2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
24 #include <asm/a.out.h>
28 #include <asm/machvec.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
40 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
42 extern void ia64_tlb_init (void);
44 unsigned long MAX_DMA_ADDRESS
= PAGE_OFFSET
+ 0x100000000UL
;
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end
= VMALLOC_END_INIT
;
48 EXPORT_SYMBOL(vmalloc_end
);
49 struct page
*vmem_map
;
50 EXPORT_SYMBOL(vmem_map
);
53 struct page
*zero_page_memmap_ptr
; /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr
);
57 __ia64_sync_icache_dcache (pte_t pte
)
64 addr
= (unsigned long) page_address(page
);
66 if (test_bit(PG_arch_1
, &page
->flags
))
67 return; /* i-cache is already coherent with d-cache */
69 if (PageCompound(page
)) {
70 order
= compound_order(page
);
71 flush_icache_range(addr
, addr
+ (1UL << order
<< PAGE_SHIFT
));
74 flush_icache_range(addr
, addr
+ PAGE_SIZE
);
75 set_bit(PG_arch_1
, &page
->flags
); /* mark page as clean */
79 * Since DMA is i-cache coherent, any (complete) pages that were written via
80 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
81 * flush them when they get mapped into an executable vm-area.
84 dma_mark_clean(void *addr
, size_t size
)
86 unsigned long pg_addr
, end
;
88 pg_addr
= PAGE_ALIGN((unsigned long) addr
);
89 end
= (unsigned long) addr
+ size
;
90 while (pg_addr
+ PAGE_SIZE
<= end
) {
91 struct page
*page
= virt_to_page(pg_addr
);
92 set_bit(PG_arch_1
, &page
->flags
);
98 ia64_set_rbs_bot (void)
100 unsigned long stack_size
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
& -16;
102 if (stack_size
> MAX_USER_STACK_SIZE
)
103 stack_size
= MAX_USER_STACK_SIZE
;
104 current
->thread
.rbs_bot
= PAGE_ALIGN(current
->mm
->start_stack
- stack_size
);
108 * This performs some platform-dependent address space initialization.
109 * On IA-64, we want to setup the VM area for the register backing
110 * store (which grows upwards) and install the gateway page which is
111 * used for signal trampolines, etc.
114 ia64_init_addr_space (void)
116 struct vm_area_struct
*vma
;
121 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
122 * the problem. When the process attempts to write to the register backing store
123 * for the first time, it will get a SEGFAULT in this case.
125 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
127 vma
->vm_mm
= current
->mm
;
128 vma
->vm_start
= current
->thread
.rbs_bot
& PAGE_MASK
;
129 vma
->vm_end
= vma
->vm_start
+ PAGE_SIZE
;
130 vma
->vm_flags
= VM_DATA_DEFAULT_FLAGS
|VM_GROWSUP
|VM_ACCOUNT
;
131 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
132 down_write(¤t
->mm
->mmap_sem
);
133 if (insert_vm_struct(current
->mm
, vma
)) {
134 up_write(¤t
->mm
->mmap_sem
);
135 kmem_cache_free(vm_area_cachep
, vma
);
138 up_write(¤t
->mm
->mmap_sem
);
141 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
142 if (!(current
->personality
& MMAP_PAGE_ZERO
)) {
143 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
145 vma
->vm_mm
= current
->mm
;
146 vma
->vm_end
= PAGE_SIZE
;
147 vma
->vm_page_prot
= __pgprot(pgprot_val(PAGE_READONLY
) | _PAGE_MA_NAT
);
148 vma
->vm_flags
= VM_READ
| VM_MAYREAD
| VM_IO
| VM_RESERVED
;
149 down_write(¤t
->mm
->mmap_sem
);
150 if (insert_vm_struct(current
->mm
, vma
)) {
151 up_write(¤t
->mm
->mmap_sem
);
152 kmem_cache_free(vm_area_cachep
, vma
);
155 up_write(¤t
->mm
->mmap_sem
);
163 unsigned long addr
, eaddr
;
165 addr
= (unsigned long) ia64_imva(__init_begin
);
166 eaddr
= (unsigned long) ia64_imva(__init_end
);
167 while (addr
< eaddr
) {
168 ClearPageReserved(virt_to_page(addr
));
169 init_page_count(virt_to_page(addr
));
174 printk(KERN_INFO
"Freeing unused kernel memory: %ldkB freed\n",
175 (__init_end
- __init_begin
) >> 10);
179 free_initrd_mem (unsigned long start
, unsigned long end
)
183 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
184 * Thus EFI and the kernel may have different page sizes. It is
185 * therefore possible to have the initrd share the same page as
186 * the end of the kernel (given current setup).
