2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * This file contains the top-level implementation of an RPC RDMA
46 * Naming convention: functions beginning with xprt_ are part of the
47 * transport switch. All others are RPC RDMA internal.
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/seq_file.h>
54 #include "xprt_rdma.h"
57 # define RPCDBG_FACILITY RPCDBG_TRANS
60 MODULE_LICENSE("Dual BSD/GPL");
62 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
63 MODULE_AUTHOR("Network Appliance, Inc.");
69 static unsigned int xprt_rdma_slot_table_entries
= RPCRDMA_DEF_SLOT_TABLE
;
70 static unsigned int xprt_rdma_max_inline_read
= RPCRDMA_DEF_INLINE
;
71 static unsigned int xprt_rdma_max_inline_write
= RPCRDMA_DEF_INLINE
;
72 static unsigned int xprt_rdma_inline_write_padding
;
73 #if !RPCRDMA_PERSISTENT_REGISTRATION
74 static unsigned int xprt_rdma_memreg_strategy
= RPCRDMA_REGISTER
; /* FMR? */
76 static unsigned int xprt_rdma_memreg_strategy
= RPCRDMA_ALLPHYSICAL
;
81 static unsigned int min_slot_table_size
= RPCRDMA_MIN_SLOT_TABLE
;
82 static unsigned int max_slot_table_size
= RPCRDMA_MAX_SLOT_TABLE
;
83 static unsigned int zero
;
84 static unsigned int max_padding
= PAGE_SIZE
;
85 static unsigned int min_memreg
= RPCRDMA_BOUNCEBUFFERS
;
86 static unsigned int max_memreg
= RPCRDMA_LAST
- 1;
88 static struct ctl_table_header
*sunrpc_table_header
;
90 static ctl_table xr_tunables_table
[] = {
92 .ctl_name
= CTL_UNNUMBERED
,
93 .procname
= "rdma_slot_table_entries",
94 .data
= &xprt_rdma_slot_table_entries
,
95 .maxlen
= sizeof(unsigned int),
97 .proc_handler
= &proc_dointvec_minmax
,
98 .strategy
= &sysctl_intvec
,
99 .extra1
= &min_slot_table_size
,
100 .extra2
= &max_slot_table_size
103 .ctl_name
= CTL_UNNUMBERED
,
104 .procname
= "rdma_max_inline_read",
105 .data
= &xprt_rdma_max_inline_read
,
106 .maxlen
= sizeof(unsigned int),
108 .proc_handler
= &proc_dointvec
,
109 .strategy
= &sysctl_intvec
,
112 .ctl_name
= CTL_UNNUMBERED
,
113 .procname
= "rdma_max_inline_write",
114 .data
= &xprt_rdma_max_inline_write
,
115 .maxlen
= sizeof(unsigned int),
117 .proc_handler
= &proc_dointvec
,
118 .strategy
= &sysctl_intvec
,
121 .ctl_name
= CTL_UNNUMBERED
,
122 .procname
= "rdma_inline_write_padding",
123 .data
= &xprt_rdma_inline_write_padding
,
124 .maxlen
= sizeof(unsigned int),
126 .proc_handler
= &proc_dointvec_minmax
,
127 .strategy
= &sysctl_intvec
,
129 .extra2
= &max_padding
,
132 .ctl_name
= CTL_UNNUMBERED
,
133 .procname
= "rdma_memreg_strategy",
134 .data
= &xprt_rdma_memreg_strategy
,
135 .maxlen
= sizeof(unsigned int),
137 .proc_handler
= &proc_dointvec_minmax
,
138 .strategy
= &sysctl_intvec
,
139 .extra1
= &min_memreg
,
140 .extra2
