[ARM] 3480/1: ixp4xx: fix irq2gpio array type
[linux-2.6/openmoko-kernel/knife-kernel.git] / kernel / fork.c
blob34515772611ee93cfba6bcb4104f5fba350cd2c1
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
56 * Protected counters by write_lock_irq(&tasklist_lock)
58 unsigned long total_forks; /* Handle normal Linux uptimes. */
59 int nr_threads; /* The idle threads do not count.. */
61 int max_threads; /* tunable limit on nr_threads */
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
65 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
67 EXPORT_SYMBOL(tasklist_lock);
69 int nr_processes(void)
71 int cpu;
72 int total = 0;
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
77 return total;
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
104 void free_task(struct task_struct *tsk)
106 free_thread_info(tsk->thread_info);
107 free_task_struct(tsk);
109 EXPORT_SYMBOL(free_task);
111 void __put_task_struct(struct task_struct *tsk)
113 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 WARN_ON(atomic_read(&tsk->usage));
115 WARN_ON(tsk == current);
117 if (unlikely(tsk->audit_context))
118 audit_free(tsk);
119 security_task_free(tsk);
120 free_uid(tsk->user);
121 put_group_info(tsk->group_info);
123 if (!profile_handoff_task(tsk))
124 free_task(tsk);
127 void __init fork_init(unsigned long mempages)
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
132 #endif
133 /* create a slab on which task_structs can be allocated */
134 task_struct_cachep =
135 kmem_cache_create("task_struct", sizeof(struct task_struct),
136 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
142 * of memory.
144 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147 * we need to allow at least 20 threads to boot a system
149 if(max_threads < 20)
150 max_threads = 20;
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154 init_task.signal->rlim[RLIMIT_SIGPENDING] =
155 init_task.signal->rlim[RLIMIT_NPROC];
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
160 struct task_struct *tsk;
161 struct thread_info *ti;
163 prepare_to_copy(orig);
165 tsk = alloc_task_struct();
166 if (!tsk)
167 return NULL;
169 ti = alloc_thread_info(tsk);
170 if (!ti) {
171 free_task_struct(tsk);
172 return NULL;
175 *tsk = *orig;
176 tsk->thread_info = ti;
177 setup_thread_stack(tsk, orig);
179 /* One for us, one for whoever does the "release_task()" (usually parent) */
180 atomic_set(&tsk->usage,2);
181 atomic_set(&tsk->fs_excl, 0);
182 tsk->btrace_seq = 0;
183 return tsk;
186 #ifdef CONFIG_MMU
187 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
189 struct vm_area_struct *mpnt, *tmp, **pprev;
190 struct rb_node **rb_link, *rb_parent;
191 int retval;
192 unsigned long charge;
193 struct mempolicy *pol;
195 down_write(&oldmm->mmap_sem);
196 flush_cache_mm(oldmm);
197 down_write(&mm->mmap_sem);
199 mm->locked_vm = 0;
200 mm->mmap = NULL;
201 mm->mmap_cache = NULL;
202 mm->free_area_cache = oldmm->mmap_base;
203 mm->cached_hole_size = ~0UL;
204 mm->map_count = 0;
205 cpus_clear(mm->cpu_vm_mask);
206 mm->mm_rb = RB_ROOT;
207 rb_link = &mm->mm_rb.rb_node;
208 rb_parent = NULL;
209 pprev = &mm->mmap;
211 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
212 struct file *file;
214 if (mpnt->vm_flags & VM_DONTCOPY) {
215 long pages = vma_pages(mpnt);
216 mm->total_vm -= pages;
217 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
218 -pages);
219 continue;
221 charge = 0;
222 if (mpnt->vm_flags & VM_ACCOUNT) {
223 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
224 if (security_vm_enough_memory(len))
225 goto fail_nomem;
226 charge = len;
228 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
229 if (!tmp)
230 goto fail_nomem;
231 *tmp = *mpnt;
232 pol = mpol_copy(vma_policy(mpnt));
233 retval = PTR_ERR(pol);
234 if (IS_ERR(pol))
235 goto fail_nomem_policy;
236 vma_set_policy(tmp, pol);
237 tmp->vm_flags &= ~VM_LOCKED;
238 tmp->vm_mm = mm;
239 tmp->vm_next = NULL;
240 anon_vma_link(tmp);
241 file = tmp->vm_file;
242 if (file) {
243 struct inode *inode = file->f_dentry->d_inode;
244 get_file(file);
245 if (tmp->vm_flags & VM_DENYWRITE)
246 atomic_dec(&inode->i_writecount);
248 /* insert tmp into the share list, just after mpnt */
249 spin_lock(&file->f_mapping->i_mmap_lock);
250 tmp->vm_truncate_count = mpnt->vm_truncate_count;
251 flush_dcache_mmap_lock(file->f_mapping);
252 vma_prio_tree_add(tmp, mpnt);
253 flush_dcache_mmap_unlock(file->f_mapping);
254 spin_unlock(&file->f_mapping->i_mmap_lock);
258 * Link in the new vma and copy the page table entries.
