Add missing init section definitions
[linux-2.6/openmoko-kernel/knife-kernel.git] / kernel / exit.c
blob506a957b665a69bbf84794e233b8032f2d98b280
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 static void exit_mm(struct task_struct * tsk);
55 static void __unhash_process(struct task_struct *p)
57 nr_threads--;
58 detach_pid(p, PIDTYPE_PID);
59 if (thread_group_leader(p)) {
60 detach_pid(p, PIDTYPE_PGID);
61 detach_pid(p, PIDTYPE_SID);
63 list_del_rcu(&p->tasks);
64 __get_cpu_var(process_counts)--;
66 list_del_rcu(&p->thread_group);
67 remove_parent(p);
71 * This function expects the tasklist_lock write-locked.
73 static void __exit_signal(struct task_struct *tsk)
75 struct signal_struct *sig = tsk->signal;
76 struct sighand_struct *sighand;
78 BUG_ON(!sig);
79 BUG_ON(!atomic_read(&sig->count));
81 rcu_read_lock();
82 sighand = rcu_dereference(tsk->sighand);
83 spin_lock(&sighand->siglock);
85 posix_cpu_timers_exit(tsk);
86 if (atomic_dec_and_test(&sig->count))
87 posix_cpu_timers_exit_group(tsk);
88 else {
90 * If there is any task waiting for the group exit
91 * then notify it:
93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
94 wake_up_process(sig->group_exit_task);
96 if (tsk == sig->curr_target)
97 sig->curr_target = next_thread(tsk);
99 * Accumulate here the counters for all threads but the
100 * group leader as they die, so they can be added into
101 * the process-wide totals when those are taken.
102 * The group leader stays around as a zombie as long
103 * as there are other threads. When it gets reaped,
104 * the exit.c code will add its counts into these totals.
105 * We won't ever get here for the group leader, since it
106 * will have been the last reference on the signal_struct.
108 sig->utime = cputime_add(sig->utime, tsk->utime);
109 sig->stime = cputime_add(sig->stime, tsk->stime);
110 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
111 sig->min_flt += tsk->min_flt;
112 sig->maj_flt += tsk->maj_flt;
113 sig->nvcsw += tsk->nvcsw;
114 sig->nivcsw += tsk->nivcsw;
115 sig->inblock += task_io_get_inblock(tsk);
116 sig->oublock += task_io_get_oublock(tsk);
117 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
118 sig = NULL; /* Marker for below. */
121 __unhash_process(tsk);
123 tsk->signal = NULL;
124 tsk->sighand = NULL;
125 spin_unlock(&sighand->siglock);
126 rcu_read_unlock();
128 __cleanup_sighand(sighand);
129 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
130 flush_sigqueue(&tsk->pending);
131 if (sig) {
132 flush_sigqueue(&sig->shared_pending);
133 taskstats_tgid_free(sig);
134 __cleanup_signal(sig);
138 static void delayed_put_task_struct(struct rcu_head *rhp)
140 put_task_struct(container_of(rhp, struct task_struct, rcu));
143 void release_task(struct task_struct * p)
145 struct task_struct *leader;
146 int zap_leader;
147 repeat:
148 atomic_dec(&p->user->processes);
149 proc_flush_task(p);
150 write_lock_irq(&tasklist_lock);
151 ptrace_unlink(p);
152 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
153 __exit_signal(p);
156 * If we are the last non-leader member of the thread
157 * group, and the leader is zombie, then notify the
158 * group leader's parent process. (if it wants notification.)
160 zap_leader = 0;
161 leader = p->group_leader;
162 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
163 BUG_ON(leader->exit_signal == -1);
164 do_notify_parent(leader, leader->exit_signal);
166 * If we were the last child thread and the leader has
167 * exited already, and the leader's parent ignores SIGCHLD,
168 * then we are the one who should release the leader.
170 * do_notify_parent() will have marked it self-reaping in
171 * that case.
173 zap_leader = (leader->exit_signal == -1);
176 write_unlock_irq(&tasklist_lock);
177 release_thread(p);
178 call_rcu(&p->rcu, delayed_put_task_struct);
180 p = leader;
181 if (unlikely(zap_leader))
182 goto repeat;
186 * This checks not only the pgrp, but falls back on the pid if no
187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
188 * without this...
190 * The caller must hold rcu lock or the tasklist lock.
192 struct pid *session_of_pgrp(struct pid *pgrp)
194 struct task_struct *p;
195 struct pid *sid = NULL;
197 p = pid_task(pgrp, PIDTYPE_PGID);
198 if (p == NULL)
199 p = pid_task(pgrp, PIDTYPE_PID);
200 if (p != NULL)
201 sid = task_session(p);
203 return sid;
207 * Determine if a process group is "orphaned", according to the POSIX
208 * definition in 2.2.2.52. Orphaned process groups are not to be affected
209 * by terminal-generated stop signals. Newly orphaned process groups are
210 * to receive a SIGHUP and a SIGCONT.
212 * "I ask you, have you ever known what it is to be an orphan?"
214 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
216 struct task_struct *p;
217 int ret = 1;
219 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
220 if (p == ignored_task
221 || p->exit_state
222 || is_global_init(p->real_parent))
223 continue;
224 if (task_pgrp(p->real_parent) != pgrp &&
225 task_session(p->real_parent) == task_session(p)) {
226 ret = 0;
227 break;
229 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
230 return ret; /* (sighing) "Often!" */
233 int is_current_pgrp_orphaned(void)
235 int retval;
237 read_lock(&tasklist_lock);
238 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
239 read_unlock(&tasklist_lock);
241 return retval;
244 static int has_stopped_jobs(struct pid *pgrp)
246 int retval = 0;
247 struct task_struct *p;
249 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
250 if (!task_is_stopped(p))
251 continue;
252 retval = 1;
253 break;
254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 return retval;
259 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
261 * If a kernel thread is launched as a result of a system call, or if
262 * it ever exits, it should generally reparent itself to kthreadd so it
263 * isn't in the way of other processes and is correctly cleaned up on exit.
