ide-pci-generic: kill the unused ifdef/endif/MODULE code
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / hwmon / asb100.c
blob9460dba4cf74ff0bd0dbc1575f516d89d34c7d9d
1 /*
2 asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
5 Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7 (derived from w83781d.c)
9 Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
10 Philip Edelbrock <phil@netroedge.com>, and
11 Mark Studebaker <mdsxyz123@yahoo.com>
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 This driver supports the hardware sensor chips: Asus ASB100 and
30 ASB100-A "BACH".
32 ASB100-A supports pwm1, while plain ASB100 does not. There is no known
33 way for the driver to tell which one is there.
35 Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
36 asb100 7 3 1 4 0x31 0x0694 yes no
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-vid.h>
44 #include <linux/err.h>
45 #include <linux/init.h>
46 #include <linux/jiffies.h>
47 #include <linux/mutex.h>
48 #include "lm75.h"
51 HISTORY:
52 2003-12-29 1.0.0 Ported from lm_sensors project for kernel 2.6
54 #define ASB100_VERSION "1.0.0"
56 /* I2C addresses to scan */
57 static unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
59 /* Insmod parameters */
60 I2C_CLIENT_INSMOD_1(asb100);
61 I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: "
62 "{bus, clientaddr, subclientaddr1, subclientaddr2}");
64 /* Voltage IN registers 0-6 */
65 #define ASB100_REG_IN(nr) (0x20 + (nr))
66 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
67 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
69 /* FAN IN registers 1-3 */
70 #define ASB100_REG_FAN(nr) (0x28 + (nr))
71 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
73 /* TEMPERATURE registers 1-4 */
74 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
75 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
76 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
78 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
79 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
80 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
82 #define ASB100_REG_TEMP2_CONFIG 0x0152
83 #define ASB100_REG_TEMP3_CONFIG 0x0252
86 #define ASB100_REG_CONFIG 0x40
87 #define ASB100_REG_ALARM1 0x41
88 #define ASB100_REG_ALARM2 0x42
89 #define ASB100_REG_SMIM1 0x43
90 #define ASB100_REG_SMIM2 0x44
91 #define ASB100_REG_VID_FANDIV 0x47
92 #define ASB100_REG_I2C_ADDR 0x48
93 #define ASB100_REG_CHIPID 0x49
94 #define ASB100_REG_I2C_SUBADDR 0x4a
95 #define ASB100_REG_PIN 0x4b
96 #define ASB100_REG_IRQ 0x4c
97 #define ASB100_REG_BANK 0x4e
98 #define ASB100_REG_CHIPMAN 0x4f
100 #define ASB100_REG_WCHIPID 0x58
102 /* bit 7 -> enable, bits 0-3 -> duty cycle */
103 #define ASB100_REG_PWM1 0x59
105 /* CONVERSIONS
106 Rounding and limit checking is only done on the TO_REG variants. */
108 /* These constants are a guess, consistent w/ w83781d */
109 #define ASB100_IN_MIN ( 0)
110 #define ASB100_IN_MAX (4080)
112 /* IN: 1/1000 V (0V to 4.08V)
113 REG: 16mV/bit */
114 static u8 IN_TO_REG(unsigned val)
116 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
117 return (nval + 8) / 16;
120 static unsigned IN_FROM_REG(u8 reg)
122 return reg * 16;
125 static u8 FAN_TO_REG(long rpm, int div)
127 if (rpm == -1)
128 return 0;
129 if (rpm == 0)
130 return 255;
131 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
132 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
135 static int FAN_FROM_REG(u8 val, int div)
137 return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
140 /* These constants are a guess, consistent w/ w83781d */
141 #define ASB100_TEMP_MIN (-128000)
142 #define ASB100_TEMP_MAX ( 127000)
144 /* TEMP: 0.001C/bit (-128C to +127C)
145 REG: 1C/bit, two's complement */
146 static u8 TEMP_TO_REG(long temp)
148 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