= &max_memreg
,
147 static ctl_table sunrpc_table
[] = {
149 .ctl_name
= CTL_SUNRPC
,
150 .procname
= "sunrpc",
152 .child
= xr_tunables_table
161 static struct rpc_xprt_ops xprt_rdma_procs
; /* forward reference */
164 xprt_rdma_format_addresses(struct rpc_xprt
*xprt
)
166 struct sockaddr_in
*addr
= (struct sockaddr_in
*)
167 &rpcx_to_rdmad(xprt
).addr
;
170 buf
= kzalloc(20, GFP_KERNEL
);
172 snprintf(buf
, 20, NIPQUAD_FMT
, NIPQUAD(addr
->sin_addr
.s_addr
));
173 xprt
->address_strings
[RPC_DISPLAY_ADDR
] = buf
;
175 buf
= kzalloc(8, GFP_KERNEL
);
177 snprintf(buf
, 8, "%u", ntohs(addr
->sin_port
));
178 xprt
->address_strings
[RPC_DISPLAY_PORT
] = buf
;
180 xprt
->address_strings
[RPC_DISPLAY_PROTO
] = "rdma";
182 buf
= kzalloc(48, GFP_KERNEL
);
184 snprintf(buf
, 48, "addr="NIPQUAD_FMT
" port=%u proto=%s",
185 NIPQUAD(addr
->sin_addr
.s_addr
),
186 ntohs(addr
->sin_port
), "rdma");
187 xprt
->address_strings
[RPC_DISPLAY_ALL
] = buf
;
189 buf
= kzalloc(10, GFP_KERNEL
);
191 snprintf(buf
, 10, "%02x%02x%02x%02x",
192 NIPQUAD(addr
->sin_addr
.s_addr
));
193 xprt
->address_strings
[RPC_DISPLAY_HEX_ADDR
] = buf
;
195 buf
= kzalloc(8, GFP_KERNEL
);
197 snprintf(buf
, 8, "%4hx", ntohs(addr
->sin_port
));
198 xprt
->address_strings
[RPC_DISPLAY_HEX_PORT
] = buf
;
200 buf
= kzalloc(30, GFP_KERNEL
);
202 snprintf(buf
, 30, NIPQUAD_FMT
".%u.%u",
203 NIPQUAD(addr
->sin_addr
.s_addr
),
204 ntohs(addr
->sin_port
) >> 8,
205 ntohs(addr
->sin_port
) & 0xff);
206 xprt
->address_strings
[RPC_DISPLAY_UNIVERSAL_ADDR
] = buf
;
209 xprt
->address_strings
[RPC_DISPLAY_NETID
] = "rdma";
213 xprt_rdma_free_addresses(struct rpc_xprt
*xprt
)
217 for (i
= 0; i
< RPC_DISPLAY_MAX
; i
++)
219 case RPC_DISPLAY_PROTO
:
220 case RPC_DISPLAY_NETID
:
223 kfree(xprt
->address_strings
[i
]);
228 xprt_rdma_connect_worker(struct work_struct
*work
)
230 struct rpcrdma_xprt
*r_xprt
=
231 container_of(work
, struct rpcrdma_xprt
, rdma_connect
.work
);
232 struct rpc_xprt
*xprt
= &r_xprt
->xprt
;
235 if (!xprt
->shutdown
) {
236 xprt_clear_connected(xprt
);
238 dprintk("RPC: %s: %sconnect\n", __func__
,
239 r_xprt
->rx_ep
.rep_connected
!= 0 ? "re" : "");
240 rc
= rpcrdma_ep_connect(&r_xprt
->rx_ep
, &r_xprt
->rx_ia
);
247 xprt_wake_pending_tasks(xprt
, rc
);
250 dprintk("RPC: %s: exit\n", __func__
);
251 xprt_clear_connecting(xprt
);
258 * Free all memory associated with the object, including its own.
259 * NOTE: none of the *destroy methods free memory for their top-level
260 * objects, even though they may have allocated it (they do free
261 * private memory). It's up to the caller to handle it. In this
262 * case (RDMA transport), all structure memory is inlined with the
263 * struct rpcrdma_xprt.
