[PATCH] Have x86 use add_active_range() and free_area_init_nodes
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / scsi / aic94xx / aic94xx_dev.c
blob6f8901b748f737c676d0c22226f06117e09a545e
1 /*
2 * Aic94xx SAS/SATA DDB management
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 * $Id: //depot/aic94xx/aic94xx_dev.c#21 $
28 #include "aic94xx.h"
29 #include "aic94xx_hwi.h"
30 #include "aic94xx_reg.h"
31 #include "aic94xx_sas.h"
33 #define FIND_FREE_DDB(_ha) find_first_zero_bit((_ha)->hw_prof.ddb_bitmap, \
34 (_ha)->hw_prof.max_ddbs)
35 #define SET_DDB(_ddb, _ha) set_bit(_ddb, (_ha)->hw_prof.ddb_bitmap)
36 #define CLEAR_DDB(_ddb, _ha) clear_bit(_ddb, (_ha)->hw_prof.ddb_bitmap)
38 static inline int asd_get_ddb(struct asd_ha_struct *asd_ha)
40 unsigned long flags;
41 int ddb, i;
43 spin_lock_irqsave(&asd_ha->hw_prof.ddb_lock, flags);
44 ddb = FIND_FREE_DDB(asd_ha);
45 if (ddb >= asd_ha->hw_prof.max_ddbs) {
46 ddb = -ENOMEM;
47 spin_unlock_irqrestore(&asd_ha->hw_prof.ddb_lock, flags);
48 goto out;
50 SET_DDB(ddb, asd_ha);
51 spin_unlock_irqrestore(&asd_ha->hw_prof.ddb_lock, flags);
53 for (i = 0; i < sizeof(struct asd_ddb_ssp_smp_target_port); i+= 4)
54 asd_ddbsite_write_dword(asd_ha, ddb, i, 0);
55 out:
56 return ddb;
59 #define INIT_CONN_TAG offsetof(struct asd_ddb_ssp_smp_target_port, init_conn_tag)
60 #define DEST_SAS_ADDR offsetof(struct asd_ddb_ssp_smp_target_port, dest_sas_addr)
61 #define SEND_QUEUE_HEAD offsetof(struct asd_ddb_ssp_smp_target_port, send_queue_head)
62 #define DDB_TYPE offsetof(struct asd_ddb_ssp_smp_target_port, ddb_type)
63 #define CONN_MASK offsetof(struct asd_ddb_ssp_smp_target_port, conn_mask)
64 #define DDB_TARG_FLAGS offsetof(struct asd_ddb_ssp_smp_target_port, flags)
65 #define DDB_TARG_FLAGS2 offsetof(struct asd_ddb_stp_sata_target_port, flags2)
66 #define EXEC_QUEUE_TAIL offsetof(struct asd_ddb_ssp_smp_target_port, exec_queue_tail)
67 #define SEND_QUEUE_TAIL offsetof(struct asd_ddb_ssp_smp_target_port, send_queue_tail)
68 #define SISTER_DDB offsetof(struct asd_ddb_ssp_smp_target_port, sister_ddb)
69 #define MAX_CCONN offsetof(struct asd_ddb_ssp_smp_target_port, max_concurrent_conn)
70 #define NUM_CTX offsetof(struct asd_ddb_ssp_smp_target_port, num_contexts)
71 #define ATA_CMD_SCBPTR offsetof(struct asd_ddb_stp_sata_target_port, ata_cmd_scbptr)
72 #define SATA_TAG_ALLOC_MASK offsetof(struct asd_ddb_stp_sata_target_port, sata_tag_alloc_mask)
73 #define NUM_SATA_TAGS offsetof(struct asd_ddb_stp_sata_target_port, num_sata_tags)
74 #define SATA_STATUS offsetof(struct asd_ddb_stp_sata_target_port, sata_status)
75 #define NCQ_DATA_SCB_PTR offsetof(struct asd_ddb_stp_sata_target_port, ncq_data_scb_ptr)
76 #define ITNL_TIMEOUT offsetof(struct asd_ddb_ssp_smp_target_port, itnl_timeout)
78 static inline void asd_free_ddb(struct asd_ha_struct *asd_ha, int ddb)
