x86: local.h fix checkpatch warnings
[linux-2.6/openmoko-kernel/knife-kernel.git] / include / linux / list.h
blob75ce2cb4ff6ebc92a8fcaa557a9bd7b6b9b9b1b6
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
4 #ifdef __KERNEL__
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/prefetch.h>
9 #include <asm/system.h>
12 * Simple doubly linked list implementation.
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
21 struct list_head {
22 struct list_head *next, *prev;
25 #define LIST_HEAD_INIT(name) { &(name), &(name) }
27 #define LIST_HEAD(name) \
28 struct list_head name = LIST_HEAD_INIT(name)
30 static inline void INIT_LIST_HEAD(struct list_head *list)
32 list->next = list;
33 list->prev = list;
37 * Insert a new entry between two known consecutive entries.
39 * This is only for internal list manipulation where we know
40 * the prev/next entries already!
42 #ifndef CONFIG_DEBUG_LIST
43 static inline void __list_add(struct list_head *new,
44 struct list_head *prev,
45 struct list_head *next)
47 next->prev = new;
48 new->next = next;
49 new->prev = prev;
50 prev->next = new;
52 #else
53 extern void __list_add(struct list_head *new,
54 struct list_head *prev,
55 struct list_head *next);
56 #endif
58 /**
59 * list_add - add a new entry
60 * @new: new entry to be added
61 * @head: list head to add it after
63 * Insert a new entry after the specified head.
64 * This is good for implementing stacks.
66 #ifndef CONFIG_DEBUG_LIST
67 static inline void list_add(struct list_head *new, struct list_head *head)
69 __list_add(new, head, head->next);
71 #else
72 extern void list_add(struct list_head *new, struct list_head *head);
73 #endif
76 /**
77 * list_add_tail - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it before
81 * Insert a new entry before the specified head.
82 * This is useful for implementing queues.
84 static inline void list_add_tail(struct list_head *new, struct list_head *head)
86 __list_add(new, head->prev, head);
90 * Insert a new entry between two known consecutive entries.
92 * This is only for internal list manipulation where we know
93 * the prev/next entries already!
95 static inline void __list_add_rcu(struct list_head * new,
96 struct list_head * prev, struct list_head * next)
98 new->next = next;
99 new->prev = prev;
100 smp_wmb();
101 next->prev = new;
102 prev->next = new;
106 * list_add_rcu - add a new entry to rcu-protected list
107 * @new: new entry to be added
108 * @head: list head to add it after
110 * Insert a new entry after the specified head.
111 * This is good for implementing stacks.
113 * The caller must take whatever precautions are necessary
114 * (such as holding appropriate locks) to avoid racing
115 * with another list-mutation primitive, such as list_add_rcu()
116 * or list_del_rcu(), running on this same list.
117 * However, it is perfectly legal to run concurrently with
118 * the _rcu list-traversal primitives, such as
119 * list_for_each_entry_rcu().
121 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
123 __list_add_rcu(new, head, head->next);
127 * list_add_tail_rcu - add a new entry to rcu-protected list
128 * @new: new entry to be added
129 * @head: list head to add it before
131 * Insert a new entry before the specified head.
132 * This is useful for implementing queues.
134 * The caller must take whatever precautions are necessary
135 * (such as holding appropriate locks) to avoid racing
136 * with another list-mutation primitive, such as list_add_tail_rcu()
137 * or list_del_rcu(), running on this same list.
138 * However, it is perfectly legal to run concurrently with
139 * the _rcu list-traversal primitives, such as
140 * list_for_each_entry_rcu().
142 static inline void list_add_tail_rcu(struct list_head *new,
143 struct list_head *head)
145 __list_add_rcu(new, head->prev, head);
149 * Delete a list entry by making the prev/next entries
150 * point to each other.
152 * This is only for internal list manipulation where we know
153 * the prev/next entries already!
155 static inline void __list_del(struct list_head * prev, struct list_head * next)
157 next->prev = prev;
158 prev->next = next;
162 * list_del - deletes entry from list.
163 * @entry: the element to delete from the list.
164 * Note: list_empty() on entry does not return true after this, the entry is
165 * in an undefined state.