188 * To avoid freeing/using the wrong page (kernel sized) we:
189 * - align up the beginning of initrd
190 * - align down the end of initrd
193 * |=============| a000
199 * |=============| 8000
202 * |/////////////| 7000
205 * |=============| 6000
208 * K=kernel using 8KB pages
210 * In this example, we must free page 8000 ONLY. So we must align up
211 * initrd_start and keep initrd_end as is.
213 start
= PAGE_ALIGN(start
);
214 end
= end
& PAGE_MASK
;
217 printk(KERN_INFO
"Freeing initrd memory: %ldkB freed\n", (end
- start
) >> 10);
219 for (; start
< end
; start
+= PAGE_SIZE
) {
220 if (!virt_addr_valid(start
))
222 page
= virt_to_page(start
);
223 ClearPageReserved(page
);
224 init_page_count(page
);
231 * This installs a clean page in the kernel's page table.
233 static struct page
* __init
234 put_kernel_page (struct page
*page
, unsigned long address
, pgprot_t pgprot
)
241 if (!PageReserved(page
))
242 printk(KERN_ERR
"put_kernel_page: page at 0x%p not in reserved memory\n",
245 pgd
= pgd_offset_k(address
); /* note: this is NOT pgd_offset()! */
248 pud
= pud_alloc(&init_mm
, pgd
, address
);
251 pmd
= pmd_alloc(&init_mm
, pud
, address
);
254 pte
= pte_alloc_kernel(pmd
, address
);
259 set_pte(pte
, mk_pte(page
, pgprot
));
262 /* no need for flush_tlb */
272 * Map the gate page twice: once read-only to export the ELF
273 * headers etc. and once execute-only page to enable
274 * privilege-promotion via "epc":
276 page
= virt_to_page(ia64_imva(__start_gate_section
));
277 put_kernel_page(page
, GATE_ADDR
, PAGE_READONLY
);
278 #ifdef HAVE_BUGGY_SEGREL
279 page
= virt_to_page(ia64_imva(__start_gate_section
+ PAGE_SIZE
));
280 put_kernel_page(page
, GATE_ADDR
+ PAGE_SIZE
, PAGE_GATE
);
282 put_kernel_page(page
, GATE_ADDR
+ PERCPU_PAGE_SIZE
, PAGE_GATE
);
283 /* Fill in the holes (if any) with read-only zero pages: */
287 for (addr
= GATE_ADDR
+ PAGE_SIZE
;
288 addr
< GATE_ADDR
+ PERCPU_PAGE_SIZE
;
291 put_kernel_page(ZERO_PAGE(0), addr
,
293 put_kernel_page(ZERO_PAGE(0), addr
+ PERCPU_PAGE_SIZE
,
302 ia64_mmu_init (void *my_cpu_data
)
304 unsigned long pta
, impl_va_bits
;
305 extern void __devinit
tlb_init (void);
307 #ifdef CONFIG_DISABLE_VHPT
308 # define VHPT_ENABLE_BIT 0
310 # define VHPT_ENABLE_BIT 1
314 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
315 * address space. The IA-64 architecture guarantees that at least 50 bits of
316 * virtual address space are implemented but if we pick a large enough page size
317 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
318 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
319 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
320 * problem in practice. Alternatively, we could truncate the top of the mapped
321 * address space to not permit mappings that would overlap with the VMLPT.
325 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
327 * The virtual page table has to cover the entire implemented address space within
328 * a region even though not all of this space may be mappable. The reason for
329 * this is that the Access bit and Dirty bit fault handlers perform
330 * non-speculative accesses to the virtual page table, so the address range of the
331 * virtual page table itself needs to be covered by virtual page table.
