MERGE-master-patchset-edits
[linux-2.6/openmoko-kernel.git] / arch / mips / kernel / smtc.c
blobb6cca01ff82b309e803105c1230957e943c87df8
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
20 #include <linux/clockchips.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/cpumask.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
28 #include <asm/cpu.h>
29 #include <asm/processor.h>
30 #include <asm/atomic.h>
31 #include <asm/system.h>
32 #include <asm/hardirq.h>
33 #include <asm/hazards.h>
34 #include <asm/irq.h>
35 #include <asm/mmu_context.h>
36 #include <asm/mipsregs.h>
37 #include <asm/cacheflush.h>
38 #include <asm/time.h>
39 #include <asm/addrspace.h>
40 #include <asm/smtc.h>
41 #include <asm/smtc_proc.h>
44 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
45 * in do_IRQ. These are passed in setup_irq_smtc() and stored
46 * in this table.
48 unsigned long irq_hwmask[NR_IRQS];
50 #define LOCK_MT_PRA() \
51 local_irq_save(flags); \
52 mtflags = dmt()
54 #define UNLOCK_MT_PRA() \
55 emt(mtflags); \
56 local_irq_restore(flags)
58 #define LOCK_CORE_PRA() \
59 local_irq_save(flags); \
60 mtflags = dvpe()
62 #define UNLOCK_CORE_PRA() \
63 evpe(mtflags); \
64 local_irq_restore(flags)
67 * Data structures purely associated with SMTC parallelism
72 * Table for tracking ASIDs whose lifetime is prolonged.
75 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
79 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
82 #define IPIBUF_PER_CPU 4
84 struct smtc_ipi_q IPIQ[NR_CPUS];
85 static struct smtc_ipi_q freeIPIq;
88 /* Forward declarations */
90 void ipi_decode(struct smtc_ipi *);
91 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
92 static void setup_cross_vpe_interrupts(unsigned int nvpe);
93 void init_smtc_stats(void);
95 /* Global SMTC Status */
97 unsigned int smtc_status = 0;
99 /* Boot command line configuration overrides */
101 static int vpe0limit;
102 static int ipibuffers = 0;
103 static int nostlb = 0;
104 static int asidmask = 0;
105 unsigned long smtc_asid_mask = 0xff;
107 static int __init vpe0tcs(char *str)
109 get_option(&str, &vpe0limit);
111 return 1;
114 static int __init ipibufs(char *str)
116 get_option(&str, &ipibuffers);
117 return 1;
120 static int __init stlb_disable(char *s)
122 nostlb = 1;
123 return 1;
126 static int __init asidmask_set(char *str)
128 get_option(&str, &asidmask);
129 switch (asidmask) {
130 case 0x1:
131 case 0x3:
132 case 0x7:
133 case 0xf:
134 case 0x1f:
135 case 0x3f:
136 case 0x7f:
137 case 0xff:
138 smtc_asid_mask = (unsigned long)asidmask;
139 break;
140 default:
141 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
143 return 1;
146 __setup("vpe0tcs=", vpe0tcs);
147 __setup("ipibufs=", ipibufs);
148 __setup("nostlb", stlb_disable);
149 __setup("asidmask=", asidmask_set);
151 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
153 static int hang_trig = 0;
155 static int __init hangtrig_enable(char *s)
157 hang_trig = 1;
158 return 1;
162 __setup("hangtrig", hangtrig_enable);
164 #define DEFAULT_BLOCKED_IPI_LIMIT 32
166 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
168 static int __init tintq(char *str)
170 get_option(&str, &timerq_limit);
171 return 1;
174 __setup("tintq=", tintq);
176 static int imstuckcount[2][8];
177 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
178 static int vpemask[2][8] = {
179 {0, 0, 1, 0, 0, 0, 0, 1},
180 {0, 0, 0, 0, 0, 0, 0, 1}
182 int tcnoprog[NR_CPUS];
183 static atomic_t idle_hook_initialized = {0};
184 static int clock_hang_reported[NR_CPUS];
186 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
189 * Configure shared TLB - VPC configuration bit must be set by caller
192 static void smtc_configure_tlb(void)
194 int i, tlbsiz, vpes;
195 unsigned long mvpconf0;
196 unsigned long config1val;
198 /* Set up ASID preservation table */
199 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
200 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
201 smtc_live_asid[vpes][i] = 0;
204 mvpconf0 = read_c0_mvpconf0();
206 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
207 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
208 /* If we have multiple VPEs, try to share the TLB */
209 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
211 * If TLB sizing is programmable, shared TLB
212 * size is the total available complement.
213 * Otherwise, we have to take the sum of all
214 * static VPE TLB entries.
216 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
217 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
219 * If there's more than one VPE, there had better
220 * be more than one TC, because we need one to bind
221 * to each VPE in turn to be able to read
222 * its configuration state!