149 ntemp += (ntemp<0 ? -500 : 500);
150 return (u8)(ntemp / 1000);
153 static int TEMP_FROM_REG(u8 reg)
155 return (s8)reg * 1000;
158 /* PWM: 0 - 255 per sensors documentation
159 REG: (6.25% duty cycle per bit) */
160 static u8 ASB100_PWM_TO_REG(int pwm)
162 pwm = SENSORS_LIMIT(pwm, 0, 255);
163 return (u8)(pwm / 16);
166 static int ASB100_PWM_FROM_REG(u8 reg)
168 return reg * 16;
171 #define DIV_FROM_REG(val) (1 << (val))
173 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
174 REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
175 static u8 DIV_TO_REG(long val)
177 return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
180 /* For each registered client, we need to keep some data in memory. That
181 data is pointed to by client->data. The structure itself is
182 dynamically allocated, at the same time the client itself is allocated. */
183 struct asb100_data {
184 struct i2c_client client;
185 struct device *hwmon_dev;
186 struct mutex lock;
187 enum chips type;
189 struct mutex update_lock;
190 unsigned long last_updated; /* In jiffies */
192 /* array of 2 pointers to subclients */
193 struct i2c_client *lm75[2];
195 char valid; /* !=0 if following fields are valid */
196 u8 in[7]; /* Register value */
197 u8 in_max[7]; /* Register value */
198 u8 in_min[7]; /* Register value */
199 u8 fan[3]; /* Register value */
200 u8 fan_min[3]; /* Register value */
201 u16 temp[4]; /* Register value (0 and 3 are u8 only) */
202 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
203 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
204 u8 fan_div[3]; /* Register encoding, right justified */
205 u8 pwm; /* Register encoding */
206 u8 vid; /* Register encoding, combined */
207 u32 alarms; /* Register encoding, combined */
208 u8 vrm;
211 static int asb100_read_value(struct i2c_client *client, u16 reg);
212 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
214 static int asb100_attach_adapter(struct i2c_adapter *adapter);
215 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind);
216 static int asb100_detach_client(struct i2c_client *client);
217 static struct asb100_data *asb100_update_device(struct device *dev);
218 static void asb100_init_client(struct i2c_client *client);
220 static struct i2c_driver asb100_driver = {
221 .driver = {
222 .name = "asb100",
224 .id = I2C_DRIVERID_ASB100,
225 .attach_adapter = asb100_attach_adapter,
226 .detach_client = asb100_detach_client,
229 /* 7 Voltages */
230 #define show_in_reg(reg) \
231 static ssize_t show_##reg (struct device *dev, char *buf, int nr) \
233 struct asb100_data *data = asb100_update_device(dev); \
234 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
237 show_in_reg(in)
238 show_in_reg(in_min)
239 show_in_reg(in_max)
241 #define set_in_reg(REG, reg) \
242 static ssize_t set_in_##reg(struct device *dev, const char *buf, \
243 size_t count, int nr) \
245 struct i2c_client *client = to_i2c_client(dev); \
246 struct asb100_data *data = i2c_get_clientdata(client); \
247 unsigned long val = simple_strtoul(buf, NULL, 10); \
249 mutex_lock(&data->update_lock); \
250 data->in_##reg[nr] = IN_TO_REG(val); \
251 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
252 data->in_##reg[nr]); \
253 mutex_unlock(&data->update_lock); \
254 return count; \
257 set_in_reg(MIN, min)
258 set_in_reg(MAX, max)
260 #define sysfs_in(offset) \
261 static ssize_t \
262 show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \
264 return show_in(dev, buf, offset); \
266 static DEVICE_ATTR(in##offset##_input, S_IRUGO, \
267 show_in##offset, NULL); \
268 static ssize_t \
269 show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
271 return show_in_min(dev, buf, offset); \
273 static ssize_t \
274 show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
276 return show_in_max(dev, buf, offset); \