333 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
334 # define POW2(n) (1ULL << (n))
336 impl_va_bits
= ffz(~(local_cpu_data
->unimpl_va_mask
| (7UL << 61)));
338 if (impl_va_bits
< 51 || impl_va_bits
> 61)
339 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits
- 1);
341 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
342 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
343 * the test makes sure that our mapped space doesn't overlap the
344 * unimplemented hole in the middle of the region.
346 if ((mapped_space_bits
- PAGE_SHIFT
> vmlpt_bits
- pte_bits
) ||
347 (mapped_space_bits
> impl_va_bits
- 1))
348 panic("Cannot build a big enough virtual-linear page table"
349 " to cover mapped address space.\n"
350 " Try using a smaller page size.\n");
353 /* place the VMLPT at the end of each page-table mapped region: */
354 pta
= POW2(61) - POW2(vmlpt_bits
);
357 * Set the (virtually mapped linear) page table address. Bit
358 * 8 selects between the short and long format, bits 2-7 the
359 * size of the table, and bit 0 whether the VHPT walker is
362 ia64_set_pta(pta
| (0 << 8) | (vmlpt_bits
<< 2) | VHPT_ENABLE_BIT
);
366 #ifdef CONFIG_HUGETLB_PAGE
367 ia64_set_rr(HPAGE_REGION_BASE
, HPAGE_SHIFT
<< 2);
372 #ifdef CONFIG_VIRTUAL_MEM_MAP
373 int vmemmap_find_next_valid_pfn(int node
, int i
)
375 unsigned long end_address
, hole_next_pfn
;
376 unsigned long stop_address
;
377 pg_data_t
*pgdat
= NODE_DATA(node
);
379 end_address
= (unsigned long) &vmem_map
[pgdat
->node_start_pfn
+ i
];
380 end_address
= PAGE_ALIGN(end_address
);
382 stop_address
= (unsigned long) &vmem_map
[
383 pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
];
391 pgd
= pgd_offset_k(end_address
);
392 if (pgd_none(*pgd
)) {
393 end_address
+= PGDIR_SIZE
;
397 pud
= pud_offset(pgd
, end_address
);
398 if (pud_none(*pud
)) {
399 end_address
+= PUD_SIZE
;
403 pmd
= pmd_offset(pud
, end_address
);
404 if (pmd_none(*pmd
)) {
405 end_address
+= PMD_SIZE
;
409 pte
= pte_offset_kernel(pmd
, end_address
);
411 if (pte_none(*pte
)) {
412 end_address
+= PAGE_SIZE
;
414 if ((end_address
< stop_address
) &&
415 (end_address
!= ALIGN(end_address
, 1UL << PMD_SHIFT
)))
419 /* Found next valid vmem_map page */
421 } while (end_address
< stop_address
);
423 end_address
= min(end_address
, stop_address
);
424 end_address
= end_address
- (unsigned long) vmem_map
+ sizeof(struct page
) - 1;
425 hole_next_pfn
= end_address
/ sizeof(struct page
);
426 return hole_next_pfn
- pgdat
->node_start_pfn
;
430 create_mem_map_page_table (u64 start
, u64 end
, void *arg
)
432 unsigned long address
, start_page
, end_page
;
433 struct page
*map_start
, *map_end
;
440 map_start
= vmem_map
+ (__pa(start
) >> PAGE_SHIFT
);
441 map_end
= vmem_map
+ (__pa(end
) >> PAGE_SHIFT
);
443 start_page
= (unsigned long) map_start
& PAGE_MASK
;
444 end_page
= PAGE_ALIGN((unsigned long) map_end
);
445 node
= paddr_to_nid(__pa(start
));
447 for (address
= start_page
; address
< end_page
; address
+= PAGE_SIZE
) {
448 pgd
= pgd_offset_k(address
);
450 pgd_populate(&init_mm
, pgd
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
451 pud
= pud_offset(pgd
, address
);
454 pud_populate(&init_mm
, pud
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
455 pmd
= pmd_offset(pud
, address
);
458 pmd_populate_kernel(&init_mm
, pmd
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
459 pte
= pte_offset_kernel(pmd
, address
);
462 set_pte(pte
, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
)) >> PAGE_SHIFT
,
468 struct memmap_init_callback_data
{
476 virtual_memmap_init (u64 start
, u64 end
, void *arg
)
478 struct memmap_init_callback_data
*args
;
479 struct page
*map_start
, *map_end
;
481 args
= (struct memmap_init_callback_data
*) arg
;
482 map_start
= vmem_map
+ (__pa(start
) >> PAGE_SHIFT
);
483 map_end
= vmem_map
+ (__pa(end
) >> PAGE_SHIFT
);
485 if (map_start
< args
->start
)
486 map_start
= args
->start
;
487 if (map_end
> args
->end
)
491 * We have to initialize "out of bounds" struct page elements that fit completely
492 * on the same pages that were allocated for the "in bounds" elements because they
493 * may be referenced later (and found to be "reserved").