224 settc(1);
225 /* Stop the TC from doing anything foolish */
226 write_tc_c0_tchalt(TCHALT_H);
227 mips_ihb();
228 /* No need to un-Halt - that happens later anyway */
229 for (i=0; i < vpes; i++) {
230 write_tc_c0_tcbind(i);
232 * To be 100% sure we're really getting the right
233 * information, we exit the configuration state
234 * and do an IHB after each rebinding.
236 write_c0_mvpcontrol(
237 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
238 mips_ihb();
240 * Only count if the MMU Type indicated is TLB
242 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
243 config1val = read_vpe_c0_config1();
244 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
247 /* Put core back in configuration state */
248 write_c0_mvpcontrol(
249 read_c0_mvpcontrol() | MVPCONTROL_VPC );
250 mips_ihb();
253 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
254 ehb();
257 * Setup kernel data structures to use software total,
258 * rather than read the per-VPE Config1 value. The values
259 * for "CPU 0" gets copied to all the other CPUs as part
260 * of their initialization in smtc_cpu_setup().
263 /* MIPS32 limits TLB indices to 64 */
264 if (tlbsiz > 64)
265 tlbsiz = 64;
266 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
267 smtc_status |= SMTC_TLB_SHARED;
268 local_flush_tlb_all();
270 printk("TLB of %d entry pairs shared by %d VPEs\n",
271 tlbsiz, vpes);
272 } else {
273 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
280 * Incrementally build the CPU map out of constituent MIPS MT cores,
281 * using the specified available VPEs and TCs. Plaform code needs
282 * to ensure that each MIPS MT core invokes this routine on reset,
283 * one at a time(!).
285 * This version of the build_cpu_map and prepare_cpus routines assumes
286 * that *all* TCs of a MIPS MT core will be used for Linux, and that
287 * they will be spread across *all* available VPEs (to minimise the
288 * loss of efficiency due to exception service serialization).
289 * An improved version would pick up configuration information and
290 * possibly leave some TCs/VPEs as "slave" processors.
292 * Use c0_MVPConf0 to find out how many TCs are available, setting up
293 * cpu_possible_map and the logical/physical mappings.
296 int __init smtc_build_cpu_map(int start_cpu_slot)
298 int i, ntcs;
301 * The CPU map isn't actually used for anything at this point,
302 * so it's not clear what else we should do apart from set
303 * everything up so that "logical" = "physical".
305 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
306 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
307 cpu_set(i, cpu_possible_map);
308 __cpu_number_map[i] = i;
309 __cpu_logical_map[i] = i;
311 #ifdef CONFIG_MIPS_MT_FPAFF
312 /* Initialize map of CPUs with FPUs */
313 cpus_clear(mt_fpu_cpumask);
314 #endif
316 /* One of those TC's is the one booting, and not a secondary... */
317 printk("%i available secondary CPU TC(s)\n", i - 1);
319 return i;
323 * Common setup before any secondaries are started
324 * Make sure all CPU's are in a sensible state before we boot any of the
325 * secondaries.
327 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
328 * as possible across the available VPEs.
331 static void smtc_tc_setup(int vpe, int tc, int cpu)
333 settc(tc);
334 write_tc_c0_tchalt(TCHALT_H);
335 mips_ihb();
336 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
337 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
338 | TCSTATUS_A);
340 * TCContext gets an offset from the base of the IPIQ array
341 * to be used in low-level code to detect the presence of
342 * an active IPI queue
344 write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
345 /* Bind tc to vpe */
346 write_tc_c0_tcbind(vpe);
347 /* In general, all TCs should have the same cpu_data indications */
348 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
349 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
350 if (cpu_data[0].cputype == CPU_34K ||
351 cpu_data[0].cputype == CPU_1004K)
352 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
353 cpu_data[cpu].vpe_id = vpe;
354 cpu_data[cpu].tc_id = tc;
355 /* Multi-core SMTC hasn't been tested, but be prepared */
356 cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
360 * Tweak to get Count registes in as close a sync as possible.
361 * Value seems good for 34K-class cores.
364 #define CP0_SKEW 8
366 void smtc_prepare_cpus(int cpus)
368 int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
369 unsigned long flags;
370 unsigned long val;
371 int nipi;
372 struct smtc_ipi *pipi;
374 /* disable interrupts so we can disable MT */
375 local_irq_save(flags);
376 /* disable MT so we can configure */
377 dvpe();
378 dmt();
380 spin_lock_init(&freeIPIq.lock);
383 * We probably don't have as many VPEs as we do SMP "CPUs",
384 * but it's possible - and in any case we'll never use more!
