4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
56 * Protected counters by write_lock_irq(&tasklist_lock)
58 unsigned long total_forks
; /* Handle normal Linux uptimes. */
59 int nr_threads
; /* The idle threads do not count.. */
61 int max_threads
; /* tunable limit on nr_threads */
63 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
65 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
67 EXPORT_SYMBOL(tasklist_lock
);
69 int nr_processes(void)
74 for_each_online_cpu(cpu
)
75 total
+= per_cpu(process_counts
, cpu
);
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t
*task_struct_cachep
;
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t
*signal_cachep
;
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t
*sighand_cachep
;
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t
*files_cachep
;
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t
*fs_cachep
;
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t
*vm_area_cachep
;
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t
*mm_cachep
;
104 void free_task(struct task_struct
*tsk
)
106 free_thread_info(tsk
->thread_info
);
107 free_task_struct(tsk
);
109 EXPORT_SYMBOL(free_task
);
111 void __put_task_struct(struct task_struct
*tsk
)
113 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
114 WARN_ON(atomic_read(&tsk
->usage
));
115 WARN_ON(tsk
== current
);
117 if (unlikely(tsk
->audit_context
))
119 security_task_free(tsk
);
121 put_group_info(tsk
->group_info
);
123 if (!profile_handoff_task(tsk
))
127 void __init
fork_init(unsigned long mempages
)
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
133 /* create a slab on which task_structs can be allocated */
135 kmem_cache_create("task_struct", sizeof(struct task_struct
),
136 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
, NULL
);
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
144 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
147 * we need to allow at least 20 threads to boot a system
152 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
153 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
154 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
155 init_task
.signal
->rlim
[RLIMIT_NPROC
];
158 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
160 struct task_struct
*tsk
;
161 struct thread_info
*ti
;
163 prepare_to_copy(orig
);
165 tsk
= alloc_task_struct();
169 ti
= alloc_thread_info(tsk
);
171 free_task_struct(tsk
);
176 tsk
->thread_info
= ti
;
177 setup_thread_stack(tsk
, orig
);
179 /* One for us, one for whoever does the "release_task()" (usually parent) */
180 atomic_set(&tsk
->usage
,2);
181 atomic_set(&tsk
->fs_excl
, 0);
187 static inline int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
189 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
190 struct rb_node
**rb_link
, *rb_parent
;
192 unsigned long charge
;
193 struct mempolicy
*pol
;
195 down_write(&oldmm
->mmap_sem
);
196 flush_cache_mm(oldmm
);
197 down_write(&mm
->mmap_sem
);
201 mm
->mmap_cache
= NULL
;
202 mm
->free_area_cache
= oldmm
->mmap_base
;
203 mm
->cached_hole_size
= ~0UL;
205 cpus_clear(mm
->cpu_vm_mask
);
207 rb_link
= &mm
->mm_rb
.rb_node
;
211 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
214 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
215 long pages
= vma_pages(mpnt
);
216 mm
->total_vm
-= pages
;
217 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
222 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
223 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
224 if (security_vm_enough_memory(len
))
228 tmp
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
232 pol
= mpol_copy(vma_policy(mpnt
));
233 retval
= PTR_ERR(pol
);
235 goto fail_nomem_policy
;
236 vma_set_policy(tmp
, pol
);
237 tmp
->vm_flags
&= ~VM_LOCKED
;
243 struct inode
*inode
= file
->f_dentry
->d_inode
;
245 if (tmp
->vm_flags
& VM_DENYWRITE
)
246 atomic_dec(&inode
->i_writecount
);
248 /* insert tmp into the share list, just after mpnt */
249 spin_lock(&file
->f_mapping
->i_mmap_lock
);
250 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
251 flush_dcache_mmap_lock(file
->f_mapping
);
252 vma_prio_tree_add(tmp
, mpnt
);
253 flush_dcache_mmap_unlock(file
->f_mapping
);
254 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
258 * Link in the new vma and copy the page table entries.