167 #ifndef CONFIG_DEBUG_LIST
168 static inline void list_del(struct list_head *entry)
170 __list_del(entry->prev, entry->next);
171 entry->next = LIST_POISON1;
172 entry->prev = LIST_POISON2;
174 #else
175 extern void list_del(struct list_head *entry);
176 #endif
179 * list_del_rcu - deletes entry from list without re-initialization
180 * @entry: the element to delete from the list.
182 * Note: list_empty() on entry does not return true after this,
183 * the entry is in an undefined state. It is useful for RCU based
184 * lockfree traversal.
186 * In particular, it means that we can not poison the forward
187 * pointers that may still be used for walking the list.
189 * The caller must take whatever precautions are necessary
190 * (such as holding appropriate locks) to avoid racing
191 * with another list-mutation primitive, such as list_del_rcu()
192 * or list_add_rcu(), running on this same list.
193 * However, it is perfectly legal to run concurrently with
194 * the _rcu list-traversal primitives, such as
195 * list_for_each_entry_rcu().
197 * Note that the caller is not permitted to immediately free
198 * the newly deleted entry. Instead, either synchronize_rcu()
199 * or call_rcu() must be used to defer freeing until an RCU
200 * grace period has elapsed.
202 static inline void list_del_rcu(struct list_head *entry)
204 __list_del(entry->prev, entry->next);
205 entry->prev = LIST_POISON2;
209 * list_replace - replace old entry by new one
210 * @old : the element to be replaced
211 * @new : the new element to insert
213 * If @old was empty, it will be overwritten.
215 static inline void list_replace(struct list_head *old,
216 struct list_head *new)
218 new->next = old->next;
219 new->next->prev = new;
220 new->prev = old->prev;
221 new->prev->next = new;
224 static inline void list_replace_init(struct list_head *old,
225 struct list_head *new)
227 list_replace(old, new);
228 INIT_LIST_HEAD(old);
232 * list_replace_rcu - replace old entry by new one
233 * @old : the element to be replaced
234 * @new : the new element to insert
236 * The @old entry will be replaced with the @new entry atomically.
237 * Note: @old should not be empty.
239 static inline void list_replace_rcu(struct list_head *old,
240 struct list_head *new)
242 new->next = old->next;
243 new->prev = old->prev;
244 smp_wmb();
245 new->next->prev = new;
246 new->prev->next = new;
247 old->prev = LIST_POISON2;
251 * list_del_init - deletes entry from list and reinitialize it.
252 * @entry: the element to delete from the list.
254 static inline void list_del_init(struct list_head *entry)
256 __list_del(entry->prev, entry->next);
257 INIT_LIST_HEAD(entry);
261 * list_move - delete from one list and add as another's head
262 * @list: the entry to move
263 * @head: the head that will precede our entry
265 static inline void list_move(struct list_head *list, struct list_head *head)
267 __list_del(list->prev, list->next);
268 list_add(list, head);
272 * list_move_tail - delete from one list and add as another's tail
273 * @list: the entry to move
274 * @head: the head that will follow our entry
276 static inline void list_move_tail(struct list_head *list,
277 struct list_head *head)
279 __list_del(list->prev, list->next);
280 list_add_tail(list, head);
284 * list_is_last - tests whether @list is the last entry in list @head
285 * @list: the entry to test
286 * @head: the head of the list
288 static inline int list_is_last(const struct list_head *list,
289 const struct list_head *head)
291 return list->next == head;
295 * list_empty - tests whether a list is empty
296 * @head: the list to test.
298 static inline int list_empty(const struct list_head *head)
300 return head->next == head;
304 * list_empty_careful - tests whether a list is empty and not being modified
305 * @head: the list to test
307 * Description:
308 * tests whether a list is empty _and_ checks that no other CPU might be
309 * in the process of modifying either member (next or prev)
311 * NOTE: using list_empty_careful() without synchronization
312 * can only be safe if the only activity that can happen
313 * to the list entry is list_del_init(). Eg. it cannot be used
314 * if another CPU could re-list_add() it.