495 map_start
-= ((unsigned long) map_start
& (PAGE_SIZE
- 1)) / sizeof(struct page
);
496 map_end
+= ((PAGE_ALIGN((unsigned long) map_end
) - (unsigned long) map_end
)
497 / sizeof(struct page
));
499 if (map_start
< map_end
)
500 memmap_init_zone((unsigned long)(map_end
- map_start
),
501 args
->nid
, args
->zone
, page_to_pfn(map_start
),
507 memmap_init (unsigned long size
, int nid
, unsigned long zone
,
508 unsigned long start_pfn
)
511 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
);
514 struct memmap_init_callback_data args
;
516 start
= pfn_to_page(start_pfn
);
518 args
.end
= start
+ size
;
522 efi_memmap_walk(virtual_memmap_init
, &args
);
527 ia64_pfn_valid (unsigned long pfn
)
530 struct page
*pg
= pfn_to_page(pfn
);
532 return (__get_user(byte
, (char __user
*) pg
) == 0)
533 && ((((u64
)pg
& PAGE_MASK
) == (((u64
)(pg
+ 1) - 1) & PAGE_MASK
))
534 || (__get_user(byte
, (char __user
*) (pg
+ 1) - 1) == 0));
536 EXPORT_SYMBOL(ia64_pfn_valid
);
539 find_largest_hole (u64 start
, u64 end
, void *arg
)
543 static u64 last_end
= PAGE_OFFSET
;
545 /* NOTE: this algorithm assumes efi memmap table is ordered */
547 if (*max_gap
< (start
- last_end
))
548 *max_gap
= start
- last_end
;
553 #endif /* CONFIG_VIRTUAL_MEM_MAP */
556 register_active_ranges(u64 start
, u64 end
, void *arg
)
558 int nid
= paddr_to_nid(__pa(start
));
563 if (start
> crashk_res
.start
&& start
< crashk_res
.end
)
564 start
= crashk_res
.end
;
565 if (end
> crashk_res
.start
&& end
< crashk_res
.end
)
566 end
= crashk_res
.start
;
570 add_active_range(nid
, __pa(start
) >> PAGE_SHIFT
,
571 __pa(end
) >> PAGE_SHIFT
);
576 count_reserved_pages (u64 start
, u64 end
, void *arg
)
578 unsigned long num_reserved
= 0;
579 unsigned long *count
= arg
;
581 for (; start
< end
; start
+= PAGE_SIZE
)
582 if (PageReserved(virt_to_page(start
)))
584 *count
+= num_reserved
;
589 find_max_min_low_pfn (unsigned long start
, unsigned long end
, void *arg
)
591 unsigned long pfn_start
, pfn_end
;
592 #ifdef CONFIG_FLATMEM
593 pfn_start
= (PAGE_ALIGN(__pa(start
))) >> PAGE_SHIFT
;
594 pfn_end
= (PAGE_ALIGN(__pa(end
- 1))) >> PAGE_SHIFT
;
596 pfn_start
= GRANULEROUNDDOWN(__pa(start
)) >> PAGE_SHIFT
;
597 pfn_end
= GRANULEROUNDUP(__pa(end
- 1)) >> PAGE_SHIFT
;
599 min_low_pfn
= min(min_low_pfn
, pfn_start
);
600 max_low_pfn
= max(max_low_pfn
, pfn_end
);
605 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
606 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
607 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
608 * useful for performance testing, but conceivably could also come in handy for debugging
612 static int nolwsys __initdata
;
615 nolwsys_setup (char *s
)
621 __setup("nolwsys", nolwsys_setup
);
626 long reserved_pages
, codesize
, datasize