278 static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \
279 const char *buf, size_t count) \
281 return set_in_min(dev, buf, count, offset); \
283 static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \
284 const char *buf, size_t count) \
286 return set_in_max(dev, buf, count, offset); \
288 static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
289 show_in##offset##_min, set_in##offset##_min); \
290 static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
291 show_in##offset##_max, set_in##offset##_max);
293 sysfs_in(0);
294 sysfs_in(1);
295 sysfs_in(2);
296 sysfs_in(3);
297 sysfs_in(4);
298 sysfs_in(5);
299 sysfs_in(6);
301 /* 3 Fans */
302 static ssize_t show_fan(struct device *dev, char *buf, int nr)
304 struct asb100_data *data = asb100_update_device(dev);
305 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
306 DIV_FROM_REG(data->fan_div[nr])));
309 static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
311 struct asb100_data *data = asb100_update_device(dev);
312 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
313 DIV_FROM_REG(data->fan_div[nr])));
316 static ssize_t show_fan_div(struct device *dev, char *buf, int nr)
318 struct asb100_data *data = asb100_update_device(dev);
319 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
322 static ssize_t set_fan_min(struct device *dev, const char *buf,
323 size_t count, int nr)
325 struct i2c_client *client = to_i2c_client(dev);
326 struct asb100_data *data = i2c_get_clientdata(client);
327 u32 val = simple_strtoul(buf, NULL, 10);
329 mutex_lock(&data->update_lock);
330 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
331 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
332 mutex_unlock(&data->update_lock);
333 return count;
336 /* Note: we save and restore the fan minimum here, because its value is
337 determined in part by the fan divisor. This follows the principle of
338 least surprise; the user doesn't expect the fan minimum to change just
339 because the divisor changed. */
340 static ssize_t set_fan_div(struct device *dev, const char *buf,
341 size_t count, int nr)
343 struct i2c_client *client = to_i2c_client(dev);
344 struct asb100_data *data = i2c_get_clientdata(client);
345 unsigned long min;
346 unsigned long val = simple_strtoul(buf, NULL, 10);
347 int reg;
349 mutex_lock(&data->update_lock);
351 min = FAN_FROM_REG(data->fan_min[nr],
352 DIV_FROM_REG(data->fan_div[nr]));
353 data->fan_div[nr] = DIV_TO_REG(val);
355 switch(nr) {
356 case 0: /* fan 1 */
357 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
358 reg = (reg & 0xcf) | (data->fan_div[0] << 4);
359 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
360 break;
362 case 1: /* fan 2 */
363 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
364 reg = (reg & 0x3f) | (data->fan_div[1] << 6);
365 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
366 break;
368 case 2: /* fan 3 */
369 reg = asb100_read_value(client, ASB100_REG_PIN);
370 reg = (reg & 0x3f) | (data->fan_div[2] << 6);
371 asb100_write_value(client, ASB100_REG_PIN, reg);
372 break;
375 data->fan_min[nr] =
376 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
377 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
379 mutex_unlock(&data->update_lock);
381 return count;
384 #define sysfs_fan(offset) \
385 static ssize_t show_fan##offset(struct device *dev, struct device_attribute *attr, char *buf) \
387 return show_fan(dev, buf, offset - 1); \
389 static ssize_t show_fan##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \
391 return show_fan_min(dev, buf, offset - 1); \
393 static ssize_t show_fan##offset##_div(struct device *dev, struct device_attribute *attr, char *buf) \
395 return show_fan_div(dev, buf, offset - 1); \
397 static ssize_t set_fan##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \
398 size_t count) \
400 return set_fan_min(dev, buf, count, offset - 1); \
402 static ssize_t set_fan##offset##_div(struct device *dev, struct device_attribute *attr, const char *buf, \
403 size_t count) \
405 return set_fan_div(dev, buf, count, offset - 1); \
407 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
408 show_fan##offset, NULL); \
409 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
410 show_fan##offset##_min, set_fan##offset##_min); \
411 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
412 show_fan##offset##_div, set_fan##offset##_div);
414 sysfs_fan(1);
415 sysfs_fan(2);
416 sysfs_fan(3);
418 /* 4 Temp. Sensors */
419 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
421 int ret = 0;
423 switch (nr) {
424 case 1: case 2:
425 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
426 break;
427 case 0: case 3: default:
428 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
429 break;
431 return ret;
434 #define show_temp_reg(reg) \
435 static ssize_t show_##reg(struct device *dev, char *buf, int nr) \
437 struct asb100_data *data = asb100_update_device(dev); \
438 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
441 show_temp_reg(temp);
442 show_temp_reg(temp_max);
443 show_temp_reg(temp_hyst);
445 #define set_temp_reg(REG, reg) \
446 static ssize_t set_##reg(struct device *dev, const char *buf, \
447 size_t count, int nr) \
449 struct i2c_client *client = to_i2c_client(dev); \
450 struct asb100_data *data = i2c_get_clientdata(client); \
451 long val = simple_strtol(buf, NULL, 10); \
453 mutex_lock(&data->update_lock); \
454 switch (nr) { \
455 case 1: case 2: \
456 data->reg[nr] = LM75_TEMP_TO_REG(val); \
457 break; \
458 case 0: case 3: default: \
459 data->reg[nr] = TEMP_TO_REG(val); \
460 break; \
462 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
463 data->reg[nr]); \
464 mutex_unlock(&data->update_lock); \
465 return count; \
468 set_temp_reg(MAX, temp_max);
469 set_temp_reg(HYST, temp_hyst);
471 #define sysfs_temp(num) \
472 static ssize_t show_temp##num(struct device *dev, struct device_attribute *attr, char *buf) \
474 return show_temp(dev, buf, num-1); \
476 static DEVICE_ATTR(temp##num##_input, S_IRUGO, show_temp##num, NULL); \
477 static ssize_t show_temp_max##num(struct device *dev, struct device_attribute *attr, char *buf) \
479 return show_temp_max(dev, buf, num-1); \
481 static ssize_t set_temp_max##num(struct device *dev, struct device_attribute *attr, const char *buf, \
482 size_t count) \
484 return set_temp_max(dev, buf, count, num-1); \
486 static DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
487 show_temp_max##num, set_temp_max##num); \
488 static ssize_t show_temp_hyst##num(struct device *dev, struct device_attribute *attr, char *buf) \
490 return show_temp_hyst(dev, buf, num-1); \
492 static ssize_t set_temp_hyst##num(struct device *dev, struct device_attribute *attr, const char *buf, \
493 size_t count) \
495 return set_temp_hyst(dev, buf, count, num-1); \
497 static DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
498 show_temp_hyst##num, set_temp_hyst##num);
500 sysfs_temp(1);
501 sysfs_temp(2);
502 sysfs_temp(3);
503 sysfs_temp(4);
505 /* VID */
506 static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf)
508 struct asb100_data *data = asb100_update_device(dev);
509 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
512 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
514 /* VRM */
515 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf)
517 struct asb100_data *data = dev_get_drvdata(dev);
518 return sprintf(buf, "%d\n", data->vrm);
521 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
523 struct i2c_client *client = to_i2c_client(dev);
524 struct asb100_data *data = i2c_get_clientdata(client);
525 unsigned long val = simple_strtoul(buf, NULL, 10);