316 static inline int list_empty_careful(const struct list_head *head)
318 struct list_head *next = head->next;
319 return (next == head) && (next == head->prev);
322 static inline void __list_splice(struct list_head *list,
323 struct list_head *head)
325 struct list_head *first = list->next;
326 struct list_head *last = list->prev;
327 struct list_head *at = head->next;
329 first->prev = head;
330 head->next = first;
332 last->next = at;
333 at->prev = last;
337 * list_splice - join two lists
338 * @list: the new list to add.
339 * @head: the place to add it in the first list.
341 static inline void list_splice(struct list_head *list, struct list_head *head)
343 if (!list_empty(list))
344 __list_splice(list, head);
348 * list_splice_init - join two lists and reinitialise the emptied list.
349 * @list: the new list to add.
350 * @head: the place to add it in the first list.
352 * The list at @list is reinitialised
354 static inline void list_splice_init(struct list_head *list,
355 struct list_head *head)
357 if (!list_empty(list)) {
358 __list_splice(list, head);
359 INIT_LIST_HEAD(list);
364 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
365 * @list: the RCU-protected list to splice
366 * @head: the place in the list to splice the first list into
367 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
369 * @head can be RCU-read traversed concurrently with this function.
371 * Note that this function blocks.
373 * Important note: the caller must take whatever action is necessary to
374 * prevent any other updates to @head. In principle, it is possible
375 * to modify the list as soon as sync() begins execution.
376 * If this sort of thing becomes necessary, an alternative version
377 * based on call_rcu() could be created. But only if -really-
378 * needed -- there is no shortage of RCU API members.
380 static inline void list_splice_init_rcu(struct list_head *list,
381 struct list_head *head,
382 void (*sync)(void))
384 struct list_head *first = list->next;
385 struct list_head *last = list->prev;
386 struct list_head *at = head->next;
388 if (list_empty(head))
389 return;
391 /* "first" and "last" tracking list, so initialize it. */
393 INIT_LIST_HEAD(list);
396 * At this point, the list body still points to the source list.
397 * Wait for any readers to finish using the list before splicing
398 * the list body into the new list. Any new readers will see
399 * an empty list.
402 sync();
405 * Readers are finished with the source list, so perform splice.
406 * The order is important if the new list is global and accessible
407 * to concurrent RCU readers. Note that RCU readers are not
408 * permitted to traverse the prev pointers without excluding
409 * this function.
412 last->next = at;
413 smp_wmb();
414 head->next = first;
415 first->prev = head;
416 at->prev = last;
420 * list_entry - get the struct for this entry
421 * @ptr: the &struct list_head pointer.
422 * @type: the type of the struct this is embedded in.
423 * @member: the name of the list_struct within the struct.
425 #define list_entry(ptr, type, member) \
426 container_of(ptr, type, member)
429 * list_first_entry - get the first element from a list
430 * @ptr: the list head to take the element from.
431 * @type: the type of the struct this is embedded in.
432 * @member: the name of the list_struct within the struct.
434 * Note, that list is expected to be not empty.
436 #define list_first_entry(ptr, type, member) \
437 list_entry((ptr)->next, type, member)
440 * list_for_each - iterate over a list
441 * @pos: the &struct list_head to use as a loop cursor.
442 * @head: the head for your list.
444 #define list_for_each(pos, head) \
445 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
446 pos = pos->next)
449 * __list_for_each - iterate over a list
450 * @pos: the &struct list_head to use as a loop cursor.
451 * @head: the head for your list.
453 * This variant differs from list_for_each() in that it's the
454 * simplest possible list iteration code, no prefetching is done.
455 * Use this for code that knows the list to be very short (empty
456 * or 1 entry) most of the time.
458 #define __list_for_each(pos, head) \
459 for (pos = (head)->next; pos != (head); pos = pos->next)
462 * list_for_each_prev - iterate over a list backwards
463 * @pos: the &struct list_head to use as a loop cursor.
464 * @head: the head for your list.
466 #define list_for_each_prev(pos, head) \
467 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
468 pos = pos->prev)
471 * list_for_each_safe - iterate over a list safe against removal of list entry
472 * @pos: the &struct list_head to use as a loop cursor.
473 * @n: another &struct list_head to use as temporary storage
474 * @head: the head for your list.