260 *pprev = tmp;
261 pprev = &tmp->vm_next;
263 __vma_link_rb(mm, tmp, rb_link, rb_parent);
264 rb_link = &tmp->vm_rb.rb_right;
265 rb_parent = &tmp->vm_rb;
267 mm->map_count++;
268 retval = copy_page_range(mm, oldmm, mpnt);
270 if (tmp->vm_ops && tmp->vm_ops->open)
271 tmp->vm_ops->open(tmp);
273 if (retval)
274 goto out;
276 retval = 0;
277 out:
278 up_write(&mm->mmap_sem);
279 flush_tlb_mm(oldmm);
280 up_write(&oldmm->mmap_sem);
281 return retval;
282 fail_nomem_policy:
283 kmem_cache_free(vm_area_cachep, tmp);
284 fail_nomem:
285 retval = -ENOMEM;
286 vm_unacct_memory(charge);
287 goto out;
290 static inline int mm_alloc_pgd(struct mm_struct * mm)
292 mm->pgd = pgd_alloc(mm);
293 if (unlikely(!mm->pgd))
294 return -ENOMEM;
295 return 0;
298 static inline void mm_free_pgd(struct mm_struct * mm)
300 pgd_free(mm->pgd);
302 #else
303 #define dup_mmap(mm, oldmm) (0)
304 #define mm_alloc_pgd(mm) (0)
305 #define mm_free_pgd(mm)
306 #endif /* CONFIG_MMU */
308 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
310 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
311 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
313 #include <linux/init_task.h>
315 static struct mm_struct * mm_init(struct mm_struct * mm)
317 atomic_set(&mm->mm_users, 1);
318 atomic_set(&mm->mm_count, 1);
319 init_rwsem(&mm->mmap_sem);
320 INIT_LIST_HEAD(&mm->mmlist);
321 mm->core_waiters = 0;
322 mm->nr_ptes = 0;
323 set_mm_counter(mm, file_rss, 0);
324 set_mm_counter(mm, anon_rss, 0);
325 spin_lock_init(&mm->page_table_lock);
326 rwlock_init(&mm->ioctx_list_lock);
327 mm->ioctx_list = NULL;
328 mm->free_area_cache = TASK_UNMAPPED_BASE;
329 mm->cached_hole_size = ~0UL;
331 if (likely(!mm_alloc_pgd(mm))) {
332 mm->def_flags = 0;
333 return mm;
335 free_mm(mm);
336 return NULL;
340 * Allocate and initialize an mm_struct.
342 struct mm_struct * mm_alloc(void)
344 struct mm_struct * mm;
346 mm = allocate_mm();
347 if (mm) {
348 memset(mm, 0, sizeof(*mm));
349 mm = mm_init(mm);
351 return mm;
355 * Called when the last reference to the mm
356 * is dropped: either by a lazy thread or by
357 * mmput. Free the page directory and the mm.
359 void fastcall __mmdrop(struct mm_struct *mm)
361 BUG_ON(mm == &init_mm);
362 mm_free_pgd(mm);
363 destroy_context(mm);
364 free_mm(mm);
368 * Decrement the use count and release all resources for an mm.
370 void mmput(struct mm_struct *mm)
372 if (atomic_dec_and_test(&mm->mm_users)) {
373 exit_aio(mm);
374 exit_mmap(mm);
375 if (!list_empty(&mm->mmlist)) {
376 spin_lock(&mmlist_lock);
377 list_del(&mm->mmlist);
378 spin_unlock(&mmlist_lock);
380 put_swap_token(mm);
381 mmdrop(mm);
384 EXPORT_SYMBOL_GPL(mmput);
387 * get_task_mm - acquire a reference to the task's mm
389 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
390 * this kernel workthread has transiently adopted a user mm with use_mm,
391 * to do its AIO) is not set and if so returns a reference to it, after
392 * bumping up the use count. User must release the mm via mmput()
393 * after use. Typically used by /proc and ptrace.
395 struct mm_struct *get_task_mm(struct task_struct *task)
397 struct mm_struct *mm;
399 task_lock(task);
400 mm = task->mm;
401 if (mm) {
402 if (task->flags & PF_BORROWED_MM)
403 mm = NULL;
404 else
405 atomic_inc(&mm->mm_users);
407 task_unlock(task);
408 return mm;
410 EXPORT_SYMBOL_GPL(get_task_mm);
412 /* Please note the differences between mmput and mm_release.
413 * mmput is called whenever we stop holding onto a mm_struct,
414 * error success whatever.
416 * mm_release is called after a mm_struct has been removed
417 * from the current process.
419 * This difference is important for error handling, when we
420 * only half set up a mm_struct for a new process and need to restore
421 * the old one. Because we mmput the new mm_struct before
422 * restoring the old one. . .
423 * Eric Biederman 10 January 1998
425 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
427 struct completion *vfork_done = tsk->vfork_done;
429 /* Get rid of any cached register state */
430 deactivate_mm(tsk, mm);
432 /* notify parent sleeping on vfork() */
433 if (vfork_done) {
434 tsk->vfork_done = NULL;
435 complete(vfork_done);
437 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
438 u32 __user * tidptr = tsk->clear_child_tid;
439 tsk->clear_child_tid = NULL;
442 * We don't check the error code - if userspace has
443 * not set up a proper pointer then tough luck.
445 put_user(0, tidptr);
446 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
451 * Allocate a new mm structure and copy contents from the
452 * mm structure of the passed in task structure.