266 xprt_rdma_destroy(struct rpc_xprt
*xprt
)
268 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
271 dprintk("RPC: %s: called\n", __func__
);
273 cancel_delayed_work(&r_xprt
->rdma_connect
);
274 flush_scheduled_work();
276 xprt_clear_connected(xprt
);
278 rpcrdma_buffer_destroy(&r_xprt
->rx_buf
);
279 rc
= rpcrdma_ep_destroy(&r_xprt
->rx_ep
, &r_xprt
->rx_ia
);
281 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
283 rpcrdma_ia_close(&r_xprt
->rx_ia
);
285 xprt_rdma_free_addresses(xprt
);
291 dprintk("RPC: %s: returning\n", __func__
);
293 module_put(THIS_MODULE
);
296 static const struct rpc_timeout xprt_rdma_default_timeout
= {
297 .to_initval
= 60 * HZ
,
298 .to_maxval
= 60 * HZ
,
302 * xprt_setup_rdma - Set up transport to use RDMA
304 * @args: rpc transport arguments
306 static struct rpc_xprt
*
307 xprt_setup_rdma(struct xprt_create
*args
)
309 struct rpcrdma_create_data_internal cdata
;
310 struct rpc_xprt
*xprt
;
311 struct rpcrdma_xprt
*new_xprt
;
312 struct rpcrdma_ep
*new_ep
;
313 struct sockaddr_in
*sin
;
316 if (args
->addrlen
> sizeof(xprt
->addr
)) {
317 dprintk("RPC: %s: address too large\n", __func__
);
318 return ERR_PTR(-EBADF
);
321 xprt
= kzalloc(sizeof(struct rpcrdma_xprt
), GFP_KERNEL
);
323 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
325 return ERR_PTR(-ENOMEM
);
328 xprt
->max_reqs
= xprt_rdma_slot_table_entries
;
329 xprt
->slot
= kcalloc(xprt
->max_reqs
,
330 sizeof(struct rpc_rqst
), GFP_KERNEL
);
331 if (xprt
->slot
== NULL
) {
332 dprintk("RPC: %s: couldn't allocate %d slots\n",
333 __func__
, xprt
->max_reqs
);
335 return ERR_PTR(-ENOMEM
);
338 /* 60 second timeout, no retries */
339 xprt
->timeout
= &xprt_rdma_default_timeout
;
340 xprt
->bind_timeout
= (60U * HZ
);
341 xprt
->connect_timeout
= (60U * HZ
);
342 xprt
->reestablish_timeout
= (5U * HZ
);
343 xprt
->idle_timeout
= (5U * 60 * HZ
);
345 xprt
->resvport
= 0; /* privileged port not needed */
346 xprt
->tsh_size
= 0; /* RPC-RDMA handles framing */
347 xprt
->max_payload
= RPCRDMA_MAX_DATA_SEGS
* PAGE_SIZE
;
348 xprt
->ops
= &xprt_rdma_procs
;
351 * Set up RDMA-specific connect data.