265 * The various task state such as scheduling policy and priority may have
266 * been inherited from a user process, so we reset them to sane values here.
268 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
270 static void reparent_to_kthreadd(void)
272 write_lock_irq(&tasklist_lock);
274 ptrace_unlink(current);
275 /* Reparent to init */
276 remove_parent(current);
277 current->real_parent = current->parent = kthreadd_task;
278 add_parent(current);
280 /* Set the exit signal to SIGCHLD so we signal init on exit */
281 current->exit_signal = SIGCHLD;
283 if (task_nice(current) < 0)
284 set_user_nice(current, 0);
285 /* cpus_allowed? */
286 /* rt_priority? */
287 /* signals? */
288 security_task_reparent_to_init(current);
289 memcpy(current->signal->rlim, init_task.signal->rlim,
290 sizeof(current->signal->rlim));
291 atomic_inc(&(INIT_USER->__count));
292 write_unlock_irq(&tasklist_lock);
293 switch_uid(INIT_USER);
296 void __set_special_pids(struct pid *pid)
298 struct task_struct *curr = current->group_leader;
299 pid_t nr = pid_nr(pid);
301 if (task_session(curr) != pid) {
302 detach_pid(curr, PIDTYPE_SID);
303 attach_pid(curr, PIDTYPE_SID, pid);
304 set_task_session(curr, nr);
306 if (task_pgrp(curr) != pid) {
307 detach_pid(curr, PIDTYPE_PGID);
308 attach_pid(curr, PIDTYPE_PGID, pid);
309 set_task_pgrp(curr, nr);
313 static void set_special_pids(struct pid *pid)
315 write_lock_irq(&tasklist_lock);
316 __set_special_pids(pid);
317 write_unlock_irq(&tasklist_lock);
321 * Let kernel threads use this to say that they
322 * allow a certain signal (since daemonize() will
323 * have disabled all of them by default).
325 int allow_signal(int sig)
327 if (!valid_signal(sig) || sig < 1)
328 return -EINVAL;
330 spin_lock_irq(&current->sighand->siglock);
331 sigdelset(&current->blocked, sig);
332 if (!current->mm) {
333 /* Kernel threads handle their own signals.
334 Let the signal code know it'll be handled, so
335 that they don't get converted to SIGKILL or
336 just silently dropped */
337 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
339 recalc_sigpending();
340 spin_unlock_irq(&current->sighand->siglock);
341 return 0;
344 EXPORT_SYMBOL(allow_signal);
346 int disallow_signal(int sig)
348 if (!valid_signal(sig) || sig < 1)
349 return -EINVAL;
351 spin_lock_irq(&current->sighand->siglock);
352 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
353 recalc_sigpending();
354 spin_unlock_irq(&current->sighand->siglock);
355 return 0;
358 EXPORT_SYMBOL(disallow_signal);
361 * Put all the gunge required to become a kernel thread without
362 * attached user resources in one place where it belongs.
365 void daemonize(const char *name, ...)
367 va_list args;
368 struct fs_struct *fs;
369 sigset_t blocked;
371 va_start(args, name);
372 vsnprintf(current->comm, sizeof(current->comm), name, args);
373 va_end(args);
376 * If we were started as result of loading a module, close all of the
377 * user space pages. We don't need them, and if we didn't close them
378 * they would be locked into memory.
380 exit_mm(current);
382 * We don't want to have TIF_FREEZE set if the system-wide hibernation
383 * or suspend transition begins right now.
385 current->flags |= PF_NOFREEZE;
387 if (current->nsproxy != &init_nsproxy) {
388 get_nsproxy(&init_nsproxy);
389 switch_task_namespaces(current, &init_nsproxy);
391 set_special_pids(&init_struct_pid);
392 proc_clear_tty(current);
394 /* Block and flush all signals */
395 sigfillset(&blocked);
396 sigprocmask(SIG_BLOCK, &blocked, NULL);
397 flush_signals(current);
399 /* Become as one with the init task */
401 exit_fs(current); /* current->fs->count--; */
402 fs = init_task.fs;
403 current->fs = fs;
404 atomic_inc(&fs->count);
406 exit_files(current);
407 current->files = init_task.files;
408 atomic_inc(&current->files->count);
410 reparent_to_kthreadd();
413 EXPORT_SYMBOL(daemonize);
415 static void close_files(struct files_struct * files)
417 int i, j;
418 struct fdtable *fdt;
420 j = 0;
423 * It is safe to dereference the fd table without RCU or
424 * ->file_lock because this is the last reference to the
425 * files structure.
427 fdt = files_fdtable(files);
428 for (;;) {
429 unsigned long set;
430 i = j * __NFDBITS;
431 if (i >= fdt->max_fds)
432 break;
433 set = fdt->open_fds->fds_bits[j++];
434 while (set) {
435 if (set & 1) {
436 struct file * file = xchg(&fdt->fd[i], NULL);
437 if (file) {
438 filp_close(file, files);
439 cond_resched();
442 i++;
443 set >>= 1;
448 struct files_struct *get_files_struct(struct task_struct *task)
450 struct files_struct *files;
452 task_lock(task);
453 files = task->files;
454 if (files)
455 atomic_inc(&files->count);
456 task_unlock(task);
458 return files;
461 void put_files_struct(struct files_struct *files)
463 struct fdtable *fdt;
465 if (atomic_dec_and_test(&files->count)) {
466 close_files(files);
468 * Free the fd and fdset arrays if we expanded them.