454 static struct mm_struct *dup_mm(struct task_struct *tsk)
456 struct mm_struct *mm, *oldmm = current->mm;
457 int err;
459 if (!oldmm)
460 return NULL;
462 mm = allocate_mm();
463 if (!mm)
464 goto fail_nomem;
466 memcpy(mm, oldmm, sizeof(*mm));
468 if (!mm_init(mm))
469 goto fail_nomem;
471 if (init_new_context(tsk, mm))
472 goto fail_nocontext;
474 err = dup_mmap(mm, oldmm);
475 if (err)
476 goto free_pt;
478 mm->hiwater_rss = get_mm_rss(mm);
479 mm->hiwater_vm = mm->total_vm;
481 return mm;
483 free_pt:
484 mmput(mm);
486 fail_nomem:
487 return NULL;
489 fail_nocontext:
491 * If init_new_context() failed, we cannot use mmput() to free the mm
492 * because it calls destroy_context()
494 mm_free_pgd(mm);
495 free_mm(mm);
496 return NULL;
499 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
501 struct mm_struct * mm, *oldmm;
502 int retval;
504 tsk->min_flt = tsk->maj_flt = 0;
505 tsk->nvcsw = tsk->nivcsw = 0;
507 tsk->mm = NULL;
508 tsk->active_mm = NULL;
511 * Are we cloning a kernel thread?
513 * We need to steal a active VM for that..
515 oldmm = current->mm;
516 if (!oldmm)
517 return 0;
519 if (clone_flags & CLONE_VM) {
520 atomic_inc(&oldmm->mm_users);
521 mm = oldmm;
522 goto good_mm;
525 retval = -ENOMEM;
526 mm = dup_mm(tsk);
527 if (!mm)
528 goto fail_nomem;
530 good_mm:
531 tsk->mm = mm;
532 tsk->active_mm = mm;
533 return 0;
535 fail_nomem:
536 return retval;
539 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
541 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
542 /* We don't need to lock fs - think why ;-) */
543 if (fs) {
544 atomic_set(&fs->count, 1);
545 rwlock_init(&fs->lock);
546 fs->umask = old->umask;
547 read_lock(&old->lock);
548 fs->rootmnt = mntget(old->rootmnt);
549 fs->root = dget(old->root);
550 fs->pwdmnt = mntget(old->pwdmnt);
551 fs->pwd = dget(old->pwd);
552 if (old->altroot) {
553 fs->altrootmnt = mntget(old->altrootmnt);
554 fs->altroot = dget(old->altroot);
555 } else {
556 fs->altrootmnt = NULL;
557 fs->altroot = NULL;
559 read_unlock(&old->lock);
561 return fs;
564 struct fs_struct *copy_fs_struct(struct fs_struct *old)
566 return __copy_fs_struct(old);
569 EXPORT_SYMBOL_GPL(copy_fs_struct);
571 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
573 if (clone_flags & CLONE_FS) {
574 atomic_inc(&current->fs->count);
575 return 0;
577 tsk->fs = __copy_fs_struct(current->fs);
578 if (!tsk->fs)
579 return -ENOMEM;
580 return 0;
583 static int count_open_files(struct fdtable *fdt)
585 int size = fdt->max_fdset;
586 int i;
588 /* Find the last open fd */
589 for (i = size/(8*sizeof(long)); i > 0; ) {
590 if (fdt->open_fds->fds_bits[--i])
591 break;
593 i = (i+1) * 8 * sizeof(long);
594 return i;
597 static struct files_struct *alloc_files(void)
599 struct files_struct *newf;
600 struct fdtable *fdt;
602 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
603 if (!newf)
604 goto out;
606 atomic_set(&newf->count, 1);
608 spin_lock_init(&newf->file_lock);
609 newf->next_fd = 0;
610 fdt = &newf->fdtab;
611 fdt->max_fds = NR_OPEN_DEFAULT;
612 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
613 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
614 fdt->open_fds = (fd_set *)&newf->open_fds_init;
615 fdt->fd = &newf->fd_array[0];
616 INIT_RCU_HEAD(&fdt->rcu);
617 fdt->free_files = NULL;
618 fdt->next = NULL;
619 rcu_assign_pointer(newf->fdt, fdt);
620 out:
621 return newf;
625 * Allocate a new files structure and copy contents from the
626 * passed in files structure.
628 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
630 struct files_struct *newf;
631 struct file **old_fds, **new_fds;
632 int open_files, size, i, expand;
633 struct fdtable *old_fdt, *new_fdt;
635 newf = alloc_files();
636 if (!newf)
637 goto out;
639 spin_lock(&oldf->file_lock);
640 old_fdt = files_fdtable(oldf);
641 new_fdt = files_fdtable(newf);
642 size = old_fdt->max_fdset;
643 open_files = count_open_files(old_fdt);
644 expand = 0;
647 * Check whether we need to allocate a larger fd array or fd set.
648 * Note: we're not a clone task, so the open count won't change.
650 if (open_files > new_fdt->max_fdset) {
651 new_fdt->max_fdset = 0;
652 expand = 1;
654 if (open_files > new_fdt->max_fds) {
655 new_fdt->max_fds = 0;
656 expand = 1;
659 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
660 if (expand) {
661 spin_unlock(&oldf->file_lock);
662 spin_lock(&newf->file_lock);
663 *errorp = expand_files(newf, open_files-1);
664 spin_unlock(&newf->file_lock);
665 if (*errorp < 0)
666 goto out_release;
667 new_fdt = files_fdtable(newf);
669 * Reacquire the oldf lock and a pointer to its fd table
670 * who knows it may have a new bigger fd table. We need
671 * the latest pointer.
673 spin_lock(&oldf->file_lock);
674 old_fdt = files_fdtable(oldf);
677 old_fds = old_fdt->fd;
678 new_fds = new_fdt->fd;
680 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
681 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
683 for (i = open_files; i != 0; i--) {
684 struct file *f = *old_fds++;
685 if (f) {
686 get_file(f);
687 } else {
689 * The fd may be claimed in the fd bitmap but not yet
690 * instantiated in the files array if a sibling thread
691 * is partway through open(). So make sure that this
692 * fd is available to the new process.
