel.git] / arch / mips / sni / time.c
blob69f5f88711cca8721cbc97ad4fda96e6682ecffd
1 #include <linux/types.h>
2 #include <linux/interrupt.h>
3 #include <linux/time.h>
4 #include <linux/clockchips.h>
6 #include <asm/i8253.h>
7 #include <asm/sni.h>
8 #include <asm/time.h>
9 #include <asm-generic/rtc.h>
11 #define SNI_CLOCK_TICK_RATE 3686400
12 #define SNI_COUNTER2_DIV 64
13 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
15 static void a20r_set_mode(enum clock_event_mode mode,
16 struct clock_event_device *evt)
18 switch (mode) {
19 case CLOCK_EVT_MODE_PERIODIC:
20 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
21 wmb();
22 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
23 wmb();
24 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
25 wmb();
27 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
28 wmb();
29 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
30 wmb();
31 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
32 wmb();
34 break;
35 case CLOCK_EVT_MODE_ONESHOT:
36 case CLOCK_EVT_MODE_UNUSED:
37 case CLOCK_EVT_MODE_SHUTDOWN:
38 break;
39 case CLOCK_EVT_MODE_RESUME:
40 break;
44 static struct clock_event_device a20r_clockevent_device = {
45 .name = "a20r-timer",
46 .features = CLOCK_EVT_FEAT_PERIODIC,
48 /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
50 .rating = 300,
51 .irq = SNI_A20R_IRQ_TIMER,
52 .set_mode = a20r_set_mode,
55 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
57 struct clock_event_device *cd = dev_id;
59 *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
60 wmb();
62 cd->event_handler(cd);
64 return IRQ_HANDLED;
67 static struct irqaction a20r_irqaction = {
68 .handler = a20r_interrupt,
69 .flags = IRQF_DISABLED | IRQF_PERCPU,
70 .name = "a20r-timer",
74 * a20r platform uses 2 counters to divide the input frequency.
75 * Counter 2 output is connected to Counter 0 & 1 input.
77 static void __init sni_a20r_timer_setup(void)
79 struct clock_event_device *cd = &a20r_clockevent_device;
80 struct irqaction *action = &a20r_irqaction;
81 unsigned int cpu = smp_processor_id();
83 cd->cpumask = cpumask_of(cpu);
84 clockevents_register_device(cd);
85 action->dev_id = cd;
86 setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
89 #define SNI_8254_TICK_RATE 1193182UL
91 #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
93 static __init unsigned long dosample(void)
95 u32 ct0, ct1;
96 volatile u8 msb, lsb;
98 /* Start the counter. */
99 outb_p(0x34, 0x43);
100 outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
101 outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
103 /* Get initial counter invariant */
104 ct0 = read_c0_count();
106 /* Latch and spin until top byte of counter0 is zero */
107 do {
108 outb(0x00, 0x43);
109 lsb = inb(0x40);
110 msb = inb(0x40);
111 ct1 = read_c0_count();
112 } while (msb);
114 /* Stop the counter. */
115 outb(0x38, 0x43);
117 * Return the difference, this is how far the r4k counter increments
118 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
119 * clock (= 1000000 / HZ / 2).
121 /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
122 return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
126 * Here we need to calibrate the cycle counter to at least be close.
128 void __init plat_time_init(void)
130 unsigned long r4k_ticks[3];
131 unsigned long r4k_tick;
134 * Figure out the r4k offset, the algorithm is very simple and works in
135 * _all_ cases as long as the 8254 counter register itself works ok (as
136 * an interrupt driving timer it does not because of bug, this is why
137 * we are using the onchip r4k counter/compare register to serve this
138 * purpose, but for r4k_offset calculation it will work ok for us).
139 * There are other very complicated ways of performing this calculation
140 * but this one works just fine so I am not going to futz around. ;-)
142 printk(KERN_INFO "Calibrating system timer... ");
143 dosample(); /* Prime cache. */
144 dosample(); /* Prime cache. */
145 /* Zero is NOT an option. */
146 do {
147 r4k_ticks[0] = dosample();
148 } while (!r4k_ticks[0]);
149 do {
150 r4k_ticks[1] = dosample();
151 } while (!r4k_ticks[1]);
153 if (r4k_ticks[0] != r4k_ticks[1]) {
154 printk("warning: timer counts differ, retrying... ");
155 r4k_ticks[2] = dosample();
156 if (r4k_ticks[2] == r4k_ticks[0]
157 || r4k_ticks[2] == r4k_ticks[1])
158 r4k_tick = r4k_ticks[2];
159 else {
160 printk("disagreement, using average... ");
161 r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
162 + r4k_ticks[2]) / 3;
164 } else
165 r4k_tick = r4k_ticks[0];
167 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
168 (int) (r4k_tick / (500000 / HZ)),
169 (int) (r4k_tick % (500000 / HZ)));
171 mips_hpt_frequency = r4k_tick * HZ;
173 switch (sni_brd_type) {
174 case SNI_BRD_10:
175 case SNI_BRD_10NEW:
176 case SNI_BRD_TOWER_OASIC:
177 case SNI_BRD_MINITOWER:
178 sni_a20r_timer_setup();
179 break;
181 setup_pit_timer();
184 unsigned long read_persistent_clock(void)
186 return -1;