469 * If the fdtable was embedded, pass files for freeing
470 * at the end of the RCU grace period. Otherwise,
471 * you can free files immediately.
473 fdt = files_fdtable(files);
474 if (fdt != &files->fdtab)
475 kmem_cache_free(files_cachep, files);
476 free_fdtable(fdt);
480 EXPORT_SYMBOL(put_files_struct);
482 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
484 struct files_struct *old;
486 old = tsk->files;
487 task_lock(tsk);
488 tsk->files = files;
489 task_unlock(tsk);
490 put_files_struct(old);
492 EXPORT_SYMBOL(reset_files_struct);
494 static void __exit_files(struct task_struct *tsk)
496 struct files_struct * files = tsk->files;
498 if (files) {
499 task_lock(tsk);
500 tsk->files = NULL;
501 task_unlock(tsk);
502 put_files_struct(files);
506 void exit_files(struct task_struct *tsk)
508 __exit_files(tsk);
511 static void __put_fs_struct(struct fs_struct *fs)
513 /* No need to hold fs->lock if we are killing it */
514 if (atomic_dec_and_test(&fs->count)) {
515 path_put(&fs->root);
516 path_put(&fs->pwd);
517 if (fs->altroot.dentry)
518 path_put(&fs->altroot);
519 kmem_cache_free(fs_cachep, fs);
523 void put_fs_struct(struct fs_struct *fs)
525 __put_fs_struct(fs);
528 static void __exit_fs(struct task_struct *tsk)
530 struct fs_struct * fs = tsk->fs;
532 if (fs) {
533 task_lock(tsk);
534 tsk->fs = NULL;
535 task_unlock(tsk);
536 __put_fs_struct(fs);
540 void exit_fs(struct task_struct *tsk)
542 __exit_fs(tsk);
545 EXPORT_SYMBOL_GPL(exit_fs);
548 * Turn us into a lazy TLB process if we
549 * aren't already..
551 static void exit_mm(struct task_struct * tsk)
553 struct mm_struct *mm = tsk->mm;
555 mm_release(tsk, mm);
556 if (!mm)
557 return;
559 * Serialize with any possible pending coredump.
560 * We must hold mmap_sem around checking core_waiters
561 * and clearing tsk->mm. The core-inducing thread
562 * will increment core_waiters for each thread in the
563 * group with ->mm != NULL.
565 down_read(&mm->mmap_sem);
566 if (mm->core_waiters) {
567 up_read(&mm->mmap_sem);
568 down_write(&mm->mmap_sem);
569 if (!--mm->core_waiters)
570 complete(mm->core_startup_done);
571 up_write(&mm->mmap_sem);
573 wait_for_completion(&mm->core_done);
574 down_read(&mm->mmap_sem);
576 atomic_inc(&mm->mm_count);
577 BUG_ON(mm != tsk->active_mm);
578 /* more a memory barrier than a real lock */
579 task_lock(tsk);
580 tsk->mm = NULL;
581 up_read(&mm->mmap_sem);
582 enter_lazy_tlb(mm, current);
583 /* We don't want this task to be frozen prematurely */
584 clear_freeze_flag(tsk);
585 task_unlock(tsk);
586 mmput(mm);
589 static void
590 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
592 if (p->pdeath_signal)
593 /* We already hold the tasklist_lock here. */
594 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
596 /* Move the child from its dying parent to the new one. */
597 if (unlikely(traced)) {
598 /* Preserve ptrace links if someone else is tracing this child. */
599 list_del_init(&p->ptrace_list);
600 if (p->parent != p->real_parent)
601 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
602 } else {
603 /* If this child is being traced, then we're the one tracing it
604 * anyway, so let go of it.
606 p->ptrace = 0;
607 remove_parent(p);
608 p->parent = p->real_parent;
609 add_parent(p);
611 if (task_is_traced(p)) {
613 * If it was at a trace stop, turn it into
614 * a normal stop since it's no longer being
615 * traced.
617 ptrace_untrace(p);
621 /* If this is a threaded reparent there is no need to
622 * notify anyone anything has happened.
624 if (p->real_parent->group_leader == father->group_leader)
625 return;
627 /* We don't want people slaying init. */
628 if (p->exit_signal != -1)
629 p->exit_signal = SIGCHLD;
631 /* If we'd notified the old parent about this child's death,
632 * also notify the new parent.
634 if (!traced && p->exit_state == EXIT_ZOMBIE &&
635 p->exit_signal != -1 && thread_group_empty(p))
636 do_notify_parent(p, p->exit_signal);
639 * process group orphan check
640 * Case ii: Our child is in a different pgrp
641 * than we are, and it was the only connection
642 * outside, so the child pgrp is now orphaned.
644 if ((task_pgrp(p) != task_pgrp(father)) &&
645 (task_session(p) == task_session(father))) {
646 struct pid *pgrp = task_pgrp(p);
648 if (will_become_orphaned_pgrp(pgrp, NULL) &&
649 has_stopped_jobs(pgrp)) {
650 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
651 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
657 * When we die, we re-parent all our children.
658 * Try to give them to another thread in our thread
659 * group, and if no such member exists, give it to
660 * the child reaper process (ie "init") in our pid
661 * space.
663 static void forget_original_parent(struct task_struct *father)
665 struct task_struct *p, *n, *reaper = father;
666 struct list_head ptrace_dead;
668 INIT_LIST_HEAD(&ptrace_dead);
670 write_lock_irq(&tasklist_lock);
672 do {
673 reaper = next_thread(reaper);
674 if (reaper == father) {
675 reaper = task_child_reaper(father);
676 break;
678 } while (reaper->flags & PF_EXITING);
681 * There are only two places where our children can be:
683 * - in our child list
684 * - in our ptraced child list
686 * Search them and reparent children.