80 unsigned long flags;
82 if (!ddb || ddb >= 0xFFFF)
83 return;
84 asd_ddbsite_write_byte(asd_ha, ddb, DDB_TYPE, DDB_TYPE_UNUSED);
85 spin_lock_irqsave(&asd_ha->hw_prof.ddb_lock, flags);
86 CLEAR_DDB(ddb, asd_ha);
87 spin_unlock_irqrestore(&asd_ha->hw_prof.ddb_lock, flags);
90 static inline void asd_set_ddb_type(struct domain_device *dev)
92 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
93 int ddb = (int) (unsigned long) dev->lldd_dev;
95 if (dev->dev_type == SATA_PM_PORT)
96 asd_ddbsite_write_byte(asd_ha,ddb, DDB_TYPE, DDB_TYPE_PM_PORT);
97 else if (dev->tproto)
98 asd_ddbsite_write_byte(asd_ha,ddb, DDB_TYPE, DDB_TYPE_TARGET);
99 else
100 asd_ddbsite_write_byte(asd_ha,ddb,DDB_TYPE,DDB_TYPE_INITIATOR);
103 static int asd_init_sata_tag_ddb(struct domain_device *dev)
105 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
106 int ddb, i;
108 ddb = asd_get_ddb(asd_ha);
109 if (ddb < 0)
110 return ddb;
112 for (i = 0; i < sizeof(struct asd_ddb_sata_tag); i += 2)
113 asd_ddbsite_write_word(asd_ha, ddb, i, 0xFFFF);
115 asd_ddbsite_write_word(asd_ha, (int) (unsigned long) dev->lldd_dev,
116 SISTER_DDB, ddb);
117 return 0;
120 static inline int asd_init_sata(struct domain_device *dev)
122 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
123 int ddb = (int) (unsigned long) dev->lldd_dev;
124 u32 qdepth = 0;
125 int res = 0;
127 asd_ddbsite_write_word(asd_ha, ddb, ATA_CMD_SCBPTR, 0xFFFF);
128 if ((dev->dev_type == SATA_DEV || dev->dev_type == SATA_PM_PORT) &&
129 dev->sata_dev.identify_device &&
130 dev->sata_dev.identify_device[10] != 0) {
131 u16 w75 = le16_to_cpu(dev->sata_dev.identify_device[75]);
132 u16 w76 = le16_to_cpu(dev->sata_dev.identify_device[76]);
134 if (w76 & 0x100) /* NCQ? */
135 qdepth = (w75 & 0x1F) + 1;
136 asd_ddbsite_write_dword(asd_ha, ddb, SATA_TAG_ALLOC_MASK,
137 (1<<qdepth)-1);
138 asd_ddbsite_write_byte(asd_ha, ddb, NUM_SATA_TAGS, qdepth);
140 if (dev->dev_type == SATA_DEV || dev->dev_type == SATA_PM ||
141 dev->dev_type == SATA_PM_PORT) {
142 struct dev_to_host_fis *fis = (struct dev_to_host_fis *)
143 dev->frame_rcvd;
144 asd_ddbsite_write_byte(asd_ha, ddb, SATA_STATUS, fis->status);
146 asd_ddbsite_write_word(asd_ha, ddb, NCQ_DATA_SCB_PTR, 0xFFFF);
147 if (qdepth > 0)
148 res = asd_init_sata_tag_ddb(dev);
149 return res;
152 static int asd_init_target_ddb(struct domain_device *dev)
154 int ddb, i;
155 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
156 u8 flags = 0;
158 ddb = asd_get_ddb(asd_ha);
159 if (ddb < 0)
160 return ddb;
162 dev->lldd_dev = (void *) (unsigned long) ddb;
164 asd_ddbsite_write_byte(asd_ha, ddb, 0, DDB_TP_CONN_TYPE);
165 asd_ddbsite_write_byte(asd_ha, ddb, 1, 0);
166 asd_ddbsite_write_word(asd_ha, ddb, INIT_CONN_TAG, 0xFFFF);
167 for (i = 0; i < SAS_ADDR_SIZE; i++)
168 asd_ddbsite_write_byte(asd_ha, ddb, DEST_SAS_ADDR+i,