526 data->vrm = val;
527 return count;
530 /* Alarms */
531 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
533 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
535 struct asb100_data *data = asb100_update_device(dev);
536 return sprintf(buf, "%u\n", data->alarms);
539 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
541 /* 1 PWM */
542 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, char *buf)
544 struct asb100_data *data = asb100_update_device(dev);
545 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
548 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
550 struct i2c_client *client = to_i2c_client(dev);
551 struct asb100_data *data = i2c_get_clientdata(client);
552 unsigned long val = simple_strtoul(buf, NULL, 10);
554 mutex_lock(&data->update_lock);
555 data->pwm &= 0x80; /* keep the enable bit */
556 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
557 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
558 mutex_unlock(&data->update_lock);
559 return count;
562 static ssize_t show_pwm_enable1(struct device *dev, struct device_attribute *attr, char *buf)
564 struct asb100_data *data = asb100_update_device(dev);
565 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
568 static ssize_t set_pwm_enable1(struct device *dev, struct device_attribute *attr, const char *buf,
569 size_t count)
571 struct i2c_client *client = to_i2c_client(dev);
572 struct asb100_data *data = i2c_get_clientdata(client);
573 unsigned long val = simple_strtoul(buf, NULL, 10);
575 mutex_lock(&data->update_lock);
576 data->pwm &= 0x0f; /* keep the duty cycle bits */
577 data->pwm |= (val ? 0x80 : 0x00);
578 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
579 mutex_unlock(&data->update_lock);
580 return count;
583 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
584 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
585 show_pwm_enable1, set_pwm_enable1);
587 static struct attribute *asb100_attributes[] = {
588 &dev_attr_in0_input.attr,
589 &dev_attr_in0_min.attr,
590 &dev_attr_in0_max.attr,
591 &dev_attr_in1_input.attr,
592 &dev_attr_in1_min.attr,
593 &dev_attr_in1_max.attr,
594 &dev_attr_in2_input.attr,
595 &dev_attr_in2_min.attr,
596 &dev_attr_in2_max.attr,
597 &dev_attr_in3_input.attr,
598 &dev_attr_in3_min.attr,
599 &dev_attr_in3_max.attr,
600 &dev_attr_in4_input.attr,
601 &dev_attr_in4_min.attr,
602 &dev_attr_in4_max.attr,
603 &dev_attr_in5_input.attr,
604 &dev_attr_in5_min.attr,
605 &dev_attr_in5_max.attr,
606 &dev_attr_in6_input.attr,
607 &dev_attr_in6_min.attr,
608 &dev_attr_in6_max.attr,
610 &dev_attr_fan1_input.attr,
611 &dev_attr_fan1_min.attr,
612 &dev_attr_fan1_div.attr,
613 &dev_attr_fan2_input.attr,
614 &dev_attr_fan2_min.attr,
615 &dev_attr_fan2_div.attr,
616 &dev_attr_fan3_input.attr,
617 &dev_attr_fan3_min.attr,
618 &dev_attr_fan3_div.attr,
620 &dev_attr_temp1_input.attr,
621 &dev_attr_temp1_max.attr,
622 &dev_attr_temp1_max_hyst.attr,
623 &dev_attr_temp2_input.attr,
624 &dev_attr_temp2_max.attr,
625 &dev_attr_temp2_max_hyst.attr,
626 &dev_attr_temp3_input.attr,
627 &dev_attr_temp3_max.attr,
628 &dev_attr_temp3_max_hyst.attr,
629 &dev_attr_temp4_input.attr,
630 &dev_attr_temp4_max.attr,
631 &dev_attr_temp4_max_hyst.attr,
633 &dev_attr_cpu0_vid.attr,
634 &dev_attr_vrm.attr,
635 &dev_attr_alarms.attr,
636 &dev_attr_pwm1.attr,
637 &dev_attr_pwm1_enable.attr,
639 NULL
642 static const struct attribute_group asb100_group = {
643 .attrs = asb100_attributes,
646 /* This function is called when:
647 asb100_driver is inserted (when this module is loaded), for each
648 available adapter
649 when a new adapter is inserted (and asb100_driver is still present)
651 static int asb100_attach_adapter(struct i2c_adapter *adapter)
653 if (!(adapter->class & I2C_CLASS_HWMON))
654 return 0;