476 #define list_for_each_safe(pos, n, head) \
477 for (pos = (head)->next, n = pos->next; pos != (head); \
478 pos = n, n = pos->next)
481 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
482 * @pos: the &struct list_head to use as a loop cursor.
483 * @n: another &struct list_head to use as temporary storage
484 * @head: the head for your list.
486 #define list_for_each_prev_safe(pos, n, head) \
487 for (pos = (head)->prev, n = pos->prev; \
488 prefetch(pos->prev), pos != (head); \
489 pos = n, n = pos->prev)
492 * list_for_each_entry - iterate over list of given type
493 * @pos: the type * to use as a loop cursor.
494 * @head: the head for your list.
495 * @member: the name of the list_struct within the struct.
497 #define list_for_each_entry(pos, head, member) \
498 for (pos = list_entry((head)->next, typeof(*pos), member); \
499 prefetch(pos->member.next), &pos->member != (head); \
500 pos = list_entry(pos->member.next, typeof(*pos), member))
503 * list_for_each_entry_reverse - iterate backwards over list of given type.
504 * @pos: the type * to use as a loop cursor.
505 * @head: the head for your list.
506 * @member: the name of the list_struct within the struct.
508 #define list_for_each_entry_reverse(pos, head, member) \
509 for (pos = list_entry((head)->prev, typeof(*pos), member); \
510 prefetch(pos->member.prev), &pos->member != (head); \
511 pos = list_entry(pos->member.prev, typeof(*pos), member))
514 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
515 * @pos: the type * to use as a start point
516 * @head: the head of the list
517 * @member: the name of the list_struct within the struct.
519 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
521 #define list_prepare_entry(pos, head, member) \
522 ((pos) ? : list_entry(head, typeof(*pos), member))
525 * list_for_each_entry_continue - continue iteration over list of given type
526 * @pos: the type * to use as a loop cursor.
527 * @head: the head for your list.
528 * @member: the name of the list_struct within the struct.
530 * Continue to iterate over list of given type, continuing after
531 * the current position.
533 #define list_for_each_entry_continue(pos, head, member) \
534 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
535 prefetch(pos->member.next), &pos->member != (head); \
536 pos = list_entry(pos->member.next, typeof(*pos), member))
539 * list_for_each_entry_continue_reverse - iterate backwards from the given point
540 * @pos: the type * to use as a loop cursor.
541 * @head: the head for your list.
542 * @member: the name of the list_struct within the struct.
544 * Start to iterate over list of given type backwards, continuing after
545 * the current position.
547 #define list_for_each_entry_continue_reverse(pos, head, member) \
548 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
549 prefetch(pos->member.prev), &pos->member != (head); \
550 pos = list_entry(pos->member.prev, typeof(*pos), member))
553 * list_for_each_entry_from - iterate over list of given type from the current point
554 * @pos: the type * to use as a loop cursor.
555 * @head: the head for your list.
556 * @member: the name of the list_struct within the struct.
558 * Iterate over list of given type, continuing from current position.
560 #define list_for_each_entry_from(pos, head, member) \
561 for (; prefetch(pos->member.next), &pos->member != (head); \
562 pos = list_entry(pos->member.next, typeof(*pos), member))
565 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
566 * @pos: the type * to use as a loop cursor.
567 * @n: another type * to use as temporary storage
568 * @head: the head for your list.
569 * @member: the name of the list_struct within the struct.
571 #define list_for_each_entry_safe(pos, n, head, member) \
572 for (pos = list_entry((head)->next, typeof(*pos), member), \
573 n = list_entry(pos->member.next, typeof(*pos), member); \
574 &pos->member != (head); \
575 pos = n, n = list_entry(n->member.next, typeof(*n), member))
578 * list_for_each_entry_safe_continue
579 * @pos: the type * to use as a loop cursor.
580 * @n: another type * to use as temporary storage
581 * @head: the head for your list.
582 * @member: the name of the list_struct within the struct.
584 * Iterate over list of given type, continuing after current point,
585 * safe against removal of list entry.
587 #define list_for_each_entry_safe_continue(pos, n, head, member) \
588 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
589 n = list_entry(pos->member.next, typeof(*pos), member); \
590 &pos->member != (head); \
591 pos = n, n = list_entry(n->member.next, typeof(*n), member))
594 * list_for_each_entry_safe_from
595 * @pos: the type * to use as a loop cursor.
