2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
41 #include <linux/compiler.h>
42 #include <linux/module.h>
44 /* People can turn this off for buggy TCP's found in printers etc. */
45 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
47 /* People can turn this on to work with those rare, broken TCPs that
48 * interpret the window field as a signed quantity.
50 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
52 /* This limits the percentage of the congestion window which we
53 * will allow a single TSO frame to consume. Building TSO frames
54 * which are too large can cause TCP streams to be bursty.
56 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
58 int sysctl_tcp_mtu_probing __read_mostly
= 0;
59 int sysctl_tcp_base_mss __read_mostly
= 512;
61 /* By default, RFC2861 behavior. */
62 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
64 static void tcp_event_new_data_sent(struct sock
*sk
, struct sk_buff
*skb
)
66 struct tcp_sock
*tp
= tcp_sk(sk
);
67 unsigned int prior_packets
= tp
->packets_out
;
69 tcp_advance_send_head(sk
, skb
);
70 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
72 /* Don't override Nagle indefinately with F-RTO */
73 if (tp
->frto_counter
== 2)
76 tp
->packets_out
+= tcp_skb_pcount(skb
);
78 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
79 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
82 /* SND.NXT, if window was not shrunk.
83 * If window has been shrunk, what should we make? It is not clear at all.
84 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
85 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
86 * invalid. OK, let's make this for now:
88 static inline __u32
tcp_acceptable_seq(struct sock
*sk
)
90 struct tcp_sock
*tp
= tcp_sk(sk
);
92 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
95 return tcp_wnd_end(tp
);
98 /* Calculate mss to advertise in SYN segment.
99 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
101 * 1. It is independent of path mtu.
102 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
103 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
104 * attached devices, because some buggy hosts are confused by
106 * 4. We do not make 3, we advertise MSS, calculated from first
107 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
108 * This may be overridden via information stored in routing table.
109 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
110 * probably even Jumbo".
112 static __u16
tcp_advertise_mss(struct sock
*sk
)
114 struct tcp_sock
*tp
= tcp_sk(sk
);
115 struct dst_entry
*dst
= __sk_dst_get(sk
);
116 int mss
= tp
->advmss
;
118 if (dst
&& dst_metric(dst
, RTAX_ADVMSS
) < mss
) {
119 mss
= dst_metric(dst
, RTAX_ADVMSS
);
126 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
127 * This is the first part of cwnd validation mechanism. */
128 static void tcp_cwnd_restart(struct sock
*sk
, struct dst_entry
*dst
)
130 struct tcp_sock
*tp
= tcp_sk(sk
);
131 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
132 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
133 u32 cwnd
= tp
->snd_cwnd
;
135 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
137 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
138 restart_cwnd
= min(restart_cwnd
, cwnd
);
140 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
142 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
143 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
144 tp
->snd_cwnd_used
= 0;
147 static void tcp_event_data_sent(struct tcp_sock
*tp
,
148 struct sk_buff
*skb
, struct sock
*sk
)
150 struct inet_connection_sock
*icsk
= inet_csk(sk
);
151 const u32 now
= tcp_time_stamp
;
153 if (sysctl_tcp_slow_start_after_idle
&&
154 (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
))
155 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
159 /* If it is a reply for ato after last received
160 * packet, enter pingpong mode.
162 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
163 icsk
->icsk_ack
.pingpong
= 1;
166 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
168 tcp_dec_quickack_mode(sk
, pkts
);
169 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
172 /* Determine a window scaling and initial window to offer.
173 * Based on the assumption that the given amount of space
174 * will be offered. Store the results in the tp structure.
175 * NOTE: for smooth operation initial space offering should
176 * be a multiple of mss if possible. We assume here that mss >= 1.
177 * This MUST be enforced by all callers.
179 void tcp_select_initial_window(int __space
, __u32 mss
,
180 __u32
*rcv_wnd
, __u32
*window_clamp
,
181 int wscale_ok
, __u8
*rcv_wscale
)
183 unsigned int space
= (__space
< 0 ? 0 : __space
);
185 /* If no clamp set the clamp to the max possible scaled window */
186 if (*window_clamp
== 0)
187 (*window_clamp
) = (65535 << 14);
188 space
= min(*window_clamp
, space
);
190 /* Quantize space offering to a multiple of mss if possible. */
192 space
= (space
/ mss
) * mss
;
194 /* NOTE: offering an initial window larger than 32767
195 * will break some buggy TCP stacks. If the admin tells us
196 * it is likely we could be speaking with such a buggy stack
197 * we will truncate our initial window offering to 32K-1
198 * unless the remote has sent us a window scaling option,
199 * which we interpret as a sign the remote TCP is not
200 * misinterpreting the window field as a signed quantity.
202 if (sysctl_tcp_workaround_signed_windows
)
203 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
209 /* Set window scaling on max possible window
210 * See RFC1323 for an explanation of the limit to 14
212 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
213 space
= min_t(u32
, space
, *window_clamp
);
214 while (space
> 65535 && (*rcv_wscale
) < 14) {
220 /* Set initial window to value enough for senders,
221 * following RFC2414. Senders, not following this RFC,
222 * will be satisfied with 2.
224 if (mss
> (1 << *rcv_wscale
)) {
230 if (*rcv_wnd
> init_cwnd
* mss
)
231 *rcv_wnd
= init_cwnd
* mss
;
234 /* Set the clamp no higher than max representable value */
235 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
238 /* Chose a new window to advertise, update state in tcp_sock for the
239 * socket, and return result with RFC1323 scaling applied. The return
240 * value can be stuffed directly into th->window for an outgoing
243 static u16
tcp_select_window(struct sock
*sk
)
245 struct tcp_sock
*tp
= tcp_sk(sk
);
246 u32 cur_win
= tcp_receive_window(tp
);
247 u32 new_win
= __tcp_select_window(sk
);
249 /* Never shrink the offered window */
250 if (new_win
< cur_win
) {
251 /* Danger Will Robinson!
252 * Don't update rcv_wup/rcv_wnd here or else
253 * we will not be able to advertise a zero
254 * window in time. --DaveM
256 * Relax Will Robinson.
260 tp
->rcv_wnd
= new_win
;
261 tp
->rcv_wup
= tp
->rcv_nxt
;
263 /* Make sure we do not exceed the maximum possible
266 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
267 new_win
= min(new_win
, MAX_TCP_WINDOW
);
269 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
271 /* RFC1323 scaling applied */
272 new_win
>>= tp
->rx_opt
.rcv_wscale
;
274 /* If we advertise zero window, disable fast path. */
281 static inline void TCP_ECN_send_synack(struct tcp_sock
*tp
, struct sk_buff
*skb
)
283 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_CWR
;
284 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
285 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_ECE
;
288 static inline void TCP_ECN_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
290 struct tcp_sock
*tp
= tcp_sk(sk
);
293 if (sysctl_tcp_ecn
) {
294 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ECE
| TCPCB_FLAG_CWR
;
295 tp
->ecn_flags
= TCP_ECN_OK
;
299 static __inline__
void
300 TCP_ECN_make_synack(struct request_sock
*req
, struct tcphdr
*th
)
302 if (inet_rsk(req
)->ecn_ok
)
306 static inline void TCP_ECN_send(struct sock
*sk
, struct sk_buff
*skb
,
309 struct tcp_sock
*tp
= tcp_sk(sk
);
311 if (tp
->ecn_flags
& TCP_ECN_OK
) {
312 /* Not-retransmitted data segment: set ECT and inject CWR. */
313 if (skb
->len
!= tcp_header_len
&&
314 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
316 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
317 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
318 tcp_hdr(skb
)->cwr
= 1;
319 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
322 /* ACK or retransmitted segment: clear ECT|CE */
323 INET_ECN_dontxmit(sk
);
325 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
326 tcp_hdr(skb
)->ece
= 1;
330 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
331 * auto increment end seqno.
333 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
337 TCP_SKB_CB(skb
)->flags
= flags
;
338 TCP_SKB_CB(skb
)->sacked
= 0;
340 skb_shinfo(skb
)->gso_segs
= 1;
341 skb_shinfo(skb
)->gso_size
= 0;
342 skb_shinfo(skb
)->gso_type
= 0;
344 TCP_SKB_CB(skb
)->seq
= seq
;
345 if (flags
& (TCPCB_FLAG_SYN
| TCPCB_FLAG_FIN
))
347 TCP_SKB_CB(skb
)->end_seq
= seq
;
350 static void tcp_build_and_update_options(__be32
*ptr
, struct tcp_sock
*tp
,
351 __u32 tstamp
, __u8
**md5_hash
)
353 if (tp
->rx_opt
.tstamp_ok
) {
354 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
356 (TCPOPT_TIMESTAMP
<< 8) |
358 *ptr
++ = htonl(tstamp
);
359 *ptr
++ = htonl(tp
->rx_opt
.ts_recent
);
361 if (tp
->rx_opt
.eff_sacks
) {
362 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
? tp
->duplicate_sack
: tp
->selective_acks
;
365 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
368 (TCPOLEN_SACK_BASE
+ (tp
->rx_opt
.eff_sacks
*
369 TCPOLEN_SACK_PERBLOCK
)));
371 for (this_sack
= 0; this_sack
< tp
->rx_opt
.eff_sacks
; this_sack
++) {
372 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
373 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
376 if (tp
->rx_opt
.dsack
) {
377 tp
->rx_opt
.dsack
= 0;
378 tp
->rx_opt
.eff_sacks
--;
381 #ifdef CONFIG_TCP_MD5SIG
383 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
385 (TCPOPT_MD5SIG
<< 8) |
387 *md5_hash
= (__u8
*)ptr
;
392 /* Construct a tcp options header for a SYN or SYN_ACK packet.