, initsize
;
629 static struct kcore_list kcore_mem
, kcore_vmem
, kcore_kernel
;
631 BUG_ON(PTRS_PER_PGD
* sizeof(pgd_t
) != PAGE_SIZE
);
632 BUG_ON(PTRS_PER_PMD
* sizeof(pmd_t
) != PAGE_SIZE
);
633 BUG_ON(PTRS_PER_PTE
* sizeof(pte_t
) != PAGE_SIZE
);
637 * This needs to be called _after_ the command line has been parsed but _before_
638 * any drivers that may need the PCI DMA interface are initialized or bootmem has
644 #ifdef CONFIG_FLATMEM
647 max_mapnr
= max_low_pfn
;
650 high_memory
= __va(max_low_pfn
* PAGE_SIZE
);
652 kclist_add(&kcore_mem
, __va(0), max_low_pfn
* PAGE_SIZE
);
653 kclist_add(&kcore_vmem
, (void *)VMALLOC_START
, VMALLOC_END
-VMALLOC_START
);
654 kclist_add(&kcore_kernel
, _stext
, _end
- _stext
);
656 for_each_online_pgdat(pgdat
)
657 if (pgdat
->bdata
->node_bootmem_map
)
658 totalram_pages
+= free_all_bootmem_node(pgdat
);
661 efi_memmap_walk(count_reserved_pages
, &reserved_pages
);
663 codesize
= (unsigned long) _etext
- (unsigned long) _stext
;
664 datasize
= (unsigned long) _edata
- (unsigned long) _etext
;
665 initsize
= (unsigned long) __init_end
- (unsigned long) __init_begin
;
667 printk(KERN_INFO
"Memory: %luk/%luk available (%luk code, %luk reserved, "
668 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT
- 10),
669 num_physpages
<< (PAGE_SHIFT
- 10), codesize
>> 10,
670 reserved_pages
<< (PAGE_SHIFT
- 10), datasize
>> 10, initsize
>> 10);
674 * For fsyscall entrpoints with no light-weight handler, use the ordinary
675 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
676 * code can tell them apart.
678 for (i
= 0; i
< NR_syscalls
; ++i
) {
679 extern unsigned long fsyscall_table
[NR_syscalls
];
680 extern unsigned long sys_call_table
[NR_syscalls
];
682 if (!fsyscall_table
[i
] || nolwsys
)
683 fsyscall_table
[i
] = sys_call_table
[i
] | 1;
687 #ifdef CONFIG_IA32_SUPPORT
692 #ifdef CONFIG_MEMORY_HOTPLUG
693 void online_page(struct page
*page
)
695 ClearPageReserved(page
);
696 init_page_count(page
);
702 int arch_add_memory(int nid
, u64 start
, u64 size
)
706 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
707 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
710 pgdat
= NODE_DATA(nid
);
712 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
713 ret
= __add_pages(zone
, start_pfn
, nr_pages
);
716 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
721 #ifdef CONFIG_MEMORY_HOTREMOVE
722 int remove_memory(u64 start
, u64 size
)
724 unsigned long start_pfn
, end_pfn
;
725 unsigned long timeout
= 120 * HZ
;
727 start_pfn
= start
>> PAGE_SHIFT
;
728 end_pfn
= start_pfn
+ (size
>> PAGE_SHIFT
);
729 ret
= offline_pages(start_pfn
, end_pfn
, timeout
);
732 /* we can free mem_map at this point */
736 EXPORT_SYMBOL_GPL(remove_memory
);
737 #endif /* CONFIG_MEMORY_HOTREMOVE */