386 for (i=0; i<NR_CPUS; i++) {
387 IPIQ[i].head = IPIQ[i].tail = NULL;
388 spin_lock_init(&IPIQ[i].lock);
389 IPIQ[i].depth = 0;
392 /* cpu_data index starts at zero */
393 cpu = 0;
394 cpu_data[cpu].vpe_id = 0;
395 cpu_data[cpu].tc_id = 0;
396 cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
397 cpu++;
399 /* Report on boot-time options */
400 mips_mt_set_cpuoptions();
401 if (vpelimit > 0)
402 printk("Limit of %d VPEs set\n", vpelimit);
403 if (tclimit > 0)
404 printk("Limit of %d TCs set\n", tclimit);
405 if (nostlb) {
406 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
408 if (asidmask)
409 printk("ASID mask value override to 0x%x\n", asidmask);
411 /* Temporary */
412 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
413 if (hang_trig)
414 printk("Logic Analyser Trigger on suspected TC hang\n");
415 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
417 /* Put MVPE's into 'configuration state' */
418 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
420 val = read_c0_mvpconf0();
421 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
422 if (vpelimit > 0 && nvpe > vpelimit)
423 nvpe = vpelimit;
424 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
425 if (ntc > NR_CPUS)
426 ntc = NR_CPUS;
427 if (tclimit > 0 && ntc > tclimit)
428 ntc = tclimit;
429 slop = ntc % nvpe;
430 for (i = 0; i < nvpe; i++) {
431 tcpervpe[i] = ntc / nvpe;
432 if (slop) {
433 if((slop - i) > 0) tcpervpe[i]++;
436 /* Handle command line override for VPE0 */
437 if (vpe0limit > ntc) vpe0limit = ntc;
438 if (vpe0limit > 0) {
439 int slopslop;
440 if (vpe0limit < tcpervpe[0]) {
441 /* Reducing TC count - distribute to others */
442 slop = tcpervpe[0] - vpe0limit;
443 slopslop = slop % (nvpe - 1);
444 tcpervpe[0] = vpe0limit;
445 for (i = 1; i < nvpe; i++) {
446 tcpervpe[i] += slop / (nvpe - 1);
447 if(slopslop && ((slopslop - (i - 1) > 0)))
448 tcpervpe[i]++;
450 } else if (vpe0limit > tcpervpe[0]) {
451 /* Increasing TC count - steal from others */
452 slop = vpe0limit - tcpervpe[0];
453 slopslop = slop % (nvpe - 1);
454 tcpervpe[0] = vpe0limit;
455 for (i = 1; i < nvpe; i++) {
456 tcpervpe[i] -= slop / (nvpe - 1);
457 if(slopslop && ((slopslop - (i - 1) > 0)))
458 tcpervpe[i]--;
463 /* Set up shared TLB */
464 smtc_configure_tlb();
466 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
468 * Set the MVP bits.
470 settc(tc);
471 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
472 if (vpe != 0)
473 printk(", ");
474 printk("VPE %d: TC", vpe);
475 for (i = 0; i < tcpervpe[vpe]; i++) {
477 * TC 0 is bound to VPE 0 at reset,
478 * and is presumably executing this
479 * code. Leave it alone!
481 if (tc != 0) {
482 smtc_tc_setup(vpe, tc, cpu);
483 cpu++;
485 printk(" %d", tc);
486 tc++;
488 if (vpe != 0) {
490 * Clear any stale software interrupts from VPE's Cause
492 write_vpe_c0_cause(0);
495 * Clear ERL/EXL of VPEs other than 0
496 * and set restricted interrupt enable/mask.
498 write_vpe_c0_status((read_vpe_c0_status()
499 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
500 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
501 | ST0_IE));
503 * set config to be the same as vpe0,
504 * particularly kseg0 coherency alg
506 write_vpe_c0_config(read_c0_config());
507 /* Clear any pending timer interrupt */
508 write_vpe_c0_compare(0);
509 /* Propagate Config7 */
510 write_vpe_c0_config7(read_c0_config7());
511 write_vpe_c0_count(read_c0_count() + CP0_SKEW);
512 ehb();
514 /* enable multi-threading within VPE */
515 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
516 /* enable the VPE */
517 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
521 * Pull any physically present but unused TCs out of circulation.
523 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
524 cpu_clear(tc, cpu_possible_map);
525 cpu_clear(tc, cpu_present_map);
526 tc++;
529 /* release config state */
530 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
532 printk("\n");
534 /* Set up coprocessor affinity CPU mask(s) */
536 #ifdef CONFIG_MIPS_MT_FPAFF
537 for (tc = 0; tc < ntc; tc++) {
538 if (cpu_data[tc].options & MIPS_CPU_FPU)
539 cpu_set(tc, mt_fpu_cpumask);
541 #endif
543 /* set up ipi interrupts... */
545 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
547 setup_cross_vpe_interrupts(nvpe);
549 /* Set up queue of free IPI "messages". */
550 nipi = NR_CPUS * IPIBUF_PER_CPU;
551 if (ipibuffers > 0)
552 nipi = ipibuffers;
554 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
555 if (pipi == NULL)
556 panic("kmalloc of IPI message buffers failed\n");
557 else
558 printk("IPI buffer pool of %d buffers\n", nipi);
559 for (i = 0; i < nipi; i++) {
560 smtc_ipi_nq(&freeIPIq, pipi);
561 pipi++;
564 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
565 emt(EMT_ENABLE);
566 evpe(EVPE_ENABLE);
567 local_irq_restore(flags);
568 /* Initialize SMTC /proc statistics/diagnostics */
569 init_smtc_stats();
574 * Setup the PC, SP, and GP of a secondary processor and start it
575 * running!
