2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data
);
38 static void blk_unplug_timeout(unsigned long data
);
39 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
40 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
41 static int __make_request(request_queue_t
*q
, struct bio
*bio
);
42 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
);
45 * For the allocated request tables
47 static kmem_cache_t
*request_cachep
;
50 * For queue allocation
52 static kmem_cache_t
*requestq_cachep
;
55 * For io context allocations
57 static kmem_cache_t
*iocontext_cachep
;
59 static wait_queue_head_t congestion_wqh
[2] = {
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
61 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
65 * Controlling structure to kblockd
67 static struct workqueue_struct
*kblockd_workqueue
;
69 unsigned long blk_max_low_pfn
, blk_max_pfn
;
71 EXPORT_SYMBOL(blk_max_low_pfn
);
72 EXPORT_SYMBOL(blk_max_pfn
);
74 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
87 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
89 return q
->nr_congestion_on
;
93 * The threshold at which a queue is considered to be uncongested
95 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
97 return q
->nr_congestion_off
;
100 static void blk_queue_congestion_threshold(struct request_queue
*q
)
104 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
105 if (nr
> q
->nr_requests
)
107 q
->nr_congestion_on
= nr
;
109 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
112 q
->nr_congestion_off
= nr
;
116 * A queue has just exitted congestion. Note this in the global counter of
117 * congested queues, and wake up anyone who was waiting for requests to be
120 static void clear_queue_congested(request_queue_t
*q
, int rw
)
123 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
125 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
126 clear_bit(bit
, &q
->backing_dev_info
.state
);
127 smp_mb__after_clear_bit();
128 if (waitqueue_active(wqh
))
133 * A queue has just entered congestion. Flag that in the queue's VM-visible
134 * state flags and increment the global gounter of congested queues.
136 static void set_queue_congested(request_queue_t
*q
, int rw
)
140 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
141 set_bit(bit
, &q
->backing_dev_info
.state
);
145 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
148 * Locates the passed device's request queue and returns the address of its
151 * Will return NULL if the request queue cannot be located.
153 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
155 struct backing_dev_info
*ret
= NULL
;
156 request_queue_t
*q
= bdev_get_queue(bdev
);
159 ret
= &q
->backing_dev_info
;
163 EXPORT_SYMBOL(blk_get_backing_dev_info
);
165 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
168 q
->activity_data
= data
;
171 EXPORT_SYMBOL(blk_queue_activity_fn
);
174 * blk_queue_prep_rq - set a prepare_request function for queue
176 * @pfn: prepare_request function
178 * It's possible for a queue to register a prepare_request callback which
179 * is invoked before the request is handed to the request_fn. The goal of
180 * the function is to prepare a request for I/O, it can be used to build a
181 * cdb from the request data for instance.
184 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
189 EXPORT_SYMBOL(blk_queue_prep_rq
);
192 * blk_queue_merge_bvec - set a merge_bvec function for queue
194 * @mbfn: merge_bvec_fn
196 * Usually queues have static limitations on the max sectors or segments that
197 * we can put in a request. Stacking drivers may have some settings that
198 * are dynamic, and thus we have to query the queue whether it is ok to
199 * add a new bio_vec to a bio at a given offset or not. If the block device
200 * has such limitations, it needs to register a merge_bvec_fn to control
201 * the size of bio's sent to it. Note that a block device *must* allow a
202 * single page to be added to an empty bio. The block device driver may want
203 * to use the bio_split() function to deal with these bio's. By default
204 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
207 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
209 q
->merge_bvec_fn
= mbfn
;
212 EXPORT_SYMBOL(blk_queue_merge_bvec
);
214 void blk_queue_softirq_done(request_queue_t
*q
, softirq_done_fn
*fn
)
216 q
->softirq_done_fn
= fn
;
219 EXPORT_SYMBOL(blk_queue_softirq_done
);
222 * blk_queue_make_request - define an alternate make_request function for a device
223 * @q: the request queue for the device to be affected
224 * @mfn: the alternate make_request function
227 * The normal way for &struct bios to be passed to a device
228 * driver is for them to be collected into requests on a request
229 * queue, and then to allow the device driver to select requests
230 * off that queue when it is ready. This works well for many block
231 * devices. However some block devices (typically virtual devices
232 * such as md or lvm) do not benefit from the processing on the
233 * request queue, and are served best by having the requests passed
234 * directly to them. This can be achieved by providing a function
235 * to blk_queue_make_request().
238 * The driver that does this *must* be able to deal appropriately
239 * with buffers in "highmemory". This can be accomplished by either calling
240 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
241 * blk_queue_bounce() to create a buffer in normal memory.
243 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
248 q
->nr_requests
= BLKDEV_MAX_RQ
;
249 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
250 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
251 q
->make_request_fn
= mfn
;
252 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
253 q
->backing_dev_info
.state
= 0;
254 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
255 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
256 blk_queue_hardsect_size(q
, 512);
257 blk_queue_dma_alignment(q
, 511);
258 blk_queue_congestion_threshold(q
);
259 q
->nr_batching
= BLK_BATCH_REQ
;
261 q
->unplug_thresh
= 4; /* hmm */
262 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
263 if (q
->unplug_delay
== 0)
266 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
268 q
->unplug_timer
.function
= blk_unplug_timeout
;
269 q
->unplug_timer
.data
= (unsigned long)q
;
272 * by default assume old behaviour and bounce for any highmem page
274 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
276 blk_queue_activity_fn(q
, NULL
, NULL
);
279 EXPORT_SYMBOL(blk_queue_make_request
);
281 static void rq_init(request_queue_t
*q
, struct request
*rq
)
283 INIT_LIST_HEAD(&rq
->queuelist
);
284 INIT_LIST_HEAD(&rq
->donelist
);
287 rq
->bio
= rq
->biotail
= NULL
;
288 INIT_HLIST_NODE(&rq
->hash
);
289 RB_CLEAR_NODE(&rq
->rb_node
);
297 rq
->nr_phys_segments
= 0;
300 rq
->end_io_data
= NULL
;
301 rq
->completion_data
= NULL
;
305 * blk_queue_ordered - does this queue support ordered writes
306 * @q: the request queue
307 * @ordered: one of QUEUE_ORDERED_*
308 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
311 * For journalled file systems, doing ordered writes on a commit
312 * block instead of explicitly doing wait_on_buffer (which is bad
313 * for performance) can be a big win. Block drivers supporting this
314 * feature should call this function and indicate so.
317 int blk_queue_ordered(request_queue_t
*q
, unsigned ordered
,
318 prepare_flush_fn
*prepare_flush_fn
)
320 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
321 prepare_flush_fn
== NULL
) {
322 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
326 if (ordered
!= QUEUE_ORDERED_NONE
&&
327 ordered
!= QUEUE_ORDERED_DRAIN
&&
328 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
329 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
330 ordered
!= QUEUE_ORDERED_TAG
&&
331 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
332 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
333 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
337 q
->ordered
= ordered
;
338 q
->next_ordered
= ordered
;
339 q
->prepare_flush_fn
= prepare_flush_fn
;
344 EXPORT_SYMBOL(blk_queue_ordered
);
347 * blk_queue_issue_flush_fn - set function for issuing a flush
348 * @q: the request queue
349 * @iff: the function to be called issuing the flush
352 * If a driver supports issuing a flush command, the support is notified
353 * to the block layer by defining it through this call.
356 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
358 q
->issue_flush_fn
= iff
;
361 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
364 * Cache flushing for ordered writes handling
366 inline unsigned blk_ordered_cur_seq(request_queue_t
*q
)
370 return 1 << ffz(q
->ordseq
);
373 unsigned blk_ordered_req_seq(struct request
*rq
)
375 request_queue_t
*q
= rq
->q
;
377 BUG_ON(q
->ordseq
== 0);
379 if (rq
== &q
->pre_flush_rq
)
380 return QUEUE_ORDSEQ_PREFLUSH
;
381 if (rq
== &q
->bar_rq
)
382 return QUEUE_ORDSEQ_BAR
;
383 if (rq
== &q
->post_flush_rq
)
384 return QUEUE_ORDSEQ_POSTFLUSH
;
386 if ((rq
->cmd_flags
& REQ_ORDERED_COLOR
) ==
387 (q
->orig_bar_rq
->cmd_flags
& REQ_ORDERED_COLOR
))
388 return QUEUE_ORDSEQ_DRAIN
;
390 return QUEUE_ORDSEQ_DONE
;
393 void blk_ordered_complete_seq(request_queue_t
*q
, unsigned seq
, int error
)
398 if (error
&& !q
->orderr
)
401 BUG_ON(q
->ordseq
& seq
);
404 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
408 * Okay, sequence complete.
411 uptodate
= q
->orderr
? q
->orderr
: 1;
415 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
416 end_that_request_last(rq
, uptodate
);
419 static void pre_flush_end_io(struct request
*rq
, int error
)
421 elv_completed_request(rq
->q
, rq
);
422 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
425 static void bar_end_io(struct request
*rq
, int error
)
427 elv_completed_request(rq
->q
, rq
);
428 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
431 static void post_flush_end_io(struct request
*rq
, int error
)
433 elv_completed_request(rq
->q
, rq
);
434 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
437 static void queue_flush(request_queue_t
*q
, unsigned which
)
440 rq_end_io_fn
*end_io
;
442 if (which
== QUEUE_ORDERED_PREFLUSH
) {
443 rq
= &q
->pre_flush_rq
;
444 end_io
= pre_flush_end_io
;
446 rq
= &q
->post_flush_rq
;
447 end_io
= post_flush_end_io
;
450 rq
->cmd_flags
= REQ_HARDBARRIER
;
452 rq
->elevator_private
= NULL
;
453 rq
->elevator_private2
= NULL
;
454 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
456 q
->prepare_flush_fn(q
, rq
);
458 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
461 static inline struct request
*start_ordered(request_queue_t
*q
,
466 q
->ordered
= q
->next_ordered
;
467 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
470 * Prep proxy barrier request.
472 blkdev_dequeue_request(rq
);
477 if (bio_data_dir(q
->orig_bar_rq
->bio
) == WRITE
)
478 rq
->cmd_flags
|= REQ_RW
;
479 rq
->cmd_flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
480 rq
->elevator_private
= NULL
;
481 rq
->elevator_private2
= NULL
;
482 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
483 rq
->end_io
= bar_end_io
;
486 * Queue ordered sequence. As we stack them at the head, we
487 * need to queue in reverse order. Note that we rely on that
488 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
489 * request gets inbetween ordered sequence.
491 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
492 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
494 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
496 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
498 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
499 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
500 rq
= &q
->pre_flush_rq
;
502 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
504 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
505 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
512 int blk_do_ordered(request_queue_t
*q
, struct request
**rqp
)
514 struct request
*rq
= *rqp
;
515 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
521 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
522 *rqp
= start_ordered(q
, rq
);
526 * This can happen when the queue switches to
527 * ORDERED_NONE while this request is on it.