261 pprev
= &tmp
->vm_next
;
263 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
264 rb_link
= &tmp
->vm_rb
.rb_right
;
265 rb_parent
= &tmp
->vm_rb
;
268 retval
= copy_page_range(mm
, oldmm
, mpnt
);
270 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
271 tmp
->vm_ops
->open(tmp
);
278 up_write(&mm
->mmap_sem
);
280 up_write(&oldmm
->mmap_sem
);
283 kmem_cache_free(vm_area_cachep
, tmp
);
286 vm_unacct_memory(charge
);
290 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
292 mm
->pgd
= pgd_alloc(mm
);
293 if (unlikely(!mm
->pgd
))
298 static inline void mm_free_pgd(struct mm_struct
* mm
)
303 #define dup_mmap(mm, oldmm) (0)
304 #define mm_alloc_pgd(mm) (0)
305 #define mm_free_pgd(mm)
306 #endif /* CONFIG_MMU */
308 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
310 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
311 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
313 #include <linux/init_task.h>
315 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
317 atomic_set(&mm
->mm_users
, 1);
318 atomic_set(&mm
->mm_count
, 1);
319 init_rwsem(&mm
->mmap_sem
);
320 INIT_LIST_HEAD(&mm
->mmlist
);
321 mm
->core_waiters
= 0;
323 set_mm_counter(mm
, file_rss
, 0);
324 set_mm_counter(mm
, anon_rss
, 0);
325 spin_lock_init(&mm
->page_table_lock
);
326 rwlock_init(&mm
->ioctx_list_lock
);
327 mm
->ioctx_list
= NULL
;
328 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
329 mm
->cached_hole_size
= ~0UL;
331 if (likely(!mm_alloc_pgd(mm
))) {
340 * Allocate and initialize an mm_struct.
342 struct mm_struct
* mm_alloc(void)
344 struct mm_struct
* mm
;
348 memset(mm
, 0, sizeof(*mm
));
355 * Called when the last reference to the mm
356 * is dropped: either by a lazy thread or by
357 * mmput. Free the page directory and the mm.
359 void fastcall
__mmdrop(struct mm_struct
*mm
)
361 BUG_ON(mm
== &init_mm
);
368 * Decrement the use count and release all resources for an mm.
370 void mmput(struct mm_struct
*mm
)
372 if (atomic_dec_and_test(&mm
->mm_users
)) {
375 if (!list_empty(&mm
->mmlist
)) {
376 spin_lock(&mmlist_lock
);
377 list_del(&mm
->mmlist
);
378 spin_unlock(&mmlist_lock
);
384 EXPORT_SYMBOL_GPL(mmput
);
387 * get_task_mm - acquire a reference to the task's mm
389 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
390 * this kernel workthread has transiently adopted a user mm with use_mm,
391 * to do its AIO) is not set and if so returns a reference to it, after
392 * bumping up the use count. User must release the mm via mmput()
393 * after use. Typically used by /proc and ptrace.
395 struct mm_struct
*get_task_mm(struct task_struct
*task
)
397 struct mm_struct
*mm
;
402 if (task
->flags
& PF_BORROWED_MM
)
405 atomic_inc(&mm
->mm_users
);
410 EXPORT_SYMBOL_GPL(get_task_mm
);
412 /* Please note the differences between mmput and mm_release.
413 * mmput is called whenever we stop holding onto a mm_struct,
414 * error success whatever.
416 * mm_release is called after a mm_struct has been removed
417 * from the current process.
419 * This difference is important for error handling, when we
420 * only half set up a mm_struct for a new process and need to restore
421 * the old one. Because we mmput the new mm_struct before
422 * restoring the old one. . .