576 * smp_bootstrap is the place to resume from
577 * __KSTK_TOS(idle) is apparently the stack pointer
578 * (unsigned long)idle->thread_info the gp
581 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
583 extern u32 kernelsp[NR_CPUS];
584 unsigned long flags;
585 int mtflags;
587 LOCK_MT_PRA();
588 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
589 dvpe();
591 settc(cpu_data[cpu].tc_id);
593 /* pc */
594 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
596 /* stack pointer */
597 kernelsp[cpu] = __KSTK_TOS(idle);
598 write_tc_gpr_sp(__KSTK_TOS(idle));
600 /* global pointer */
601 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
603 smtc_status |= SMTC_MTC_ACTIVE;
604 write_tc_c0_tchalt(0);
605 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
606 evpe(EVPE_ENABLE);
608 UNLOCK_MT_PRA();
611 void smtc_init_secondary(void)
613 local_irq_enable();
616 void smtc_smp_finish(void)
618 int cpu = smp_processor_id();
621 * Lowest-numbered CPU per VPE starts a clock tick.
622 * Like per_cpu_trap_init() hack, this assumes that
623 * SMTC init code assigns TCs consdecutively and
624 * in ascending order across available VPEs.
626 if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
627 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
629 printk("TC %d going on-line as CPU %d\n",
630 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
633 void smtc_cpus_done(void)
638 * Support for SMTC-optimized driver IRQ registration
642 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
643 * in do_IRQ. These are passed in setup_irq_smtc() and stored
644 * in this table.
647 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
648 unsigned long hwmask)
650 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
651 unsigned int vpe = current_cpu_data.vpe_id;
653 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
654 #endif
655 irq_hwmask[irq] = hwmask;
657 return setup_irq(irq, new);
660 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
662 * Support for IRQ affinity to TCs
665 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
668 * If a "fast path" cache of quickly decodable affinity state
669 * is maintained, this is where it gets done, on a call up
670 * from the platform affinity code.
674 void smtc_forward_irq(unsigned int irq)
676 int target;
679 * OK wise guy, now figure out how to get the IRQ
680 * to be serviced on an authorized "CPU".
682 * Ideally, to handle the situation where an IRQ has multiple
683 * eligible CPUS, we would maintain state per IRQ that would
684 * allow a fair distribution of service requests. Since the
685 * expected use model is any-or-only-one, for simplicity
686 * and efficiency, we just pick the easiest one to find.
689 target = first_cpu(irq_desc[irq].affinity);
692 * We depend on the platform code to have correctly processed
693 * IRQ affinity change requests to ensure that the IRQ affinity
694 * mask has been purged of bits corresponding to nonexistent and
695 * offline "CPUs", and to TCs bound to VPEs other than the VPE
696 * connected to the physical interrupt input for the interrupt
697 * in question. Otherwise we have a nasty problem with interrupt
698 * mask management. This is best handled in non-performance-critical
699 * platform IRQ affinity setting code, to minimize interrupt-time
700 * checks.
703 /* If no one is eligible, service locally */
704 if (target >= NR_CPUS) {
705 do_IRQ_no_affinity(irq);
706 return;
709 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
712 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
715 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
716 * Within a VPE one TC can interrupt another by different approaches.
717 * The easiest to get right would probably be to make all TCs except
718 * the target IXMT and set a software interrupt, but an IXMT-based
719 * scheme requires that a handler must run before a new IPI could
720 * be sent, which would break the "broadcast" loops in MIPS MT.
721 * A more gonzo approach within a VPE is to halt the TC, extract
722 * its Restart, Status, and a couple of GPRs, and program the Restart
723 * address to emulate an interrupt.
725 * Within a VPE, one can be confident that the target TC isn't in
726 * a critical EXL state when halted, since the write to the Halt
727 * register could not have issued on the writing thread if the
728 * halting thread had EXL set. So k0 and k1 of the target TC
729 * can be used by the injection code. Across VPEs, one can't
730 * be certain that the target TC isn't in a critical exception
731 * state. So we try a two-step process of sending a software
732 * interrupt to the target VPE, which either handles the event
733 * itself (if it was the target) or injects the event within
734 * the VPE.
737 static void smtc_ipi_qdump(void)
739 int i;
741 for (i = 0; i < NR_CPUS ;i++) {
742 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
743 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
744 IPIQ[i].depth);
749 * The standard atomic.h primitives don't quite do what we want
750 * here: We need an atomic add-and-return-previous-value (which
751 * could be done with atomic_add_return and a decrement) and an
752 * atomic set/zero-and-return-previous-value (which can't really
753 * be done with the atomic.h primitives). And since this is
754 * MIPS MT, we can assume that we have LL/SC.