694 FD_CLR(open_files - i, new_fdt->open_fds);
696 rcu_assign_pointer(*new_fds++, f);
698 spin_unlock(&oldf->file_lock);
700 /* compute the remainder to be cleared */
701 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
703 /* This is long word aligned thus could use a optimized version */
704 memset(new_fds, 0, size);
706 if (new_fdt->max_fdset > open_files) {
707 int left = (new_fdt->max_fdset-open_files)/8;
708 int start = open_files / (8 * sizeof(unsigned long));
710 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
711 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
714 out:
715 return newf;
717 out_release:
718 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
719 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
720 free_fd_array(new_fdt->fd, new_fdt->max_fds);
721 kmem_cache_free(files_cachep, newf);
722 return NULL;
725 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
727 struct files_struct *oldf, *newf;
728 int error = 0;
731 * A background process may not have any files ...
733 oldf = current->files;
734 if (!oldf)
735 goto out;
737 if (clone_flags & CLONE_FILES) {
738 atomic_inc(&oldf->count);
739 goto out;
743 * Note: we may be using current for both targets (See exec.c)
744 * This works because we cache current->files (old) as oldf. Don't
745 * break this.
747 tsk->files = NULL;
748 error = -ENOMEM;
749 newf = dup_fd(oldf, &error);
750 if (!newf)
751 goto out;
753 tsk->files = newf;
754 error = 0;
755 out:
756 return error;
760 * Helper to unshare the files of the current task.
761 * We don't want to expose copy_files internals to
762 * the exec layer of the kernel.
765 int unshare_files(void)
767 struct files_struct *files = current->files;
768 int rc;
770 BUG_ON(!files);
772 /* This can race but the race causes us to copy when we don't
773 need to and drop the copy */
774 if(atomic_read(&files->count) == 1)
776 atomic_inc(&files->count);
777 return 0;
779 rc = copy_files(0, current);
780 if(rc)
781 current->files = files;
782 return rc;
785 EXPORT_SYMBOL(unshare_files);
787 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
789 struct sighand_struct *sig;
791 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
792 atomic_inc(&current->sighand->count);
793 return 0;
795 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
796 rcu_assign_pointer(tsk->sighand, sig);
797 if (!sig)
798 return -ENOMEM;
799 atomic_set(&sig->count, 1);
800 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
801 return 0;
804 void __cleanup_sighand(struct sighand_struct *sighand)
806 if (atomic_dec_and_test(&sighand->count))
807 kmem_cache_free(sighand_cachep, sighand);
810 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
812 struct signal_struct *sig;
813 int ret;
815 if (clone_flags & CLONE_THREAD) {
816 atomic_inc(&current->signal->count);
817 atomic_inc(&current->signal->live);
818 return 0;
820 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
821 tsk->signal = sig;
822 if (!sig)
823 return -ENOMEM;
825 ret = copy_thread_group_keys(tsk);
826 if (ret < 0) {
827 kmem_cache_free(signal_cachep, sig);
828 return ret;
831 atomic_set(&sig->count, 1);
832 atomic_set(&sig->live, 1);
833 init_waitqueue_head(&sig->wait_chldexit);
834 sig->flags = 0;
835 sig->group_exit_code = 0;
836 sig->group_exit_task = NULL;
837 sig->group_stop_count = 0;
838 sig->curr_target = NULL;
839 init_sigpending(&sig->shared_pending);
840 INIT_LIST_HEAD(&sig->posix_timers);
842 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
843 sig->it_real_incr.tv64 = 0;
844 sig->real_timer.function = it_real_fn;
845 sig->tsk = tsk;
847 sig->it_virt_expires = cputime_zero;
848 sig->it_virt_incr = cputime_zero;
849 sig->it_prof_expires = cputime_zero;
850 sig->it_prof_incr = cputime_zero;
852 sig->leader = 0; /* session leadership doesn't inherit */
853 sig->tty_old_pgrp = 0;
855 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
856 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
857 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
858 sig->sched_time = 0;
859 INIT_LIST_HEAD(&sig->cpu_timers[0]);
860 INIT_LIST_HEAD(&sig->cpu_timers[1]);
861 INIT_LIST_HEAD(&sig->cpu_timers[2]);
863 task_lock(current->group_leader);
864 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
865 task_unlock(current->group_leader);
867 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
869 * New sole thread in the process gets an expiry time
870 * of the whole CPU time limit.
872 tsk->it_prof_expires =
873 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
876 return 0;
879 void __cleanup_signal(struct signal_struct *sig)
881 exit_thread_group_keys(sig);
882 kmem_cache_free(signal_cachep, sig);
885 static inline void cleanup_signal(struct task_struct *tsk)
887 struct signal_struct *sig = tsk->signal;
889 atomic_dec(&sig->live);
891 if (atomic_dec_and_test(&sig->count))
892 __cleanup_signal(sig);
895 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
897 unsigned long new_flags = p->flags;
899 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
900 new_flags |= PF_FORKNOEXEC;
901 if (!(clone_flags & CLONE_PTRACE))
902 p->ptrace = 0;
903 p->flags = new_flags;
906 asmlinkage long sys_set_tid_address(int __user *tidptr)
908 current->clear_child_tid = tidptr;
910 return current->pid;
914 * This creates a new process as a copy of the old one,
915 * but does not actually start it yet.