655 return i2c_probe(adapter, &addr_data, asb100_detect);
658 static int asb100_detect_subclients(struct i2c_adapter *adapter, int address,
659 int kind, struct i2c_client *new_client)
661 int i, id, err;
662 struct asb100_data *data = i2c_get_clientdata(new_client);
664 data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
665 if (!(data->lm75[0])) {
666 err = -ENOMEM;
667 goto ERROR_SC_0;
670 data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
671 if (!(data->lm75[1])) {
672 err = -ENOMEM;
673 goto ERROR_SC_1;
676 id = i2c_adapter_id(adapter);
678 if (force_subclients[0] == id && force_subclients[1] == address) {
679 for (i = 2; i <= 3; i++) {
680 if (force_subclients[i] < 0x48 ||
681 force_subclients[i] > 0x4f) {
682 dev_err(&new_client->dev, "invalid subclient "
683 "address %d; must be 0x48-0x4f\n",
684 force_subclients[i]);
685 err = -ENODEV;
686 goto ERROR_SC_2;
689 asb100_write_value(new_client, ASB100_REG_I2C_SUBADDR,
690 (force_subclients[2] & 0x07) |
691 ((force_subclients[3] & 0x07) <<4));
692 data->lm75[0]->addr = force_subclients[2];
693 data->lm75[1]->addr = force_subclients[3];
694 } else {
695 int val = asb100_read_value(new_client, ASB100_REG_I2C_SUBADDR);
696 data->lm75[0]->addr = 0x48 + (val & 0x07);
697 data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07);
700 if(data->lm75[0]->addr == data->lm75[1]->addr) {
701 dev_err(&new_client->dev, "duplicate addresses 0x%x "
702 "for subclients\n", data->lm75[0]->addr);
703 err = -ENODEV;
704 goto ERROR_SC_2;
707 for (i = 0; i <= 1; i++) {
708 i2c_set_clientdata(data->lm75[i], NULL);
709 data->lm75[i]->adapter = adapter;
710 data->lm75[i]->driver = &asb100_driver;
711 data->lm75[i]->flags = 0;
712 strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE);
715 if ((err = i2c_attach_client(data->lm75[0]))) {
716 dev_err(&new_client->dev, "subclient %d registration "
717 "at address 0x%x failed.\n", i, data->lm75[0]->addr);
718 goto ERROR_SC_2;
721 if ((err = i2c_attach_client(data->lm75[1]))) {
722 dev_err(&new_client->dev, "subclient %d registration "
723 "at address 0x%x failed.\n", i, data->lm75[1]->addr);
724 goto ERROR_SC_3;
727 return 0;
729 /* Undo inits in case of errors */
730 ERROR_SC_3:
731 i2c_detach_client(data->lm75[0]);
732 ERROR_SC_2:
733 kfree(data->lm75[1]);
734 ERROR_SC_1:
735 kfree(data->lm75[0]);
736 ERROR_SC_0:
737 return err;
740 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind)
742 int err;
743 struct i2c_client *new_client;
744 struct asb100_data *data;
746 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
747 pr_debug("asb100.o: detect failed, "
748 "smbus byte data not supported!\n");
749 err = -ENODEV;
750 goto ERROR0;
753 /* OK. For now, we presume we have a valid client. We now create the
754 client structure, even though we cannot fill it completely yet.
755 But it allows us to access asb100_{read,write}_value. */
757 if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) {
758 pr_debug("asb100.o: detect failed, kzalloc failed!\n");
759 err = -ENOMEM;
760 goto ERROR0;
763 new_client = &data->client;
764 mutex_init(&data->lock);
765 i2c_set_clientdata(new_client, data);
766 new_client->addr = address;
767 new_client->adapter = adapter;
768 new_client->driver = &asb100_driver;
769 new_client->flags = 0;
771 /* Now, we do the remaining detection. */
773 /* The chip may be stuck in some other bank than bank 0. This may
774 make reading other information impossible. Specify a force=... or
775 force_*=... parameter, and the chip will be reset to the right
776 bank. */
777 if (kind < 0) {
779 int val1 = asb100_read_value(new_client, ASB100_REG_BANK);
780 int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
782 /* If we're in bank 0 */
783 if ( (!(val1 & 0x07)) &&
784 /* Check for ASB100 ID (low byte) */
785 ( ((!(val1 & 0x80)) && (val2 != 0x94)) ||