756 static inline int atomic_postincrement(atomic_t *v)
758 unsigned long result;
760 unsigned long temp;
762 __asm__ __volatile__(
763 "1: ll %0, %2 \n"
764 " addu %1, %0, 1 \n"
765 " sc %1, %2 \n"
766 " beqz %1, 1b \n"
767 __WEAK_LLSC_MB
768 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
769 : "m" (v->counter)
770 : "memory");
772 return result;
775 void smtc_send_ipi(int cpu, int type, unsigned int action)
777 int tcstatus;
778 struct smtc_ipi *pipi;
779 unsigned long flags;
780 int mtflags;
781 unsigned long tcrestart;
782 extern void r4k_wait_irqoff(void), __pastwait(void);
784 if (cpu == smp_processor_id()) {
785 printk("Cannot Send IPI to self!\n");
786 return;
788 /* Set up a descriptor, to be delivered either promptly or queued */
789 pipi = smtc_ipi_dq(&freeIPIq);
790 if (pipi == NULL) {
791 bust_spinlocks(1);
792 mips_mt_regdump(dvpe());
793 panic("IPI Msg. Buffers Depleted\n");
795 pipi->type = type;
796 pipi->arg = (void *)action;
797 pipi->dest = cpu;
798 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
799 /* If not on same VPE, enqueue and send cross-VPE interrupt */
800 smtc_ipi_nq(&IPIQ[cpu], pipi);
801 LOCK_CORE_PRA();
802 settc(cpu_data[cpu].tc_id);
803 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
804 UNLOCK_CORE_PRA();
805 } else {
807 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
808 * since ASID shootdown on the other VPE may
809 * collide with this operation.
811 LOCK_CORE_PRA();
812 settc(cpu_data[cpu].tc_id);
813 /* Halt the targeted TC */
814 write_tc_c0_tchalt(TCHALT_H);
815 mips_ihb();
818 * Inspect TCStatus - if IXMT is set, we have to queue
819 * a message. Otherwise, we set up the "interrupt"
820 * of the other TC
822 tcstatus = read_tc_c0_tcstatus();
824 if ((tcstatus & TCSTATUS_IXMT) != 0) {
826 * If we're in the the irq-off version of the wait
827 * loop, we need to force exit from the wait and
828 * do a direct post of the IPI.
830 if (cpu_wait == r4k_wait_irqoff) {
831 tcrestart = read_tc_c0_tcrestart();
832 if (tcrestart >= (unsigned long)r4k_wait_irqoff
833 && tcrestart < (unsigned long)__pastwait) {
834 write_tc_c0_tcrestart(__pastwait);
835 tcstatus &= ~TCSTATUS_IXMT;
836 write_tc_c0_tcstatus(tcstatus);
837 goto postdirect;
841 * Otherwise we queue the message for the target TC
842 * to pick up when he does a local_irq_restore()
844 write_tc_c0_tchalt(0);
845 UNLOCK_CORE_PRA();
846 smtc_ipi_nq(&IPIQ[cpu], pipi);
847 } else {
848 postdirect:
849 post_direct_ipi(cpu, pipi);
850 write_tc_c0_tchalt(0);
851 UNLOCK_CORE_PRA();
857 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
859 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
861 struct pt_regs *kstack;
862 unsigned long tcstatus;
863 unsigned long tcrestart;
864 extern u32 kernelsp[NR_CPUS];
865 extern void __smtc_ipi_vector(void);
866 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
868 /* Extract Status, EPC from halted TC */
869 tcstatus = read_tc_c0_tcstatus();
870 tcrestart = read_tc_c0_tcrestart();
871 /* If TCRestart indicates a WAIT instruction, advance the PC */
872 if ((tcrestart & 0x80000000)
873 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
874 tcrestart += 4;
877 * Save on TC's future kernel stack
879 * CU bit of Status is indicator that TC was
880 * already running on a kernel stack...