423 * Eric Biederman 10 January 1998
425 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
427 struct completion
*vfork_done
= tsk
->vfork_done
;
429 /* Get rid of any cached register state */
430 deactivate_mm(tsk
, mm
);
432 /* notify parent sleeping on vfork() */
434 tsk
->vfork_done
= NULL
;
435 complete(vfork_done
);
437 if (tsk
->clear_child_tid
&& atomic_read(&mm
->mm_users
) > 1) {
438 u32 __user
* tidptr
= tsk
->clear_child_tid
;
439 tsk
->clear_child_tid
= NULL
;
442 * We don't check the error code - if userspace has
443 * not set up a proper pointer then tough luck.
446 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
451 * Allocate a new mm structure and copy contents from the
452 * mm structure of the passed in task structure.
454 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
456 struct mm_struct
*mm
, *oldmm
= current
->mm
;
466 memcpy(mm
, oldmm
, sizeof(*mm
));
471 if (init_new_context(tsk
, mm
))
474 err
= dup_mmap(mm
, oldmm
);
478 mm
->hiwater_rss
= get_mm_rss(mm
);
479 mm
->hiwater_vm
= mm
->total_vm
;
491 * If init_new_context() failed, we cannot use mmput() to free the mm
492 * because it calls destroy_context()
499 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
501 struct mm_struct
* mm
, *oldmm
;
504 tsk
->min_flt
= tsk
->maj_flt
= 0;
505 tsk
->nvcsw
= tsk
->nivcsw
= 0;
508 tsk
->active_mm
= NULL
;
511 * Are we cloning a kernel thread?
513 * We need to steal a active VM for that..
519 if (clone_flags
& CLONE_VM
) {
520 atomic_inc(&oldmm
->mm_users
);
539 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
541 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
542 /* We don't need to lock fs - think why ;-) */
544 atomic_set(&fs
->count
, 1);
545 rwlock_init(&fs
->lock
);
546 fs
->umask
= old
->umask
;
547 read_lock(&old
->lock
);
548 fs
->rootmnt
= mntget(old
->rootmnt
);
549 fs
->root
= dget(old
->root
);
550 fs
->pwdmnt
= mntget(old
->pwdmnt
);
551 fs
->pwd
= dget(old
->pwd
);
553 fs
->altrootmnt
= mntget(old
->altrootmnt
);
554 fs
->altroot
= dget(old
->altroot
);
556 fs
->altrootmnt
= NULL
;
559 read_unlock(&old
->lock
);
564 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
566 return __copy_fs_struct(old
);
569 EXPORT_SYMBOL_GPL(copy_fs_struct
);
571 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
573 if (clone_flags
& CLONE_FS
) {
574 atomic_inc(¤t
->fs
->count
);
577 tsk
->fs
= __copy_fs_struct(current
->fs
);
583 static int count_open_files(struct fdtable
*fdt
)
585 int size
= fdt
->max_fdset
;
588 /* Find the last open fd */
589 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
590 if (fdt
->open_fds
->fds_bits
[--i
])
593 i
= (i
+1) * 8 * sizeof(long);
597 static struct files_struct
*alloc_files(void)
599 struct files_struct
*newf
;
602 newf
= kmem_cache_alloc(files_cachep
, SLAB_KERNEL
);
606 atomic_set(&newf
->count
, 1);
608 spin_lock_init(&newf
->file_lock
);
611 fdt
->max_fds
= NR_OPEN_DEFAULT
;
612 fdt
->max_fdset
= EMBEDDED_FD_SET_SIZE
;
613 fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
614 fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
615 fdt
->fd
= &newf
->fd_array
[0];
616 INIT_RCU_HEAD(&fdt
->rcu
);
617 fdt
->free_files
= NULL
;
619 rcu_assign_pointer(newf
->fdt
, fdt
);
625 * Allocate a new files structure and copy contents from the
626 * passed in files structure.