529 blkdev_dequeue_request(rq
);
530 end_that_request_first(rq
, -EOPNOTSUPP
,
531 rq
->hard_nr_sectors
);
532 end_that_request_last(rq
, -EOPNOTSUPP
);
539 * Ordered sequence in progress
542 /* Special requests are not subject to ordering rules. */
543 if (!blk_fs_request(rq
) &&
544 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
547 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
548 /* Ordered by tag. Blocking the next barrier is enough. */
549 if (is_barrier
&& rq
!= &q
->bar_rq
)
552 /* Ordered by draining. Wait for turn. */
553 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
554 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
561 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
563 request_queue_t
*q
= bio
->bi_private
;
564 struct bio_vec
*bvec
;
568 * This is dry run, restore bio_sector and size. We'll finish
569 * this request again with the original bi_end_io after an
570 * error occurs or post flush is complete.
579 bio_for_each_segment(bvec
, bio
, i
) {
580 bvec
->bv_len
+= bvec
->bv_offset
;
585 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
586 bio
->bi_size
= q
->bi_size
;
587 bio
->bi_sector
-= (q
->bi_size
>> 9);
593 static int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
594 unsigned int nbytes
, int error
)
596 request_queue_t
*q
= rq
->q
;
600 if (&q
->bar_rq
!= rq
)
604 * Okay, this is the barrier request in progress, dry finish it.
606 if (error
&& !q
->orderr
)
609 endio
= bio
->bi_end_io
;
610 private = bio
->bi_private
;
611 bio
->bi_end_io
= flush_dry_bio_endio
;
614 bio_endio(bio
, nbytes
, error
);
616 bio
->bi_end_io
= endio
;
617 bio
->bi_private
= private;
623 * blk_queue_bounce_limit - set bounce buffer limit for queue
624 * @q: the request queue for the device
625 * @dma_addr: bus address limit
628 * Different hardware can have different requirements as to what pages
629 * it can do I/O directly to. A low level driver can call
630 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
631 * buffers for doing I/O to pages residing above @page.
633 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
635 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
638 q
->bounce_gfp
= GFP_NOIO
;
639 #if BITS_PER_LONG == 64
640 /* Assume anything <= 4GB can be handled by IOMMU.
641 Actually some IOMMUs can handle everything, but I don't
642 know of a way to test this here. */
643 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
645 q
->bounce_pfn
= max_low_pfn
;
647 if (bounce_pfn
< blk_max_low_pfn
)
649 q
->bounce_pfn
= bounce_pfn
;
652 init_emergency_isa_pool();
653 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
654 q
->bounce_pfn
= bounce_pfn
;
658 EXPORT_SYMBOL(blk_queue_bounce_limit
);
661 * blk_queue_max_sectors - set max sectors for a request for this queue
662 * @q: the request queue for the device
663 * @max_sectors: max sectors in the usual 512b unit
666 * Enables a low level driver to set an upper limit on the size of
669 void blk_queue_max_sectors(request_queue_t
*q
, unsigned int max_sectors
)
671 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
672 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
673 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
676 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
677 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
679 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
680 q
->max_hw_sectors
= max_sectors
;
684 EXPORT_SYMBOL(blk_queue_max_sectors
);
687 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
688 * @q: the request queue for the device
689 * @max_segments: max number of segments
692 * Enables a low level driver to set an upper limit on the number of
693 * physical data segments in a request. This would be the largest sized
694 * scatter list the driver could handle.
696 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
700 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
703 q
->max_phys_segments
= max_segments
;
706 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
709 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
710 * @q: the request queue for the device
711 * @max_segments: max number of segments
714 * Enables a low level driver to set an upper limit on the number of
715 * hw data segments in a request. This would be the largest number of
716 * address/length pairs the host adapter can actually give as once
719 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
723 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
726 q
->max_hw_segments
= max_segments
;
729 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
732 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
733 * @q: the request queue for the device
734 * @max_size: max size of segment in bytes
737 * Enables a low level driver to set an upper limit on the size of a
740 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
742 if (max_size
< PAGE_CACHE_SIZE
) {
743 max_size
= PAGE_CACHE_SIZE
;
744 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
747 q
->max_segment_size
= max_size
;
750 EXPORT_SYMBOL(blk_queue_max_segment_size
);
753 * blk_queue_hardsect_size - set hardware sector size for the queue
754 * @q: the request queue for the device
755 * @size: the hardware sector size, in bytes
758 * This should typically be set to the lowest possible sector size
759 * that the hardware can operate on (possible without reverting to
760 * even internal read-modify-write operations). Usually the default
761 * of 512 covers most hardware.
763 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
765 q
->hardsect_size
= size
;
768 EXPORT_SYMBOL(blk_queue_hardsect_size
);
771 * Returns the minimum that is _not_ zero, unless both are zero.
773 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
776 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
777 * @t: the stacking driver (top)
778 * @b: the underlying device (bottom)
780 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
782 /* zero is "infinity" */
783 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
784 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
786 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
787 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
788 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
789 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
790 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
791 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
794 EXPORT_SYMBOL(blk_queue_stack_limits
);
797 * blk_queue_segment_boundary - set boundary rules for segment merging
798 * @q: the request queue for the device
799 * @mask: the memory boundary mask
801 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
803 if (mask
< PAGE_CACHE_SIZE
- 1) {
804 mask
= PAGE_CACHE_SIZE
- 1;
805 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
808 q
->seg_boundary_mask
= mask
;
811 EXPORT_SYMBOL(blk_queue_segment_boundary
);
814 * blk_queue_dma_alignment - set dma length and memory alignment
815 * @q: the request queue for the device
816 * @mask: alignment mask
819 * set required memory and length aligment for direct dma transactions.
820 * this is used when buiding direct io requests for the queue.
823 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
825 q
->dma_alignment
= mask
;
828 EXPORT_SYMBOL(blk_queue_dma_alignment
);
831 * blk_queue_find_tag - find a request by its tag and queue
832 * @q: The request queue for the device
833 * @tag: The tag of the request
836 * Should be used when a device returns a tag and you want to match
839 * no locks need be held.
841 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
843 struct blk_queue_tag
*bqt
= q
->queue_tags
;
845 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
848 return bqt
->tag_index
[tag
];
851 EXPORT_SYMBOL(blk_queue_find_tag
);
854 * __blk_free_tags - release a given set of tag maintenance info
855 * @bqt: the tag map to free
857 * Tries to free the specified @bqt@. Returns true if it was
858 * actually freed and false if there are still references using it
860 static int __blk_free_tags(struct blk_queue_tag
*bqt
)
864 retval
= atomic_dec_and_test(&bqt
->refcnt
);
867 BUG_ON(!list_empty(&bqt
->busy_list
));
869 kfree(bqt
->tag_index
);
870 bqt
->tag_index
= NULL
;
883 * __blk_queue_free_tags - release tag maintenance info
884 * @q: the request queue for the device
887 * blk_cleanup_queue() will take care of calling this function, if tagging
888 * has been used. So there's no need to call this directly.
890 static void __blk_queue_free_tags(request_queue_t
*q
)
892 struct blk_queue_tag
*bqt
= q
->queue_tags
;
897 __blk_free_tags(bqt
);
899 q
->queue_tags
= NULL
;
900 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
905 * blk_free_tags - release a given set of tag maintenance info
906 * @bqt: the tag map to free
908 * For externally managed @bqt@ frees the map. Callers of this
909 * function must guarantee to have released all the queues that
910 * might have been using this tag map.
912 void blk_free_tags(struct blk_queue_tag
*bqt
)
914 if (unlikely(!__blk_free_tags(bqt
)))
917 EXPORT_SYMBOL(blk_free_tags
);
920 * blk_queue_free_tags - release tag maintenance info
921 * @q: the request queue for the device
924 * This is used to disabled tagged queuing to a device, yet leave
927 void blk_queue_free_tags(request_queue_t
*q
)
929 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
932 EXPORT_SYMBOL(blk_queue_free_tags
);
935 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
937 struct request
**tag_index
;
938 unsigned long *tag_map
;
941 if (q
&& depth
> q
->nr_requests
* 2) {
942 depth
= q
->nr_requests
* 2;
943 printk(KERN_ERR
"%s: adjusted depth to %d\n",
944 __FUNCTION__
, depth
);
947 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
951 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
952 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
956 tags
->real_max_depth
= depth
;
957 tags
->max_depth
= depth
;
958 tags
->tag_index
= tag_index
;
959 tags
->tag_map
= tag_map
;
967 static struct blk_queue_tag
*__blk_queue_init_tags(struct request_queue
*q
,
970 struct blk_queue_tag
*tags
;
972 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
976 if (init_tag_map(q
, tags
, depth
))
979 INIT_LIST_HEAD(&tags
->busy_list
);
981 atomic_set(&tags
->refcnt
, 1);
989 * blk_init_tags - initialize the tag info for an external tag map
990 * @depth: the maximum queue depth supported
991 * @tags: the tag to use
993 struct blk_queue_tag
*blk_init_tags(int depth
)
995 return __blk_queue_init_tags(NULL
, depth
);
997 EXPORT_SYMBOL(blk_init_tags
);
1000 * blk_queue_init_tags - initialize the queue tag info
1001 * @q: the request queue for the device
1002 * @depth: the maximum queue depth supported
1003 * @tags: the tag to use
1005 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
1006 struct blk_queue_tag
*tags
)
1010 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
1012 if (!tags
&& !q
->queue_tags
) {
1013 tags
= __blk_queue_init_tags(q
, depth
);
1017 } else if (q
->queue_tags
) {
1018 if ((rc
= blk_queue_resize_tags(q
, depth
)))
1020 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
1023 atomic_inc(&tags
->refcnt
);
1026 * assign it, all done
1028 q
->queue_tags
= tags
;
1029 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
1036 EXPORT_SYMBOL(blk_queue_init_tags
);
1039 * blk_queue_resize_tags - change the queueing depth
1040 * @q: the request queue for the device
1041 * @new_depth: the new max command queueing depth
1044 * Must be called with the queue lock held.
1046 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
1048 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1049 struct request
**tag_index
;
1050 unsigned long *tag_map
;
1051 int max_depth
, nr_ulongs
;
1057 * if we already have large enough real_max_depth. just
1058 * adjust max_depth. *NOTE* as requests with tag value
1059 * between new_depth and real_max_depth can be in-flight, tag
1060 * map can not be shrunk blindly here.