882 if (tcstatus & ST0_CU0) {
883 /* Note that this "- 1" is pointer arithmetic */
884 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
885 } else {
886 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
889 kstack->cp0_epc = (long)tcrestart;
890 /* Save TCStatus */
891 kstack->cp0_tcstatus = tcstatus;
892 /* Pass token of operation to be performed kernel stack pad area */
893 kstack->pad0[4] = (unsigned long)pipi;
894 /* Pass address of function to be called likewise */
895 kstack->pad0[5] = (unsigned long)&ipi_decode;
896 /* Set interrupt exempt and kernel mode */
897 tcstatus |= TCSTATUS_IXMT;
898 tcstatus &= ~TCSTATUS_TKSU;
899 write_tc_c0_tcstatus(tcstatus);
900 ehb();
901 /* Set TC Restart address to be SMTC IPI vector */
902 write_tc_c0_tcrestart(__smtc_ipi_vector);
905 static void ipi_resched_interrupt(void)
907 /* Return from interrupt should be enough to cause scheduler check */
910 static void ipi_call_interrupt(void)
912 /* Invoke generic function invocation code in smp.c */
913 smp_call_function_interrupt();
916 DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
918 void ipi_decode(struct smtc_ipi *pipi)
920 unsigned int cpu = smp_processor_id();
921 struct clock_event_device *cd;
922 void *arg_copy = pipi->arg;
923 int type_copy = pipi->type;
924 smtc_ipi_nq(&freeIPIq, pipi);
925 switch (type_copy) {
926 case SMTC_CLOCK_TICK:
927 irq_enter();
928 kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + 1]++;
929 cd = &per_cpu(mips_clockevent_device, cpu);
930 cd->event_handler(cd);
931 irq_exit();
932 break;
934 case LINUX_SMP_IPI:
935 switch ((int)arg_copy) {
936 case SMP_RESCHEDULE_YOURSELF:
937 ipi_resched_interrupt();
938 break;
939 case SMP_CALL_FUNCTION:
940 ipi_call_interrupt();
941 break;
942 default:
943 printk("Impossible SMTC IPI Argument 0x%x\n",
944 (int)arg_copy);
945 break;
947 break;
948 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
949 case IRQ_AFFINITY_IPI:
951 * Accept a "forwarded" interrupt that was initially
952 * taken by a TC who doesn't have affinity for the IRQ.
954 do_IRQ_no_affinity((int)arg_copy);
955 break;
956 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
957 default:
958 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
959 break;
964 * Similar to smtc_ipi_replay(), but invoked from context restore,
965 * so it reuses the current exception frame rather than set up a
966 * new one with self_ipi.
969 void deferred_smtc_ipi(void)
971 int cpu = smp_processor_id();
974 * Test is not atomic, but much faster than a dequeue,
975 * and the vast majority of invocations will have a null queue.
976 * If irq_disabled when this was called, then any IPIs queued
977 * after we test last will be taken on the next irq_enable/restore.
978 * If interrupts were enabled, then any IPIs added after the
979 * last test will be taken directly.
982 while (IPIQ[cpu].head != NULL) {
983 struct smtc_ipi_q *q = &IPIQ[cpu];
984 struct smtc_ipi *pipi;
985 unsigned long flags;
988 * It may be possible we'll come in with interrupts
989 * already enabled.
991 local_irq_save(flags);
993 spin_lock(&q->lock);
994 pipi = __smtc_ipi_dq(q);
995 spin_unlock(&q->lock);
996 if (pipi != NULL)
997 ipi_decode(pipi);
999 * The use of the __raw_local restore isn't
1000 * as obviously necessary here as in smtc_ipi_replay(),
1001 * but it's more efficient, given that we're already
1002 * running down the IPI queue.
1004 __raw_local_irq_restore(flags);
1009 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1010 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1011 * in some regards preferable to have external logic for "doorbell" hardware
1012 * interrupts.
1015 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1017 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1019 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1020 int my_tc = cpu_data[smp_processor_id()].tc_id;
1021 int cpu;
1022 struct smtc_ipi *pipi;
1023 unsigned long tcstatus;
1024 int sent;
1025 unsigned long flags;
1026 unsigned int mtflags;
1027 unsigned int vpflags;
1030 * So long as cross-VPE interrupts are done via
1031 * MFTR/MTTR read-modify-writes of Cause, we need
1032 * to stop other VPEs whenever the local VPE does
1033 * anything similar.
1035 local_irq_save(flags);
1036 vpflags = dvpe();
1037 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1038 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1039 irq_enable_hazard();
1040 evpe(vpflags);
1041 local_irq_restore(flags);
1044 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1045 * queued for TCs on this VPE other than the current one.
1046 * Return-from-interrupt should cause us to drain the queue
1047 * for the current TC, so we ought not to have to do it explicitly here.
1050 for_each_online_cpu(cpu) {
1051 if (cpu_data[cpu].vpe_id != my_vpe)
1052 continue;
1054 pipi = smtc_ipi_dq(&IPIQ[cpu]);
1055 if (pipi != NULL) {
1056 if (cpu_data[cpu].tc_id != my_tc) {
1057 sent = 0;
1058 LOCK_MT_PRA();
1059 settc(cpu_data[cpu].tc_id);
1060 write_tc_c0_tchalt(TCHALT_H);
1061 mips_ihb();
1062 tcstatus = read_tc_c0_tcstatus();
1063 if ((tcstatus & TCSTATUS_IXMT) == 0) {
1064 post_direct_ipi(cpu, pipi);
1065 sent = 1;
1067 write_tc_c0_tchalt(0);
1068 UNLOCK_MT_PRA();
1069 if (!sent) {
1070 smtc_ipi_req(&IPIQ[cpu], pipi);
1072 } else {
1074 * ipi_decode() should be called
1075 * with interrupts off
1077 local_irq_save(flags);
1078 ipi_decode(pipi);
1079 local_irq_restore(flags);
1084 return IRQ_HANDLED;
1087 static void ipi_irq_dispatch(void)
1089 do_IRQ(cpu_ipi_irq);
1092 static struct irqaction irq_ipi = {
1093 .handler = ipi_interrupt,
1094 .flags = IRQF_DISABLED,
1095 .name = "SMTC_IPI",
1096 .flags = IRQF_PERCPU
1099 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1101 if (nvpe < 1)
1102 return;
1104 if (!cpu_has_vint)
1105 panic("SMTC Kernel requires Vectored Interrupt support");
1107 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1109 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1111 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1115 * SMTC-specific hacks invoked from elsewhere in the kernel.