628 static struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
630 struct files_struct
*newf
;
631 struct file
**old_fds
, **new_fds
;
632 int open_files
, size
, i
, expand
;
633 struct fdtable
*old_fdt
, *new_fdt
;
635 newf
= alloc_files();
639 spin_lock(&oldf
->file_lock
);
640 old_fdt
= files_fdtable(oldf
);
641 new_fdt
= files_fdtable(newf
);
642 size
= old_fdt
->max_fdset
;
643 open_files
= count_open_files(old_fdt
);
647 * Check whether we need to allocate a larger fd array or fd set.
648 * Note: we're not a clone task, so the open count won't change.
650 if (open_files
> new_fdt
->max_fdset
) {
651 new_fdt
->max_fdset
= 0;
654 if (open_files
> new_fdt
->max_fds
) {
655 new_fdt
->max_fds
= 0;
659 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
661 spin_unlock(&oldf
->file_lock
);
662 spin_lock(&newf
->file_lock
);
663 *errorp
= expand_files(newf
, open_files
-1);
664 spin_unlock(&newf
->file_lock
);
667 new_fdt
= files_fdtable(newf
);
669 * Reacquire the oldf lock and a pointer to its fd table
670 * who knows it may have a new bigger fd table. We need
671 * the latest pointer.
673 spin_lock(&oldf
->file_lock
);
674 old_fdt
= files_fdtable(oldf
);
677 old_fds
= old_fdt
->fd
;
678 new_fds
= new_fdt
->fd
;
680 memcpy(new_fdt
->open_fds
->fds_bits
, old_fdt
->open_fds
->fds_bits
, open_files
/8);
681 memcpy(new_fdt
->close_on_exec
->fds_bits
, old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
683 for (i
= open_files
; i
!= 0; i
--) {
684 struct file
*f
= *old_fds
++;
689 * The fd may be claimed in the fd bitmap but not yet
690 * instantiated in the files array if a sibling thread
691 * is partway through open(). So make sure that this
692 * fd is available to the new process.
694 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
696 rcu_assign_pointer(*new_fds
++, f
);
698 spin_unlock(&oldf
->file_lock
);
700 /* compute the remainder to be cleared */
701 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
703 /* This is long word aligned thus could use a optimized version */
704 memset(new_fds
, 0, size
);
706 if (new_fdt
->max_fdset
> open_files
) {
707 int left
= (new_fdt
->max_fdset
-open_files
)/8;
708 int start
= open_files
/ (8 * sizeof(unsigned long));
710 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
711 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
718 free_fdset (new_fdt
->close_on_exec
, new_fdt
->max_fdset
);
719 free_fdset (new_fdt
->open_fds
, new_fdt
->max_fdset
);
720 free_fd_array(new_fdt
->fd
, new_fdt
->max_fds
);
721 kmem_cache_free(files_cachep
, newf
);
725 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
727 struct files_struct
*oldf
, *newf
;
731 * A background process may not have any files ...
733 oldf
= current
->files
;
737 if (clone_flags
& CLONE_FILES
) {
738 atomic_inc(&oldf
->count
);
743 * Note: we may be using current for both targets (See exec.c)
744 * This works because we cache current->files (old) as oldf. Don't
749 newf
= dup_fd(oldf
, &error
);
760 * Helper to unshare the files of the current task.
761 * We don't want to expose copy_files internals to
762 * the exec layer of the kernel.