596 * @n: another type * to use as temporary storage
597 * @head: the head for your list.
598 * @member: the name of the list_struct within the struct.
600 * Iterate over list of given type from current point, safe against
601 * removal of list entry.
603 #define list_for_each_entry_safe_from(pos, n, head, member) \
604 for (n = list_entry(pos->member.next, typeof(*pos), member); \
605 &pos->member != (head); \
606 pos = n, n = list_entry(n->member.next, typeof(*n), member))
609 * list_for_each_entry_safe_reverse
610 * @pos: the type * to use as a loop cursor.
611 * @n: another type * to use as temporary storage
612 * @head: the head for your list.
613 * @member: the name of the list_struct within the struct.
615 * Iterate backwards over list of given type, safe against removal
616 * of list entry.
618 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
619 for (pos = list_entry((head)->prev, typeof(*pos), member), \
620 n = list_entry(pos->member.prev, typeof(*pos), member); \
621 &pos->member != (head); \
622 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
625 * list_for_each_rcu - iterate over an rcu-protected list
626 * @pos: the &struct list_head to use as a loop cursor.
627 * @head: the head for your list.
629 * This list-traversal primitive may safely run concurrently with
630 * the _rcu list-mutation primitives such as list_add_rcu()
631 * as long as the traversal is guarded by rcu_read_lock().
633 #define list_for_each_rcu(pos, head) \
634 for (pos = (head)->next; \
635 prefetch(rcu_dereference(pos)->next), pos != (head); \
636 pos = pos->next)
638 #define __list_for_each_rcu(pos, head) \
639 for (pos = (head)->next; \
640 rcu_dereference(pos) != (head); \
641 pos = pos->next)
644 * list_for_each_safe_rcu
645 * @pos: the &struct list_head to use as a loop cursor.
646 * @n: another &struct list_head to use as temporary storage
647 * @head: the head for your list.
649 * Iterate over an rcu-protected list, safe against removal of list entry.
651 * This list-traversal primitive may safely run concurrently with
652 * the _rcu list-mutation primitives such as list_add_rcu()
653 * as long as the traversal is guarded by rcu_read_lock().
655 #define list_for_each_safe_rcu(pos, n, head) \
656 for (pos = (head)->next; \
657 n = rcu_dereference(pos)->next, pos != (head); \
658 pos = n)
661 * list_for_each_entry_rcu - iterate over rcu list of given type
662 * @pos: the type * to use as a loop cursor.
663 * @head: the head for your list.
664 * @member: the name of the list_struct within the struct.
666 * This list-traversal primitive may safely run concurrently with
667 * the _rcu list-mutation primitives such as list_add_rcu()
668 * as long as the traversal is guarded by rcu_read_lock().
670 #define list_for_each_entry_rcu(pos, head, member) \
671 for (pos = list_entry((head)->next, typeof(*pos), member); \
672 prefetch(rcu_dereference(pos)->member.next), \
673 &pos->member != (head); \
674 pos = list_entry(pos->member.next, typeof(*pos), member))
678 * list_for_each_continue_rcu
679 * @pos: the &struct list_head to use as a loop cursor.
680 * @head: the head for your list.
682 * Iterate over an rcu-protected list, continuing after current point.
684 * This list-traversal primitive may safely run concurrently with
685 * the _rcu list-mutation primitives such as list_add_rcu()
686 * as long as the traversal is guarded by rcu_read_lock().
688 #define list_for_each_continue_rcu(pos, head) \
689 for ((pos) = (pos)->next; \
690 prefetch(rcu_dereference((pos))->next), (pos) != (head); \
691 (pos) = (pos)->next)
694 * Double linked lists with a single pointer list head.
695 * Mostly useful for hash tables where the two pointer list head is
696 * too wasteful.
697 * You lose the ability to access the tail in O(1).