1062 if (new_depth
<= bqt
->real_max_depth
) {
1063 bqt
->max_depth
= new_depth
;
1068 * Currently cannot replace a shared tag map with a new
1069 * one, so error out if this is the case
1071 if (atomic_read(&bqt
->refcnt
) != 1)
1075 * save the old state info, so we can copy it back
1077 tag_index
= bqt
->tag_index
;
1078 tag_map
= bqt
->tag_map
;
1079 max_depth
= bqt
->real_max_depth
;
1081 if (init_tag_map(q
, bqt
, new_depth
))
1084 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1085 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1086 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1093 EXPORT_SYMBOL(blk_queue_resize_tags
);
1096 * blk_queue_end_tag - end tag operations for a request
1097 * @q: the request queue for the device
1098 * @rq: the request that has completed
1101 * Typically called when end_that_request_first() returns 0, meaning
1102 * all transfers have been done for a request. It's important to call
1103 * this function before end_that_request_last(), as that will put the
1104 * request back on the free list thus corrupting the internal tag list.
1107 * queue lock must be held.
1109 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
1111 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1116 if (unlikely(tag
>= bqt
->real_max_depth
))
1118 * This can happen after tag depth has been reduced.
1119 * FIXME: how about a warning or info message here?
1123 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
1124 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1129 list_del_init(&rq
->queuelist
);
1130 rq
->cmd_flags
&= ~REQ_QUEUED
;
1133 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1134 printk(KERN_ERR
"%s: tag %d is missing\n",
1137 bqt
->tag_index
[tag
] = NULL
;
1141 EXPORT_SYMBOL(blk_queue_end_tag
);
1144 * blk_queue_start_tag - find a free tag and assign it
1145 * @q: the request queue for the device
1146 * @rq: the block request that needs tagging
1149 * This can either be used as a stand-alone helper, or possibly be
1150 * assigned as the queue &prep_rq_fn (in which case &struct request
1151 * automagically gets a tag assigned). Note that this function
1152 * assumes that any type of request can be queued! if this is not
1153 * true for your device, you must check the request type before
1154 * calling this function. The request will also be removed from
1155 * the request queue, so it's the drivers responsibility to readd
1156 * it if it should need to be restarted for some reason.
1159 * queue lock must be held.
1161 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
1163 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1166 if (unlikely((rq
->cmd_flags
& REQ_QUEUED
))) {
1168 "%s: request %p for device [%s] already tagged %d",
1170 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1175 * Protect against shared tag maps, as we may not have exclusive
1176 * access to the tag map.
1179 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1180 if (tag
>= bqt
->max_depth
)
1183 } while (test_and_set_bit(tag
, bqt
->tag_map
));
1185 rq
->cmd_flags
|= REQ_QUEUED
;
1187 bqt
->tag_index
[tag
] = rq
;
1188 blkdev_dequeue_request(rq
);
1189 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1194 EXPORT_SYMBOL(blk_queue_start_tag
);
1197 * blk_queue_invalidate_tags - invalidate all pending tags
1198 * @q: the request queue for the device
1201 * Hardware conditions may dictate a need to stop all pending requests.
1202 * In this case, we will safely clear the block side of the tag queue and
1203 * readd all requests to the request queue in the right order.
1206 * queue lock must be held.
1208 void blk_queue_invalidate_tags(request_queue_t
*q
)
1210 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1211 struct list_head
*tmp
, *n
;
1214 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1215 rq
= list_entry_rq(tmp
);
1217 if (rq
->tag
== -1) {
1219 "%s: bad tag found on list\n", __FUNCTION__
);
1220 list_del_init(&rq
->queuelist
);
1221 rq
->cmd_flags
&= ~REQ_QUEUED
;
1223 blk_queue_end_tag(q
, rq
);
1225 rq
->cmd_flags
&= ~REQ_STARTED
;
1226 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1230 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1232 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1236 printk("%s: dev %s: type=%x, flags=%x\n", msg
,
1237 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
1240 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1242 rq
->current_nr_sectors
);
1243 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1245 if (blk_pc_request(rq
)) {
1247 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1248 printk("%02x ", rq
->cmd
[bit
]);
1253 EXPORT_SYMBOL(blk_dump_rq_flags
);
1255 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1257 struct bio_vec
*bv
, *bvprv
= NULL
;
1258 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1259 int high
, highprv
= 1;
1261 if (unlikely(!bio
->bi_io_vec
))
1264 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1265 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1266 bio_for_each_segment(bv
, bio
, i
) {
1268 * the trick here is making sure that a high page is never
1269 * considered part of another segment, since that might
1270 * change with the bounce page.
1272 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1273 if (high
|| highprv
)
1274 goto new_hw_segment
;
1276 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1278 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1280 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1282 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1283 goto new_hw_segment
;
1285 seg_size
+= bv
->bv_len
;
1286 hw_seg_size
+= bv
->bv_len
;
1291 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1292 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1293 hw_seg_size
+= bv
->bv_len
;
1296 if (hw_seg_size
> bio
->bi_hw_front_size
)
1297 bio
->bi_hw_front_size
= hw_seg_size
;
1298 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1304 seg_size
= bv
->bv_len
;
1307 if (hw_seg_size
> bio
->bi_hw_back_size
)
1308 bio
->bi_hw_back_size
= hw_seg_size
;
1309 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1310 bio
->bi_hw_front_size
= hw_seg_size
;
1311 bio
->bi_phys_segments
= nr_phys_segs
;
1312 bio
->bi_hw_segments
= nr_hw_segs
;
1313 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1317 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1320 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1323 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1325 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1329 * bio and nxt are contigous in memory, check if the queue allows
1330 * these two to be merged into one
1332 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1338 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1341 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1342 blk_recount_segments(q
, bio
);
1343 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1344 blk_recount_segments(q
, nxt
);
1345 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1346 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1348 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1355 * map a request to scatterlist, return number of sg entries setup. Caller
1356 * must make sure sg can hold rq->nr_phys_segments entries
1358 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1360 struct bio_vec
*bvec
, *bvprv
;
1362 int nsegs
, i
, cluster
;
1365 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1368 * for each bio in rq
1371 rq_for_each_bio(bio
, rq
) {
1373 * for each segment in bio
1375 bio_for_each_segment(bvec
, bio
, i
) {
1376 int nbytes
= bvec
->bv_len
;
1378 if (bvprv
&& cluster
) {
1379 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1382 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1384 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1387 sg
[nsegs
- 1].length
+= nbytes
;
1390 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1391 sg
[nsegs
].page
= bvec
->bv_page
;
1392 sg
[nsegs
].length
= nbytes
;
1393 sg
[nsegs
].offset
= bvec
->bv_offset
;
1398 } /* segments in bio */
1404 EXPORT_SYMBOL(blk_rq_map_sg
);
1407 * the standard queue merge functions, can be overridden with device
1408 * specific ones if so desired
1411 static inline int ll_new_mergeable(request_queue_t
*q
,
1412 struct request
*req
,
1415 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1417 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1418 req
->cmd_flags
|= REQ_NOMERGE
;
1419 if (req
== q
->last_merge
)
1420 q
->last_merge
= NULL
;
1425 * A hw segment is just getting larger, bump just the phys
1428 req
->nr_phys_segments
+= nr_phys_segs
;
1432 static inline int ll_new_hw_segment(request_queue_t
*q
,
1433 struct request
*req
,
1436 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1437 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1439 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1440 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1441 req
->cmd_flags
|= REQ_NOMERGE
;
1442 if (req
== q
->last_merge
)
1443 q
->last_merge
= NULL
;
1448 * This will form the start of a new hw segment. Bump both
1451 req
->nr_hw_segments
+= nr_hw_segs
;
1452 req
->nr_phys_segments
+= nr_phys_segs
;
1456 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1459 unsigned short max_sectors
;
1462 if (unlikely(blk_pc_request(req
)))
1463 max_sectors
= q
->max_hw_sectors
;
1465 max_sectors
= q
->max_sectors
;
1467 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1468 req
->cmd_flags
|= REQ_NOMERGE
;
1469 if (req
== q
->last_merge
)
1470 q
->last_merge
= NULL
;
1473 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1474 blk_recount_segments(q
, req
->biotail
);
1475 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1476 blk_recount_segments(q
, bio
);
1477 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1478 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1479 !BIOVEC_VIRT_OVERSIZE(len
)) {
1480 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1483 if (req
->nr_hw_segments
== 1)
1484 req
->bio
->bi_hw_front_size
= len
;
1485 if (bio
->bi_hw_segments
== 1)
1486 bio
->bi_hw_back_size
= len
;
1491 return ll_new_hw_segment(q
, req
, bio
);
1494 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1497 unsigned short max_sectors
;
1500 if (unlikely(blk_pc_request(req
)))
1501 max_sectors
= q
->max_hw_sectors
;
1503 max_sectors
= q
->max_sectors
;
1506 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1507 req
->cmd_flags
|= REQ_NOMERGE
;
1508 if (req
== q
->last_merge
)
1509 q
->last_merge
= NULL
;
1512 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1513 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1514 blk_recount_segments(q
, bio
);
1515 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1516 blk_recount_segments(q
, req
->bio
);
1517 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1518 !BIOVEC_VIRT_OVERSIZE(len
)) {
1519 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1522 if (bio
->bi_hw_segments
== 1)
1523 bio
->bi_hw_front_size
= len
;
1524 if (req
->nr_hw_segments
== 1)
1525 req
->biotail
->bi_hw_back_size
= len
;
1530 return ll_new_hw_segment(q
, req
, bio
);
1533 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1534 struct request
*next
)
1536 int total_phys_segments
;
1537 int total_hw_segments
;
1540 * First check if the either of the requests are re-queued
1541 * requests. Can't merge them if they are.
1543 if (req
->special
|| next
->special
)
1547 * Will it become too large?
1549 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1552 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1553 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1554 total_phys_segments
--;
1556 if (total_phys_segments
> q
->max_phys_segments
)
1559 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1560 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1561 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1563 * propagate the combined length to the end of the requests
1565 if (req
->nr_hw_segments
== 1)
1566 req
->bio
->bi_hw_front_size
= len
;
1567 if (next
->nr_hw_segments
== 1)
1568 next
->biotail
->bi_hw_back_size
= len
;
1569 total_hw_segments
--;
1572 if (total_hw_segments
> q
->max_hw_segments
)
1575 /* Merge is OK... */
1576 req
->nr_phys_segments
= total_phys_segments
;
1577 req
->nr_hw_segments
= total_hw_segments
;
1582 * "plug" the device if there are no outstanding requests: this will
1583 * force the transfer to start only after we have put all the requests
1586 * This is called with interrupts off and no requests on the queue and
1587 * with the queue lock held.
1589 void blk_plug_device(request_queue_t
*q
)
1591 WARN_ON(!irqs_disabled());
1594 * don't plug a stopped queue, it must be paired with blk_start_queue()
1595 * which will restart the queueing
1597 if (blk_queue_stopped(q
))
1600 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1601 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1602 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1606 EXPORT_SYMBOL(blk_plug_device
);
1609 * remove the queue from the plugged list, if present. called with
1610 * queue lock held and interrupts disabled.