688 list_for_each_entry_safe(p, n, &father->children, sibling) {
689 int ptrace;
691 ptrace = p->ptrace;
693 /* if father isn't the real parent, then ptrace must be enabled */
694 BUG_ON(father != p->real_parent && !ptrace);
696 if (father == p->real_parent) {
697 /* reparent with a reaper, real father it's us */
698 p->real_parent = reaper;
699 reparent_thread(p, father, 0);
700 } else {
701 /* reparent ptraced task to its real parent */
702 __ptrace_unlink (p);
703 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
704 thread_group_empty(p))
705 do_notify_parent(p, p->exit_signal);
709 * if the ptraced child is a zombie with exit_signal == -1
710 * we must collect it before we exit, or it will remain
711 * zombie forever since we prevented it from self-reap itself
712 * while it was being traced by us, to be able to see it in wait4.
714 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
715 list_add(&p->ptrace_list, &ptrace_dead);
718 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
719 p->real_parent = reaper;
720 reparent_thread(p, father, 1);
723 write_unlock_irq(&tasklist_lock);
724 BUG_ON(!list_empty(&father->children));
725 BUG_ON(!list_empty(&father->ptrace_children));
727 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
728 list_del_init(&p->ptrace_list);
729 release_task(p);
735 * Send signals to all our closest relatives so that they know
736 * to properly mourn us..
738 static void exit_notify(struct task_struct *tsk)
740 int state;
741 struct task_struct *t;
742 struct pid *pgrp;
745 * This does two things:
747 * A. Make init inherit all the child processes
748 * B. Check to see if any process groups have become orphaned
749 * as a result of our exiting, and if they have any stopped
750 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
752 forget_original_parent(tsk);
753 exit_task_namespaces(tsk);
755 write_lock_irq(&tasklist_lock);
757 * Check to see if any process groups have become orphaned
758 * as a result of our exiting, and if they have any stopped
759 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
761 * Case i: Our father is in a different pgrp than we are
762 * and we were the only connection outside, so our pgrp
763 * is about to become orphaned.
765 t = tsk->real_parent;
767 pgrp = task_pgrp(tsk);
768 if ((task_pgrp(t) != pgrp) &&
769 (task_session(t) == task_session(tsk)) &&
770 will_become_orphaned_pgrp(pgrp, tsk) &&
771 has_stopped_jobs(pgrp)) {
772 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
773 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
776 /* Let father know we died
778 * Thread signals are configurable, but you aren't going to use
779 * that to send signals to arbitary processes.
780 * That stops right now.
782 * If the parent exec id doesn't match the exec id we saved
783 * when we started then we know the parent has changed security
784 * domain.
786 * If our self_exec id doesn't match our parent_exec_id then
787 * we have changed execution domain as these two values started
788 * the same after a fork.
790 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
791 ( tsk->parent_exec_id != t->self_exec_id ||
792 tsk->self_exec_id != tsk->parent_exec_id)
793 && !capable(CAP_KILL))
794 tsk->exit_signal = SIGCHLD;
797 /* If something other than our normal parent is ptracing us, then
798 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
799 * only has special meaning to our real parent.
801 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
802 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
803 do_notify_parent(tsk, signal);
804 } else if (tsk->ptrace) {
805 do_notify_parent(tsk, SIGCHLD);
808 state = EXIT_ZOMBIE;
809 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
810 state = EXIT_DEAD;
811 tsk->exit_state = state;
813 if (thread_group_leader(tsk) &&
814 tsk->signal->notify_count < 0 &&
815 tsk->signal->group_exit_task)
816 wake_up_process(tsk->signal->group_exit_task);
818 write_unlock_irq(&tasklist_lock);
820 /* If the process is dead, release it - nobody will wait for it */
821 if (state == EXIT_DEAD)
822 release_task(tsk);
825 #ifdef CONFIG_DEBUG_STACK_USAGE
826 static void check_stack_usage(void)
828 static DEFINE_SPINLOCK(low_water_lock);
829 static int lowest_to_date = THREAD_SIZE;
830 unsigned long *n = end_of_stack(current);
831 unsigned long free;
833 while (*n == 0)
834 n++;
835 free = (unsigned long)n - (unsigned long)end_of_stack(current);
837 if (free >= lowest_to_date)
838 return;
840 spin_lock(&low_water_lock);
841 if (free < lowest_to_date) {
842 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
843 "left\n",
844 current->comm, free);
845 lowest_to_date = free;
847 spin_unlock(&low_water_lock);
849 #else
850 static inline void check_stack_usage(void) {}
851 #endif
853 static inline void exit_child_reaper(struct task_struct *tsk)
855 if (likely(tsk->group_leader != task_child_reaper(tsk)))
856 return;
858 if (tsk->nsproxy->pid_ns == &init_pid_ns)
859 panic("Attempted to kill init!");
862 * @tsk is the last thread in the 'cgroup-init' and is exiting.
863 * Terminate all remaining processes in the namespace and reap them
864 * before exiting @tsk.
866 * Note that @tsk (last thread of cgroup-init) may not necessarily
867 * be the child-reaper (i.e main thread of cgroup-init) of the
868 * namespace i.e the child_reaper may have already exited.
870 * Even after a child_reaper exits, we let it inherit orphaned children,
871 * because, pid_ns->child_reaper remains valid as long as there is
872 * at least one living sub-thread in the cgroup init.
874 * This living sub-thread of the cgroup-init will be notified when
875 * a child inherited by the 'child-reaper' exits (do_notify_parent()
876 * uses __group_send_sig_info()). Further, when reaping child processes,
877 * do_wait() iterates over children of all living sub threads.
879 * i.e even though 'child_reaper' thread is listed as the parent of the
880 * orphaned children, any living sub-thread in the cgroup-init can
881 * perform the role of the child_reaper.