393 * If this is every changed make sure to change the definition of
394 * MAX_SYN_SIZE to match the new maximum number of options that you
397 * Note - that with the RFC2385 TCP option, we make room for the
398 * 16 byte MD5 hash. This will be filled in later, so the pointer for the
399 * location to be filled is passed back up.
401 static void tcp_syn_build_options(__be32
*ptr
, int mss
, int ts
, int sack
,
402 int offer_wscale
, int wscale
, __u32 tstamp
,
403 __u32 ts_recent
, __u8
**md5_hash
)
405 /* We always get an MSS option.
406 * The option bytes which will be seen in normal data
407 * packets should timestamps be used, must be in the MSS
408 * advertised. But we subtract them from tp->mss_cache so
409 * that calculations in tcp_sendmsg are simpler etc.
410 * So account for this fact here if necessary. If we
411 * don't do this correctly, as a receiver we won't
412 * recognize data packets as being full sized when we
413 * should, and thus we won't abide by the delayed ACK
415 * SACKs don't matter, we never delay an ACK when we
416 * have any of those going out.
418 *ptr
++ = htonl((TCPOPT_MSS
<< 24) | (TCPOLEN_MSS
<< 16) | mss
);
421 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
422 (TCPOLEN_SACK_PERM
<< 16) |
423 (TCPOPT_TIMESTAMP
<< 8) |
426 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
428 (TCPOPT_TIMESTAMP
<< 8) |
430 *ptr
++ = htonl(tstamp
); /* TSVAL */
431 *ptr
++ = htonl(ts_recent
); /* TSECR */
433 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
435 (TCPOPT_SACK_PERM
<< 8) |
438 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
439 (TCPOPT_WINDOW
<< 16) |
440 (TCPOLEN_WINDOW
<< 8) |
442 #ifdef CONFIG_TCP_MD5SIG
444 * If MD5 is enabled, then we set the option, and include the size
445 * (always 18). The actual MD5 hash is added just before the
449 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
451 (TCPOPT_MD5SIG
<< 8) |
453 *md5_hash
= (__u8
*)ptr
;
458 /* This routine actually transmits TCP packets queued in by
459 * tcp_do_sendmsg(). This is used by both the initial
460 * transmission and possible later retransmissions.
461 * All SKB's seen here are completely headerless. It is our
462 * job to build the TCP header, and pass the packet down to
463 * IP so it can do the same plus pass the packet off to the
466 * We are working here with either a clone of the original
467 * SKB, or a fresh unique copy made by the retransmit engine.
469 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
472 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
473 struct inet_sock
*inet
;
475 struct tcp_skb_cb
*tcb
;
477 #ifdef CONFIG_TCP_MD5SIG
478 struct tcp_md5sig_key
*md5
;
479 __u8
*md5_hash_location
;
485 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
487 /* If congestion control is doing timestamping, we must
488 * take such a timestamp before we potentially clone/copy.
490 if (icsk
->icsk_ca_ops
->flags
& TCP_CONG_RTT_STAMP
)
491 __net_timestamp(skb
);
493 if (likely(clone_it
)) {
494 if (unlikely(skb_cloned(skb
)))
495 skb
= pskb_copy(skb
, gfp_mask
);
497 skb
= skb_clone(skb
, gfp_mask
);
504 tcb
= TCP_SKB_CB(skb
);
505 tcp_header_size
= tp
->tcp_header_len
;
507 #define SYSCTL_FLAG_TSTAMPS 0x1
508 #define SYSCTL_FLAG_WSCALE 0x2
509 #define SYSCTL_FLAG_SACK 0x4
512 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
513 tcp_header_size
= sizeof(struct tcphdr
) + TCPOLEN_MSS
;
514 if (sysctl_tcp_timestamps
) {
515 tcp_header_size
+= TCPOLEN_TSTAMP_ALIGNED
;
516 sysctl_flags
|= SYSCTL_FLAG_TSTAMPS
;
518 if (sysctl_tcp_window_scaling
) {
519 tcp_header_size
+= TCPOLEN_WSCALE_ALIGNED
;
520 sysctl_flags
|= SYSCTL_FLAG_WSCALE
;
522 if (sysctl_tcp_sack
) {
523 sysctl_flags
|= SYSCTL_FLAG_SACK
;
524 if (!(sysctl_flags
& SYSCTL_FLAG_TSTAMPS
))
525 tcp_header_size
+= TCPOLEN_SACKPERM_ALIGNED
;
527 } else if (unlikely(tp
->rx_opt
.eff_sacks
)) {
528 /* A SACK is 2 pad bytes, a 2 byte header, plus
529 * 2 32-bit sequence numbers for each SACK block.
531 tcp_header_size
+= (TCPOLEN_SACK_BASE_ALIGNED
+
532 (tp
->rx_opt
.eff_sacks
*
533 TCPOLEN_SACK_PERBLOCK
));
536 if (tcp_packets_in_flight(tp
) == 0)
537 tcp_ca_event(sk
, CA_EVENT_TX_START
);
539 #ifdef CONFIG_TCP_MD5SIG
541 * Are we doing MD5 on this segment? If so - make
544 md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
546 tcp_header_size
+= TCPOLEN_MD5SIG_ALIGNED
;
549 skb_push(skb
, tcp_header_size
);
550 skb_reset_transport_header(skb
);
551 skb_set_owner_w(skb
, sk
);
553 /* Build TCP header and checksum it. */
555 th
->source
= inet
->sport
;
556 th
->dest
= inet
->dport
;
557 th
->seq
= htonl(tcb
->seq
);
558 th
->ack_seq
= htonl(tp
->rcv_nxt
);
559 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
562 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
563 /* RFC1323: The window in SYN & SYN/ACK segments
566 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
568 th
->window
= htons(tcp_select_window(sk
));
573 if (unlikely(tp
->urg_mode
&&
574 between(tp
->snd_up
, tcb
->seq
+ 1, tcb
->seq
+ 0xFFFF))) {
575 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
579 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
580 tcp_syn_build_options((__be32
*)(th
+ 1),
581 tcp_advertise_mss(sk
),
582 (sysctl_flags
& SYSCTL_FLAG_TSTAMPS
),
583 (sysctl_flags
& SYSCTL_FLAG_SACK
),
584 (sysctl_flags
& SYSCTL_FLAG_WSCALE
),
585 tp
->rx_opt
.rcv_wscale
,
587 tp
->rx_opt
.ts_recent
,
589 #ifdef CONFIG_TCP_MD5SIG
590 md5
? &md5_hash_location
:
594 tcp_build_and_update_options((__be32
*)(th
+ 1),
596 #ifdef CONFIG_TCP_MD5SIG
597 md5
? &md5_hash_location
:
600 TCP_ECN_send(sk
, skb
, tcp_header_size
);
603 #ifdef CONFIG_TCP_MD5SIG
604 /* Calculate the MD5 hash, as we have all we need now */
606 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
615 icsk
->icsk_af_ops
->send_check(sk
, skb
->len
, skb
);
617 if (likely(tcb
->flags
& TCPCB_FLAG_ACK
))
618 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
620 if (skb
->len
!= tcp_header_size
)
621 tcp_event_data_sent(tp
, skb
, sk
);
623 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
624 TCP_INC_STATS(TCP_MIB_OUTSEGS
);
626 err
= icsk
->icsk_af_ops
->queue_xmit(skb
, 0);
627 if (likely(err
<= 0))
630 tcp_enter_cwr(sk
, 1);
632 return net_xmit_eval(err
);
634 #undef SYSCTL_FLAG_TSTAMPS
635 #undef SYSCTL_FLAG_WSCALE
636 #undef SYSCTL_FLAG_SACK
639 /* This routine just queue's the buffer
641 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
642 * otherwise socket can stall.
644 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
646 struct tcp_sock
*tp
= tcp_sk(sk
);
648 /* Advance write_seq and place onto the write_queue. */
649 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
650 skb_header_release(skb
);
651 tcp_add_write_queue_tail(sk
, skb
);
652 sk
->sk_wmem_queued
+= skb
->truesize
;
653 sk_mem_charge(sk
, skb
->truesize
);
656 static void tcp_set_skb_tso_segs(struct sock
*sk
, struct sk_buff
*skb
,
657 unsigned int mss_now
)
659 if (skb
->len
<= mss_now
|| !sk_can_gso(sk
)) {
660 /* Avoid the costly divide in the normal
663 skb_shinfo(skb
)->gso_segs
= 1;
664 skb_shinfo(skb
)->gso_size
= 0;
665 skb_shinfo(skb
)->gso_type
= 0;
667 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss_now
);
668 skb_shinfo(skb
)->gso_size
= mss_now
;
669 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
673 /* When a modification to fackets out becomes necessary, we need to check
674 * skb is counted to fackets_out or not.