1612 int blk_remove_plug(request_queue_t
*q
)
1614 WARN_ON(!irqs_disabled());
1616 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1619 del_timer(&q
->unplug_timer
);
1623 EXPORT_SYMBOL(blk_remove_plug
);
1626 * remove the plug and let it rip..
1628 void __generic_unplug_device(request_queue_t
*q
)
1630 if (unlikely(blk_queue_stopped(q
)))
1633 if (!blk_remove_plug(q
))
1638 EXPORT_SYMBOL(__generic_unplug_device
);
1641 * generic_unplug_device - fire a request queue
1642 * @q: The &request_queue_t in question
1645 * Linux uses plugging to build bigger requests queues before letting
1646 * the device have at them. If a queue is plugged, the I/O scheduler
1647 * is still adding and merging requests on the queue. Once the queue
1648 * gets unplugged, the request_fn defined for the queue is invoked and
1649 * transfers started.
1651 void generic_unplug_device(request_queue_t
*q
)
1653 spin_lock_irq(q
->queue_lock
);
1654 __generic_unplug_device(q
);
1655 spin_unlock_irq(q
->queue_lock
);
1657 EXPORT_SYMBOL(generic_unplug_device
);
1659 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1662 request_queue_t
*q
= bdi
->unplug_io_data
;
1665 * devices don't necessarily have an ->unplug_fn defined
1668 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1669 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1675 static void blk_unplug_work(void *data
)
1677 request_queue_t
*q
= data
;
1679 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1680 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1685 static void blk_unplug_timeout(unsigned long data
)
1687 request_queue_t
*q
= (request_queue_t
*)data
;
1689 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1690 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1692 kblockd_schedule_work(&q
->unplug_work
);
1696 * blk_start_queue - restart a previously stopped queue
1697 * @q: The &request_queue_t in question
1700 * blk_start_queue() will clear the stop flag on the queue, and call
1701 * the request_fn for the queue if it was in a stopped state when
1702 * entered. Also see blk_stop_queue(). Queue lock must be held.
1704 void blk_start_queue(request_queue_t
*q
)
1706 WARN_ON(!irqs_disabled());
1708 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1711 * one level of recursion is ok and is much faster than kicking
1712 * the unplug handling
1714 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1716 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1719 kblockd_schedule_work(&q
->unplug_work
);
1723 EXPORT_SYMBOL(blk_start_queue
);
1726 * blk_stop_queue - stop a queue
1727 * @q: The &request_queue_t in question
1730 * The Linux block layer assumes that a block driver will consume all
1731 * entries on the request queue when the request_fn strategy is called.
1732 * Often this will not happen, because of hardware limitations (queue
1733 * depth settings). If a device driver gets a 'queue full' response,
1734 * or if it simply chooses not to queue more I/O at one point, it can
1735 * call this function to prevent the request_fn from being called until
1736 * the driver has signalled it's ready to go again. This happens by calling
1737 * blk_start_queue() to restart queue operations. Queue lock must be held.
1739 void blk_stop_queue(request_queue_t
*q
)
1742 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1744 EXPORT_SYMBOL(blk_stop_queue
);
1747 * blk_sync_queue - cancel any pending callbacks on a queue
1751 * The block layer may perform asynchronous callback activity
1752 * on a queue, such as calling the unplug function after a timeout.
1753 * A block device may call blk_sync_queue to ensure that any
1754 * such activity is cancelled, thus allowing it to release resources
1755 * the the callbacks might use. The caller must already have made sure
1756 * that its ->make_request_fn will not re-add plugging prior to calling
1760 void blk_sync_queue(struct request_queue
*q
)
1762 del_timer_sync(&q
->unplug_timer
);
1765 EXPORT_SYMBOL(blk_sync_queue
);
1768 * blk_run_queue - run a single device queue
1769 * @q: The queue to run
1771 void blk_run_queue(struct request_queue
*q
)
1773 unsigned long flags
;
1775 spin_lock_irqsave(q
->queue_lock
, flags
);
1779 * Only recurse once to avoid overrunning the stack, let the unplug
1780 * handling reinvoke the handler shortly if we already got there.
1782 if (!elv_queue_empty(q
)) {
1783 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1785 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1788 kblockd_schedule_work(&q
->unplug_work
);
1792 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1794 EXPORT_SYMBOL(blk_run_queue
);
1797 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1798 * @kobj: the kobj belonging of the request queue to be released
1801 * blk_cleanup_queue is the pair to blk_init_queue() or
1802 * blk_queue_make_request(). It should be called when a request queue is
1803 * being released; typically when a block device is being de-registered.
1804 * Currently, its primary task it to free all the &struct request
1805 * structures that were allocated to the queue and the queue itself.
1808 * Hopefully the low level driver will have finished any
1809 * outstanding requests first...
1811 static void blk_release_queue(struct kobject
*kobj
)
1813 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
1814 struct request_list
*rl
= &q
->rq
;
1819 mempool_destroy(rl
->rq_pool
);
1822 __blk_queue_free_tags(q
);
1824 blk_trace_shutdown(q
);
1826 kmem_cache_free(requestq_cachep
, q
);
1829 void blk_put_queue(request_queue_t
*q
)
1831 kobject_put(&q
->kobj
);
1833 EXPORT_SYMBOL(blk_put_queue
);
1835 void blk_cleanup_queue(request_queue_t
* q
)
1837 mutex_lock(&q
->sysfs_lock
);
1838 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1839 mutex_unlock(&q
->sysfs_lock
);
1842 elevator_exit(q
->elevator
);
1847 EXPORT_SYMBOL(blk_cleanup_queue
);
1849 static int blk_init_free_list(request_queue_t
*q
)
1851 struct request_list
*rl
= &q
->rq
;
1853 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1854 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1856 init_waitqueue_head(&rl
->wait
[READ
]);
1857 init_waitqueue_head(&rl
->wait
[WRITE
]);
1859 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1860 mempool_free_slab
, request_cachep
, q
->node
);
1868 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1870 return blk_alloc_queue_node(gfp_mask
, -1);
1872 EXPORT_SYMBOL(blk_alloc_queue
);
1874 static struct kobj_type queue_ktype
;
1876 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1880 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1884 memset(q
, 0, sizeof(*q
));
1885 init_timer(&q
->unplug_timer
);
1887 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
1888 q
->kobj
.ktype
= &queue_ktype
;
1889 kobject_init(&q
->kobj
);
1891 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1892 q
->backing_dev_info
.unplug_io_data
= q
;
1894 mutex_init(&q
->sysfs_lock
);
1898 EXPORT_SYMBOL(blk_alloc_queue_node
);
1901 * blk_init_queue - prepare a request queue for use with a block device
1902 * @rfn: The function to be called to process requests that have been
1903 * placed on the queue.
1904 * @lock: Request queue spin lock
1907 * If a block device wishes to use the standard request handling procedures,
1908 * which sorts requests and coalesces adjacent requests, then it must
1909 * call blk_init_queue(). The function @rfn will be called when there
1910 * are requests on the queue that need to be processed. If the device
1911 * supports plugging, then @rfn may not be called immediately when requests
1912 * are available on the queue, but may be called at some time later instead.
1913 * Plugged queues are generally unplugged when a buffer belonging to one
1914 * of the requests on the queue is needed, or due to memory pressure.
1916 * @rfn is not required, or even expected, to remove all requests off the
1917 * queue, but only as many as it can handle at a time. If it does leave
1918 * requests on the queue, it is responsible for arranging that the requests
1919 * get dealt with eventually.
1921 * The queue spin lock must be held while manipulating the requests on the
1922 * request queue; this lock will be taken also from interrupt context, so irq
1923 * disabling is needed for it.
1925 * Function returns a pointer to the initialized request queue, or NULL if
1926 * it didn't succeed.
1929 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1930 * when the block device is deactivated (such as at module unload).
1933 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1935 return blk_init_queue_node(rfn
, lock
, -1);
1937 EXPORT_SYMBOL(blk_init_queue
);
1940 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1942 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1948 if (blk_init_free_list(q
)) {
1949 kmem_cache_free(requestq_cachep
, q
);
1954 * if caller didn't supply a lock, they get per-queue locking with
1958 spin_lock_init(&q
->__queue_lock
);
1959 lock
= &q
->__queue_lock
;
1962 q
->request_fn
= rfn
;
1963 q
->back_merge_fn
= ll_back_merge_fn
;
1964 q
->front_merge_fn
= ll_front_merge_fn
;
1965 q
->merge_requests_fn
= ll_merge_requests_fn
;
1966 q
->prep_rq_fn
= NULL
;
1967 q
->unplug_fn
= generic_unplug_device
;
1968 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1969 q
->queue_lock
= lock
;
1971 blk_queue_segment_boundary(q
, 0xffffffff);
1973 blk_queue_make_request(q
, __make_request
);
1974 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1976 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1977 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1982 if (!elevator_init(q
, NULL
)) {
1983 blk_queue_congestion_threshold(q
);
1990 EXPORT_SYMBOL(blk_init_queue_node
);
1992 int blk_get_queue(request_queue_t
*q
)
1994 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1995 kobject_get(&q
->kobj
);
2002 EXPORT_SYMBOL(blk_get_queue
);
2004 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
2006 if (rq
->cmd_flags
& REQ_ELVPRIV
)
2007 elv_put_request(q
, rq
);
2008 mempool_free(rq
, q
->rq
.rq_pool
);
2011 static struct request
*
2012 blk_alloc_request(request_queue_t
*q
, int rw
, int priv
, gfp_t gfp_mask
)
2014 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
2020 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2021 * see bio.h and blkdev.h
2023 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
2026 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
2027 mempool_free(rq
, q
->rq
.rq_pool
);
2030 rq
->cmd_flags
|= REQ_ELVPRIV
;
2037 * ioc_batching returns true if the ioc is a valid batching request and
2038 * should be given priority access to a request.
2040 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
2046 * Make sure the process is able to allocate at least 1 request
2047 * even if the batch times out, otherwise we could theoretically
2050 return ioc
->nr_batch_requests
== q
->nr_batching
||
2051 (ioc
->nr_batch_requests
> 0
2052 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2056 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2057 * will cause the process to be a "batcher" on all queues in the system. This
2058 * is the behaviour we want though - once it gets a wakeup it should be given
2061 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
2063 if (!ioc
|| ioc_batching(q
, ioc
))
2066 ioc
->nr_batch_requests
= q
->nr_batching
;
2067 ioc
->last_waited
= jiffies
;
2070 static void __freed_request(request_queue_t
*q
, int rw
)
2072 struct request_list
*rl
= &q
->rq
;
2074 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2075 clear_queue_congested(q
, rw
);
2077 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2078 if (waitqueue_active(&rl
->wait
[rw
]))
2079 wake_up(&rl
->wait
[rw
]);
2081 blk_clear_queue_full(q
, rw
);
2086 * A request has just been released. Account for it, update the full and
2087 * congestion status, wake up any waiters. Called under q->queue_lock.