765 int unshare_files(void)
767 struct files_struct
*files
= current
->files
;
772 /* This can race but the race causes us to copy when we don't
773 need to and drop the copy */
774 if(atomic_read(&files
->count
) == 1)
776 atomic_inc(&files
->count
);
779 rc
= copy_files(0, current
);
781 current
->files
= files
;
785 EXPORT_SYMBOL(unshare_files
);
787 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
789 struct sighand_struct
*sig
;
791 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
792 atomic_inc(¤t
->sighand
->count
);
795 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
796 rcu_assign_pointer(tsk
->sighand
, sig
);
799 atomic_set(&sig
->count
, 1);
800 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
804 void __cleanup_sighand(struct sighand_struct
*sighand
)
806 if (atomic_dec_and_test(&sighand
->count
))
807 kmem_cache_free(sighand_cachep
, sighand
);
810 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
812 struct signal_struct
*sig
;
815 if (clone_flags
& CLONE_THREAD
) {
816 atomic_inc(¤t
->signal
->count
);
817 atomic_inc(¤t
->signal
->live
);
820 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
825 ret
= copy_thread_group_keys(tsk
);
827 kmem_cache_free(signal_cachep
, sig
);
831 atomic_set(&sig
->count
, 1);
832 atomic_set(&sig
->live
, 1);
833 init_waitqueue_head(&sig
->wait_chldexit
);
835 sig
->group_exit_code
= 0;
836 sig
->group_exit_task
= NULL
;
837 sig
->group_stop_count
= 0;
838 sig
->curr_target
= NULL
;
839 init_sigpending(&sig
->shared_pending
);
840 INIT_LIST_HEAD(&sig
->posix_timers
);
842 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_REL
);
843 sig
->it_real_incr
.tv64
= 0;
844 sig
->real_timer
.function
= it_real_fn
;
847 sig
->it_virt_expires
= cputime_zero
;
848 sig
->it_virt_incr
= cputime_zero
;
849 sig
->it_prof_expires
= cputime_zero
;
850 sig
->it_prof_incr
= cputime_zero
;
852 sig
->leader
= 0; /* session leadership doesn't inherit */
853 sig
->tty_old_pgrp
= 0;
855 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
856 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
857 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
859 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
860 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
861 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
863 task_lock(current
->group_leader
);
864 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
865 task_unlock(current
->group_leader
);
867 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
869 * New sole thread in the process gets an expiry time
870 * of the whole CPU time limit.
872 tsk
->it_prof_expires
=
873 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
879 void __cleanup_signal(struct signal_struct
*sig
)
881 exit_thread_group_keys(sig
);
882 kmem_cache_free(signal_cachep
, sig
);
885 static inline void cleanup_signal(struct task_struct
*tsk
)
887 struct signal_struct
*sig
= tsk
->signal
;
889 atomic_dec(&sig
->live
);
891 if (atomic_dec_and_test(&sig
->count
))
892 __cleanup_signal(sig
);
895 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
897 unsigned long new_flags
= p
->flags
;
899 new_flags
&= ~(PF_SUPERPRIV
| PF_NOFREEZE
);
900 new_flags
|= PF_FORKNOEXEC
;
901 if (!(clone_flags
& CLONE_PTRACE
))
903 p
->flags
= new_flags
;
906 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
908 current
->clear_child_tid
= tidptr
;
914 * This creates a new process as a copy of the old one,
915 * but does not actually start it yet.
917 * It copies the registers, and all the appropriate
918 * parts of the process environment (as per the clone
919 * flags). The actual kick-off is left to the caller.
921 static task_t
*copy_process(unsigned long clone_flags
,
922 unsigned long stack_start
,
923 struct pt_regs
*regs
,
924 unsigned long stack_size
,
925 int __user
*parent_tidptr
,
926 int __user
*child_tidptr
,
930 struct task_struct
*p
= NULL
;
932 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
933 return ERR_PTR(-EINVAL
);
936 * Thread groups must share signals as well, and detached threads
937 * can only be started up within the thread group.
939 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
940 return ERR_PTR(-EINVAL
);
943 * Shared signal handlers imply shared VM. By way of the above,
944 * thread groups also imply shared VM. Blocking this case allows
945 * for various simplifications in other code.
947 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
948 return ERR_PTR(-EINVAL
);
950 retval
= security_task_create(clone_flags
);
955 p
= dup_task_struct(current
);
960 if (atomic_read(&p
->user
->processes
) >=
961 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
962 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
963 p
->user
!= &root_user
)
967 atomic_inc(&p
->user
->__count
);
968 atomic_inc(&p
->user
->processes
);
969 get_group_info(p
->group_info
);
972 * If multiple threads are within copy_process(), then this check
973 * triggers too late. This doesn't hurt, the check is only there
974 * to stop root fork bombs.