883 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
886 NORET_TYPE void do_exit(long code)
888 struct task_struct *tsk = current;
889 int group_dead;
891 profile_task_exit(tsk);
893 WARN_ON(atomic_read(&tsk->fs_excl));
895 if (unlikely(in_interrupt()))
896 panic("Aiee, killing interrupt handler!");
897 if (unlikely(!tsk->pid))
898 panic("Attempted to kill the idle task!");
900 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
901 current->ptrace_message = code;
902 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
906 * We're taking recursive faults here in do_exit. Safest is to just
907 * leave this task alone and wait for reboot.
909 if (unlikely(tsk->flags & PF_EXITING)) {
910 printk(KERN_ALERT
911 "Fixing recursive fault but reboot is needed!\n");
913 * We can do this unlocked here. The futex code uses
914 * this flag just to verify whether the pi state
915 * cleanup has been done or not. In the worst case it
916 * loops once more. We pretend that the cleanup was
917 * done as there is no way to return. Either the
918 * OWNER_DIED bit is set by now or we push the blocked
919 * task into the wait for ever nirwana as well.
921 tsk->flags |= PF_EXITPIDONE;
922 if (tsk->io_context)
923 exit_io_context();
924 set_current_state(TASK_UNINTERRUPTIBLE);
925 schedule();
928 exit_signals(tsk); /* sets PF_EXITING */
930 * tsk->flags are checked in the futex code to protect against
931 * an exiting task cleaning up the robust pi futexes.
933 smp_mb();
934 spin_unlock_wait(&tsk->pi_lock);
936 if (unlikely(in_atomic()))
937 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
938 current->comm, task_pid_nr(current),
939 preempt_count());
941 acct_update_integrals(tsk);
942 if (tsk->mm) {
943 update_hiwater_rss(tsk->mm);
944 update_hiwater_vm(tsk->mm);
946 group_dead = atomic_dec_and_test(&tsk->signal->live);
947 if (group_dead) {
948 exit_child_reaper(tsk);
949 hrtimer_cancel(&tsk->signal->real_timer);
950 exit_itimers(tsk->signal);
952 acct_collect(code, group_dead);
953 #ifdef CONFIG_FUTEX
954 if (unlikely(tsk->robust_list))
955 exit_robust_list(tsk);
956 #ifdef CONFIG_COMPAT
957 if (unlikely(tsk->compat_robust_list))
958 compat_exit_robust_list(tsk);
959 #endif
960 #endif
961 if (group_dead)
962 tty_audit_exit();
963 if (unlikely(tsk->audit_context))
964 audit_free(tsk);
966 tsk->exit_code = code;
967 taskstats_exit(tsk, group_dead);
969 exit_mm(tsk);
971 if (group_dead)
972 acct_process();
973 exit_sem(tsk);
974 __exit_files(tsk);
975 __exit_fs(tsk);
976 check_stack_usage();
977 exit_thread();
978 cgroup_exit(tsk, 1);
979 exit_keys(tsk);
981 if (group_dead && tsk->signal->leader)
982 disassociate_ctty(1);
984 module_put(task_thread_info(tsk)->exec_domain->module);
985 if (tsk->binfmt)
986 module_put(tsk->binfmt->module);
988 proc_exit_connector(tsk);
989 exit_notify(tsk);
990 #ifdef CONFIG_NUMA
991 mpol_free(tsk->mempolicy);
992 tsk->mempolicy = NULL;
993 #endif
994 #ifdef CONFIG_FUTEX
996 * This must happen late, after the PID is not
997 * hashed anymore:
999 if (unlikely(!list_empty(&tsk->pi_state_list)))
1000 exit_pi_state_list(tsk);
1001 if (unlikely(current->pi_state_cache))
1002 kfree(current->pi_state_cache);
1003 #endif
1005 * Make sure we are holding no locks:
1007 debug_check_no_locks_held(tsk);
1009 * We can do this unlocked here. The futex code uses this flag
1010 * just to verify whether the pi state cleanup has been done
1011 * or not. In the worst case it loops once more.
1013 tsk->flags |= PF_EXITPIDONE;
1015 if (tsk->io_context)
1016 exit_io_context();
1018 if (tsk->splice_pipe)
1019 __free_pipe_info(tsk->splice_pipe);
1021 preempt_disable();
1022 /* causes final put_task_struct in finish_task_switch(). */
1023 tsk->state = TASK_DEAD;
1025 schedule();
1026 BUG();
1027 /* Avoid "noreturn function does return". */
1028 for (;;)
1029 cpu_relax(); /* For when BUG is null */
1032 EXPORT_SYMBOL_GPL(do_exit);
1034 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1036 if (comp)
1037 complete(comp);
1039 do_exit(code);
1042 EXPORT_SYMBOL(complete_and_exit);
1044 asmlinkage long sys_exit(int error_code)
1046 do_exit((error_code&0xff)<<8);
1050 * Take down every thread in the group. This is called by fatal signals
1051 * as well as by sys_exit_group (below).
1053 NORET_TYPE void
1054 do_group_exit(int exit_code)
1056 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1058 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1059 exit_code = current->signal->group_exit_code;
1060 else if (!thread_group_empty(current)) {
1061 struct signal_struct *const sig = current->signal;
1062 struct sighand_struct *const sighand = current->sighand;
1063 spin_lock_irq(&sighand->siglock);
1064 if (signal_group_exit(sig))
1065 /* Another thread got here before we took the lock. */
1066 exit_code = sig->group_exit_code;
1067 else {
1068 sig->group_exit_code = exit_code;
1069 sig->flags = SIGNAL_GROUP_EXIT;
1070 zap_other_threads(current);
1072 spin_unlock_irq(&sighand->siglock);
1075 do_exit(exit_code);
1076 /* NOTREACHED */
1080 * this kills every thread in the thread group. Note that any externally
1081 * wait4()-ing process will get the correct exit code - even if this
1082 * thread is not the thread group leader.