2089 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
2091 struct request_list
*rl
= &q
->rq
;
2097 __freed_request(q
, rw
);
2099 if (unlikely(rl
->starved
[rw
^ 1]))
2100 __freed_request(q
, rw
^ 1);
2103 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2105 * Get a free request, queue_lock must be held.
2106 * Returns NULL on failure, with queue_lock held.
2107 * Returns !NULL on success, with queue_lock *not held*.
2109 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
2112 struct request
*rq
= NULL
;
2113 struct request_list
*rl
= &q
->rq
;
2114 struct io_context
*ioc
= NULL
;
2115 int may_queue
, priv
;
2117 may_queue
= elv_may_queue(q
, rw
);
2118 if (may_queue
== ELV_MQUEUE_NO
)
2121 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2122 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2123 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
2125 * The queue will fill after this allocation, so set
2126 * it as full, and mark this process as "batching".
2127 * This process will be allowed to complete a batch of
2128 * requests, others will be blocked.
2130 if (!blk_queue_full(q
, rw
)) {
2131 ioc_set_batching(q
, ioc
);
2132 blk_set_queue_full(q
, rw
);
2134 if (may_queue
!= ELV_MQUEUE_MUST
2135 && !ioc_batching(q
, ioc
)) {
2137 * The queue is full and the allocating
2138 * process is not a "batcher", and not
2139 * exempted by the IO scheduler
2145 set_queue_congested(q
, rw
);
2149 * Only allow batching queuers to allocate up to 50% over the defined
2150 * limit of requests, otherwise we could have thousands of requests
2151 * allocated with any setting of ->nr_requests
2153 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2157 rl
->starved
[rw
] = 0;
2159 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2163 spin_unlock_irq(q
->queue_lock
);
2165 rq
= blk_alloc_request(q
, rw
, priv
, gfp_mask
);
2166 if (unlikely(!rq
)) {
2168 * Allocation failed presumably due to memory. Undo anything
2169 * we might have messed up.
2171 * Allocating task should really be put onto the front of the
2172 * wait queue, but this is pretty rare.
2174 spin_lock_irq(q
->queue_lock
);
2175 freed_request(q
, rw
, priv
);
2178 * in the very unlikely event that allocation failed and no
2179 * requests for this direction was pending, mark us starved
2180 * so that freeing of a request in the other direction will
2181 * notice us. another possible fix would be to split the
2182 * rq mempool into READ and WRITE
2185 if (unlikely(rl
->count
[rw
] == 0))
2186 rl
->starved
[rw
] = 1;
2192 * ioc may be NULL here, and ioc_batching will be false. That's
2193 * OK, if the queue is under the request limit then requests need
2194 * not count toward the nr_batch_requests limit. There will always
2195 * be some limit enforced by BLK_BATCH_TIME.
2197 if (ioc_batching(q
, ioc
))
2198 ioc
->nr_batch_requests
--;
2202 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2208 * No available requests for this queue, unplug the device and wait for some
2209 * requests to become available.
2211 * Called with q->queue_lock held, and returns with it unlocked.
2213 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
2218 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2221 struct request_list
*rl
= &q
->rq
;
2223 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2224 TASK_UNINTERRUPTIBLE
);
2226 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2229 struct io_context
*ioc
;
2231 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2233 __generic_unplug_device(q
);
2234 spin_unlock_irq(q
->queue_lock
);
2238 * After sleeping, we become a "batching" process and
2239 * will be able to allocate at least one request, and
2240 * up to a big batch of them for a small period time.
2241 * See ioc_batching, ioc_set_batching
2243 ioc
= current_io_context(GFP_NOIO
, q
->node
);
2244 ioc_set_batching(q
, ioc
);
2246 spin_lock_irq(q
->queue_lock
);
2248 finish_wait(&rl
->wait
[rw
], &wait
);
2254 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2258 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2260 spin_lock_irq(q
->queue_lock
);
2261 if (gfp_mask
& __GFP_WAIT
) {
2262 rq
= get_request_wait(q
, rw
, NULL
);
2264 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2266 spin_unlock_irq(q
->queue_lock
);
2268 /* q->queue_lock is unlocked at this point */
2272 EXPORT_SYMBOL(blk_get_request
);
2275 * blk_start_queueing - initiate dispatch of requests to device
2276 * @q: request queue to kick into gear
2278 * This is basically a helper to remove the need to know whether a queue
2279 * is plugged or not if someone just wants to initiate dispatch of requests
2282 * The queue lock must be held with interrupts disabled.
2284 void blk_start_queueing(request_queue_t
*q
)
2286 if (!blk_queue_plugged(q
))
2289 __generic_unplug_device(q
);
2291 EXPORT_SYMBOL(blk_start_queueing
);
2294 * blk_requeue_request - put a request back on queue
2295 * @q: request queue where request should be inserted
2296 * @rq: request to be inserted
2299 * Drivers often keep queueing requests until the hardware cannot accept
2300 * more, when that condition happens we need to put the request back
2301 * on the queue. Must be called with queue lock held.
2303 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2305 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2307 if (blk_rq_tagged(rq
))
2308 blk_queue_end_tag(q
, rq
);
2310 elv_requeue_request(q
, rq
);
2313 EXPORT_SYMBOL(blk_requeue_request
);
2316 * blk_insert_request - insert a special request in to a request queue
2317 * @q: request queue where request should be inserted
2318 * @rq: request to be inserted
2319 * @at_head: insert request at head or tail of queue
2320 * @data: private data
2323 * Many block devices need to execute commands asynchronously, so they don't
2324 * block the whole kernel from preemption during request execution. This is
2325 * accomplished normally by inserting aritficial requests tagged as
2326 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2327 * scheduled for actual execution by the request queue.
2329 * We have the option of inserting the head or the tail of the queue.
2330 * Typically we use the tail for new ioctls and so forth. We use the head
2331 * of the queue for things like a QUEUE_FULL message from a device, or a
2332 * host that is unable to accept a particular command.
2334 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2335 int at_head
, void *data
)
2337 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2338 unsigned long flags
;
2341 * tell I/O scheduler that this isn't a regular read/write (ie it
2342 * must not attempt merges on this) and that it acts as a soft
2345 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
2346 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
2350 spin_lock_irqsave(q
->queue_lock
, flags
);
2353 * If command is tagged, release the tag
2355 if (blk_rq_tagged(rq
))
2356 blk_queue_end_tag(q
, rq
);
2358 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2359 __elv_add_request(q
, rq
, where
, 0);
2360 blk_start_queueing(q
);
2361 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2364 EXPORT_SYMBOL(blk_insert_request
);
2367 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2368 * @q: request queue where request should be inserted
2369 * @rq: request structure to fill
2370 * @ubuf: the user buffer
2371 * @len: length of user data
2374 * Data will be mapped directly for zero copy io, if possible. Otherwise
2375 * a kernel bounce buffer is used.
2377 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2378 * still in process context.
2380 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2381 * before being submitted to the device, as pages mapped may be out of
2382 * reach. It's the callers responsibility to make sure this happens. The
2383 * original bio must be passed back in to blk_rq_unmap_user() for proper
2386 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2389 unsigned long uaddr
;
2393 if (len
> (q
->max_hw_sectors
<< 9))
2398 reading
= rq_data_dir(rq
) == READ
;
2401 * if alignment requirement is satisfied, map in user pages for
2402 * direct dma. else, set up kernel bounce buffers
2404 uaddr
= (unsigned long) ubuf
;
2405 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2406 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2408 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2411 rq
->bio
= rq
->biotail
= bio
;
2412 blk_rq_bio_prep(q
, rq
, bio
);
2414 rq
->buffer
= rq
->data
= NULL
;
2420 * bio is the err-ptr
2422 return PTR_ERR(bio
);
2425 EXPORT_SYMBOL(blk_rq_map_user
);
2428 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2429 * @q: request queue where request should be inserted
2430 * @rq: request to map data to
2431 * @iov: pointer to the iovec
2432 * @iov_count: number of elements in the iovec
2435 * Data will be mapped directly for zero copy io, if possible. Otherwise
2436 * a kernel bounce buffer is used.
2438 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2439 * still in process context.
2441 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2442 * before being submitted to the device, as pages mapped may be out of
2443 * reach. It's the callers responsibility to make sure this happens. The
2444 * original bio must be passed back in to blk_rq_unmap_user() for proper
2447 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2448 struct sg_iovec
*iov
, int iov_count
)
2452 if (!iov
|| iov_count
<= 0)
2455 /* we don't allow misaligned data like bio_map_user() does. If the
2456 * user is using sg, they're expected to know the alignment constraints
2457 * and respect them accordingly */
2458 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2460 return PTR_ERR(bio
);
2462 rq
->bio
= rq
->biotail
= bio
;
2463 blk_rq_bio_prep(q
, rq
, bio
);
2464 rq
->buffer
= rq
->data
= NULL
;
2465 rq
->data_len
= bio
->bi_size
;
2469 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2472 * blk_rq_unmap_user - unmap a request with user data
2473 * @bio: bio to be unmapped
2474 * @ulen: length of user buffer
2477 * Unmap a bio previously mapped by blk_rq_map_user().
2479 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2484 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2485 bio_unmap_user(bio
);
2487 ret
= bio_uncopy_user(bio
);
2493 EXPORT_SYMBOL(blk_rq_unmap_user
);
2496 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2497 * @q: request queue where request should be inserted
2498 * @rq: request to fill
2499 * @kbuf: the kernel buffer
2500 * @len: length of user data
2501 * @gfp_mask: memory allocation flags
2503 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2504 unsigned int len
, gfp_t gfp_mask
)
2508 if (len
> (q
->max_hw_sectors
<< 9))
2513 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2515 return PTR_ERR(bio
);
2517 if (rq_data_dir(rq
) == WRITE
)
2518 bio
->bi_rw
|= (1 << BIO_RW
);
2520 rq
->bio
= rq
->biotail
= bio
;
2521 blk_rq_bio_prep(q
, rq
, bio
);
2523 rq
->buffer
= rq
->data
= NULL
;
2528 EXPORT_SYMBOL(blk_rq_map_kern
);
2531 * blk_execute_rq_nowait - insert a request into queue for execution
2532 * @q: queue to insert the request in
2533 * @bd_disk: matching gendisk
2534 * @rq: request to insert
2535 * @at_head: insert request at head or tail of queue
2536 * @done: I/O completion handler
2539 * Insert a fully prepared request at the back of the io scheduler queue
2540 * for execution. Don't wait for completion.