917 * It copies the registers, and all the appropriate
918 * parts of the process environment (as per the clone
919 * flags). The actual kick-off is left to the caller.
921 static task_t *copy_process(unsigned long clone_flags,
922 unsigned long stack_start,
923 struct pt_regs *regs,
924 unsigned long stack_size,
925 int __user *parent_tidptr,
926 int __user *child_tidptr,
927 int pid)
929 int retval;
930 struct task_struct *p = NULL;
932 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
933 return ERR_PTR(-EINVAL);
936 * Thread groups must share signals as well, and detached threads
937 * can only be started up within the thread group.
939 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
940 return ERR_PTR(-EINVAL);
943 * Shared signal handlers imply shared VM. By way of the above,
944 * thread groups also imply shared VM. Blocking this case allows
945 * for various simplifications in other code.
947 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
948 return ERR_PTR(-EINVAL);
950 retval = security_task_create(clone_flags);
951 if (retval)
952 goto fork_out;
954 retval = -ENOMEM;
955 p = dup_task_struct(current);
956 if (!p)
957 goto fork_out;
959 retval = -EAGAIN;
960 if (atomic_read(&p->user->processes) >=
961 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
962 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
963 p->user != &root_user)
964 goto bad_fork_free;
967 atomic_inc(&p->user->__count);
968 atomic_inc(&p->user->processes);
969 get_group_info(p->group_info);
972 * If multiple threads are within copy_process(), then this check
973 * triggers too late. This doesn't hurt, the check is only there
974 * to stop root fork bombs.
976 if (nr_threads >= max_threads)
977 goto bad_fork_cleanup_count;
979 if (!try_module_get(task_thread_info(p)->exec_domain->module))
980 goto bad_fork_cleanup_count;
982 if (p->binfmt && !try_module_get(p->binfmt->module))
983 goto bad_fork_cleanup_put_domain;
985 p->did_exec = 0;
986 copy_flags(clone_flags, p);
987 p->pid = pid;
988 retval = -EFAULT;
989 if (clone_flags & CLONE_PARENT_SETTID)
990 if (put_user(p->pid, parent_tidptr))
991 goto bad_fork_cleanup;
993 p->proc_dentry = NULL;
995 INIT_LIST_HEAD(&p->children);
996 INIT_LIST_HEAD(&p->sibling);
997 p->vfork_done = NULL;
998 spin_lock_init(&p->alloc_lock);
999 spin_lock_init(&p->proc_lock);
1001 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1002 init_sigpending(&p->pending);
1004 p->utime = cputime_zero;
1005 p->stime = cputime_zero;
1006 p->sched_time = 0;
1007 p->rchar = 0; /* I/O counter: bytes read */
1008 p->wchar = 0; /* I/O counter: bytes written */
1009 p->syscr = 0; /* I/O counter: read syscalls */
1010 p->syscw = 0; /* I/O counter: write syscalls */
1011 acct_clear_integrals(p);
1013 p->it_virt_expires = cputime_zero;
1014 p->it_prof_expires = cputime_zero;
1015 p->it_sched_expires = 0;
1016 INIT_LIST_HEAD(&p->cpu_timers[0]);
1017 INIT_LIST_HEAD(&p->cpu_timers[1]);
1018 INIT_LIST_HEAD(&p->cpu_timers[2]);
1020 p->lock_depth = -1; /* -1 = no lock */
1021 do_posix_clock_monotonic_gettime(&p->start_time);
1022 p->security = NULL;
1023 p->io_context = NULL;
1024 p->io_wait = NULL;
1025 p->audit_context = NULL;
1026 cpuset_fork(p);
1027 #ifdef CONFIG_NUMA
1028 p->mempolicy = mpol_copy(p->mempolicy);
1029 if (IS_ERR(p->mempolicy)) {
1030 retval = PTR_ERR(p->mempolicy);
1031 p->mempolicy = NULL;
1032 goto bad_fork_cleanup_cpuset;
1034 mpol_fix_fork_child_flag(p);
1035 #endif
1037 #ifdef CONFIG_DEBUG_MUTEXES
1038 p->blocked_on = NULL; /* not blocked yet */
1039 #endif
1041 p->tgid = p->pid;
1042 if (clone_flags & CLONE_THREAD)
1043 p->tgid = current->tgid;
1045 if ((retval = security_task_alloc(p)))
1046 goto bad_fork_cleanup_policy;
1047 if ((retval = audit_alloc(p)))
1048 goto bad_fork_cleanup_security;
1049 /* copy all the process information */
1050 if ((retval = copy_semundo(clone_flags, p)))
1051 goto bad_fork_cleanup_audit;
1052 if ((retval = copy_files(clone_flags, p)))
1053 goto bad_fork_cleanup_semundo;
1054 if ((retval = copy_fs(clone_flags, p)))
1055 goto bad_fork_cleanup_files;
1056 if ((retval = copy_sighand(clone_flags, p)))
1057 goto bad_fork_cleanup_fs;
1058 if ((retval = copy_signal(clone_flags, p)))
1059 goto bad_fork_cleanup_sighand;
1060 if ((retval = copy_mm(clone_flags, p)))
1061 goto bad_fork_cleanup_signal;
1062 if ((retval = copy_keys(clone_flags, p)))
1063 goto bad_fork_cleanup_mm;
1064 if ((retval = copy_namespace(clone_flags, p)))
1065 goto bad_fork_cleanup_keys;
1066 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1067 if (retval)
1068 goto bad_fork_cleanup_namespace;
1070 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1072 * Clear TID on mm_release()?