169 dev->sas_addr[i]);
170 asd_ddbsite_write_word(asd_ha, ddb, SEND_QUEUE_HEAD, 0xFFFF);
171 asd_set_ddb_type(dev);
172 asd_ddbsite_write_byte(asd_ha, ddb, CONN_MASK, dev->port->phy_mask);
173 if (dev->port->oob_mode != SATA_OOB_MODE) {
174 flags |= OPEN_REQUIRED;
175 if ((dev->dev_type == SATA_DEV) ||
176 (dev->tproto & SAS_PROTO_STP)) {
177 struct smp_resp *rps_resp = &dev->sata_dev.rps_resp;
178 if (rps_resp->frame_type == SMP_RESPONSE &&
179 rps_resp->function == SMP_REPORT_PHY_SATA &&
180 rps_resp->result == SMP_RESP_FUNC_ACC) {
181 if (rps_resp->rps.affil_valid)
182 flags |= STP_AFFIL_POL;
183 if (rps_resp->rps.affil_supp)
184 flags |= SUPPORTS_AFFIL;
186 } else {
187 flags |= CONCURRENT_CONN_SUPP;
188 if (!dev->parent &&
189 (dev->dev_type == EDGE_DEV ||
190 dev->dev_type == FANOUT_DEV))
191 asd_ddbsite_write_byte(asd_ha, ddb, MAX_CCONN,
193 else
194 asd_ddbsite_write_byte(asd_ha, ddb, MAX_CCONN,
195 dev->pathways);
196 asd_ddbsite_write_byte(asd_ha, ddb, NUM_CTX, 1);
199 if (dev->dev_type == SATA_PM)
200 flags |= SATA_MULTIPORT;
201 asd_ddbsite_write_byte(asd_ha, ddb, DDB_TARG_FLAGS, flags);
203 flags = 0;
204 if (dev->tproto & SAS_PROTO_STP)
205 flags |= STP_CL_POL_NO_TX;
206 asd_ddbsite_write_byte(asd_ha, ddb, DDB_TARG_FLAGS2, flags);
208 asd_ddbsite_write_word(asd_ha, ddb, EXEC_QUEUE_TAIL, 0xFFFF);
209 asd_ddbsite_write_word(asd_ha, ddb, SEND_QUEUE_TAIL, 0xFFFF);
210 asd_ddbsite_write_word(asd_ha, ddb, SISTER_DDB, 0xFFFF);
212 if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTO_STP)) {
213 i = asd_init_sata(dev);
214 if (i < 0) {
215 asd_free_ddb(asd_ha, ddb);
216 return i;
220 if (dev->dev_type == SAS_END_DEV) {
221 struct sas_end_device *rdev = rphy_to_end_device(dev->rphy);
222 if (rdev->I_T_nexus_loss_timeout > 0)
223 asd_ddbsite_write_word(asd_ha, ddb, ITNL_TIMEOUT,
224 min(rdev->I_T_nexus_loss_timeout,
225 (u16)ITNL_TIMEOUT_CONST));
226 else
227 asd_ddbsite_write_word(asd_ha, ddb, ITNL_TIMEOUT,
228 (u16)ITNL_TIMEOUT_CONST);
230 return 0;
233 static int asd_init_sata_pm_table_ddb(struct domain_device *dev)
235 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
236 int ddb, i;
238 ddb = asd_get_ddb(asd_ha);
239 if (ddb < 0)
240 return ddb;
242 for (i = 0; i < 32; i += 2)
243 asd_ddbsite_write_word(asd_ha, ddb, i, 0xFFFF);
245 asd_ddbsite_write_word(asd_ha, (int) (unsigned long) dev->lldd_dev,
246 SISTER_DDB, ddb);
248 return 0;
251 #define PM_PORT_FLAGS offsetof(struct asd_ddb_sata_pm_port, pm_port_flags)
252 #define PARENT_DDB offsetof(struct asd_ddb_sata_pm_port, parent_ddb)
255 * asd_init_sata_pm_port_ddb -- SATA Port Multiplier Port
256 * dev: pointer to domain device
258 * For SATA Port Multiplier Ports we need to allocate one SATA Port
259 * Multiplier Port DDB and depending on whether the target on it
260 * supports SATA II NCQ, one SATA Tag DDB.