354 /* Put server RDMA address in local cdata */
355 memcpy(&cdata
.addr
, args
->dstaddr
, args
->addrlen
);
357 /* Ensure xprt->addr holds valid server TCP (not RDMA)
358 * address, for any side protocols which peek at it */
359 xprt
->prot
= IPPROTO_TCP
;
360 xprt
->addrlen
= args
->addrlen
;
361 memcpy(&xprt
->addr
, &cdata
.addr
, xprt
->addrlen
);
363 sin
= (struct sockaddr_in
*)&cdata
.addr
;
364 if (ntohs(sin
->sin_port
) != 0)
365 xprt_set_bound(xprt
);
367 dprintk("RPC: %s: %u.%u.%u.%u:%u\n", __func__
,
368 NIPQUAD(sin
->sin_addr
.s_addr
), ntohs(sin
->sin_port
));
370 /* Set max requests */
371 cdata
.max_requests
= xprt
->max_reqs
;
373 /* Set some length limits */
374 cdata
.rsize
= RPCRDMA_MAX_SEGS
* PAGE_SIZE
; /* RDMA write max */
375 cdata
.wsize
= RPCRDMA_MAX_SEGS
* PAGE_SIZE
; /* RDMA read max */
377 cdata
.inline_wsize
= xprt_rdma_max_inline_write
;
378 if (cdata
.inline_wsize
> cdata
.wsize
)
379 cdata
.inline_wsize
= cdata
.wsize
;
381 cdata
.inline_rsize
= xprt_rdma_max_inline_read
;
382 if (cdata
.inline_rsize
> cdata
.rsize
)
383 cdata
.inline_rsize
= cdata
.rsize
;
385 cdata
.padding
= xprt_rdma_inline_write_padding
;
388 * Create new transport instance, which includes initialized
394 new_xprt
= rpcx_to_rdmax(xprt
);
396 rc
= rpcrdma_ia_open(new_xprt
, (struct sockaddr
*) &cdata
.addr
,
397 xprt_rdma_memreg_strategy
);
402 * initialize and create ep
404 new_xprt
->rx_data
= cdata
;
405 new_ep
= &new_xprt
->rx_ep
;
406 new_ep
->rep_remote_addr
= cdata
.addr
;
408 rc
= rpcrdma_ep_create(&new_xprt
->rx_ep
,
409 &new_xprt
->rx_ia
, &new_xprt
->rx_data
);
414 * Allocate pre-registered send and receive buffers for headers and
415 * any inline data. Also specify any padding which will be provided
416 * from a preregistered zero buffer.
418 rc
= rpcrdma_buffer_create(&new_xprt
->rx_buf
, new_ep
, &new_xprt
->rx_ia
,
424 * Register a callback for connection events. This is necessary because
425 * connection loss notification is async. We also catch connection loss
426 * when reaping receives.
428 INIT_DELAYED_WORK(&new_xprt
->rdma_connect
, xprt_rdma_connect_worker
);
429 new_ep
->rep_func
= rpcrdma_conn_func
;
430 new_ep
->rep_xprt
= xprt
;
432 xprt_rdma_format_addresses(xprt
);
434 if (!try_module_get(THIS_MODULE
))
440 xprt_rdma_free_addresses(xprt
);
443 (void) rpcrdma_ep_destroy(new_ep
, &new_xprt
->rx_ia
);
445 rpcrdma_ia_close(&new_xprt
->rx_ia
);
453 * Close a connection, during shutdown or timeout/reconnect
456 xprt_rdma_close(struct rpc_xprt
*xprt
)
458 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
460 dprintk("RPC: %s: closing\n", __func__
);
461 xprt_disconnect_done(xprt
);
462 (void) rpcrdma_ep_disconnect(&r_xprt
->rx_ep
, &r_xprt
->rx_ia
);
466 xprt_rdma_set_port(struct rpc_xprt
*xprt
, u16 port
)
468 struct sockaddr_in
*sap
;
470 sap
= (struct sockaddr_in
*)&xprt
->addr
;
471 sap
->sin_port
= htons(port
);
472 sap
= (struct sockaddr_in
*)&rpcx_to_rdmad(xprt
).addr
;
473 sap
->sin_port
= htons(port
);
474 dprintk("RPC: %s: %u\n", __func__
, port
);
478 xprt_rdma_connect(struct rpc_task
*task
)
480 struct rpc_xprt
*xprt
= (struct rpc_xprt
*)task
->tk_xprt
;
481 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
483 if (!xprt_test_and_set_connecting(xprt
)) {
484 if (r_xprt
->rx_ep
.rep_connected
!= 0) {
486 schedule_delayed_work(&r_xprt
->rdma_connect
,
487 xprt
->reestablish_timeout
);
489 schedule_delayed_work(&r_xprt
->rdma_connect
, 0);
490 if (!RPC_IS_ASYNC(task
))
491 flush_scheduled_work();
497 xprt_rdma_reserve_xprt(struct rpc_task