676 static void tcp_adjust_fackets_out(struct sock
*sk
, struct sk_buff
*skb
,
679 struct tcp_sock
*tp
= tcp_sk(sk
);
681 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
684 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
685 tp
->fackets_out
-= decr
;
688 /* Function to create two new TCP segments. Shrinks the given segment
689 * to the specified size and appends a new segment with the rest of the
690 * packet to the list. This won't be called frequently, I hope.
691 * Remember, these are still headerless SKBs at this point.
693 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
694 unsigned int mss_now
)
696 struct tcp_sock
*tp
= tcp_sk(sk
);
697 struct sk_buff
*buff
;
698 int nsize
, old_factor
;
702 BUG_ON(len
> skb
->len
);
704 tcp_clear_retrans_hints_partial(tp
);
705 nsize
= skb_headlen(skb
) - len
;
709 if (skb_cloned(skb
) &&
710 skb_is_nonlinear(skb
) &&
711 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
714 /* Get a new skb... force flag on. */
715 buff
= sk_stream_alloc_skb(sk
, nsize
, GFP_ATOMIC
);
717 return -ENOMEM
; /* We'll just try again later. */
719 sk
->sk_wmem_queued
+= buff
->truesize
;
720 sk_mem_charge(sk
, buff
->truesize
);
721 nlen
= skb
->len
- len
- nsize
;
722 buff
->truesize
+= nlen
;
723 skb
->truesize
-= nlen
;
725 /* Correct the sequence numbers. */
726 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
727 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
728 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
730 /* PSH and FIN should only be set in the second packet. */
731 flags
= TCP_SKB_CB(skb
)->flags
;
732 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
| TCPCB_FLAG_PSH
);
733 TCP_SKB_CB(buff
)->flags
= flags
;
734 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
736 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
737 /* Copy and checksum data tail into the new buffer. */
738 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
739 skb_put(buff
, nsize
),
744 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
746 skb
->ip_summed
= CHECKSUM_PARTIAL
;
747 skb_split(skb
, buff
, len
);
750 buff
->ip_summed
= skb
->ip_summed
;
752 /* Looks stupid, but our code really uses when of
753 * skbs, which it never sent before. --ANK
755 TCP_SKB_CB(buff
)->when
= TCP_SKB_CB(skb
)->when
;
756 buff
->tstamp
= skb
->tstamp
;
758 old_factor
= tcp_skb_pcount(skb
);
760 /* Fix up tso_factor for both original and new SKB. */
761 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
762 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
764 /* If this packet has been sent out already, we must
765 * adjust the various packet counters.
767 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
768 int diff
= old_factor
- tcp_skb_pcount(skb
) -
769 tcp_skb_pcount(buff
);
771 tp
->packets_out
-= diff
;
773 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
774 tp
->sacked_out
-= diff
;
775 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
776 tp
->retrans_out
-= diff
;
778 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
779 tp
->lost_out
-= diff
;
781 /* Adjust Reno SACK estimate. */
782 if (tcp_is_reno(tp
) && diff
> 0) {
783 tcp_dec_pcount_approx_int(&tp
->sacked_out
, diff
);
784 tcp_verify_left_out(tp
);
786 tcp_adjust_fackets_out(sk
, skb
, diff
);
789 /* Link BUFF into the send queue. */
790 skb_header_release(buff
);
791 tcp_insert_write_queue_after(skb
, buff
, sk
);
796 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
797 * eventually). The difference is that pulled data not copied, but
798 * immediately discarded.
800 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
806 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
807 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
808 put_page(skb_shinfo(skb
)->frags
[i
].page
);
809 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
811 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
813 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
814 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
820 skb_shinfo(skb
)->nr_frags
= k
;
822 skb_reset_tail_pointer(skb
);
823 skb
->data_len
-= len
;
824 skb
->len
= skb
->data_len
;
827 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
829 if (skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
832 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
833 if (unlikely(len
< skb_headlen(skb
)))
834 __skb_pull(skb
, len
);
836 __pskb_trim_head(skb
, len
- skb_headlen(skb
));
838 TCP_SKB_CB(skb
)->seq
+= len
;
839 skb
->ip_summed
= CHECKSUM_PARTIAL
;
841 skb
->truesize
-= len
;
842 sk
->sk_wmem_queued
-= len
;
843 sk_mem_uncharge(sk
, len
);
844 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
846 /* Any change of skb->len requires recalculation of tso
849 if (tcp_skb_pcount(skb
) > 1)
850 tcp_set_skb_tso_segs(sk
, skb
, tcp_current_mss(sk
, 1));
855 /* Not accounting for SACKs here. */
856 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
858 struct tcp_sock
*tp
= tcp_sk(sk
);
859 struct inet_connection_sock
*icsk
= inet_csk(sk
);
862 /* Calculate base mss without TCP options:
863 It is MMS_S - sizeof(tcphdr) of rfc1122
865 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
867 /* Clamp it (mss_clamp does not include tcp options) */
868 if (mss_now
> tp
->rx_opt
.mss_clamp
)
869 mss_now
= tp
->rx_opt
.mss_clamp
;
871 /* Now subtract optional transport overhead */
872 mss_now
-= icsk
->icsk_ext_hdr_len
;
874 /* Then reserve room for full set of TCP options and 8 bytes of data */
878 /* Now subtract TCP options size, not including SACKs */
879 mss_now
-= tp
->tcp_header_len
- sizeof(struct tcphdr
);
884 /* Inverse of above */
885 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
887 struct tcp_sock
*tp
= tcp_sk(sk
);
888 struct inet_connection_sock
*icsk
= inet_csk(sk
);
893 icsk
->icsk_ext_hdr_len
+
894 icsk
->icsk_af_ops
->net_header_len
;
899 void tcp_mtup_init(struct sock
*sk
)
901 struct tcp_sock
*tp
= tcp_sk(sk
);
902 struct inet_connection_sock
*icsk
= inet_csk(sk
);
904 icsk
->icsk_mtup
.enabled
= sysctl_tcp_mtu_probing
> 1;
905 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
906 icsk
->icsk_af_ops
->net_header_len
;
907 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, sysctl_tcp_base_mss
);
908 icsk
->icsk_mtup
.probe_size
= 0;
911 /* Bound MSS / TSO packet size with the half of the window */
912 static int tcp_bound_to_half_wnd(struct tcp_sock
*tp
, int pktsize
)
914 if (tp
->max_window
&& pktsize
> (tp
->max_window
>> 1))
915 return max(tp
->max_window
>> 1, 68U - tp
->tcp_header_len
);
920 /* This function synchronize snd mss to current pmtu/exthdr set.
922 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
923 for TCP options, but includes only bare TCP header.
925 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
926 It is minimum of user_mss and mss received with SYN.
927 It also does not include TCP options.
929 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
931 tp->mss_cache is current effective sending mss, including
932 all tcp options except for SACKs. It is evaluated,
933 taking into account current pmtu, but never exceeds
934 tp->rx_opt.mss_clamp.
936 NOTE1. rfc1122 clearly states that advertised MSS
937 DOES NOT include either tcp or ip options.
939 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
940 are READ ONLY outside this function. --ANK (980731)
942 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
944 struct tcp_sock
*tp
= tcp_sk(sk
);
945 struct inet_connection_sock
*icsk
= inet_csk(sk
);
948 if (icsk
->icsk_mtup
.search_high
> pmtu
)
949 icsk
->icsk_mtup
.search_high
= pmtu
;
951 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
952 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
954 /* And store cached results */
955 icsk
->icsk_pmtu_cookie
= pmtu
;
956 if (icsk
->icsk_mtup
.enabled
)
957 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
958 tp
->mss_cache
= mss_now
;
963 /* Compute the current effective MSS, taking SACKs and IP options,
964 * and even PMTU discovery events into account.