1084 asmlinkage void sys_exit_group(int error_code)
1086 do_group_exit((error_code & 0xff) << 8);
1089 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1091 struct pid *pid = NULL;
1092 if (type == PIDTYPE_PID)
1093 pid = task->pids[type].pid;
1094 else if (type < PIDTYPE_MAX)
1095 pid = task->group_leader->pids[type].pid;
1096 return pid;
1099 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1100 struct task_struct *p)
1102 int err;
1104 if (type < PIDTYPE_MAX) {
1105 if (task_pid_type(p, type) != pid)
1106 return 0;
1110 * Do not consider detached threads that are
1111 * not ptraced:
1113 if (p->exit_signal == -1 && !p->ptrace)
1114 return 0;
1116 /* Wait for all children (clone and not) if __WALL is set;
1117 * otherwise, wait for clone children *only* if __WCLONE is
1118 * set; otherwise, wait for non-clone children *only*. (Note:
1119 * A "clone" child here is one that reports to its parent
1120 * using a signal other than SIGCHLD.) */
1121 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1122 && !(options & __WALL))
1123 return 0;
1125 err = security_task_wait(p);
1126 if (likely(!err))
1127 return 1;
1129 if (type != PIDTYPE_PID)
1130 return 0;
1131 /* This child was explicitly requested, abort */
1132 read_unlock(&tasklist_lock);
1133 return err;
1136 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1137 int why, int status,
1138 struct siginfo __user *infop,
1139 struct rusage __user *rusagep)
1141 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1143 put_task_struct(p);
1144 if (!retval)
1145 retval = put_user(SIGCHLD, &infop->si_signo);
1146 if (!retval)
1147 retval = put_user(0, &infop->si_errno);
1148 if (!retval)
1149 retval = put_user((short)why, &infop->si_code);
1150 if (!retval)
1151 retval = put_user(pid, &infop->si_pid);
1152 if (!retval)
1153 retval = put_user(uid, &infop->si_uid);
1154 if (!retval)
1155 retval = put_user(status, &infop->si_status);
1156 if (!retval)
1157 retval = pid;
1158 return retval;
1162 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1163 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1164 * the lock and this task is uninteresting. If we return nonzero, we have
1165 * released the lock and the system call should return.
1167 static int wait_task_zombie(struct task_struct *p, int noreap,
1168 struct siginfo __user *infop,
1169 int __user *stat_addr, struct rusage __user *ru)
1171 unsigned long state;
1172 int retval, status, traced;
1173 pid_t pid = task_pid_vnr(p);
1175 if (unlikely(noreap)) {
1176 uid_t uid = p->uid;
1177 int exit_code = p->exit_code;
1178 int why, status;
1180 get_task_struct(p);
1181 read_unlock(&tasklist_lock);
1182 if ((exit_code & 0x7f) == 0) {
1183 why = CLD_EXITED;
1184 status = exit_code >> 8;
1185 } else {
1186 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1187 status = exit_code & 0x7f;
1189 return wait_noreap_copyout(p, pid, uid, why,
1190 status, infop, ru);
1194 * Try to move the task's state to DEAD
1195 * only one thread is allowed to do this:
1197 state = xchg(&p->exit_state, EXIT_DEAD);
1198 if (state != EXIT_ZOMBIE) {
1199 BUG_ON(state != EXIT_DEAD);
1200 return 0;
1203 /* traced means p->ptrace, but not vice versa */
1204 traced = (p->real_parent != p->parent);
1206 if (likely(!traced)) {
1207 struct signal_struct *psig;
1208 struct signal_struct *sig;
1211 * The resource counters for the group leader are in its
1212 * own task_struct. Those for dead threads in the group
1213 * are in its signal_struct, as are those for the child
1214 * processes it has previously reaped. All these
1215 * accumulate in the parent's signal_struct c* fields.
1217 * We don't bother to take a lock here to protect these
1218 * p->signal fields, because they are only touched by
1219 * __exit_signal, which runs with tasklist_lock
1220 * write-locked anyway, and so is excluded here. We do
1221 * need to protect the access to p->parent->signal fields,
1222 * as other threads in the parent group can be right
1223 * here reaping other children at the same time.
1225 spin_lock_irq(&p->parent->sighand->siglock);
1226 psig = p->parent->signal;
1227 sig = p->signal;
1228 psig->cutime =
1229 cputime_add(psig->cutime,
1230 cputime_add(p->utime,
1231 cputime_add(sig->utime,
1232 sig->cutime)));
1233 psig->cstime =
1234 cputime_add(psig->cstime,
1235 cputime_add(p->stime,
1236 cputime_add(sig->stime,
1237 sig->cstime)));
1238 psig->cgtime =
1239 cputime_add(psig->cgtime,
1240 cputime_add(p->gtime,
1241 cputime_add(sig->gtime,
1242 sig->cgtime)));
1243 psig->cmin_flt +=
1244 p->min_flt + sig->min_flt + sig->cmin_flt;
1245 psig->cmaj_flt +=
1246 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1247 psig->cnvcsw +=
1248 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1249 psig->cnivcsw +=
1250 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1251 psig->cinblock +=
1252 task_io_get_inblock(p) +
1253 sig->inblock + sig->cinblock;
1254 psig->coublock +=
1255 task_io_get_oublock(p) +
1256 sig->oublock + sig->coublock;
1257 spin_unlock_irq(&p->parent->sighand->siglock);
1261 * Now we are sure this task is interesting, and no other
1262 * thread can reap it because we set its state to EXIT_DEAD.