2542 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2543 struct request
*rq
, int at_head
,
2546 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2548 rq
->rq_disk
= bd_disk
;
2549 rq
->cmd_flags
|= REQ_NOMERGE
;
2551 WARN_ON(irqs_disabled());
2552 spin_lock_irq(q
->queue_lock
);
2553 __elv_add_request(q
, rq
, where
, 1);
2554 __generic_unplug_device(q
);
2555 spin_unlock_irq(q
->queue_lock
);
2557 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2560 * blk_execute_rq - insert a request into queue for execution
2561 * @q: queue to insert the request in
2562 * @bd_disk: matching gendisk
2563 * @rq: request to insert
2564 * @at_head: insert request at head or tail of queue
2567 * Insert a fully prepared request at the back of the io scheduler queue
2568 * for execution and wait for completion.
2570 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2571 struct request
*rq
, int at_head
)
2573 DECLARE_COMPLETION_ONSTACK(wait
);
2574 char sense
[SCSI_SENSE_BUFFERSIZE
];
2578 * we need an extra reference to the request, so we can look at
2579 * it after io completion
2584 memset(sense
, 0, sizeof(sense
));
2589 rq
->end_io_data
= &wait
;
2590 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2591 wait_for_completion(&wait
);
2599 EXPORT_SYMBOL(blk_execute_rq
);
2602 * blkdev_issue_flush - queue a flush
2603 * @bdev: blockdev to issue flush for
2604 * @error_sector: error sector
2607 * Issue a flush for the block device in question. Caller can supply
2608 * room for storing the error offset in case of a flush error, if they
2609 * wish to. Caller must run wait_for_completion() on its own.
2611 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2615 if (bdev
->bd_disk
== NULL
)
2618 q
= bdev_get_queue(bdev
);
2621 if (!q
->issue_flush_fn
)
2624 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2627 EXPORT_SYMBOL(blkdev_issue_flush
);
2629 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2631 int rw
= rq_data_dir(rq
);
2633 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2637 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2639 disk_round_stats(rq
->rq_disk
);
2640 rq
->rq_disk
->in_flight
++;
2645 * add-request adds a request to the linked list.
2646 * queue lock is held and interrupts disabled, as we muck with the
2647 * request queue list.
2649 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2651 drive_stat_acct(req
, req
->nr_sectors
, 1);
2654 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2657 * elevator indicated where it wants this request to be
2658 * inserted at elevator_merge time
2660 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2664 * disk_round_stats() - Round off the performance stats on a struct
2667 * The average IO queue length and utilisation statistics are maintained
2668 * by observing the current state of the queue length and the amount of
2669 * time it has been in this state for.
2671 * Normally, that accounting is done on IO completion, but that can result
2672 * in more than a second's worth of IO being accounted for within any one
2673 * second, leading to >100% utilisation. To deal with that, we call this
2674 * function to do a round-off before returning the results when reading
2675 * /proc/diskstats. This accounts immediately for all queue usage up to
2676 * the current jiffies and restarts the counters again.
2678 void disk_round_stats(struct gendisk
*disk
)
2680 unsigned long now
= jiffies
;
2682 if (now
== disk
->stamp
)
2685 if (disk
->in_flight
) {
2686 __disk_stat_add(disk
, time_in_queue
,
2687 disk
->in_flight
* (now
- disk
->stamp
));
2688 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2693 EXPORT_SYMBOL_GPL(disk_round_stats
);
2696 * queue lock must be held
2698 void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2702 if (unlikely(--req
->ref_count
))
2705 elv_completed_request(q
, req
);
2708 * Request may not have originated from ll_rw_blk. if not,
2709 * it didn't come out of our reserved rq pools
2711 if (req
->cmd_flags
& REQ_ALLOCED
) {
2712 int rw
= rq_data_dir(req
);
2713 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
2715 BUG_ON(!list_empty(&req
->queuelist
));
2716 BUG_ON(!hlist_unhashed(&req
->hash
));
2718 blk_free_request(q
, req
);
2719 freed_request(q
, rw
, priv
);
2723 EXPORT_SYMBOL_GPL(__blk_put_request
);
2725 void blk_put_request(struct request
*req
)
2727 unsigned long flags
;
2728 request_queue_t
*q
= req
->q
;
2731 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2732 * following if (q) test.
2735 spin_lock_irqsave(q
->queue_lock
, flags
);
2736 __blk_put_request(q
, req
);
2737 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2741 EXPORT_SYMBOL(blk_put_request
);
2744 * blk_end_sync_rq - executes a completion event on a request
2745 * @rq: request to complete
2746 * @error: end io status of the request
2748 void blk_end_sync_rq(struct request
*rq
, int error
)
2750 struct completion
*waiting
= rq
->end_io_data
;
2752 rq
->end_io_data
= NULL
;
2753 __blk_put_request(rq
->q
, rq
);
2756 * complete last, if this is a stack request the process (and thus
2757 * the rq pointer) could be invalid right after this complete()
2761 EXPORT_SYMBOL(blk_end_sync_rq
);
2764 * blk_congestion_wait - wait for a queue to become uncongested
2765 * @rw: READ or WRITE
2766 * @timeout: timeout in jiffies
2768 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2769 * If no queues are congested then just wait for the next request to be
2772 long blk_congestion_wait(int rw
, long timeout
)
2776 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2778 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2779 ret
= io_schedule_timeout(timeout
);
2780 finish_wait(wqh
, &wait
);
2784 EXPORT_SYMBOL(blk_congestion_wait
);
2787 * blk_congestion_end - wake up sleepers on a congestion queue
2788 * @rw: READ or WRITE
2790 void blk_congestion_end(int rw
)
2792 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2794 if (waitqueue_active(wqh
))
2799 * Has to be called with the request spinlock acquired
2801 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2802 struct request
*next
)
2804 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2810 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2813 if (rq_data_dir(req
) != rq_data_dir(next
)
2814 || req
->rq_disk
!= next
->rq_disk
2819 * If we are allowed to merge, then append bio list
2820 * from next to rq and release next. merge_requests_fn
2821 * will have updated segment counts, update sector
2824 if (!q
->merge_requests_fn(q
, req
, next
))
2828 * At this point we have either done a back merge
2829 * or front merge. We need the smaller start_time of
2830 * the merged requests to be the current request
2831 * for accounting purposes.
2833 if (time_after(req
->start_time
, next
->start_time
))
2834 req
->start_time
= next
->start_time
;
2836 req
->biotail
->bi_next
= next
->bio
;
2837 req
->biotail
= next
->biotail
;
2839 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2841 elv_merge_requests(q
, req
, next
);
2844 disk_round_stats(req
->rq_disk
);
2845 req
->rq_disk
->in_flight
--;
2848 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2850 __blk_put_request(q
, next
);
2854 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2856 struct request
*next
= elv_latter_request(q
, rq
);
2859 return attempt_merge(q
, rq
, next
);
2864 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2866 struct request
*prev
= elv_former_request(q
, rq
);
2869 return attempt_merge(q
, prev
, rq
);
2874 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2876 req
->cmd_type
= REQ_TYPE_FS
;
2879 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2881 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2882 req
->cmd_flags
|= REQ_FAILFAST
;
2885 * REQ_BARRIER implies no merging, but lets make it explicit
2887 if (unlikely(bio_barrier(bio
)))
2888 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2891 req
->cmd_flags
|= REQ_RW_SYNC
;
2892 if (bio_rw_meta(bio
))
2893 req
->cmd_flags
|= REQ_RW_META
;
2896 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2897 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2898 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2899 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2900 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2901 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2902 req
->bio
= req
->biotail
= bio
;
2903 req
->ioprio
= bio_prio(bio
);
2904 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2905 req
->start_time
= jiffies
;
2908 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2910 struct request
*req
;
2911 int el_ret
, nr_sectors
, barrier
, err
;
2912 const unsigned short prio
= bio_prio(bio
);
2913 const int sync
= bio_sync(bio
);
2915 nr_sectors
= bio_sectors(bio
);
2918 * low level driver can indicate that it wants pages above a
2919 * certain limit bounced to low memory (ie for highmem, or even
2920 * ISA dma in theory)
2922 blk_queue_bounce(q
, &bio
);
2924 barrier
= bio_barrier(bio
);
2925 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2930 spin_lock_irq(q
->queue_lock
);
2932 if (unlikely(barrier
) || elv_queue_empty(q
))
2935 el_ret
= elv_merge(q
, &req
, bio
);
2937 case ELEVATOR_BACK_MERGE
:
2938 BUG_ON(!rq_mergeable(req
));
2940 if (!q
->back_merge_fn(q
, req
, bio
))
2943 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
2945 req
->biotail
->bi_next
= bio
;
2947 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2948 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2949 drive_stat_acct(req
, nr_sectors
, 0);
2950 if (!attempt_back_merge(q
, req
))
2951 elv_merged_request(q
, req
, el_ret
);
2954 case ELEVATOR_FRONT_MERGE
:
2955 BUG_ON(!rq_mergeable(req
));
2957 if (!q
->front_merge_fn(q
, req
, bio
))
2960 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
2962 bio
->bi_next
= req
->bio
;
2966 * may not be valid. if the low level driver said
2967 * it didn't need a bounce buffer then it better
2968 * not touch req->buffer either...
2970 req
->buffer
= bio_data(bio
);
2971 req
->current_nr_sectors
= bio_cur_sectors(bio
);
2972 req
->hard_cur_sectors
= req
->current_nr_sectors
;
2973 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
2974 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2975 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2976 drive_stat_acct(req
, nr_sectors
, 0);
2977 if (!attempt_front_merge(q
, req
))
2978 elv_merged_request(q
, req
, el_ret
);
2981 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2988 * Grab a free request. This is might sleep but can not fail.
2989 * Returns with the queue unlocked.
2991 req
= get_request_wait(q
, bio_data_dir(bio
), bio
);
2994 * After dropping the lock and possibly sleeping here, our request
2995 * may now be mergeable after it had proven unmergeable (above).
2996 * We don't worry about that case for efficiency. It won't happen
2997 * often, and the elevators are able to handle it.
2999 init_request_from_bio(req
, bio
);
3001 spin_lock_irq(q
->queue_lock
);
3002 if (elv_queue_empty(q
))
3004 add_request(q
, req
);
3007 __generic_unplug_device(q
);
3009 spin_unlock_irq(q
->queue_lock
);
3013 bio_endio(bio
, nr_sectors
<< 9, err
);
3018 * If bio->bi_dev is a partition, remap the location
3020 static inline void blk_partition_remap(struct bio
*bio
)
3022 struct block_device
*bdev
= bio
->bi_bdev
;
3024 if (bdev
!= bdev
->bd_contains
) {
3025 struct hd_struct
*p
= bdev
->bd_part
;
3026 const int rw
= bio_data_dir(bio
);
3028 p
->sectors
[rw
] += bio_sectors(bio
);
3031 bio
->bi_sector
+= p
->start_sect
;
3032 bio
->bi_bdev
= bdev
->bd_contains
;
3036 static void handle_bad_sector(struct bio
*bio
)
3038 char b
[BDEVNAME_SIZE
];
3040 printk(KERN_INFO
"attempt to access beyond end of device\n");
3041 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
3042 bdevname(bio
->bi_bdev
, b
),
3044 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
3045 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
3047 set_bit(BIO_EOF
, &bio
->bi_flags
);
3051 * generic_make_request: hand a buffer to its device driver for I/O
3052 * @bio: The bio describing the location in memory and on the device.