966 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
967 * cannot be large. However, taking into account rare use of URG, this
970 unsigned int tcp_current_mss(struct sock
*sk
, int large_allowed
)
972 struct tcp_sock
*tp
= tcp_sk(sk
);
973 struct dst_entry
*dst
= __sk_dst_get(sk
);
978 mss_now
= tp
->mss_cache
;
980 if (large_allowed
&& sk_can_gso(sk
) && !tp
->urg_mode
)
984 u32 mtu
= dst_mtu(dst
);
985 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
986 mss_now
= tcp_sync_mss(sk
, mtu
);
989 if (tp
->rx_opt
.eff_sacks
)
990 mss_now
-= (TCPOLEN_SACK_BASE_ALIGNED
+
991 (tp
->rx_opt
.eff_sacks
* TCPOLEN_SACK_PERBLOCK
));
993 #ifdef CONFIG_TCP_MD5SIG
994 if (tp
->af_specific
->md5_lookup(sk
, sk
))
995 mss_now
-= TCPOLEN_MD5SIG_ALIGNED
;
998 xmit_size_goal
= mss_now
;
1001 xmit_size_goal
= (65535 -
1002 inet_csk(sk
)->icsk_af_ops
->net_header_len
-
1003 inet_csk(sk
)->icsk_ext_hdr_len
-
1004 tp
->tcp_header_len
);
1006 xmit_size_goal
= tcp_bound_to_half_wnd(tp
, xmit_size_goal
);
1007 xmit_size_goal
-= (xmit_size_goal
% mss_now
);
1009 tp
->xmit_size_goal
= xmit_size_goal
;
1014 /* Congestion window validation. (RFC2861) */
1015 static void tcp_cwnd_validate(struct sock
*sk
)
1017 struct tcp_sock
*tp
= tcp_sk(sk
);
1019 if (tp
->packets_out
>= tp
->snd_cwnd
) {
1020 /* Network is feed fully. */
1021 tp
->snd_cwnd_used
= 0;
1022 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1024 /* Network starves. */
1025 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1026 tp
->snd_cwnd_used
= tp
->packets_out
;
1028 if (sysctl_tcp_slow_start_after_idle
&&
1029 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1030 tcp_cwnd_application_limited(sk
);
1034 /* Returns the portion of skb which can be sent right away without
1035 * introducing MSS oddities to segment boundaries. In rare cases where
1036 * mss_now != mss_cache, we will request caller to create a small skb
1037 * per input skb which could be mostly avoided here (if desired).
1039 * We explicitly want to create a request for splitting write queue tail
1040 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1041 * thus all the complexity (cwnd_len is always MSS multiple which we
1042 * return whenever allowed by the other factors). Basically we need the
1043 * modulo only when the receiver window alone is the limiting factor or
1044 * when we would be allowed to send the split-due-to-Nagle skb fully.
1046 static unsigned int tcp_mss_split_point(struct sock
*sk
, struct sk_buff
*skb
,
1047 unsigned int mss_now
, unsigned int cwnd
)
1049 struct tcp_sock
*tp
= tcp_sk(sk
);
1050 u32 needed
, window
, cwnd_len
;
1052 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1053 cwnd_len
= mss_now
* cwnd
;
1055 if (likely(cwnd_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1058 needed
= min(skb
->len
, window
);
1060 if (skb
== tcp_write_queue_tail(sk
) && cwnd_len
<= needed
)
1063 return needed
- needed
% mss_now
;
1066 /* Can at least one segment of SKB be sent right now, according to the
1067 * congestion window rules? If so, return how many segments are allowed.
1069 static inline unsigned int tcp_cwnd_test(struct tcp_sock
*tp
,
1070 struct sk_buff
*skb
)
1072 u32 in_flight
, cwnd
;
1074 /* Don't be strict about the congestion window for the final FIN. */
1075 if ((TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1076 tcp_skb_pcount(skb
) == 1)
1079 in_flight
= tcp_packets_in_flight(tp
);
1080 cwnd
= tp
->snd_cwnd
;
1081 if (in_flight
< cwnd
)
1082 return (cwnd
- in_flight
);
1087 /* This must be invoked the first time we consider transmitting
1088 * SKB onto the wire.
1090 static int tcp_init_tso_segs(struct sock
*sk
, struct sk_buff
*skb
,
1091 unsigned int mss_now
)
1093 int tso_segs
= tcp_skb_pcount(skb
);
1095 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1096 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1097 tso_segs
= tcp_skb_pcount(skb
);
1102 static inline int tcp_minshall_check(const struct tcp_sock
*tp
)
1104 return after(tp
->snd_sml
,tp
->snd_una
) &&
1105 !after(tp
->snd_sml
, tp
->snd_nxt
);
1108 /* Return 0, if packet can be sent now without violation Nagle's rules:
1109 * 1. It is full sized.
1110 * 2. Or it contains FIN. (already checked by caller)
1111 * 3. Or TCP_NODELAY was set.
1112 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1113 * With Minshall's modification: all sent small packets are ACKed.
1115 static inline int tcp_nagle_check(const struct tcp_sock
*tp
,
1116 const struct sk_buff
*skb
,
1117 unsigned mss_now
, int nonagle
)
1119 return (skb
->len
< mss_now
&&
1120 ((nonagle
& TCP_NAGLE_CORK
) ||
1121 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
))));
1124 /* Return non-zero if the Nagle test allows this packet to be
1127 static inline int tcp_nagle_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1128 unsigned int cur_mss
, int nonagle
)
1130 /* Nagle rule does not apply to frames, which sit in the middle of the
1131 * write_queue (they have no chances to get new data).
1133 * This is implemented in the callers, where they modify the 'nonagle'
1134 * argument based upon the location of SKB in the send queue.
1136 if (nonagle
& TCP_NAGLE_PUSH
)
1139 /* Don't use the nagle rule for urgent data (or for the final FIN).
1140 * Nagle can be ignored during F-RTO too (see RFC4138).
1142 if (tp
->urg_mode
|| (tp
->frto_counter
== 2) ||
1143 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
))
1146 if (!tcp_nagle_check(tp
, skb
, cur_mss
, nonagle
))
1152 /* Does at least the first segment of SKB fit into the send window? */
1153 static inline int tcp_snd_wnd_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1154 unsigned int cur_mss
)
1156 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1158 if (skb
->len
> cur_mss
)
1159 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1161 return !after(end_seq
, tcp_wnd_end(tp
));
1164 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1165 * should be put on the wire right now. If so, it returns the number of
1166 * packets allowed by the congestion window.
1168 static unsigned int tcp_snd_test(struct sock
*sk
, struct sk_buff
*skb
,
1169 unsigned int cur_mss
, int nonagle
)
1171 struct tcp_sock
*tp
= tcp_sk(sk
);
1172 unsigned int cwnd_quota
;
1174 tcp_init_tso_segs(sk
, skb
, cur_mss
);
1176 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1179 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1180 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1186 int tcp_may_send_now(struct sock
*sk
)
1188 struct tcp_sock
*tp
= tcp_sk(sk
);
1189 struct sk_buff
*skb
= tcp_send_head(sk
);
1192 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
, 1),
1193 (tcp_skb_is_last(sk
, skb
) ?
1194 tp
->nonagle
: TCP_NAGLE_PUSH
)));
1197 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1198 * which is put after SKB on the list. It is very much like
1199 * tcp_fragment() except that it may make several kinds of assumptions
1200 * in order to speed up the splitting operation. In particular, we
1201 * know that all the data is in scatter-gather pages, and that the
1202 * packet has never been sent out before (and thus is not cloned).
1204 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1205 unsigned int mss_now
)
1207 struct sk_buff
*buff
;
1208 int nlen
= skb
->len
- len
;
1211 /* All of a TSO frame must be composed of paged data. */
1212 if (skb
->len
!= skb
->data_len
)
1213 return tcp_fragment(sk
, skb
, len
, mss_now
);
1215 buff
= sk_stream_alloc_skb(sk
, 0, GFP_ATOMIC
);
1216 if (unlikely(buff
== NULL
))
1219 sk
->sk_wmem_queued
+= buff
->truesize
;
1220 sk_mem_charge(sk
, buff
->truesize
);
1221 buff
->truesize
+= nlen
;
1222 skb
->truesize
-= nlen
;
1224 /* Correct the sequence numbers. */
1225 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1226 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1227 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1229 /* PSH and FIN should only be set in the second packet. */
1230 flags
= TCP_SKB_CB(skb
)->flags
;
1231 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
| TCPCB_FLAG_PSH
);
1232 TCP_SKB_CB(buff
)->flags
= flags
;
1234 /* This packet was never sent out yet, so no SACK bits. */
1235 TCP_SKB_CB(buff
)->sacked
= 0;
1237 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1238 skb_split(skb
, buff
, len
);
1240 /* Fix up tso_factor for both original and new SKB. */
1241 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1242 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1244 /* Link BUFF into the send queue. */
1245 skb_header_release(buff
);
1246 tcp_insert_write_queue_after(skb
, buff
, sk
);
1251 /* Try to defer sending, if possible, in order to minimize the amount
1252 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1254 * This algorithm is from John Heffner.