1074 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1075 p->robust_list = NULL;
1076 #ifdef CONFIG_COMPAT
1077 p->compat_robust_list = NULL;
1078 #endif
1080 * sigaltstack should be cleared when sharing the same VM
1082 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1083 p->sas_ss_sp = p->sas_ss_size = 0;
1086 * Syscall tracing should be turned off in the child regardless
1087 * of CLONE_PTRACE.
1089 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1090 #ifdef TIF_SYSCALL_EMU
1091 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1092 #endif
1094 /* Our parent execution domain becomes current domain
1095 These must match for thread signalling to apply */
1097 p->parent_exec_id = p->self_exec_id;
1099 /* ok, now we should be set up.. */
1100 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1101 p->pdeath_signal = 0;
1102 p->exit_state = 0;
1105 * Ok, make it visible to the rest of the system.
1106 * We dont wake it up yet.
1108 p->group_leader = p;
1109 INIT_LIST_HEAD(&p->thread_group);
1110 INIT_LIST_HEAD(&p->ptrace_children);
1111 INIT_LIST_HEAD(&p->ptrace_list);
1113 /* Perform scheduler related setup. Assign this task to a CPU. */
1114 sched_fork(p, clone_flags);
1116 /* Need tasklist lock for parent etc handling! */
1117 write_lock_irq(&tasklist_lock);
1120 * The task hasn't been attached yet, so its cpus_allowed mask will
1121 * not be changed, nor will its assigned CPU.
1123 * The cpus_allowed mask of the parent may have changed after it was
1124 * copied first time - so re-copy it here, then check the child's CPU
1125 * to ensure it is on a valid CPU (and if not, just force it back to
1126 * parent's CPU). This avoids alot of nasty races.
1128 p->cpus_allowed = current->cpus_allowed;
1129 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1130 !cpu_online(task_cpu(p))))
1131 set_task_cpu(p, smp_processor_id());
1133 /* CLONE_PARENT re-uses the old parent */
1134 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1135 p->real_parent = current->real_parent;
1136 else
1137 p->real_parent = current;
1138 p->parent = p->real_parent;
1140 spin_lock(&current->sighand->siglock);
1143 * Process group and session signals need to be delivered to just the
1144 * parent before the fork or both the parent and the child after the
1145 * fork. Restart if a signal comes in before we add the new process to
1146 * it's process group.
1147 * A fatal signal pending means that current will exit, so the new
1148 * thread can't slip out of an OOM kill (or normal SIGKILL).
1150 recalc_sigpending();
1151 if (signal_pending(current)) {
1152 spin_unlock(&current->sighand->siglock);
1153 write_unlock_irq(&tasklist_lock);
1154 retval = -ERESTARTNOINTR;
1155 goto bad_fork_cleanup_namespace;
1158 if (clone_flags & CLONE_THREAD) {
1160 * Important: if an exit-all has been started then
1161 * do not create this new thread - the whole thread
1162 * group is supposed to exit anyway.
1164 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1165 spin_unlock(&current->sighand->siglock);
1166 write_unlock_irq(&tasklist_lock);
1167 retval = -EAGAIN;
1168 goto bad_fork_cleanup_namespace;
1171 p->group_leader = current->group_leader;
1172 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1174 if (!cputime_eq(current->signal->it_virt_expires,
1175 cputime_zero) ||
1176 !cputime_eq(current->signal->it_prof_expires,
1177 cputime_zero) ||
1178 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1179 !list_empty(&current->signal->cpu_timers[0]) ||
1180 !list_empty(&current->signal->cpu_timers[1]) ||
1181 !list_empty(&current->signal->cpu_timers[2])) {
1183 * Have child wake up on its first tick to check
1184 * for process CPU timers.
1186 p->it_prof_expires = jiffies_to_cputime(1);
1191 * inherit ioprio
1193 p->ioprio = current->ioprio;
1195 if (likely(p->pid)) {
1196 add_parent(p);
1197 if (unlikely(p->ptrace & PT_PTRACED))
1198 __ptrace_link(p, current->parent);
1200 if (thread_group_leader(p)) {
1201 p->signal->tty = current->signal->tty;
1202 p->signal->pgrp = process_group(current);
1203 p->signal->session = current->signal->session;
1204 attach_pid(p, PIDTYPE_PGID, process_group(p));
1205 attach_pid(p, PIDTYPE_SID, p->signal->session);
1207 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1208 __get_cpu_var(process_counts)++;
1210 attach_pid(p, PIDTYPE_PID, p->pid);
1211 nr_threads++;
1214 total_forks++;
1215 spin_unlock(&current->sighand->siglock);
1216 write_unlock_irq(&tasklist_lock);
1217 proc_fork_connector(p);
1218 return p;
1220 bad_fork_cleanup_namespace:
1221 exit_namespace(p);
1222 bad_fork_cleanup_keys:
1223 exit_keys(p);
1224 bad_fork_cleanup_mm:
1225 if (p->mm)
1226 mmput(p->mm);
1227 bad_fork_cleanup_signal:
1228 cleanup_signal(p);
1229 bad_fork_cleanup_sighand:
1230 __cleanup_sighand(p->sighand);
1231 bad_fork_cleanup_fs:
1232 exit_fs(p); /* blocking */
1233 bad_fork_cleanup_files:
1234 exit_files(p); /* blocking */
1235 bad_fork_cleanup_semundo:
1236 exit_sem(p);
1237 bad_fork_cleanup_audit:
1238 audit_free(p);
1239 bad_fork_cleanup_security:
1240 security_task_free(p);
1241 bad_fork_cleanup_policy:
1242 #ifdef CONFIG_NUMA
1243 mpol_free(p->mempolicy);
1244 bad_fork_cleanup_cpuset:
1245 #endif
1246 cpuset_exit(p);
1247 bad_fork_cleanup:
1248 if (p->binfmt)
1249 module_put(p->binfmt->module);
1250 bad_fork_cleanup_put_domain:
1251 module_put(task_thread_info(p)->exec_domain->module);
1252 bad_fork_cleanup_count:
1253 put_group_info(p->group_info);
1254 atomic_dec(&p->user->processes);
1255 free_uid(p->user);
1256 bad_fork_free:
1257 free_task(p);
1258 fork_out:
1259 return ERR_PTR(retval);
1262 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1264 memset(regs, 0, sizeof(struct pt_regs));
1265 return regs;
1268 task_t * __devinit fork_idle(int cpu)
1270 task_t *task;
1271 struct pt_regs regs;
1273 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1274 if (!task)
1275 return ERR_PTR(-ENOMEM);
1276 init_idle(task, cpu);
1278 return task;
1281 static inline int fork_traceflag (unsigned clone_flags)
1283 if (clone_flags & CLONE_UNTRACED)
1284 return 0;
1285 else if (clone_flags & CLONE_VFORK) {
1286 if (current->ptrace & PT_TRACE_VFORK)
1287 return PTRACE_EVENT_VFORK;
1288 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1289 if (current->ptrace & PT_TRACE_CLONE)
1290 return PTRACE_EVENT_CLONE;
1291 } else if (current->ptrace & PT_TRACE_FORK)
1292 return PTRACE_EVENT_FORK;
1294 return 0;
1298 * Ok, this is the main fork-routine.
1300 * It copies the process, and if successful kick-starts
1301 * it and waits for it to finish using the VM if required.
1303 long do_fork(unsigned long clone_flags,
1304 unsigned long stack_start,
1305 struct pt_regs *regs,
1306 unsigned long stack_size,
1307 int __user *parent_tidptr,
1308 int __user *child_tidptr)
1310 struct task_struct *p;
1311 int trace = 0;
1312 struct pid *pid = alloc_pid();
1313 long nr;
1315 if (!pid)
1316 return -EAGAIN;
1317 nr = pid->nr;
1318 if (unlikely(current->ptrace)) {
1319 trace = fork_traceflag (clone_flags);
1320 if (trace)
1321 clone_flags |= CLONE_PTRACE;
1324 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1326 * Do this prior waking up the new thread - the thread pointer
1327 * might get invalid after that point, if the thread exits quickly.
1329 if (!IS_ERR(p)) {
1330 struct completion vfork;
1332 if (clone_flags & CLONE_VFORK) {
1333 p->vfork_done = &vfork;
1334 init_completion(&vfork);
1337 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1339 * We'll start up with an immediate SIGSTOP.
1341 sigaddset(&p->pending.signal, SIGSTOP);
1342 set_tsk_thread_flag(p, TIF_SIGPENDING);
1345 if (!(clone_flags & CLONE_STOPPED))
1346 wake_up_new_task(p, clone_flags);
1347 else
1348 p->state = TASK_STOPPED;
1350 if (unlikely (trace)) {
1351 current->ptrace_message = nr;
1352 ptrace_notify ((trace << 8) | SIGTRAP);
1355 if (clone_flags & CLONE_VFORK) {
1356 wait_for_completion(&vfork);
1357 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1358 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1360 } else {
1361 free_pid(pid);
1362 nr = PTR_ERR(p);
1364 return nr;
1367 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1368 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1369 #endif
1371 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1373 struct sighand_struct *sighand = data;
1375 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1376 SLAB_CTOR_CONSTRUCTOR)
1377 spin_lock_init(&sighand->siglock);
1380 void __init proc_caches_init(void)
1382 sighand_cachep = kmem_cache_create("sighand_cache",
1383 sizeof(struct sighand_struct), 0,
1384 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1385 sighand_ctor, NULL);
1386 signal_cachep = kmem_cache_create("signal_cache",
1387 sizeof(struct signal_struct), 0,
1388 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1389 files_cachep = kmem_cache_create("files_cache",
1390 sizeof(struct files_struct), 0,
1391 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1392 fs_cachep = kmem_cache_create("fs_cache",
1393 sizeof(struct fs_struct), 0,
1394 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1395 vm_area_cachep = kmem_cache_create("vm_area_struct",
1396 sizeof(struct vm_area_struct), 0,
1397 SLAB_PANIC, NULL, NULL);
1398 mm_cachep = kmem_cache_create("mm_struct",
1399 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1400 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1405 * Check constraints on flags passed to the unshare system call and
1406 * force unsharing of additional process context as appropriate.
1408 static inline void check_unshare_flags(unsigned long *flags_ptr)
1411 * If unsharing a thread from a thread group, must also
1412 * unshare vm.
1414 if (*flags_ptr & CLONE_THREAD)
1415 *flags_ptr |= CLONE_VM;
1418 * If unsharing vm, must also unshare signal handlers.
1420 if (*flags_ptr & CLONE_VM)
1421 *flags_ptr |= CLONE_SIGHAND;
1424 * If unsharing signal handlers and the task was created
1425 * using CLONE_THREAD, then must unshare the thread
1427 if ((*flags_ptr & CLONE_SIGHAND) &&
1428 (atomic_read(&current->signal->count) > 1))
1429 *flags_ptr |= CLONE_THREAD;
1432 * If unsharing namespace, must also unshare filesystem information.