262 static int asd_init_sata_pm_port_ddb(struct domain_device *dev)
264 int ddb, i, parent_ddb, pmtable_ddb;
265 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
266 u8 flags;
268 ddb = asd_get_ddb(asd_ha);
269 if (ddb < 0)
270 return ddb;
272 asd_set_ddb_type(dev);
273 flags = (dev->sata_dev.port_no << 4) | PM_PORT_SET;
274 asd_ddbsite_write_byte(asd_ha, ddb, PM_PORT_FLAGS, flags);
275 asd_ddbsite_write_word(asd_ha, ddb, SISTER_DDB, 0xFFFF);
276 asd_ddbsite_write_word(asd_ha, ddb, ATA_CMD_SCBPTR, 0xFFFF);
277 asd_init_sata(dev);
279 parent_ddb = (int) (unsigned long) dev->parent->lldd_dev;
280 asd_ddbsite_write_word(asd_ha, ddb, PARENT_DDB, parent_ddb);
281 pmtable_ddb = asd_ddbsite_read_word(asd_ha, parent_ddb, SISTER_DDB);
282 asd_ddbsite_write_word(asd_ha, pmtable_ddb, dev->sata_dev.port_no,ddb);
284 if (asd_ddbsite_read_byte(asd_ha, ddb, NUM_SATA_TAGS) > 0) {
285 i = asd_init_sata_tag_ddb(dev);
286 if (i < 0) {
287 asd_free_ddb(asd_ha, ddb);
288 return i;
291 return 0;
294 static int asd_init_initiator_ddb(struct domain_device *dev)
296 return -ENODEV;
300 * asd_init_sata_pm_ddb -- SATA Port Multiplier
301 * dev: pointer to domain device
303 * For STP and direct-attached SATA Port Multipliers we need
304 * one target port DDB entry and one SATA PM table DDB entry.
306 static int asd_init_sata_pm_ddb(struct domain_device *dev)
308 int res = 0;
310 res = asd_init_target_ddb(dev);
311 if (res)
312 goto out;
313 res = asd_init_sata_pm_table_ddb(dev);
314 if (res)
315 asd_free_ddb(dev->port->ha->lldd_ha,
316 (int) (unsigned long) dev->lldd_dev);
317 out:
318 return res;
321 int asd_dev_found(struct domain_device *dev)
323 int res = 0;
325 switch (dev->dev_type) {
326 case SATA_PM:
327 res = asd_init_sata_pm_ddb(dev);
328 break;
329 case SATA_PM_PORT:
330 res = asd_init_sata_pm_port_ddb(dev);
331 break;
332 default:
333 if (dev->tproto)
334 res = asd_init_target_ddb(dev);
335 else
336 res = asd_init_initiator_ddb(dev);
338 return res;
341 void asd_dev_gone(struct domain_device *dev)
343 int ddb, sister_ddb;
344 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
346 ddb = (int) (unsigned long) dev->lldd_dev;
347 sister_ddb = asd_ddbsite_read_word(asd_ha, ddb, SISTER_DDB);
349 if (sister_ddb != 0xFFFF)
350 asd_free_ddb(asd_ha, sister_ddb);
351 asd_free_ddb(asd_ha, ddb);
352 dev->lldd_dev = NULL;