1119 * smtc_ipi_replay is called from raw_local_irq_restore
1122 void smtc_ipi_replay(void)
1124 unsigned int cpu = smp_processor_id();
1127 * To the extent that we've ever turned interrupts off,
1128 * we may have accumulated deferred IPIs. This is subtle.
1129 * we should be OK: If we pick up something and dispatch
1130 * it here, that's great. If we see nothing, but concurrent
1131 * with this operation, another TC sends us an IPI, IXMT
1132 * is clear, and we'll handle it as a real pseudo-interrupt
1133 * and not a pseudo-pseudo interrupt. The important thing
1134 * is to do the last check for queued message *after* the
1135 * re-enabling of interrupts.
1137 while (IPIQ[cpu].head != NULL) {
1138 struct smtc_ipi_q *q = &IPIQ[cpu];
1139 struct smtc_ipi *pipi;
1140 unsigned long flags;
1143 * It's just possible we'll come in with interrupts
1144 * already enabled.
1146 local_irq_save(flags);
1148 spin_lock(&q->lock);
1149 pipi = __smtc_ipi_dq(q);
1150 spin_unlock(&q->lock);
1152 ** But use a raw restore here to avoid recursion.
1154 __raw_local_irq_restore(flags);
1156 if (pipi) {
1157 self_ipi(pipi);
1158 smtc_cpu_stats[cpu].selfipis++;
1163 EXPORT_SYMBOL(smtc_ipi_replay);
1165 void smtc_idle_loop_hook(void)
1167 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1168 int im;
1169 int flags;
1170 int mtflags;
1171 int bit;
1172 int vpe;
1173 int tc;
1174 int hook_ntcs;
1176 * printk within DMT-protected regions can deadlock,
1177 * so buffer diagnostic messages for later output.
1179 char *pdb_msg;
1180 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1182 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1183 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1184 int mvpconf0;
1185 /* Tedious stuff to just do once */
1186 mvpconf0 = read_c0_mvpconf0();
1187 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1188 if (hook_ntcs > NR_CPUS)
1189 hook_ntcs = NR_CPUS;
1190 for (tc = 0; tc < hook_ntcs; tc++) {
1191 tcnoprog[tc] = 0;
1192 clock_hang_reported[tc] = 0;
1194 for (vpe = 0; vpe < 2; vpe++)
1195 for (im = 0; im < 8; im++)
1196 imstuckcount[vpe][im] = 0;
1197 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1198 atomic_set(&idle_hook_initialized, 1000);
1199 } else {
1200 /* Someone else is initializing in parallel - let 'em finish */
1201 while (atomic_read(&idle_hook_initialized) < 1000)
1206 /* Have we stupidly left IXMT set somewhere? */
1207 if (read_c0_tcstatus() & 0x400) {
1208 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1209 ehb();
1210 printk("Dangling IXMT in cpu_idle()\n");
1213 /* Have we stupidly left an IM bit turned off? */
1214 #define IM_LIMIT 2000
1215 local_irq_save(flags);
1216 mtflags = dmt();
1217 pdb_msg = &id_ho_db_msg[0];
1218 im = read_c0_status();
1219 vpe = current_cpu_data.vpe_id;
1220 for (bit = 0; bit < 8; bit++) {
1222 * In current prototype, I/O interrupts
1223 * are masked for VPE > 0
1225 if (vpemask[vpe][bit]) {
1226 if (!(im & (0x100 << bit)))
1227 imstuckcount[vpe][bit]++;
1228 else
1229 imstuckcount[vpe][bit] = 0;
1230 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1231 set_c0_status(0x100 << bit);
1232 ehb();
1233 imstuckcount[vpe][bit] = 0;
1234 pdb_msg += sprintf(pdb_msg,
1235 "Dangling IM %d fixed for VPE %d\n", bit,
1236 vpe);
1241 emt(mtflags);
1242 local_irq_restore(flags);
1243 if (pdb_msg != &id_ho_db_msg[0])
1244 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1245 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1247 smtc_ipi_replay();
1250 void smtc_soft_dump(void)
1252 int i;
1254 printk("Counter Interrupts taken per CPU (TC)\n");
1255 for (i=0; i < NR_CPUS; i++) {
1256 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1258 printk("Self-IPI invocations:\n");
1259 for (i=0; i < NR_CPUS; i++) {
1260 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1262 smtc_ipi_qdump();
1263 printk("%d Recoveries of \"stolen\" FPU\n",
1264 atomic_read(&smtc_fpu_recoveries));
1269 * TLB management routines special to SMTC
1272 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1274 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1275 int tlb, i;
1278 * It would be nice to be able to use a spinlock here,
1279 * but this is invoked from within TLB flush routines
1280 * that protect themselves with DVPE, so if a lock is
1281 * held by another TC, it'll never be freed.