786 /* Check for ASB100 ID (high byte ) */
787 ((val1 & 0x80) && (val2 != 0x06)) ) ) {
788 pr_debug("asb100.o: detect failed, "
789 "bad chip id 0x%02x!\n", val2);
790 err = -ENODEV;
791 goto ERROR1;
794 } /* kind < 0 */
796 /* We have either had a force parameter, or we have already detected
797 Winbond. Put it now into bank 0 and Vendor ID High Byte */
798 asb100_write_value(new_client, ASB100_REG_BANK,
799 (asb100_read_value(new_client, ASB100_REG_BANK) & 0x78) | 0x80);
801 /* Determine the chip type. */
802 if (kind <= 0) {
803 int val1 = asb100_read_value(new_client, ASB100_REG_WCHIPID);
804 int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
806 if ((val1 == 0x31) && (val2 == 0x06))
807 kind = asb100;
808 else {
809 if (kind == 0)
810 dev_warn(&new_client->dev, "ignoring "
811 "'force' parameter for unknown chip "
812 "at adapter %d, address 0x%02x.\n",
813 i2c_adapter_id(adapter), address);
814 err = -ENODEV;
815 goto ERROR1;
819 /* Fill in remaining client fields and put it into the global list */
820 strlcpy(new_client->name, "asb100", I2C_NAME_SIZE);
821 data->type = kind;
823 data->valid = 0;
824 mutex_init(&data->update_lock);
826 /* Tell the I2C layer a new client has arrived */
827 if ((err = i2c_attach_client(new_client)))
828 goto ERROR1;
830 /* Attach secondary lm75 clients */
831 if ((err = asb100_detect_subclients(adapter, address, kind,
832 new_client)))
833 goto ERROR2;
835 /* Initialize the chip */
836 asb100_init_client(new_client);
838 /* A few vars need to be filled upon startup */
839 data->fan_min[0] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(0));
840 data->fan_min[1] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(1));
841 data->fan_min[2] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(2));
843 /* Register sysfs hooks */
844 if ((err = sysfs_create_group(&new_client->dev.kobj, &asb100_group)))
845 goto ERROR3;
847 data->hwmon_dev = hwmon_device_register(&new_client->dev);
848 if (IS_ERR(data->hwmon_dev)) {
849 err = PTR_ERR(data->hwmon_dev);
850 goto ERROR4;
853 return 0;
855 ERROR4:
856 sysfs_remove_group(&new_client->dev.kobj, &asb100_group);
857 ERROR3:
858 i2c_detach_client(data->lm75[1]);
859 i2c_detach_client(data->lm75[0]);
860 kfree(data->lm75[1]);
861 kfree(data->lm75[0]);
862 ERROR2:
863 i2c_detach_client(new_client);
864 ERROR1:
865 kfree(data);
866 ERROR0:
867 return err;
870 static int asb100_detach_client(struct i2c_client *client)
872 struct asb100_data *data = i2c_get_clientdata(client);
873 int err;
875 /* main client */
876 if (data) {
877 hwmon_device_unregister(data->hwmon_dev);
878 sysfs_remove_group(&client->dev.kobj, &asb100_group);
881 if ((err = i2c_detach_client(client)))
882 return err;
884 /* main client */
885 if (data)
886 kfree(data);
888 /* subclient */
889 else
890 kfree(client);
892 return 0;
895 /* The SMBus locks itself, usually, but nothing may access the chip between
896 bank switches. */
897 static int asb100_read_value(struct i2c_client *client, u16 reg)
899 struct asb100_data *data = i2c_get_clientdata(client);
900 struct i2c_client *cl;
901 int res, bank;
903 mutex_lock(&data->lock);
905 bank = (reg >> 8) & 0x0f;
906 if (bank > 2)
907 /* switch banks */
908 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
910 if (bank == 0 || bank > 2) {
911 res = i2c_smbus_read_byte_data(client, reg & 0xff);
912 } else {
913 /* switch to subclient */
914 cl = data->lm75[bank - 1];
916 /* convert from ISA to LM75 I2C addresses */
917 switch (reg & 0xff) {
918 case 0x50: /* TEMP */
919 res = swab16(i2c_smbus_read_word_data (cl, 0));
920 break;
921 case 0x52: /* CONFIG */
922 res = i2c_smbus_read_byte_data(cl, 1);
923 break;
924 case 0x53: /* HYST */
925 res = swab16(i2c_smbus_read_word_data (cl, 2));
926 break;
927 case 0x55: /* MAX */
928 default:
929 res = swab16(i2c_smbus_read_word_data (cl, 3));