3054 * generic_make_request() is used to make I/O requests of block
3055 * devices. It is passed a &struct bio, which describes the I/O that needs
3058 * generic_make_request() does not return any status. The
3059 * success/failure status of the request, along with notification of
3060 * completion, is delivered asynchronously through the bio->bi_end_io
3061 * function described (one day) else where.
3063 * The caller of generic_make_request must make sure that bi_io_vec
3064 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3065 * set to describe the device address, and the
3066 * bi_end_io and optionally bi_private are set to describe how
3067 * completion notification should be signaled.
3069 * generic_make_request and the drivers it calls may use bi_next if this
3070 * bio happens to be merged with someone else, and may change bi_dev and
3071 * bi_sector for remaps as it sees fit. So the values of these fields
3072 * should NOT be depended on after the call to generic_make_request.
3074 void generic_make_request(struct bio
*bio
)
3078 int ret
, nr_sectors
= bio_sectors(bio
);
3082 /* Test device or partition size, when known. */
3083 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3085 sector_t sector
= bio
->bi_sector
;
3087 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3089 * This may well happen - the kernel calls bread()
3090 * without checking the size of the device, e.g., when
3091 * mounting a device.
3093 handle_bad_sector(bio
);
3099 * Resolve the mapping until finished. (drivers are
3100 * still free to implement/resolve their own stacking
3101 * by explicitly returning 0)
3103 * NOTE: we don't repeat the blk_size check for each new device.
3104 * Stacking drivers are expected to know what they are doing.
3109 char b
[BDEVNAME_SIZE
];
3111 q
= bdev_get_queue(bio
->bi_bdev
);
3114 "generic_make_request: Trying to access "
3115 "nonexistent block-device %s (%Lu)\n",
3116 bdevname(bio
->bi_bdev
, b
),
3117 (long long) bio
->bi_sector
);
3119 bio_endio(bio
, bio
->bi_size
, -EIO
);
3123 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3124 printk("bio too big device %s (%u > %u)\n",
3125 bdevname(bio
->bi_bdev
, b
),
3131 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3135 * If this device has partitions, remap block n
3136 * of partition p to block n+start(p) of the disk.
3138 blk_partition_remap(bio
);
3140 if (maxsector
!= -1)
3141 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3144 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3146 maxsector
= bio
->bi_sector
;
3147 old_dev
= bio
->bi_bdev
->bd_dev
;
3149 ret
= q
->make_request_fn(q
, bio
);
3153 EXPORT_SYMBOL(generic_make_request
);
3156 * submit_bio: submit a bio to the block device layer for I/O
3157 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3158 * @bio: The &struct bio which describes the I/O
3160 * submit_bio() is very similar in purpose to generic_make_request(), and
3161 * uses that function to do most of the work. Both are fairly rough
3162 * interfaces, @bio must be presetup and ready for I/O.
3165 void submit_bio(int rw
, struct bio
*bio
)
3167 int count
= bio_sectors(bio
);
3169 BIO_BUG_ON(!bio
->bi_size
);
3170 BIO_BUG_ON(!bio
->bi_io_vec
);
3173 count_vm_events(PGPGOUT
, count
);
3175 count_vm_events(PGPGIN
, count
);
3177 if (unlikely(block_dump
)) {
3178 char b
[BDEVNAME_SIZE
];
3179 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3180 current
->comm
, current
->pid
,
3181 (rw
& WRITE
) ? "WRITE" : "READ",
3182 (unsigned long long)bio
->bi_sector
,
3183 bdevname(bio
->bi_bdev
,b
));
3186 generic_make_request(bio
);
3189 EXPORT_SYMBOL(submit_bio
);
3191 static void blk_recalc_rq_segments(struct request
*rq
)
3193 struct bio
*bio
, *prevbio
= NULL
;
3194 int nr_phys_segs
, nr_hw_segs
;
3195 unsigned int phys_size
, hw_size
;
3196 request_queue_t
*q
= rq
->q
;
3201 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3202 rq_for_each_bio(bio
, rq
) {
3203 /* Force bio hw/phys segs to be recalculated. */
3204 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3206 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3207 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3209 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3210 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3212 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3213 pseg
<= q
->max_segment_size
) {
3215 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3219 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3220 hseg
<= q
->max_segment_size
) {
3222 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3229 rq
->nr_phys_segments
= nr_phys_segs
;
3230 rq
->nr_hw_segments
= nr_hw_segs
;
3233 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3235 if (blk_fs_request(rq
)) {
3236 rq
->hard_sector
+= nsect
;
3237 rq
->hard_nr_sectors
-= nsect
;
3240 * Move the I/O submission pointers ahead if required.
3242 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3243 (rq
->sector
<= rq
->hard_sector
)) {
3244 rq
->sector
= rq
->hard_sector
;
3245 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3246 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3247 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3248 rq
->buffer
= bio_data(rq
->bio
);
3252 * if total number of sectors is less than the first segment
3253 * size, something has gone terribly wrong
3255 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3256 printk("blk: request botched\n");
3257 rq
->nr_sectors
= rq
->current_nr_sectors
;
3262 static int __end_that_request_first(struct request
*req
, int uptodate
,
3265 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3268 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3271 * extend uptodate bool to allow < 0 value to be direct io error
3274 if (end_io_error(uptodate
))
3275 error
= !uptodate
? -EIO
: uptodate
;
3278 * for a REQ_BLOCK_PC request, we want to carry any eventual
3279 * sense key with us all the way through
3281 if (!blk_pc_request(req
))
3285 if (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))
3286 printk("end_request: I/O error, dev %s, sector %llu\n",
3287 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3288 (unsigned long long)req
->sector
);
3291 if (blk_fs_request(req
) && req
->rq_disk
) {
3292 const int rw
= rq_data_dir(req
);
3294 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3297 total_bytes
= bio_nbytes
= 0;
3298 while ((bio
= req
->bio
) != NULL
) {
3301 if (nr_bytes
>= bio
->bi_size
) {
3302 req
->bio
= bio
->bi_next
;
3303 nbytes
= bio
->bi_size
;
3304 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3305 bio_endio(bio
, nbytes
, error
);
3309 int idx
= bio
->bi_idx
+ next_idx
;
3311 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3312 blk_dump_rq_flags(req
, "__end_that");
3313 printk("%s: bio idx %d >= vcnt %d\n",
3315 bio
->bi_idx
, bio
->bi_vcnt
);
3319 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3320 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3323 * not a complete bvec done
3325 if (unlikely(nbytes
> nr_bytes
)) {
3326 bio_nbytes
+= nr_bytes
;
3327 total_bytes
+= nr_bytes
;
3332 * advance to the next vector
3335 bio_nbytes
+= nbytes
;
3338 total_bytes
+= nbytes
;
3341 if ((bio
= req
->bio
)) {
3343 * end more in this run, or just return 'not-done'
3345 if (unlikely(nr_bytes
<= 0))
3357 * if the request wasn't completed, update state
3360 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3361 bio_endio(bio
, bio_nbytes
, error
);
3362 bio
->bi_idx
+= next_idx
;
3363 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3364 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3367 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3368 blk_recalc_rq_segments(req
);
3373 * end_that_request_first - end I/O on a request
3374 * @req: the request being processed
3375 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3376 * @nr_sectors: number of sectors to end I/O on
3379 * Ends I/O on a number of sectors attached to @req, and sets it up
3380 * for the next range of segments (if any) in the cluster.
3383 * 0 - we are done with this request, call end_that_request_last()
3384 * 1 - still buffers pending for this request
3386 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3388 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3391 EXPORT_SYMBOL(end_that_request_first
);
3394 * end_that_request_chunk - end I/O on a request
3395 * @req: the request being processed
3396 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3397 * @nr_bytes: number of bytes to complete
3400 * Ends I/O on a number of bytes attached to @req, and sets it up
3401 * for the next range of segments (if any). Like end_that_request_first(),
3402 * but deals with bytes instead of sectors.
3405 * 0 - we are done with this request, call end_that_request_last()
3406 * 1 - still buffers pending for this request
3408 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3410 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3413 EXPORT_SYMBOL(end_that_request_chunk
);
3416 * splice the completion data to a local structure and hand off to
3417 * process_completion_queue() to complete the requests
3419 static void blk_done_softirq(struct softirq_action
*h
)
3421 struct list_head
*cpu_list
, local_list
;
3423 local_irq_disable();
3424 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3425 list_replace_init(cpu_list
, &local_list
);
3428 while (!list_empty(&local_list
)) {
3429 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3431 list_del_init(&rq
->donelist
);
3432 rq
->q
->softirq_done_fn(rq
);
3436 #ifdef CONFIG_HOTPLUG_CPU
3438 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3442 * If a CPU goes away, splice its entries to the current CPU
3443 * and trigger a run of the softirq
3445 if (action
== CPU_DEAD
) {
3446 int cpu
= (unsigned long) hcpu
;
3448 local_irq_disable();
3449 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3450 &__get_cpu_var(blk_cpu_done
));
3451 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3459 static struct notifier_block __devinitdata blk_cpu_notifier
= {
3460 .notifier_call
= blk_cpu_notify
,
3463 #endif /* CONFIG_HOTPLUG_CPU */
3466 * blk_complete_request - end I/O on a request
3467 * @req: the request being processed
3470 * Ends all I/O on a request. It does not handle partial completions,
3471 * unless the driver actually implements this in its completion callback
3472 * through requeueing. Theh actual completion happens out-of-order,
3473 * through a softirq handler. The user must have registered a completion
3474 * callback through blk_queue_softirq_done().
3477 void blk_complete_request(struct request
*req
)
3479 struct list_head
*cpu_list
;
3480 unsigned long flags
;
3482 BUG_ON(!req
->q
->softirq_done_fn
);
3484 local_irq_save(flags
);
3486 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3487 list_add_tail(&req
->donelist
, cpu_list
);
3488 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3490 local_irq_restore(flags
);
3493 EXPORT_SYMBOL(blk_complete_request
);
3496 * queue lock must be held
3498 void end_that_request_last(struct request
*req
, int uptodate
)
3500 struct gendisk
*disk
= req
->rq_disk
;
3504 * extend uptodate bool to allow < 0 value to be direct io error
3507 if (end_io_error(uptodate
))
3508 error
= !uptodate
? -EIO
: uptodate
;
3510 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3511 laptop_io_completion();
3514 * Account IO completion. bar_rq isn't accounted as a normal
3515 * IO on queueing nor completion. Accounting the containing
3516 * request is enough.