700 struct hlist_head {
701 struct hlist_node *first;
704 struct hlist_node {
705 struct hlist_node *next, **pprev;
708 #define HLIST_HEAD_INIT { .first = NULL }
709 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
710 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
711 static inline void INIT_HLIST_NODE(struct hlist_node *h)
713 h->next = NULL;
714 h->pprev = NULL;
717 static inline int hlist_unhashed(const struct hlist_node *h)
719 return !h->pprev;
722 static inline int hlist_empty(const struct hlist_head *h)
724 return !h->first;
727 static inline void __hlist_del(struct hlist_node *n)
729 struct hlist_node *next = n->next;
730 struct hlist_node **pprev = n->pprev;
731 *pprev = next;
732 if (next)
733 next->pprev = pprev;
736 static inline void hlist_del(struct hlist_node *n)
738 __hlist_del(n);
739 n->next = LIST_POISON1;
740 n->pprev = LIST_POISON2;
744 * hlist_del_rcu - deletes entry from hash list without re-initialization
745 * @n: the element to delete from the hash list.
747 * Note: list_unhashed() on entry does not return true after this,
748 * the entry is in an undefined state. It is useful for RCU based
749 * lockfree traversal.
751 * In particular, it means that we can not poison the forward
752 * pointers that may still be used for walking the hash list.
754 * The caller must take whatever precautions are necessary
755 * (such as holding appropriate locks) to avoid racing
756 * with another list-mutation primitive, such as hlist_add_head_rcu()
757 * or hlist_del_rcu(), running on this same list.
758 * However, it is perfectly legal to run concurrently with
759 * the _rcu list-traversal primitives, such as
760 * hlist_for_each_entry().
762 static inline void hlist_del_rcu(struct hlist_node *n)
764 __hlist_del(n);
765 n->pprev = LIST_POISON2;
768 static inline void hlist_del_init(struct hlist_node *n)
770 if (!hlist_unhashed(n)) {
771 __hlist_del(n);
772 INIT_HLIST_NODE(n);
777 * hlist_replace_rcu - replace old entry by new one
778 * @old : the element to be replaced
779 * @new : the new element to insert
781 * The @old entry will be replaced with the @new entry atomically.
783 static inline void hlist_replace_rcu(struct hlist_node *old,
784 struct hlist_node *new)
786 struct hlist_node *next = old->next;
788 new->next = next;
789 new->pprev = old->pprev;
790 smp_wmb();
791 if (next)
792 new->next->pprev = &new->next;
793 *new->pprev = new;
794 old->pprev = LIST_POISON2;
797 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
799 struct hlist_node *first = h->first;
800 n->next = first;
801 if (first)
802 first->pprev = &n->next;
803 h->first = n;
804 n->pprev = &h->first;
809 * hlist_add_head_rcu
810 * @n: the element to add to the hash list.
811 * @h: the list to add to.
813 * Description:
814 * Adds the specified element to the specified hlist,
815 * while permitting racing traversals.
817 * The caller must take whatever precautions are necessary
818 * (such as holding appropriate locks) to avoid racing
819 * with another list-mutation primitive, such as hlist_add_head_rcu()
820 * or hlist_del_rcu(), running on this same list.
821 * However, it is perfectly legal to run concurrently with
822 * the _rcu list-traversal primitives, such as
823 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
824 * problems on Alpha CPUs. Regardless of the type of CPU, the
825 * list-traversal primitive must be guarded by rcu_read_lock().
827 static inline void hlist_add_head_rcu(struct hlist_node *n,
828 struct hlist_head *h)
830 struct hlist_node *first = h->first;
831 n->next = first;
832 n->pprev = &h->first;
833 smp_wmb();
834 if (first)
835 first->pprev = &n->next;
836 h->first = n;
839 /* next must be != NULL */
840 static inline void hlist_add_before(struct hlist_node *n,
841 struct hlist_node *next)
843 n->pprev = next->pprev;
844 n->next = next;
845 next->pprev = &n->next;
846 *(n->pprev) = n;
849 static inline void hlist_add_after(struct hlist_node *n,
850 struct hlist_node *next)
852 next->next = n->next;
853 n->next = next;
854 next->pprev = &n->next;
856 if(next->next)
857 next->next->pprev = &next->next;
861 * hlist_add_before_rcu
862 * @n: the new element to add to the hash list.
863 * @next: the existing element to add the new element before.