1256 static int tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
)
1258 struct tcp_sock
*tp
= tcp_sk(sk
);
1259 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1260 u32 send_win
, cong_win
, limit
, in_flight
;
1262 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
)
1265 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
1268 /* Defer for less than two clock ticks. */
1269 if (tp
->tso_deferred
&&
1270 ((jiffies
<< 1) >> 1) - (tp
->tso_deferred
>> 1) > 1)
1273 in_flight
= tcp_packets_in_flight(tp
);
1275 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1277 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1279 /* From in_flight test above, we know that cwnd > in_flight. */
1280 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1282 limit
= min(send_win
, cong_win
);
1284 /* If a full-sized TSO skb can be sent, do it. */
1288 if (sysctl_tcp_tso_win_divisor
) {
1289 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1291 /* If at least some fraction of a window is available,
1294 chunk
/= sysctl_tcp_tso_win_divisor
;
1298 /* Different approach, try not to defer past a single
1299 * ACK. Receiver should ACK every other full sized
1300 * frame, so if we have space for more than 3 frames
1303 if (limit
> tcp_max_burst(tp
) * tp
->mss_cache
)
1307 /* Ok, it looks like it is advisable to defer. */
1308 tp
->tso_deferred
= 1 | (jiffies
<< 1);
1313 tp
->tso_deferred
= 0;
1317 /* Create a new MTU probe if we are ready.
1318 * Returns 0 if we should wait to probe (no cwnd available),
1319 * 1 if a probe was sent,
1322 static int tcp_mtu_probe(struct sock
*sk
)
1324 struct tcp_sock
*tp
= tcp_sk(sk
);
1325 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1326 struct sk_buff
*skb
, *nskb
, *next
;
1333 /* Not currently probing/verifying,
1335 * have enough cwnd, and
1336 * not SACKing (the variable headers throw things off) */
1337 if (!icsk
->icsk_mtup
.enabled
||
1338 icsk
->icsk_mtup
.probe_size
||
1339 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1340 tp
->snd_cwnd
< 11 ||
1341 tp
->rx_opt
.eff_sacks
)
1344 /* Very simple search strategy: just double the MSS. */
1345 mss_now
= tcp_current_mss(sk
, 0);
1346 probe_size
= 2 * tp
->mss_cache
;
1347 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1348 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
)) {
1349 /* TODO: set timer for probe_converge_event */
1353 /* Have enough data in the send queue to probe? */
1354 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1357 if (tp
->snd_wnd
< size_needed
)
1359 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1362 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1363 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1364 if (!tcp_packets_in_flight(tp
))
1370 /* We're allowed to probe. Build it now. */
1371 if ((nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
)) == NULL
)
1373 sk
->sk_wmem_queued
+= nskb
->truesize
;
1374 sk_mem_charge(sk
, nskb
->truesize
);
1376 skb
= tcp_send_head(sk
);
1378 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1379 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1380 TCP_SKB_CB(nskb
)->flags
= TCPCB_FLAG_ACK
;
1381 TCP_SKB_CB(nskb
)->sacked
= 0;
1383 nskb
->ip_summed
= skb
->ip_summed
;
1385 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1388 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1389 copy
= min_t(int, skb
->len
, probe_size
- len
);
1390 if (nskb
->ip_summed
)
1391 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1393 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1394 skb_put(nskb
, copy
),
1397 if (skb
->len
<= copy
) {
1398 /* We've eaten all the data from this skb.
1400 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
;
1401 tcp_unlink_write_queue(skb
, sk
);
1402 sk_wmem_free_skb(sk
, skb
);
1404 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
&
1405 ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
1406 if (!skb_shinfo(skb
)->nr_frags
) {
1407 skb_pull(skb
, copy
);
1408 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1409 skb
->csum
= csum_partial(skb
->data
,
1412 __pskb_trim_head(skb
, copy
);
1413 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1415 TCP_SKB_CB(skb
)->seq
+= copy
;
1420 if (len
>= probe_size
)
1423 tcp_init_tso_segs(sk
, nskb
, nskb
->len
);
1425 /* We're ready to send. If this fails, the probe will
1426 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1427 TCP_SKB_CB(nskb
)->when
= tcp_time_stamp
;
1428 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1429 /* Decrement cwnd here because we are sending
1430 * effectively two packets. */
1432 tcp_event_new_data_sent(sk
, nskb
);
1434 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1435 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1436 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
1444 /* This routine writes packets to the network. It advances the
1445 * send_head. This happens as incoming acks open up the remote
1448 * Returns 1, if no segments are in flight and we have queued segments, but
1449 * cannot send anything now because of SWS or another problem.
1451 static int tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
)
1453 struct tcp_sock
*tp
= tcp_sk(sk
);
1454 struct sk_buff
*skb
;
1455 unsigned int tso_segs
, sent_pkts
;
1459 /* If we are closed, the bytes will have to remain here.
1460 * In time closedown will finish, we empty the write queue and all
1463 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
1468 /* Do MTU probing. */
1469 if ((result
= tcp_mtu_probe(sk
)) == 0) {
1471 } else if (result
> 0) {
1475 while ((skb
= tcp_send_head(sk
))) {
1478 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1481 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1485 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
1488 if (tso_segs
== 1) {
1489 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
1490 (tcp_skb_is_last(sk
, skb
) ?
1491 nonagle
: TCP_NAGLE_PUSH
))))
1494 if (tcp_tso_should_defer(sk
, skb
))
1500 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
1503 if (skb
->len
> limit
&&
1504 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1507 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1509 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
)))
1512 /* Advance the send_head. This one is sent out.
1513 * This call will increment packets_out.
1515 tcp_event_new_data_sent(sk
, skb
);
1517 tcp_minshall_update(tp
, mss_now
, skb
);
1521 if (likely(sent_pkts
)) {
1522 tcp_cwnd_validate(sk
);
1525 return !tp
->packets_out
&& tcp_send_head(sk
);
1528 /* Push out any pending frames which were held back due to
1529 * TCP_CORK or attempt at coalescing tiny packets.
1530 * The socket must be locked by the caller.
1532 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
1535 struct sk_buff
*skb
= tcp_send_head(sk
);
1538 if (tcp_write_xmit(sk
, cur_mss
, nonagle
))
1539 tcp_check_probe_timer(sk
);
1543 /* Send _single_ skb sitting at the send head. This function requires
1544 * true push pending frames to setup probe timer etc.
1546 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
1548 struct sk_buff
*skb
= tcp_send_head(sk
);
1549 unsigned int tso_segs
, cwnd_quota
;
1551 BUG_ON(!skb
|| skb
->len
< mss_now
);
1553 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1554 cwnd_quota
= tcp_snd_test(sk
, skb
, mss_now
, TCP_NAGLE_PUSH
);
1556 if (likely(cwnd_quota
)) {
1563 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
1566 if (skb
->len
> limit
&&
1567 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1570 /* Send it out now. */
1571 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1573 if (likely(!tcp_transmit_skb(sk
, skb
, 1, sk
->sk_allocation
))) {
1574 tcp_event_new_data_sent(sk
, skb
);
1575 tcp_cwnd_validate(sk
);
1581 /* This function returns the amount that we can raise the
1582 * usable window based on the following constraints
1584 * 1. The window can never be shrunk once it is offered (RFC 793)
1585 * 2. We limit memory per socket
1588 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1589 * RECV.NEXT + RCV.WIN fixed until:
1590 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1592 * i.e. don't raise the right edge of the window until you can raise
1593 * it at least MSS bytes.
1595 * Unfortunately, the recommended algorithm breaks header prediction,
1596 * since header prediction assumes th->window stays fixed.
1598 * Strictly speaking, keeping th->window fixed violates the receiver
1599 * side SWS prevention criteria. The problem is that under this rule
1600 * a stream of single byte packets will cause the right side of the
1601 * window to always advance by a single byte.
1603 * Of course, if the sender implements sender side SWS prevention
1604 * then this will not be a problem.
1606 * BSD seems to make the following compromise:
1608 * If the free space is less than the 1/4 of the maximum
1609 * space available and the free space is less than 1/2 mss,
1610 * then set the window to 0.
1611 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1612 * Otherwise, just prevent the window from shrinking
1613 * and from being larger than the largest representable value.
1615 * This prevents incremental opening of the window in the regime
1616 * where TCP is limited by the speed of the reader side taking
1617 * data out of the TCP receive queue. It does nothing about
1618 * those cases where the window is constrained on the sender side
1619 * because the pipeline is full.
1621 * BSD also seems to "accidentally" limit itself to windows that are a
1622 * multiple of MSS, at least until the free space gets quite small.
1623 * This would appear to be a side effect of the mbuf implementation.
1624 * Combining these two algorithms results in the observed behavior
1625 * of having a fixed window size at almost all times.
1627 * Below we obtain similar behavior by forcing the offered window to
1628 * a multiple of the mss when it is feasible to do so.
1630 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1631 * Regular options like TIMESTAMP are taken into account.
1633 u32
__tcp_select_window(struct sock
*sk
)
1635 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1636 struct tcp_sock
*tp
= tcp_sk(sk
);
1637 /* MSS for the peer's data. Previous versions used mss_clamp
1638 * here. I don't know if the value based on our guesses
1639 * of peer's MSS is better for the performance. It's more correct
1640 * but may be worse for the performance because of rcv_mss
1641 * fluctuations. --SAW 1998/11/1
1643 int mss
= icsk
->icsk_ack
.rcv_mss
;
1644 int free_space
= tcp_space(sk
);
1645 int full_space
= min_t(int, tp
->window_clamp
, tcp_full_space(sk
));
1648 if (mss
> full_space
)
1651 if (free_space
< (full_space
>> 1)) {
1652 icsk
->icsk_ack
.quick
= 0;
1654 if (tcp_memory_pressure
)
1655 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
1658 if (free_space
< mss
)
1662 if (free_space
> tp
->rcv_ssthresh
)
1663 free_space
= tp
->rcv_ssthresh
;
1665 /* Don't do rounding if we are using window scaling, since the
1666 * scaled window will not line up with the MSS boundary anyway.