*task
)
499 struct rpc_xprt
*xprt
= task
->tk_xprt
;
500 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
501 int credits
= atomic_read(&r_xprt
->rx_buf
.rb_credits
);
503 /* == RPC_CWNDSCALE @ init, but *after* setup */
504 if (r_xprt
->rx_buf
.rb_cwndscale
== 0UL) {
505 r_xprt
->rx_buf
.rb_cwndscale
= xprt
->cwnd
;
506 dprintk("RPC: %s: cwndscale %lu\n", __func__
,
507 r_xprt
->rx_buf
.rb_cwndscale
);
508 BUG_ON(r_xprt
->rx_buf
.rb_cwndscale
<= 0);
510 xprt
->cwnd
= credits
* r_xprt
->rx_buf
.rb_cwndscale
;
511 return xprt_reserve_xprt_cong(task
);
515 * The RDMA allocate/free functions need the task structure as a place
516 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
517 * sequence. For this reason, the recv buffers are attached to send
518 * buffers for portions of the RPC. Note that the RPC layer allocates
519 * both send and receive buffers in the same call. We may register
520 * the receive buffer portion when using reply chunks.
523 xprt_rdma_allocate(struct rpc_task
*task
, size_t size
)
525 struct rpc_xprt
*xprt
= task
->tk_xprt
;
526 struct rpcrdma_req
*req
, *nreq
;
528 req
= rpcrdma_buffer_get(&rpcx_to_rdmax(xprt
)->rx_buf
);
531 if (size
> req
->rl_size
) {
532 dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
533 "prog %d vers %d proc %d\n",
534 __func__
, size
, req
->rl_size
,
535 task
->tk_client
->cl_prog
, task
->tk_client
->cl_vers
,
536 task
->tk_msg
.rpc_proc
->p_proc
);
538 * Outgoing length shortage. Our inline write max must have
539 * been configured to perform direct i/o.
541 * This is therefore a large metadata operation, and the
542 * allocate call was made on the maximum possible message,
543 * e.g. containing long filename(s) or symlink data. In
544 * fact, while these metadata operations *might* carry
545 * large outgoing payloads, they rarely *do*. However, we
546 * have to commit to the request here, so reallocate and
547 * register it now. The data path will never require this
550 * If the allocation or registration fails, the RPC framework
551 * will (doggedly) retry.
553 if (rpcx_to_rdmax(xprt
)->rx_ia
.ri_memreg_strategy
==
554 RPCRDMA_BOUNCEBUFFERS
) {
555 /* forced to "pure inline" */
556 dprintk("RPC: %s: too much data (%zd) for inline "
557 "(r/w max %d/%d)\n", __func__
, size
,
558 rpcx_to_rdmad(xprt
).inline_rsize
,
559 rpcx_to_rdmad(xprt
).inline_wsize
);
561 rpc_exit(task
, -EIO
); /* fail the operation */
562 rpcx_to_rdmax(xprt
)->rx_stats
.failed_marshal_count
++;
565 if (task
->tk_flags
& RPC_TASK_SWAPPER
)
566 nreq
= kmalloc(sizeof *req
+ size
, GFP_ATOMIC
);
568 nreq
= kmalloc(sizeof *req
+ size
, GFP_NOFS
);
572 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt
)->rx_ia
,
573 nreq
->rl_base
, size
+ sizeof(struct rpcrdma_req
)
574 - offsetof(struct rpcrdma_req
, rl_base
),
575 &nreq
->rl_handle
, &nreq
->rl_iov
)) {
579 rpcx_to_rdmax(xprt
)->rx_stats
.hardway_register_count
+= size
;
580 nreq
->rl_size
= size
;
582 nreq
->rl_nchunks
= 0;
583 nreq
->rl_buffer
= (struct rpcrdma_buffer
*)req
;
584 nreq
->rl_reply
= req
->rl_reply
;
585 memcpy(nreq
->rl_segments
,
586 req
->rl_segments
, sizeof nreq
->rl_segments
);
587 /* flag the swap with an unused field */
588 nreq
->rl_iov
.length
= 0;
589 req
->rl_reply
= NULL
;
592 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__
, size
, req
);
594 return req
->rl_xdr_buf
;
597 rpcrdma_buffer_put(req
);
598 rpcx_to_rdmax(xprt
)->rx_stats
.failed_marshal_count
++;
603 * This function returns all RDMA resources to the pool.