976 if (nr_threads
>= max_threads
)
977 goto bad_fork_cleanup_count
;
979 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
980 goto bad_fork_cleanup_count
;
982 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
983 goto bad_fork_cleanup_put_domain
;
986 copy_flags(clone_flags
, p
);
989 if (clone_flags
& CLONE_PARENT_SETTID
)
990 if (put_user(p
->pid
, parent_tidptr
))
991 goto bad_fork_cleanup
;
993 p
->proc_dentry
= NULL
;
995 INIT_LIST_HEAD(&p
->children
);
996 INIT_LIST_HEAD(&p
->sibling
);
997 p
->vfork_done
= NULL
;
998 spin_lock_init(&p
->alloc_lock
);
999 spin_lock_init(&p
->proc_lock
);
1001 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1002 init_sigpending(&p
->pending
);
1004 p
->utime
= cputime_zero
;
1005 p
->stime
= cputime_zero
;
1007 p
->rchar
= 0; /* I/O counter: bytes read */
1008 p
->wchar
= 0; /* I/O counter: bytes written */
1009 p
->syscr
= 0; /* I/O counter: read syscalls */
1010 p
->syscw
= 0; /* I/O counter: write syscalls */
1011 acct_clear_integrals(p
);
1013 p
->it_virt_expires
= cputime_zero
;
1014 p
->it_prof_expires
= cputime_zero
;
1015 p
->it_sched_expires
= 0;
1016 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
1017 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
1018 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
1020 p
->lock_depth
= -1; /* -1 = no lock */
1021 do_posix_clock_monotonic_gettime(&p
->start_time
);
1023 p
->io_context
= NULL
;
1025 p
->audit_context
= NULL
;
1028 p
->mempolicy
= mpol_copy(p
->mempolicy
);
1029 if (IS_ERR(p
->mempolicy
)) {
1030 retval
= PTR_ERR(p
->mempolicy
);
1031 p
->mempolicy
= NULL
;
1032 goto bad_fork_cleanup_cpuset
;
1034 mpol_fix_fork_child_flag(p
);
1037 #ifdef CONFIG_DEBUG_MUTEXES
1038 p
->blocked_on
= NULL
; /* not blocked yet */
1042 if (clone_flags
& CLONE_THREAD
)
1043 p
->tgid
= current
->tgid
;
1045 if ((retval
= security_task_alloc(p
)))
1046 goto bad_fork_cleanup_policy
;
1047 if ((retval
= audit_alloc(p
)))
1048 goto bad_fork_cleanup_security
;
1049 /* copy all the process information */
1050 if ((retval
= copy_semundo(clone_flags
, p
)))
1051 goto bad_fork_cleanup_audit
;
1052 if ((retval
= copy_files(clone_flags
, p
)))
1053 goto bad_fork_cleanup_semundo
;
1054 if ((retval
= copy_fs(clone_flags
, p
)))
1055 goto bad_fork_cleanup_files
;
1056 if ((retval
= copy_sighand(clone_flags
, p
)))
1057 goto bad_fork_cleanup_fs
;
1058 if ((retval
= copy_signal(clone_flags
, p
)))
1059 goto bad_fork_cleanup_sighand
;
1060 if ((retval
= copy_mm(clone_flags
, p
)))
1061 goto bad_fork_cleanup_signal
;
1062 if ((retval
= copy_keys(clone_flags
, p
)))
1063 goto bad_fork_cleanup_mm
;
1064 if ((retval
= copy_namespace(clone_flags
, p
)))
1065 goto bad_fork_cleanup_keys
;
1066 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1068 goto bad_fork_cleanup_namespace
;
1070 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1072 * Clear TID on mm_release()?