1668 window
= tp
->rcv_wnd
;
1669 if (tp
->rx_opt
.rcv_wscale
) {
1670 window
= free_space
;
1672 /* Advertise enough space so that it won't get scaled away.
1673 * Import case: prevent zero window announcement if
1674 * 1<<rcv_wscale > mss.
1676 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
1677 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
1678 << tp
->rx_opt
.rcv_wscale
);
1680 /* Get the largest window that is a nice multiple of mss.
1681 * Window clamp already applied above.
1682 * If our current window offering is within 1 mss of the
1683 * free space we just keep it. This prevents the divide
1684 * and multiply from happening most of the time.
1685 * We also don't do any window rounding when the free space
1688 if (window
<= free_space
- mss
|| window
> free_space
)
1689 window
= (free_space
/ mss
) * mss
;
1690 else if (mss
== full_space
&&
1691 free_space
> window
+ (full_space
>> 1))
1692 window
= free_space
;
1698 /* Attempt to collapse two adjacent SKB's during retransmission. */
1699 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*skb
,
1702 struct tcp_sock
*tp
= tcp_sk(sk
);
1703 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
1704 int skb_size
, next_skb_size
;
1707 /* The first test we must make is that neither of these two
1708 * SKB's are still referenced by someone else.
1710 if (skb_cloned(skb
) || skb_cloned(next_skb
))
1713 skb_size
= skb
->len
;
1714 next_skb_size
= next_skb
->len
;
1715 flags
= TCP_SKB_CB(skb
)->flags
;
1717 /* Also punt if next skb has been SACK'd. */
1718 if (TCP_SKB_CB(next_skb
)->sacked
& TCPCB_SACKED_ACKED
)
1721 /* Next skb is out of window. */
1722 if (after(TCP_SKB_CB(next_skb
)->end_seq
, tcp_wnd_end(tp
)))
1725 /* Punt if not enough space exists in the first SKB for
1726 * the data in the second, or the total combined payload
1727 * would exceed the MSS.
1729 if ((next_skb_size
> skb_tailroom(skb
)) ||
1730 ((skb_size
+ next_skb_size
) > mss_now
))
1733 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
1735 tcp_highest_sack_combine(sk
, next_skb
, skb
);
1737 /* Ok. We will be able to collapse the packet. */
1738 tcp_unlink_write_queue(next_skb
, sk
);
1740 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
1743 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
1744 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1746 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1747 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
1749 /* Update sequence range on original skb. */
1750 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
1752 /* Merge over control information. */
1753 flags
|= TCP_SKB_CB(next_skb
)->flags
; /* This moves PSH/FIN etc. over */
1754 TCP_SKB_CB(skb
)->flags
= flags
;
1756 /* All done, get rid of second SKB and account for it so
1757 * packet counting does not break.
1759 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
1760 if (TCP_SKB_CB(next_skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1761 tp
->retrans_out
-= tcp_skb_pcount(next_skb
);
1762 if (TCP_SKB_CB(next_skb
)->sacked
& TCPCB_LOST
)
1763 tp
->lost_out
-= tcp_skb_pcount(next_skb
);
1764 /* Reno case is special. Sigh... */
1765 if (tcp_is_reno(tp
) && tp
->sacked_out
)
1766 tcp_dec_pcount_approx(&tp
->sacked_out
, next_skb
);
1768 tcp_adjust_fackets_out(sk
, next_skb
, tcp_skb_pcount(next_skb
));
1769 tp
->packets_out
-= tcp_skb_pcount(next_skb
);
1771 /* changed transmit queue under us so clear hints */
1772 tcp_clear_retrans_hints_partial(tp
);
1774 sk_wmem_free_skb(sk
, next_skb
);
1777 /* Do a simple retransmit without using the backoff mechanisms in
1778 * tcp_timer. This is used for path mtu discovery.
1779 * The socket is already locked here.
1781 void tcp_simple_retransmit(struct sock
*sk
)
1783 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1784 struct tcp_sock
*tp
= tcp_sk(sk
);
1785 struct sk_buff
*skb
;
1786 unsigned int mss
= tcp_current_mss(sk
, 0);
1789 tcp_for_write_queue(skb
, sk
) {
1790 if (skb
== tcp_send_head(sk
))
1792 if (skb
->len
> mss
&&
1793 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1794 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1795 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1796 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1798 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)) {
1799 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1800 tp
->lost_out
+= tcp_skb_pcount(skb
);
1806 tcp_clear_all_retrans_hints(tp
);
1811 tcp_verify_left_out(tp
);
1813 /* Don't muck with the congestion window here.
1814 * Reason is that we do not increase amount of _data_
1815 * in network, but units changed and effective
1816 * cwnd/ssthresh really reduced now.
1818 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
1819 tp
->high_seq
= tp
->snd_nxt
;
1820 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1821 tp
->prior_ssthresh
= 0;
1822 tp
->undo_marker
= 0;
1823 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1825 tcp_xmit_retransmit_queue(sk
);
1828 /* This retransmits one SKB. Policy decisions and retransmit queue
1829 * state updates are done by the caller. Returns non-zero if an
1830 * error occurred which prevented the send.
1832 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
1834 struct tcp_sock
*tp
= tcp_sk(sk
);
1835 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1836 unsigned int cur_mss
= tcp_current_mss(sk
, 0);
1839 /* Inconslusive MTU probe */
1840 if (icsk
->icsk_mtup
.probe_size
) {
1841 icsk
->icsk_mtup
.probe_size
= 0;
1844 /* Do not sent more than we queued. 1/4 is reserved for possible
1845 * copying overhead: fragmentation, tunneling, mangling etc.
1847 if (atomic_read(&sk
->sk_wmem_alloc
) >
1848 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
1851 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
1852 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1854 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
1858 /* If receiver has shrunk his window, and skb is out of
1859 * new window, do not retransmit it. The exception is the
1860 * case, when window is shrunk to zero. In this case
1861 * our retransmit serves as a zero window probe.
1863 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))
1864 && TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
1867 if (skb
->len
> cur_mss
) {
1868 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
))
1869 return -ENOMEM
; /* We'll try again later. */
1872 /* Collapse two adjacent packets if worthwhile and we can. */
1873 if (!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
) &&
1874 (skb
->len
< (cur_mss
>> 1)) &&
1875 (tcp_write_queue_next(sk
, skb
) != tcp_send_head(sk
)) &&
1876 (!tcp_skb_is_last(sk
, skb
)) &&
1877 (skb_shinfo(skb
)->nr_frags
== 0 &&
1878 skb_shinfo(tcp_write_queue_next(sk
, skb
))->nr_frags
== 0) &&
1879 (tcp_skb_pcount(skb
) == 1 &&
1880 tcp_skb_pcount(tcp_write_queue_next(sk
, skb
)) == 1) &&
1881 (sysctl_tcp_retrans_collapse
!= 0))
1882 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
1884 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
1885 return -EHOSTUNREACH
; /* Routing failure or similar. */
1887 /* Some Solaris stacks overoptimize and ignore the FIN on a
1888 * retransmit when old data is attached. So strip it off
1889 * since it is cheap to do so and saves bytes on the network.
1892 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1893 tp
->snd_una
== (TCP_SKB_CB(skb
)->end_seq
- 1)) {
1894 if (!pskb_trim(skb
, 0)) {
1895 /* Reuse, even though it does some unnecessary work */
1896 tcp_init_nondata_skb(skb
, TCP_SKB_CB(skb
)->end_seq
- 1,
1897 TCP_SKB_CB(skb
)->flags
);
1898 skb
->ip_summed
= CHECKSUM_NONE
;
1902 /* Make a copy, if the first transmission SKB clone we made
1903 * is still in somebody's hands, else make a clone.
1905 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1907 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
1910 /* Update global TCP statistics. */
1911 TCP_INC_STATS(TCP_MIB_RETRANSSEGS
);
1913 tp
->total_retrans
++;
1915 #if FASTRETRANS_DEBUG > 0
1916 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1917 if (net_ratelimit())
1918 printk(KERN_DEBUG
"retrans_out leaked.\n");
1921 if (!tp
->retrans_out
)
1922 tp
->lost_retrans_low
= tp
->snd_nxt
;
1923 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
1924 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1926 /* Save stamp of the first retransmit. */
1927 if (!tp
->retrans_stamp
)
1928 tp
->retrans_stamp
= TCP_SKB_CB(skb
)->when
;
1932 /* snd_nxt is stored to detect loss of retransmitted segment,
1933 * see tcp_input.c tcp_sacktag_write_queue().