606 xprt_rdma_free(void *buffer
)
608 struct rpcrdma_req
*req
;
609 struct rpcrdma_xprt
*r_xprt
;
610 struct rpcrdma_rep
*rep
;
616 req
= container_of(buffer
, struct rpcrdma_req
, rl_xdr_buf
[0]);
617 if (req
->rl_iov
.length
== 0) { /* see allocate above */
618 r_xprt
= container_of(((struct rpcrdma_req
*) req
->rl_buffer
)->rl_buffer
,
619 struct rpcrdma_xprt
, rx_buf
);
621 r_xprt
= container_of(req
->rl_buffer
, struct rpcrdma_xprt
, rx_buf
);
624 dprintk("RPC: %s: called on 0x%p%s\n",
625 __func__
, rep
, (rep
&& rep
->rr_func
) ? " (with waiter)" : "");
628 * Finish the deregistration. When using mw bind, this was
629 * begun in rpcrdma_reply_handler(). In all other modes, we
630 * do it here, in thread context. The process is considered
631 * complete when the rr_func vector becomes NULL - this
632 * was put in place during rpcrdma_reply_handler() - the wait
633 * call below will not block if the dereg is "done". If
634 * interrupted, our framework will clean up.
636 for (i
= 0; req
->rl_nchunks
;) {
638 i
+= rpcrdma_deregister_external(
639 &req
->rl_segments
[i
], r_xprt
, NULL
);
642 if (rep
&& wait_event_interruptible(rep
->rr_unbind
, !rep
->rr_func
)) {
643 rep
->rr_func
= NULL
; /* abandon the callback */
644 req
->rl_reply
= NULL
;
647 if (req
->rl_iov
.length
== 0) { /* see allocate above */
648 struct rpcrdma_req
*oreq
= (struct rpcrdma_req
*)req
->rl_buffer
;
649 oreq
->rl_reply
= req
->rl_reply
;
650 (void) rpcrdma_deregister_internal(&r_xprt
->rx_ia
,
657 /* Put back request+reply buffers */
658 rpcrdma_buffer_put(req
);
662 * send_request invokes the meat of RPC RDMA. It must do the following:
663 * 1. Marshal the RPC request into an RPC RDMA request, which means
664 * putting a header in front of data, and creating IOVs for RDMA
665 * from those in the request.
666 * 2. In marshaling, detect opportunities for RDMA, and use them.
667 * 3. Post a recv message to set up asynch completion, then send
668 * the request (rpcrdma_ep_post).