1264 read_unlock(&tasklist_lock);
1266 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1267 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1268 ? p->signal->group_exit_code : p->exit_code;
1269 if (!retval && stat_addr)
1270 retval = put_user(status, stat_addr);
1271 if (!retval && infop)
1272 retval = put_user(SIGCHLD, &infop->si_signo);
1273 if (!retval && infop)
1274 retval = put_user(0, &infop->si_errno);
1275 if (!retval && infop) {
1276 int why;
1278 if ((status & 0x7f) == 0) {
1279 why = CLD_EXITED;
1280 status >>= 8;
1281 } else {
1282 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1283 status &= 0x7f;
1285 retval = put_user((short)why, &infop->si_code);
1286 if (!retval)
1287 retval = put_user(status, &infop->si_status);
1289 if (!retval && infop)
1290 retval = put_user(pid, &infop->si_pid);
1291 if (!retval && infop)
1292 retval = put_user(p->uid, &infop->si_uid);
1293 if (!retval)
1294 retval = pid;
1296 if (traced) {
1297 write_lock_irq(&tasklist_lock);
1298 /* We dropped tasklist, ptracer could die and untrace */
1299 ptrace_unlink(p);
1301 * If this is not a detached task, notify the parent.
1302 * If it's still not detached after that, don't release
1303 * it now.
1305 if (p->exit_signal != -1) {
1306 do_notify_parent(p, p->exit_signal);
1307 if (p->exit_signal != -1) {
1308 p->exit_state = EXIT_ZOMBIE;
1309 p = NULL;
1312 write_unlock_irq(&tasklist_lock);
1314 if (p != NULL)
1315 release_task(p);
1317 return retval;
1321 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1322 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1323 * the lock and this task is uninteresting. If we return nonzero, we have
1324 * released the lock and the system call should return.
1326 static int wait_task_stopped(struct task_struct *p,
1327 int noreap, struct siginfo __user *infop,
1328 int __user *stat_addr, struct rusage __user *ru)
1330 int retval, exit_code, why;
1331 uid_t uid = 0; /* unneeded, required by compiler */
1332 pid_t pid;
1334 exit_code = 0;
1335 spin_lock_irq(&p->sighand->siglock);
1337 if (unlikely(!task_is_stopped_or_traced(p)))
1338 goto unlock_sig;
1340 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1342 * A group stop is in progress and this is the group leader.
1343 * We won't report until all threads have stopped.
1345 goto unlock_sig;
1347 exit_code = p->exit_code;
1348 if (!exit_code)
1349 goto unlock_sig;
1351 if (!noreap)
1352 p->exit_code = 0;
1354 uid = p->uid;
1355 unlock_sig:
1356 spin_unlock_irq(&p->sighand->siglock);
1357 if (!exit_code)
1358 return 0;
1361 * Now we are pretty sure this task is interesting.
1362 * Make sure it doesn't get reaped out from under us while we
1363 * give up the lock and then examine it below. We don't want to
1364 * keep holding onto the tasklist_lock while we call getrusage and
1365 * possibly take page faults for user memory.
1367 get_task_struct(p);
1368 pid = task_pid_vnr(p);
1369 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1370 read_unlock(&tasklist_lock);
1372 if (unlikely(noreap))
1373 return wait_noreap_copyout(p, pid, uid,
1374 why, exit_code,
1375 infop, ru);
1377 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1378 if (!retval && stat_addr)
1379 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1380 if (!retval && infop)
1381 retval = put_user(SIGCHLD, &infop->si_signo);
1382 if (!retval && infop)
1383 retval = put_user(0, &infop->si_errno);
1384 if (!retval && infop)
1385 retval = put_user(why, &infop->si_code);
1386 if (!retval && infop)
1387 retval = put_user(exit_code, &infop->si_status);
1388 if (!retval && infop)
1389 retval = put_user(pid, &infop->si_pid);
1390 if (!retval && infop)
1391 retval = put_user(uid, &infop->si_uid);
1392 if (!retval)
1393 retval = pid;
1394 put_task_struct(p);
1396 BUG_ON(!retval);
1397 return retval;
1401 * Handle do_wait work for one task in a live, non-stopped state.
1402 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1403 * the lock and this task is uninteresting. If we return nonzero, we have
1404 * released the lock and the system call should return.
1406 static int wait_task_continued(struct task_struct *p, int noreap,
1407 struct siginfo __user *infop,
1408 int __user *stat_addr, struct rusage __user *ru)
1410 int retval;
1411 pid_t pid;
1412 uid_t uid;
1414 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1415 return 0;
1417 spin_lock_irq(&p->sighand->siglock);
1418 /* Re-check with the lock held. */
1419 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1420 spin_unlock_irq(&p->sighand->siglock);
1421 return 0;
1423 if (!noreap)
1424 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1425 spin_unlock_irq(&p->sighand->siglock);
1427 pid = task_pid_vnr(p);
1428 uid = p->uid;
1429 get_task_struct(p);
1430 read_unlock(&tasklist_lock);
1432 if (!infop) {
1433 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1434 put_task_struct(p);
1435 if (!retval && stat_addr)
1436 retval = put_user(0xffff, stat_addr);
1437 if (!retval)
1438 retval = pid;
1439 } else {
1440 retval = wait_noreap_copyout(p, pid, uid,
1441 CLD_CONTINUED, SIGCONT,
1442 infop, ru);
1443 BUG_ON(retval == 0);
1446 return retval;
1449 static long do_wait(enum pid_type type, struct pid *pid, int options,
1450 struct siginfo __user *infop, int __user *stat_addr,
1451 struct rusage __user *ru)
1453 DECLARE_WAITQUEUE(wait, current);
1454 struct task_struct *tsk;
1455 int flag, retval;
1457 add_wait_queue(&current->signal->wait_chldexit,&wait);
1458 repeat:
1459 /* If there is nothing that can match our critier just get out */
1460 retval = -ECHILD;
1461 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1462 goto end;
1465 * We will set this flag if we see any child that might later
1466 * match our criteria, even if we are not able to reap it yet.