1283 * DVPE/DMT must not be done with interrupts enabled,
1284 * so even so most callers will already have disabled
1285 * them, let's be really careful...
1288 local_irq_save(flags);
1289 if (smtc_status & SMTC_TLB_SHARED) {
1290 mtflags = dvpe();
1291 tlb = 0;
1292 } else {
1293 mtflags = dmt();
1294 tlb = cpu_data[cpu].vpe_id;
1296 asid = asid_cache(cpu);
1298 do {
1299 if (!((asid += ASID_INC) & ASID_MASK) ) {
1300 if (cpu_has_vtag_icache)
1301 flush_icache_all();
1302 /* Traverse all online CPUs (hack requires contigous range) */
1303 for_each_online_cpu(i) {
1305 * We don't need to worry about our own CPU, nor those of
1306 * CPUs who don't share our TLB.
1308 if ((i != smp_processor_id()) &&
1309 ((smtc_status & SMTC_TLB_SHARED) ||
1310 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1311 settc(cpu_data[i].tc_id);
1312 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1313 if (!prevhalt) {
1314 write_tc_c0_tchalt(TCHALT_H);
1315 mips_ihb();
1317 tcstat = read_tc_c0_tcstatus();
1318 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1319 if (!prevhalt)
1320 write_tc_c0_tchalt(0);
1323 if (!asid) /* fix version if needed */
1324 asid = ASID_FIRST_VERSION;
1325 local_flush_tlb_all(); /* start new asid cycle */
1327 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1330 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1332 for_each_online_cpu(i) {
1333 if ((smtc_status & SMTC_TLB_SHARED) ||
1334 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1335 cpu_context(i, mm) = asid_cache(i) = asid;
1338 if (smtc_status & SMTC_TLB_SHARED)
1339 evpe(mtflags);
1340 else
1341 emt(mtflags);
1342 local_irq_restore(flags);
1346 * Invoked from macros defined in mmu_context.h
1347 * which must already have disabled interrupts
1348 * and done a DVPE or DMT as appropriate.
1351 void smtc_flush_tlb_asid(unsigned long asid)
1353 int entry;
1354 unsigned long ehi;
1356 entry = read_c0_wired();
1358 /* Traverse all non-wired entries */
1359 while (entry < current_cpu_data.tlbsize) {
1360 write_c0_index(entry);
1361 ehb();
1362 tlb_read();
1363 ehb();
1364 ehi = read_c0_entryhi();
1365 if ((ehi & ASID_MASK) == asid) {
1367 * Invalidate only entries with specified ASID,
1368 * makiing sure all entries differ.
1370 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1371 write_c0_entrylo0(0);
1372 write_c0_entrylo1(0);
1373 mtc0_tlbw_hazard();
1374 tlb_write_indexed();
1376 entry++;
1378 write_c0_index(PARKED_INDEX);
1379 tlbw_use_hazard();
1383 * Support for single-threading cache flush operations.
1386 static int halt_state_save[NR_CPUS];
1389 * To really, really be sure that nothing is being done
1390 * by other TCs, halt them all. This code assumes that
1391 * a DVPE has already been done, so while their Halted
1392 * state is theoretically architecturally unstable, in
1393 * practice, it's not going to change while we're looking
1394 * at it.
1397 void smtc_cflush_lockdown(void)
1399 int cpu;
1401 for_each_online_cpu(cpu) {
1402 if (cpu != smp_processor_id()) {
1403 settc(cpu_data[cpu].tc_id);
1404 halt_state_save[cpu] = read_tc_c0_tchalt();
1405 write_tc_c0_tchalt(TCHALT_H);
1408 mips_ihb();
1411 /* It would be cheating to change the cpu_online states during a flush! */
1413 void smtc_cflush_release(void)
1415 int cpu;
1418 * Start with a hazard barrier to ensure
1419 * that all CACHE ops have played through.
1421 mips_ihb();
1423 for_each_online_cpu(cpu) {
1424 if (cpu != smp_processor_id()) {
1425 settc(cpu_data[cpu].tc_id);
1426 write_tc_c0_tchalt(halt_state_save[cpu]);
1429 mips_ihb();