3518 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3519 unsigned long duration
= jiffies
- req
->start_time
;
3520 const int rw
= rq_data_dir(req
);
3522 __disk_stat_inc(disk
, ios
[rw
]);
3523 __disk_stat_add(disk
, ticks
[rw
], duration
);
3524 disk_round_stats(disk
);
3528 req
->end_io(req
, error
);
3530 __blk_put_request(req
->q
, req
);
3533 EXPORT_SYMBOL(end_that_request_last
);
3535 void end_request(struct request
*req
, int uptodate
)
3537 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3538 add_disk_randomness(req
->rq_disk
);
3539 blkdev_dequeue_request(req
);
3540 end_that_request_last(req
, uptodate
);
3544 EXPORT_SYMBOL(end_request
);
3546 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3548 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3549 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
3551 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3552 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3553 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3554 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3555 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3556 rq
->buffer
= bio_data(bio
);
3558 rq
->bio
= rq
->biotail
= bio
;
3561 EXPORT_SYMBOL(blk_rq_bio_prep
);
3563 int kblockd_schedule_work(struct work_struct
*work
)
3565 return queue_work(kblockd_workqueue
, work
);
3568 EXPORT_SYMBOL(kblockd_schedule_work
);
3570 void kblockd_flush(void)
3572 flush_workqueue(kblockd_workqueue
);
3574 EXPORT_SYMBOL(kblockd_flush
);
3576 int __init
blk_dev_init(void)
3580 kblockd_workqueue
= create_workqueue("kblockd");
3581 if (!kblockd_workqueue
)
3582 panic("Failed to create kblockd\n");
3584 request_cachep
= kmem_cache_create("blkdev_requests",
3585 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3587 requestq_cachep
= kmem_cache_create("blkdev_queue",
3588 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3590 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3591 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3593 for_each_possible_cpu(i
)
3594 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3596 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3597 register_hotcpu_notifier(&blk_cpu_notifier
);
3599 blk_max_low_pfn
= max_low_pfn
;
3600 blk_max_pfn
= max_pfn
;
3606 * IO Context helper functions
3608 void put_io_context(struct io_context
*ioc
)
3613 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3615 if (atomic_dec_and_test(&ioc
->refcount
)) {
3616 struct cfq_io_context
*cic
;
3619 if (ioc
->aic
&& ioc
->aic
->dtor
)
3620 ioc
->aic
->dtor(ioc
->aic
);
3621 if (ioc
->cic_root
.rb_node
!= NULL
) {
3622 struct rb_node
*n
= rb_first(&ioc
->cic_root
);
3624 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
3629 kmem_cache_free(iocontext_cachep
, ioc
);
3632 EXPORT_SYMBOL(put_io_context
);
3634 /* Called by the exitting task */
3635 void exit_io_context(void)
3637 struct io_context
*ioc
;
3638 struct cfq_io_context
*cic
;
3641 ioc
= current
->io_context
;
3642 current
->io_context
= NULL
;
3643 task_unlock(current
);
3646 if (ioc
->aic
&& ioc
->aic
->exit
)
3647 ioc
->aic
->exit(ioc
->aic
);
3648 if (ioc
->cic_root
.rb_node
!= NULL
) {
3649 cic
= rb_entry(rb_first(&ioc
->cic_root
), struct cfq_io_context
, rb_node
);
3653 put_io_context(ioc
);
3657 * If the current task has no IO context then create one and initialise it.
3658 * Otherwise, return its existing IO context.
3660 * This returned IO context doesn't have a specifically elevated refcount,
3661 * but since the current task itself holds a reference, the context can be
3662 * used in general code, so long as it stays within `current` context.
3664 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
)
3666 struct task_struct
*tsk
= current
;
3667 struct io_context
*ret
;
3669 ret
= tsk
->io_context
;
3673 ret
= kmem_cache_alloc_node(iocontext_cachep
, gfp_flags
, node
);
3675 atomic_set(&ret
->refcount
, 1);
3676 ret
->task
= current
;
3677 ret
->ioprio_changed
= 0;
3678 ret
->last_waited
= jiffies
; /* doesn't matter... */
3679 ret
->nr_batch_requests
= 0; /* because this is 0 */
3681 ret
->cic_root
.rb_node
= NULL
;
3682 /* make sure set_task_ioprio() sees the settings above */
3684 tsk
->io_context
= ret
;
3689 EXPORT_SYMBOL(current_io_context
);
3692 * If the current task has no IO context then create one and initialise it.
3693 * If it does have a context, take a ref on it.
3695 * This is always called in the context of the task which submitted the I/O.
3697 struct io_context
*get_io_context(gfp_t gfp_flags
, int node
)
3699 struct io_context
*ret
;
3700 ret
= current_io_context(gfp_flags
, node
);
3702 atomic_inc(&ret
->refcount
);
3705 EXPORT_SYMBOL(get_io_context
);
3707 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3709 struct io_context
*src
= *psrc
;
3710 struct io_context
*dst
= *pdst
;
3713 BUG_ON(atomic_read(&src
->refcount
) == 0);
3714 atomic_inc(&src
->refcount
);
3715 put_io_context(dst
);
3719 EXPORT_SYMBOL(copy_io_context
);
3721 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3723 struct io_context
*temp
;
3728 EXPORT_SYMBOL(swap_io_context
);
3733 struct queue_sysfs_entry
{
3734 struct attribute attr
;
3735 ssize_t (*show
)(struct request_queue
*, char *);
3736 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3740 queue_var_show(unsigned int var
, char *page
)
3742 return sprintf(page
, "%d\n", var
);
3746 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3748 char *p
= (char *) page
;
3750 *var
= simple_strtoul(p
, &p
, 10);
3754 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3756 return queue_var_show(q
->nr_requests
, (page
));
3760 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3762 struct request_list
*rl
= &q
->rq
;
3764 int ret
= queue_var_store(&nr
, page
, count
);
3765 if (nr
< BLKDEV_MIN_RQ
)
3768 spin_lock_irq(q
->queue_lock
);
3769 q
->nr_requests
= nr
;
3770 blk_queue_congestion_threshold(q
);
3772 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3773 set_queue_congested(q
, READ
);
3774 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3775 clear_queue_congested(q
, READ
);
3777 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3778 set_queue_congested(q
, WRITE
);
3779 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3780 clear_queue_congested(q
, WRITE
);
3782 if (rl
->count
[READ
] >= q
->nr_requests
) {
3783 blk_set_queue_full(q
, READ
);
3784 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3785 blk_clear_queue_full(q
, READ
);
3786 wake_up(&rl
->wait
[READ
]);
3789 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3790 blk_set_queue_full(q
, WRITE
);
3791 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3792 blk_clear_queue_full(q
, WRITE
);
3793 wake_up(&rl
->wait
[WRITE
]);
3795 spin_unlock_irq(q
->queue_lock
);
3799 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3801 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3803 return queue_var_show(ra_kb
, (page
));
3807 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3809 unsigned long ra_kb
;
3810 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3812 spin_lock_irq(q
->queue_lock
);
3813 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3814 spin_unlock_irq(q
->queue_lock
);
3819 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3821 int max_sectors_kb
= q
->max_sectors
>> 1;
3823 return queue_var_show(max_sectors_kb
, (page
));
3827 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3829 unsigned long max_sectors_kb
,
3830 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3831 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3832 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3835 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3838 * Take the queue lock to update the readahead and max_sectors
3839 * values synchronously:
3841 spin_lock_irq(q
->queue_lock
);
3843 * Trim readahead window as well, if necessary:
3845 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3846 if (ra_kb
> max_sectors_kb
)
3847 q
->backing_dev_info
.ra_pages
=
3848 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3850 q
->max_sectors
= max_sectors_kb
<< 1;
3851 spin_unlock_irq(q
->queue_lock
);
3856 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3858 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3860 return queue_var_show(max_hw_sectors_kb
, (page
));
3864 static struct queue_sysfs_entry queue_requests_entry
= {
3865 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3866 .show
= queue_requests_show
,
3867 .store
= queue_requests_store
,
3870 static struct queue_sysfs_entry queue_ra_entry
= {
3871 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3872 .show
= queue_ra_show
,
3873 .store
= queue_ra_store
,
3876 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3877 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3878 .show
= queue_max_sectors_show
,
3879 .store
= queue_max_sectors_store
,
3882 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3883 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3884 .show
= queue_max_hw_sectors_show
,
3887 static struct queue_sysfs_entry queue_iosched_entry
= {
3888 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3889 .show
= elv_iosched_show
,
3890 .store
= elv_iosched_store
,
3893 static struct attribute
*default_attrs
[] = {
3894 &queue_requests_entry
.attr
,
3895 &queue_ra_entry
.attr
,
3896 &queue_max_hw_sectors_entry
.attr
,
3897 &queue_max_sectors_entry
.attr
,
3898 &queue_iosched_entry
.attr
,
3902 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3905 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3907 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3908 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
3913 mutex_lock(&q
->sysfs_lock
);
3914 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
3915 mutex_unlock(&q
->sysfs_lock
);
3918 res
= entry
->show(q
, page
);
3919 mutex_unlock(&q
->sysfs_lock
);
3924 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3925 const char *page
, size_t length
)
3927 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3928 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
3934 mutex_lock(&q
->sysfs_lock
);
3935 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
3936 mutex_unlock(&q
->sysfs_lock
);
3939 res
= entry
->store(q
, page
, length
);
3940 mutex_unlock(&q
->sysfs_lock
);
3944 static struct sysfs_ops queue_sysfs_ops
= {
3945 .show
= queue_attr_show
,
3946 .store
= queue_attr_store
,
3949 static struct kobj_type queue_ktype
= {
3950 .sysfs_ops
= &queue_sysfs_ops
,
3951 .default_attrs
= default_attrs
,
3952 .release
= blk_release_queue
,
3955 int blk_register_queue(struct gendisk
*disk
)
3959 request_queue_t
*q
= disk
->queue
;
3961 if (!q
|| !q
->request_fn
)
3964 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3966 ret
= kobject_add(&q
->kobj
);
3970 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
3972 ret
= elv_register_queue(q
);
3974 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
3975 kobject_del(&q
->kobj
);
3982 void blk_unregister_queue(struct gendisk
*disk
)
3984 request_queue_t
*q
= disk
->queue
;
3986 if (q
&& q
->request_fn
) {
3987 elv_unregister_queue(q
);
3989 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
3990 kobject_del(&q
->kobj
);
3991 kobject_put(&disk
->kobj
);