1935 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
1940 /* This gets called after a retransmit timeout, and the initially
1941 * retransmitted data is acknowledged. It tries to continue
1942 * resending the rest of the retransmit queue, until either
1943 * we've sent it all or the congestion window limit is reached.
1944 * If doing SACK, the first ACK which comes back for a timeout
1945 * based retransmit packet might feed us FACK information again.
1946 * If so, we use it to avoid unnecessarily retransmissions.
1948 void tcp_xmit_retransmit_queue(struct sock
*sk
)
1950 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1951 struct tcp_sock
*tp
= tcp_sk(sk
);
1952 struct sk_buff
*skb
;
1955 if (tp
->retransmit_skb_hint
) {
1956 skb
= tp
->retransmit_skb_hint
;
1957 packet_cnt
= tp
->retransmit_cnt_hint
;
1959 skb
= tcp_write_queue_head(sk
);
1963 /* First pass: retransmit lost packets. */
1965 tcp_for_write_queue_from(skb
, sk
) {
1966 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1968 if (skb
== tcp_send_head(sk
))
1970 /* we could do better than to assign each time */
1971 tp
->retransmit_skb_hint
= skb
;
1972 tp
->retransmit_cnt_hint
= packet_cnt
;
1974 /* Assume this retransmit will generate
1975 * only one packet for congestion window
1976 * calculation purposes. This works because
1977 * tcp_retransmit_skb() will chop up the
1978 * packet to be MSS sized and all the
1979 * packet counting works out.
1981 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
1984 if (sacked
& TCPCB_LOST
) {
1985 if (!(sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))) {
1986 if (tcp_retransmit_skb(sk
, skb
)) {
1987 tp
->retransmit_skb_hint
= NULL
;
1990 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
1991 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS
);
1993 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS
);
1995 if (skb
== tcp_write_queue_head(sk
))
1996 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1997 inet_csk(sk
)->icsk_rto
,
2001 packet_cnt
+= tcp_skb_pcount(skb
);
2002 if (packet_cnt
>= tp
->lost_out
)
2008 /* OK, demanded retransmission is finished. */
2010 /* Forward retransmissions are possible only during Recovery. */
2011 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2014 /* No forward retransmissions in Reno are possible. */
2015 if (tcp_is_reno(tp
))
2018 /* Yeah, we have to make difficult choice between forward transmission
2019 * and retransmission... Both ways have their merits...
2021 * For now we do not retransmit anything, while we have some new
2022 * segments to send. In the other cases, follow rule 3 for
2023 * NextSeg() specified in RFC3517.
2026 if (tcp_may_send_now(sk
))
2029 /* If nothing is SACKed, highest_sack in the loop won't be valid */
2030 if (!tp
->sacked_out
)
2033 if (tp
->forward_skb_hint
)
2034 skb
= tp
->forward_skb_hint
;
2036 skb
= tcp_write_queue_head(sk
);
2038 tcp_for_write_queue_from(skb
, sk
) {
2039 if (skb
== tcp_send_head(sk
))
2041 tp
->forward_skb_hint
= skb
;
2043 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2046 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2049 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
)
2052 /* Ok, retransmit it. */
2053 if (tcp_retransmit_skb(sk
, skb
)) {
2054 tp
->forward_skb_hint
= NULL
;
2058 if (skb
== tcp_write_queue_head(sk
))
2059 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2060 inet_csk(sk
)->icsk_rto
,
2063 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS
);
2067 /* Send a fin. The caller locks the socket for us. This cannot be
2068 * allowed to fail queueing a FIN frame under any circumstances.
2070 void tcp_send_fin(struct sock
*sk
)
2072 struct tcp_sock
*tp
= tcp_sk(sk
);
2073 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
2076 /* Optimization, tack on the FIN if we have a queue of
2077 * unsent frames. But be careful about outgoing SACKS
2080 mss_now
= tcp_current_mss(sk
, 1);
2082 if (tcp_send_head(sk
) != NULL
) {
2083 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_FIN
;
2084 TCP_SKB_CB(skb
)->end_seq
++;
2087 /* Socket is locked, keep trying until memory is available. */
2089 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, GFP_KERNEL
);
2095 /* Reserve space for headers and prepare control bits. */
2096 skb_reserve(skb
, MAX_TCP_HEADER
);
2097 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2098 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2099 TCPCB_FLAG_ACK
| TCPCB_FLAG_FIN
);
2100 tcp_queue_skb(sk
, skb
);
2102 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_OFF
);
2105 /* We get here when a process closes a file descriptor (either due to
2106 * an explicit close() or as a byproduct of exit()'ing) and there
2107 * was unread data in the receive queue. This behavior is recommended
2108 * by RFC 2525, section 2.17. -DaveM
2110 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2112 struct sk_buff
*skb
;
2114 /* NOTE: No TCP options attached and we never retransmit this. */
2115 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2117 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED
);
2121 /* Reserve space for headers and prepare control bits. */
2122 skb_reserve(skb
, MAX_TCP_HEADER
);
2123 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2124 TCPCB_FLAG_ACK
| TCPCB_FLAG_RST
);
2126 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2127 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2128 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED
);
2131 /* WARNING: This routine must only be called when we have already sent
2132 * a SYN packet that crossed the incoming SYN that caused this routine
2133 * to get called. If this assumption fails then the initial rcv_wnd
2134 * and rcv_wscale values will not be correct.
2136 int tcp_send_synack(struct sock
*sk
)
2138 struct sk_buff
*skb
;
2140 skb
= tcp_write_queue_head(sk
);
2141 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
)) {
2142 printk(KERN_DEBUG
"tcp_send_synack: wrong queue state\n");
2145 if (!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_ACK
)) {
2146 if (skb_cloned(skb
)) {
2147 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2150 tcp_unlink_write_queue(skb
, sk
);
2151 skb_header_release(nskb
);
2152 __tcp_add_write_queue_head(sk
, nskb
);
2153 sk_wmem_free_skb(sk
, skb
);
2154 sk
->sk_wmem_queued
+= nskb
->truesize
;
2155 sk_mem_charge(sk
, nskb
->truesize
);
2159 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ACK
;
2160 TCP_ECN_send_synack(tcp_sk(sk
), skb
);
2162 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2163 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2167 * Prepare a SYN-ACK.
2169 struct sk_buff
*tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2170 struct request_sock
*req
)
2172 struct inet_request_sock
*ireq
= inet_rsk(req
);
2173 struct tcp_sock
*tp
= tcp_sk(sk
);
2175 int tcp_header_size
;
2176 struct sk_buff
*skb
;
2177 #ifdef CONFIG_TCP_MD5SIG
2178 struct tcp_md5sig_key
*md5
;
2179 __u8
*md5_hash_location
;
2182 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
+ 15, 1, GFP_ATOMIC
);
2186 /* Reserve space for headers. */
2187 skb_reserve(skb
, MAX_TCP_HEADER
);
2189 skb
->dst
= dst_clone(dst
);
2191 tcp_header_size
= (sizeof(struct tcphdr
) + TCPOLEN_MSS
+
2192 (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0) +
2193 (ireq
->wscale_ok
? TCPOLEN_WSCALE_ALIGNED
: 0) +
2194 /* SACK_PERM is in the place of NOP NOP of TS */
2195 ((ireq
->sack_ok
&& !ireq
->tstamp_ok
) ? TCPOLEN_SACKPERM_ALIGNED
: 0));
2197 #ifdef CONFIG_TCP_MD5SIG
2198 /* Are we doing MD5 on this segment? If so - make room for it */
2199 md5
= tcp_rsk(req
)->af_specific
->md5_lookup(sk
, req
);
2201 tcp_header_size
+= TCPOLEN_MD5SIG_ALIGNED
;
2203 skb_push(skb
, tcp_header_size
);
2204 skb_reset_transport_header(skb
);
2207 memset(th
, 0, sizeof(struct tcphdr
));
2210 TCP_ECN_make_synack(req
, th
);
2211 th
->source
= inet_sk(sk
)->sport
;
2212 th
->dest
= ireq
->rmt_port
;
2213 /* Setting of flags are superfluous here for callers (and ECE is
2214 * not even correctly set)
2216 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
2217 TCPCB_FLAG_SYN
| TCPCB_FLAG_ACK
);
2218 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
2219 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_isn
+ 1);
2220 if (req
->rcv_wnd
== 0) { /* ignored for retransmitted syns */
2222 /* Set this up on the first call only */
2223 req
->window_clamp
= tp
->window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
2224 /* tcp_full_space because it is guaranteed to be the first packet */
2225 tcp_select_initial_window(tcp_full_space(sk
),
2226 dst_metric(dst
, RTAX_ADVMSS
) - (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
2231 ireq
->rcv_wscale
= rcv_wscale
;
2234 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2235 th
->window
= htons(min(req
->rcv_wnd
, 65535U));
2237 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2238 tcp_syn_build_options((__be32
*)(th
+ 1), dst_metric(dst
, RTAX_ADVMSS
), ireq
->tstamp_ok
,
2239 ireq
->sack_ok
, ireq
->wscale_ok
, ireq
->rcv_wscale
,
2240 TCP_SKB_CB(skb
)->when
,
2243 #ifdef CONFIG_TCP_MD5SIG
2244 md5
? &md5_hash_location
:
2249 th
->doff
= (tcp_header_size
>> 2);
2250 TCP_INC_STATS(TCP_MIB_OUTSEGS
);
2252 #ifdef CONFIG_TCP_MD5SIG
2253 /* Okay, we have all we need - do the md5 hash if needed */
2255 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
2258 tcp_hdr(skb
), sk
->sk_protocol
,
2267 * Do all connect socket setups that can be done AF independent.