930 break;
934 if (bank > 2)
935 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
937 mutex_unlock(&data->lock);
939 return res;
942 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
944 struct asb100_data *data = i2c_get_clientdata(client);
945 struct i2c_client *cl;
946 int bank;
948 mutex_lock(&data->lock);
950 bank = (reg >> 8) & 0x0f;
951 if (bank > 2)
952 /* switch banks */
953 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
955 if (bank == 0 || bank > 2) {
956 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
957 } else {
958 /* switch to subclient */
959 cl = data->lm75[bank - 1];
961 /* convert from ISA to LM75 I2C addresses */
962 switch (reg & 0xff) {
963 case 0x52: /* CONFIG */
964 i2c_smbus_write_byte_data(cl, 1, value & 0xff);
965 break;
966 case 0x53: /* HYST */
967 i2c_smbus_write_word_data(cl, 2, swab16(value));
968 break;
969 case 0x55: /* MAX */
970 i2c_smbus_write_word_data(cl, 3, swab16(value));
971 break;
975 if (bank > 2)
976 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
978 mutex_unlock(&data->lock);
981 static void asb100_init_client(struct i2c_client *client)
983 struct asb100_data *data = i2c_get_clientdata(client);
984 int vid = 0;
986 vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f;
987 vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4;
988 data->vrm = vid_which_vrm();
989 vid = vid_from_reg(vid, data->vrm);
991 /* Start monitoring */
992 asb100_write_value(client, ASB100_REG_CONFIG,
993 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
996 static struct asb100_data *asb100_update_device(struct device *dev)
998 struct i2c_client *client = to_i2c_client(dev);
999 struct asb100_data *data = i2c_get_clientdata(client);
1000 int i;
1002 mutex_lock(&data->update_lock);
1004 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
1005 || !data->valid) {
1007 dev_dbg(&client->dev, "starting device update...\n");
1009 /* 7 voltage inputs */
1010 for (i = 0; i < 7; i++) {
1011 data->in[i] = asb100_read_value(client,
1012 ASB100_REG_IN(i));
1013 data->in_min[i] = asb100_read_value(client,
1014 ASB100_REG_IN_MIN(i));
1015 data->in_max[i] = asb100_read_value(client,
1016 ASB100_REG_IN_MAX(i));
1019 /* 3 fan inputs */
1020 for (i = 0; i < 3; i++) {
1021 data->fan[i] = asb100_read_value(client,
1022 ASB100_REG_FAN(i));
1023 data->fan_min[i] = asb100_read_value(client,
1024 ASB100_REG_FAN_MIN(i));
1027 /* 4 temperature inputs */
1028 for (i = 1; i <= 4; i++) {
1029 data->temp[i-1] = asb100_read_value(client,
1030 ASB100_REG_TEMP(i));
1031 data->temp_max[i-1] = asb100_read_value(client,
1032 ASB100_REG_TEMP_MAX(i));
1033 data->temp_hyst[i-1] = asb100_read_value(client,
1034 ASB100_REG_TEMP_HYST(i));
1037 /* VID and fan divisors */
1038 i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
1039 data->vid = i & 0x0f;
1040 data->vid |= (asb100_read_value(client,
1041 ASB100_REG_CHIPID) & 0x01) << 4;
1042 data->fan_div[0] = (i >> 4) & 0x03;
1043 data->fan_div[1] = (i >> 6) & 0x03;
1044 data->fan_div[2] = (asb100_read_value(client,
1045 ASB100_REG_PIN) >> 6) & 0x03;
1047 /* PWM */
1048 data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1050 /* alarms */
1051 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1052 (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1054 data->last_updated = jiffies;
1055 data->valid = 1;
1057 dev_dbg(&client->dev, "... device update complete\n");
1060 mutex_unlock(&data->update_lock);
1062 return data;
1065 static int __init asb100_init(void)
1067 return i2c_add_driver(&asb100_driver);
1070 static void __exit asb100_exit(void)
1072 i2c_del_driver(&asb100_driver);
1075 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1076 MODULE_DESCRIPTION("ASB100 Bach driver");
1077 MODULE_LICENSE("GPL");
1079 module_init(asb100_init);
1080 module_exit(asb100_exit);