1434 if (*flags_ptr & CLONE_NEWNS)
1435 *flags_ptr |= CLONE_FS;
1439 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1441 static int unshare_thread(unsigned long unshare_flags)
1443 if (unshare_flags & CLONE_THREAD)
1444 return -EINVAL;
1446 return 0;
1450 * Unshare the filesystem structure if it is being shared
1452 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1454 struct fs_struct *fs = current->fs;
1456 if ((unshare_flags & CLONE_FS) &&
1457 (fs && atomic_read(&fs->count) > 1)) {
1458 *new_fsp = __copy_fs_struct(current->fs);
1459 if (!*new_fsp)
1460 return -ENOMEM;
1463 return 0;
1467 * Unshare the namespace structure if it is being shared
1469 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1471 struct namespace *ns = current->namespace;
1473 if ((unshare_flags & CLONE_NEWNS) &&
1474 (ns && atomic_read(&ns->count) > 1)) {
1475 if (!capable(CAP_SYS_ADMIN))
1476 return -EPERM;
1478 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1479 if (!*new_nsp)
1480 return -ENOMEM;
1483 return 0;
1487 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1488 * supported yet
1490 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1492 struct sighand_struct *sigh = current->sighand;
1494 if ((unshare_flags & CLONE_SIGHAND) &&
1495 (sigh && atomic_read(&sigh->count) > 1))
1496 return -EINVAL;
1497 else
1498 return 0;
1502 * Unshare vm if it is being shared
1504 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1506 struct mm_struct *mm = current->mm;
1508 if ((unshare_flags & CLONE_VM) &&
1509 (mm && atomic_read(&mm->mm_users) > 1)) {
1510 return -EINVAL;
1513 return 0;
1517 * Unshare file descriptor table if it is being shared
1519 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1521 struct files_struct *fd = current->files;
1522 int error = 0;
1524 if ((unshare_flags & CLONE_FILES) &&
1525 (fd && atomic_read(&fd->count) > 1)) {
1526 *new_fdp = dup_fd(fd, &error);
1527 if (!*new_fdp)
1528 return error;
1531 return 0;
1535 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1536 * supported yet
1538 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1540 if (unshare_flags & CLONE_SYSVSEM)
1541 return -EINVAL;
1543 return 0;
1547 * unshare allows a process to 'unshare' part of the process
1548 * context which was originally shared using clone. copy_*
1549 * functions used by do_fork() cannot be used here directly
1550 * because they modify an inactive task_struct that is being
1551 * constructed. Here we are modifying the current, active,
1552 * task_struct.
1554 asmlinkage long sys_unshare(unsigned long unshare_flags)
1556 int err = 0;
1557 struct fs_struct *fs, *new_fs = NULL;
1558 struct namespace *ns, *new_ns = NULL;
1559 struct sighand_struct *sigh, *new_sigh = NULL;
1560 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1561 struct files_struct *fd, *new_fd = NULL;
1562 struct sem_undo_list *new_ulist = NULL;
1564 check_unshare_flags(&unshare_flags);
1566 /* Return -EINVAL for all unsupported flags */
1567 err = -EINVAL;
1568 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1569 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1570 goto bad_unshare_out;
1572 if ((err = unshare_thread(unshare_flags)))
1573 goto bad_unshare_out;
1574 if ((err = unshare_fs(unshare_flags, &new_fs)))
1575 goto bad_unshare_cleanup_thread;
1576 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1577 goto bad_unshare_cleanup_fs;
1578 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1579 goto bad_unshare_cleanup_ns;
1580 if ((err = unshare_vm(unshare_flags, &new_mm)))
1581 goto bad_unshare_cleanup_sigh;
1582 if ((err = unshare_fd(unshare_flags, &new_fd)))
1583 goto bad_unshare_cleanup_vm;
1584 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1585 goto bad_unshare_cleanup_fd;
1587 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1589 task_lock(current);
1591 if (new_fs) {
1592 fs = current->fs;
1593 current->fs = new_fs;
1594 new_fs = fs;
1597 if (new_ns) {
1598 ns = current->namespace;
1599 current->namespace = new_ns;
1600 new_ns = ns;
1603 if (new_sigh) {
1604 sigh = current->sighand;
1605 rcu_assign_pointer(current->sighand, new_sigh);
1606 new_sigh = sigh;
1609 if (new_mm) {
1610 mm = current->mm;
1611 active_mm = current->active_mm;
1612 current->mm = new_mm;
1613 current->active_mm = new_mm;
1614 activate_mm(active_mm, new_mm);
1615 new_mm = mm;
1618 if (new_fd) {
1619 fd = current->files;
1620 current->files = new_fd;
1621 new_fd = fd;
1624 task_unlock(current);
1627 bad_unshare_cleanup_fd:
1628 if (new_fd)
1629 put_files_struct(new_fd);
1631 bad_unshare_cleanup_vm:
1632 if (new_mm)
1633 mmput(new_mm);
1635 bad_unshare_cleanup_sigh:
1636 if (new_sigh)
1637 if (atomic_dec_and_test(&new_sigh->count))
1638 kmem_cache_free(sighand_cachep, new_sigh);
1640 bad_unshare_cleanup_ns:
1641 if (new_ns)
1642 put_namespace(new_ns);
1644 bad_unshare_cleanup_fs:
1645 if (new_fs)
1646 put_fs_struct(new_fs);
1648 bad_unshare_cleanup_thread:
1649 bad_unshare_out:
1650 return err;