2269 static void tcp_connect_init(struct sock
*sk
)
2271 struct dst_entry
*dst
= __sk_dst_get(sk
);
2272 struct tcp_sock
*tp
= tcp_sk(sk
);
2275 /* We'll fix this up when we get a response from the other end.
2276 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2278 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
2279 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
2281 #ifdef CONFIG_TCP_MD5SIG
2282 if (tp
->af_specific
->md5_lookup(sk
, sk
) != NULL
)
2283 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
2286 /* If user gave his TCP_MAXSEG, record it to clamp */
2287 if (tp
->rx_opt
.user_mss
)
2288 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
2291 tcp_sync_mss(sk
, dst_mtu(dst
));
2293 if (!tp
->window_clamp
)
2294 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
2295 tp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
2296 tcp_initialize_rcv_mss(sk
);
2298 tcp_select_initial_window(tcp_full_space(sk
),
2299 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
2302 sysctl_tcp_window_scaling
,
2305 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2306 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
2309 sock_reset_flag(sk
, SOCK_DONE
);
2311 tcp_init_wl(tp
, tp
->write_seq
, 0);
2312 tp
->snd_una
= tp
->write_seq
;
2313 tp
->snd_sml
= tp
->write_seq
;
2318 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
2319 inet_csk(sk
)->icsk_retransmits
= 0;
2320 tcp_clear_retrans(tp
);
2324 * Build a SYN and send it off.
2326 int tcp_connect(struct sock
*sk
)
2328 struct tcp_sock
*tp
= tcp_sk(sk
);
2329 struct sk_buff
*buff
;
2331 tcp_connect_init(sk
);
2333 buff
= alloc_skb_fclone(MAX_TCP_HEADER
+ 15, sk
->sk_allocation
);
2334 if (unlikely(buff
== NULL
))
2337 /* Reserve space for headers. */
2338 skb_reserve(buff
, MAX_TCP_HEADER
);
2340 tp
->snd_nxt
= tp
->write_seq
;
2341 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPCB_FLAG_SYN
);
2342 TCP_ECN_send_syn(sk
, buff
);
2345 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2346 tp
->retrans_stamp
= TCP_SKB_CB(buff
)->when
;
2347 skb_header_release(buff
);
2348 __tcp_add_write_queue_tail(sk
, buff
);
2349 sk
->sk_wmem_queued
+= buff
->truesize
;
2350 sk_mem_charge(sk
, buff
->truesize
);
2351 tp
->packets_out
+= tcp_skb_pcount(buff
);
2352 tcp_transmit_skb(sk
, buff
, 1, GFP_KERNEL
);
2354 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2355 * in order to make this packet get counted in tcpOutSegs.
2357 tp
->snd_nxt
= tp
->write_seq
;
2358 tp
->pushed_seq
= tp
->write_seq
;
2359 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS
);
2361 /* Timer for repeating the SYN until an answer. */
2362 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2363 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2367 /* Send out a delayed ack, the caller does the policy checking
2368 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2371 void tcp_send_delayed_ack(struct sock
*sk
)
2373 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2374 int ato
= icsk
->icsk_ack
.ato
;
2375 unsigned long timeout
;
2377 if (ato
> TCP_DELACK_MIN
) {
2378 const struct tcp_sock
*tp
= tcp_sk(sk
);
2379 int max_ato
= HZ
/ 2;
2381 if (icsk
->icsk_ack
.pingpong
||
2382 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
2383 max_ato
= TCP_DELACK_MAX
;
2385 /* Slow path, intersegment interval is "high". */
2387 /* If some rtt estimate is known, use it to bound delayed ack.
2388 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2392 int rtt
= max(tp
->srtt
>> 3, TCP_DELACK_MIN
);
2398 ato
= min(ato
, max_ato
);
2401 /* Stay within the limit we were given */
2402 timeout
= jiffies
+ ato
;
2404 /* Use new timeout only if there wasn't a older one earlier. */
2405 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
2406 /* If delack timer was blocked or is about to expire,
2409 if (icsk
->icsk_ack
.blocked
||
2410 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
2415 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
2416 timeout
= icsk
->icsk_ack
.timeout
;
2418 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
2419 icsk
->icsk_ack
.timeout
= timeout
;
2420 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
2423 /* This routine sends an ack and also updates the window. */
2424 void tcp_send_ack(struct sock
*sk
)
2426 struct sk_buff
*buff
;
2428 /* If we have been reset, we may not send again. */
2429 if (sk
->sk_state
== TCP_CLOSE
)
2432 /* We are not putting this on the write queue, so
2433 * tcp_transmit_skb() will set the ownership to this
2436 buff
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2438 inet_csk_schedule_ack(sk
);
2439 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
2440 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
2441 TCP_DELACK_MAX
, TCP_RTO_MAX
);
2445 /* Reserve space for headers and prepare control bits. */
2446 skb_reserve(buff
, MAX_TCP_HEADER
);
2447 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPCB_FLAG_ACK
);
2449 /* Send it off, this clears delayed acks for us. */
2450 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2451 tcp_transmit_skb(sk
, buff
, 0, GFP_ATOMIC
);
2454 /* This routine sends a packet with an out of date sequence
2455 * number. It assumes the other end will try to ack it.
2457 * Question: what should we make while urgent mode?
2458 * 4.4BSD forces sending single byte of data. We cannot send
2459 * out of window data, because we have SND.NXT==SND.MAX...
2461 * Current solution: to send TWO zero-length segments in urgent mode:
2462 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2463 * out-of-date with SND.UNA-1 to probe window.
2465 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
2467 struct tcp_sock
*tp
= tcp_sk(sk
);
2468 struct sk_buff
*skb
;
2470 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2471 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2475 /* Reserve space for headers and set control bits. */
2476 skb_reserve(skb
, MAX_TCP_HEADER
);
2477 /* Use a previous sequence. This should cause the other
2478 * end to send an ack. Don't queue or clone SKB, just
2481 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPCB_FLAG_ACK
);
2482 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2483 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
2486 int tcp_write_wakeup(struct sock
*sk
)
2488 struct tcp_sock
*tp
= tcp_sk(sk
);
2489 struct sk_buff
*skb
;
2491 if (sk
->sk_state
== TCP_CLOSE
)
2494 if ((skb
= tcp_send_head(sk
)) != NULL
&&
2495 before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
2497 unsigned int mss
= tcp_current_mss(sk
, 0);
2498 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
2500 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
2501 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
2503 /* We are probing the opening of a window
2504 * but the window size is != 0
2505 * must have been a result SWS avoidance ( sender )
2507 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
2509 seg_size
= min(seg_size
, mss
);
2510 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2511 if (tcp_fragment(sk
, skb
, seg_size
, mss
))
2513 } else if (!tcp_skb_pcount(skb
))
2514 tcp_set_skb_tso_segs(sk
, skb
, mss
);
2516 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2517 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2518 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2520 tcp_event_new_data_sent(sk
, skb
);
2524 between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
2525 tcp_xmit_probe_skb(sk
, 1);
2526 return tcp_xmit_probe_skb(sk
, 0);
2530 /* A window probe timeout has occurred. If window is not closed send
2531 * a partial packet else a zero probe.
2533 void tcp_send_probe0(struct sock
*sk
)
2535 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2536 struct tcp_sock
*tp
= tcp_sk(sk
);
2539 err
= tcp_write_wakeup(sk
);
2541 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
2542 /* Cancel probe timer, if it is not required. */
2543 icsk
->icsk_probes_out
= 0;
2544 icsk
->icsk_backoff
= 0;
2549 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
2550 icsk
->icsk_backoff
++;
2551 icsk
->icsk_probes_out
++;
2552 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2553 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2556 /* If packet was not sent due to local congestion,
2557 * do not backoff and do not remember icsk_probes_out.
2558 * Let local senders to fight for local resources.
2560 * Use accumulated backoff yet.
2562 if (!icsk
->icsk_probes_out
)
2563 icsk
->icsk_probes_out
= 1;
2564 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2565 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
,
2566 TCP_RESOURCE_PROBE_INTERVAL
),
2571 EXPORT_SYMBOL(tcp_connect
);
2572 EXPORT_SYMBOL(tcp_make_synack
);
2573 EXPORT_SYMBOL(tcp_simple_retransmit
);
2574 EXPORT_SYMBOL(tcp_sync_mss
);
2575 EXPORT_SYMBOL(tcp_mtup_init
);