1468 flag = retval = 0;
1469 current->state = TASK_INTERRUPTIBLE;
1470 read_lock(&tasklist_lock);
1471 tsk = current;
1472 do {
1473 struct task_struct *p;
1475 list_for_each_entry(p, &tsk->children, sibling) {
1476 int ret = eligible_child(type, pid, options, p);
1477 if (!ret)
1478 continue;
1480 if (unlikely(ret < 0)) {
1481 retval = ret;
1482 } else if (task_is_stopped_or_traced(p)) {
1484 * It's stopped now, so it might later
1485 * continue, exit, or stop again.
1487 flag = 1;
1488 if (!(p->ptrace & PT_PTRACED) &&
1489 !(options & WUNTRACED))
1490 continue;
1492 retval = wait_task_stopped(p,
1493 (options & WNOWAIT), infop,
1494 stat_addr, ru);
1495 } else if (p->exit_state == EXIT_ZOMBIE &&
1496 !delay_group_leader(p)) {
1498 * We don't reap group leaders with subthreads.
1500 if (!likely(options & WEXITED))
1501 continue;
1502 retval = wait_task_zombie(p,
1503 (options & WNOWAIT), infop,
1504 stat_addr, ru);
1505 } else if (p->exit_state != EXIT_DEAD) {
1507 * It's running now, so it might later
1508 * exit, stop, or stop and then continue.
1510 flag = 1;
1511 if (!unlikely(options & WCONTINUED))
1512 continue;
1513 retval = wait_task_continued(p,
1514 (options & WNOWAIT), infop,
1515 stat_addr, ru);
1517 if (retval != 0) /* tasklist_lock released */
1518 goto end;
1520 if (!flag) {
1521 list_for_each_entry(p, &tsk->ptrace_children,
1522 ptrace_list) {
1523 flag = eligible_child(type, pid, options, p);
1524 if (!flag)
1525 continue;
1526 if (likely(flag > 0))
1527 break;
1528 retval = flag;
1529 goto end;
1532 if (options & __WNOTHREAD)
1533 break;
1534 tsk = next_thread(tsk);
1535 BUG_ON(tsk->signal != current->signal);
1536 } while (tsk != current);
1537 read_unlock(&tasklist_lock);
1539 if (flag) {
1540 if (options & WNOHANG)
1541 goto end;
1542 retval = -ERESTARTSYS;
1543 if (signal_pending(current))
1544 goto end;
1545 schedule();
1546 goto repeat;
1548 retval = -ECHILD;
1549 end:
1550 current->state = TASK_RUNNING;
1551 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1552 if (infop) {
1553 if (retval > 0)
1554 retval = 0;
1555 else {
1557 * For a WNOHANG return, clear out all the fields
1558 * we would set so the user can easily tell the
1559 * difference.
1561 if (!retval)
1562 retval = put_user(0, &infop->si_signo);
1563 if (!retval)
1564 retval = put_user(0, &infop->si_errno);
1565 if (!retval)
1566 retval = put_user(0, &infop->si_code);
1567 if (!retval)
1568 retval = put_user(0, &infop->si_pid);
1569 if (!retval)
1570 retval = put_user(0, &infop->si_uid);
1571 if (!retval)
1572 retval = put_user(0, &infop->si_status);
1575 return retval;
1578 asmlinkage long sys_waitid(int which, pid_t upid,
1579 struct siginfo __user *infop, int options,
1580 struct rusage __user *ru)
1582 struct pid *pid = NULL;
1583 enum pid_type type;
1584 long ret;
1586 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1587 return -EINVAL;
1588 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1589 return -EINVAL;
1591 switch (which) {
1592 case P_ALL:
1593 type = PIDTYPE_MAX;
1594 break;
1595 case P_PID:
1596 type = PIDTYPE_PID;
1597 if (upid <= 0)
1598 return -EINVAL;
1599 break;
1600 case P_PGID:
1601 type = PIDTYPE_PGID;
1602 if (upid <= 0)
1603 return -EINVAL;
1604 break;
1605 default:
1606 return -EINVAL;
1609 if (type < PIDTYPE_MAX)
1610 pid = find_get_pid(upid);
1611 ret = do_wait(type, pid, options, infop, NULL, ru);
1612 put_pid(pid);
1614 /* avoid REGPARM breakage on x86: */
1615 prevent_tail_call(ret);
1616 return ret;
1619 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1620 int options, struct rusage __user *ru)
1622 struct pid *pid = NULL;
1623 enum pid_type type;
1624 long ret;
1626 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1627 __WNOTHREAD|__WCLONE|__WALL))
1628 return -EINVAL;
1630 if (upid == -1)
1631 type = PIDTYPE_MAX;
1632 else if (upid < 0) {
1633 type = PIDTYPE_PGID;
1634 pid = find_get_pid(-upid);
1635 } else if (upid == 0) {
1636 type = PIDTYPE_PGID;
1637 pid = get_pid(task_pgrp(current));
1638 } else /* upid > 0 */ {
1639 type = PIDTYPE_PID;
1640 pid = find_get_pid(upid);
1643 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1644 put_pid(pid);
1646 /* avoid REGPARM breakage on x86: */
1647 prevent_tail_call(ret);
1648 return ret;
1651 #ifdef __ARCH_WANT_SYS_WAITPID
1654 * sys_waitpid() remains for compatibility. waitpid() should be
1655 * implemented by calling sys_wait4() from libc.a.
1657 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1659 return sys_wait4(pid, stat_addr, options, NULL);
1662 #endif