865 * Description:
866 * Adds the specified element to the specified hlist
867 * before the specified node while permitting racing traversals.
869 * The caller must take whatever precautions are necessary
870 * (such as holding appropriate locks) to avoid racing
871 * with another list-mutation primitive, such as hlist_add_head_rcu()
872 * or hlist_del_rcu(), running on this same list.
873 * However, it is perfectly legal to run concurrently with
874 * the _rcu list-traversal primitives, such as
875 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
876 * problems on Alpha CPUs.
878 static inline void hlist_add_before_rcu(struct hlist_node *n,
879 struct hlist_node *next)
881 n->pprev = next->pprev;
882 n->next = next;
883 smp_wmb();
884 next->pprev = &n->next;
885 *(n->pprev) = n;
889 * hlist_add_after_rcu
890 * @prev: the existing element to add the new element after.
891 * @n: the new element to add to the hash list.
893 * Description:
894 * Adds the specified element to the specified hlist
895 * after the specified node while permitting racing traversals.
897 * The caller must take whatever precautions are necessary
898 * (such as holding appropriate locks) to avoid racing
899 * with another list-mutation primitive, such as hlist_add_head_rcu()
900 * or hlist_del_rcu(), running on this same list.
901 * However, it is perfectly legal to run concurrently with
902 * the _rcu list-traversal primitives, such as
903 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
904 * problems on Alpha CPUs.
906 static inline void hlist_add_after_rcu(struct hlist_node *prev,
907 struct hlist_node *n)
909 n->next = prev->next;
910 n->pprev = &prev->next;
911 smp_wmb();
912 prev->next = n;
913 if (n->next)
914 n->next->pprev = &n->next;
917 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
919 #define hlist_for_each(pos, head) \
920 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
921 pos = pos->next)
923 #define hlist_for_each_safe(pos, n, head) \
924 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
925 pos = n)
928 * hlist_for_each_entry - iterate over list of given type
929 * @tpos: the type * to use as a loop cursor.
930 * @pos: the &struct hlist_node to use as a loop cursor.
931 * @head: the head for your list.
932 * @member: the name of the hlist_node within the struct.
934 #define hlist_for_each_entry(tpos, pos, head, member) \
935 for (pos = (head)->first; \
936 pos && ({ prefetch(pos->next); 1;}) && \
937 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
938 pos = pos->next)
941 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
942 * @tpos: the type * to use as a loop cursor.
943 * @pos: the &struct hlist_node to use as a loop cursor.
944 * @member: the name of the hlist_node within the struct.
946 #define hlist_for_each_entry_continue(tpos, pos, member) \
947 for (pos = (pos)->next; \
948 pos && ({ prefetch(pos->next); 1;}) && \
949 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
950 pos = pos->next)
953 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
954 * @tpos: the type * to use as a loop cursor.
955 * @pos: the &struct hlist_node to use as a loop cursor.
956 * @member: the name of the hlist_node within the struct.
958 #define hlist_for_each_entry_from(tpos, pos, member) \
959 for (; pos && ({ prefetch(pos->next); 1;}) && \
960 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
961 pos = pos->next)
964 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
965 * @tpos: the type * to use as a loop cursor.
966 * @pos: the &struct hlist_node to use as a loop cursor.
967 * @n: another &struct hlist_node to use as temporary storage
968 * @head: the head for your list.
969 * @member: the name of the hlist_node within the struct.
971 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
972 for (pos = (head)->first; \
973 pos && ({ n = pos->next; 1; }) && \
974 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
975 pos = n)
978 * hlist_for_each_entry_rcu - iterate over rcu list of given type
979 * @tpos: the type * to use as a loop cursor.
980 * @pos: the &struct hlist_node to use as a loop cursor.
981 * @head: the head for your list.
982 * @member: the name of the hlist_node within the struct.
984 * This list-traversal primitive may safely run concurrently with
985 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
986 * as long as the traversal is guarded by rcu_read_lock().
988 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
989 for (pos = (head)->first; \
990 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \
991 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
992 pos = pos->next)
994 #else
995 #warning "don't include kernel headers in userspace"
996 #endif /* __KERNEL__ */
997 #endif