669 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
673 xprt_rdma_send_request(struct rpc_task
*task
)
675 struct rpc_rqst
*rqst
= task
->tk_rqstp
;
676 struct rpc_xprt
*xprt
= task
->tk_xprt
;
677 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
678 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
680 /* marshal the send itself */
681 if (req
->rl_niovs
== 0 && rpcrdma_marshal_req(rqst
) != 0) {
682 r_xprt
->rx_stats
.failed_marshal_count
++;
683 dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
688 if (req
->rl_reply
== NULL
) /* e.g. reconnection */
689 rpcrdma_recv_buffer_get(req
);
692 req
->rl_reply
->rr_func
= rpcrdma_reply_handler
;
693 /* this need only be done once, but... */
694 req
->rl_reply
->rr_xprt
= xprt
;
697 if (rpcrdma_ep_post(&r_xprt
->rx_ia
, &r_xprt
->rx_ep
, req
)) {
698 xprt_disconnect_done(xprt
);
699 return -ENOTCONN
; /* implies disconnect */
702 rqst
->rq_bytes_sent
= 0;
706 static void xprt_rdma_print_stats(struct rpc_xprt
*xprt
, struct seq_file
*seq
)
708 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
711 if (xprt_connected(xprt
))
712 idle_time
= (long)(jiffies
- xprt
->last_used
) / HZ
;
715 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
716 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
718 0, /* need a local port? */
719 xprt
->stat
.bind_count
,
720 xprt
->stat
.connect_count
,
721 xprt
->stat
.connect_time
,
729 r_xprt
->rx_stats
.read_chunk_count
,
730 r_xprt
->rx_stats
.write_chunk_count
,
731 r_xprt
->rx_stats
.reply_chunk_count
,
732 r_xprt
->rx_stats
.total_rdma_request
,
733 r_xprt
->rx_stats
.total_rdma_reply
,
734 r_xprt
->rx_stats
.pullup_copy_count
,
735 r_xprt
->rx_stats
.fixup_copy_count
,
736 r_xprt
->rx_stats
.hardway_register_count
,
737 r_xprt
->rx_stats
.failed_marshal_count
,
738 r_xprt
->rx_stats
.bad_reply_count
);
742 * Plumbing for rpc transport switch and kernel module
745 static struct rpc_xprt_ops xprt_rdma_procs
= {
746 .reserve_xprt
= xprt_rdma_reserve_xprt
,
747 .release_xprt
= xprt_release_xprt_cong
, /* sunrpc/xprt.c */
748 .release_request
= xprt_release_rqst_cong
, /* ditto */
749 .set_retrans_timeout
= xprt_set_retrans_timeout_def
, /* ditto */
750 .rpcbind
= rpcb_getport_async
, /* sunrpc/rpcb_clnt.c */
751 .set_port
= xprt_rdma_set_port
,
752 .connect
= xprt_rdma_connect
,
753 .buf_alloc
= xprt_rdma_allocate
,
754 .buf_free
= xprt_rdma_free
,
755 .send_request
= xprt_rdma_send_request
,
756 .close
= xprt_rdma_close
,
757 .destroy
= xprt_rdma_destroy
,
758 .print_stats
= xprt_rdma_print_stats
761 static struct xprt_class xprt_rdma
= {
762 .list
= LIST_HEAD_INIT(xprt_rdma
.list
),
764 .owner
= THIS_MODULE
,
765 .ident
= XPRT_TRANSPORT_RDMA
,
766 .setup
= xprt_setup_rdma
,
769 static void __exit
xprt_rdma_cleanup(void)
773 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
775 if (sunrpc_table_header
) {
776 unregister_sysctl_table(sunrpc_table_header
);
777 sunrpc_table_header
= NULL
;
780 rc
= xprt_unregister_transport(&xprt_rdma
);
782 dprintk("RPC: %s: xprt_unregister returned %i\n",
786 static int __init
xprt_rdma_init(void)
790 rc
= xprt_register_transport(&xprt_rdma
);
795 dprintk(KERN_INFO
"RPCRDMA Module Init, register RPC RDMA transport\n");
797 dprintk(KERN_INFO
"Defaults:\n");
798 dprintk(KERN_INFO
"\tSlots %d\n"
799 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
800 xprt_rdma_slot_table_entries
,
801 xprt_rdma_max_inline_read
, xprt_rdma_max_inline_write
);
802 dprintk(KERN_INFO
"\tPadding %d\n\tMemreg %d\n",
803 xprt_rdma_inline_write_padding
, xprt_rdma_memreg_strategy
);
806 if (!sunrpc_table_header
)
807 sunrpc_table_header
= register_sysctl_table(sunrpc_table
);
812 module_init(xprt_rdma_init
);
813 module_exit(xprt_rdma_cleanup
);