1074 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1075 p
->robust_list
= NULL
;
1076 #ifdef CONFIG_COMPAT
1077 p
->compat_robust_list
= NULL
;
1080 * sigaltstack should be cleared when sharing the same VM
1082 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1083 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1086 * Syscall tracing should be turned off in the child regardless
1089 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1090 #ifdef TIF_SYSCALL_EMU
1091 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1094 /* Our parent execution domain becomes current domain
1095 These must match for thread signalling to apply */
1097 p
->parent_exec_id
= p
->self_exec_id
;
1099 /* ok, now we should be set up.. */
1100 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1101 p
->pdeath_signal
= 0;
1105 * Ok, make it visible to the rest of the system.
1106 * We dont wake it up yet.
1108 p
->group_leader
= p
;
1109 INIT_LIST_HEAD(&p
->thread_group
);
1110 INIT_LIST_HEAD(&p
->ptrace_children
);
1111 INIT_LIST_HEAD(&p
->ptrace_list
);
1113 /* Perform scheduler related setup. Assign this task to a CPU. */
1114 sched_fork(p
, clone_flags
);
1116 /* Need tasklist lock for parent etc handling! */
1117 write_lock_irq(&tasklist_lock
);
1120 * The task hasn't been attached yet, so its cpus_allowed mask will
1121 * not be changed, nor will its assigned CPU.
1123 * The cpus_allowed mask of the parent may have changed after it was
1124 * copied first time - so re-copy it here, then check the child's CPU
1125 * to ensure it is on a valid CPU (and if not, just force it back to
1126 * parent's CPU). This avoids alot of nasty races.
1128 p
->cpus_allowed
= current
->cpus_allowed
;
1129 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1130 !cpu_online(task_cpu(p
))))
1131 set_task_cpu(p
, smp_processor_id());
1133 /* CLONE_PARENT re-uses the old parent */
1134 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1135 p
->real_parent
= current
->real_parent
;
1137 p
->real_parent
= current
;
1138 p
->parent
= p
->real_parent
;
1140 spin_lock(¤t
->sighand
->siglock
);
1143 * Process group and session signals need to be delivered to just the
1144 * parent before the fork or both the parent and the child after the
1145 * fork. Restart if a signal comes in before we add the new process to
1146 * it's process group.
1147 * A fatal signal pending means that current will exit, so the new
1148 * thread can't slip out of an OOM kill (or normal SIGKILL).
1150 recalc_sigpending();
1151 if (signal_pending(current
)) {
1152 spin_unlock(¤t
->sighand
->siglock
);
1153 write_unlock_irq(&tasklist_lock
);
1154 retval
= -ERESTARTNOINTR
;
1155 goto bad_fork_cleanup_namespace
;
1158 if (clone_flags
& CLONE_THREAD
) {
1160 * Important: if an exit-all has been started then
1161 * do not create this new thread - the whole thread
1162 * group is supposed to exit anyway.
1164 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
) {
1165 spin_unlock(¤t
->sighand
->siglock
);
1166 write_unlock_irq(&tasklist_lock
);
1168 goto bad_fork_cleanup_namespace
;
1171 p
->group_leader
= current
->group_leader
;
1172 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1174 if (!cputime_eq(current
->signal
->it_virt_expires
,
1176 !cputime_eq(current
->signal
->it_prof_expires
,
1178 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1179 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1180 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1181 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1183 * Have child wake up on its first tick to check
1184 * for process CPU timers.
1186 p
->it_prof_expires
= jiffies_to_cputime(1);
1193 p
->ioprio
= current
->ioprio
;
1195 if (likely(p
->pid
)) {
1197 if (unlikely(p
->ptrace
& PT_PTRACED
))
1198 __ptrace_link(p
, current
->parent
);
1200 if (thread_group_leader(p
)) {
1201 p
->signal
->tty
= current
->signal
->tty
;
1202 p
->signal
->pgrp
= process_group(current
);
1203 p
->signal
->session
= current
->signal
->session
;
1204 attach_pid(p
, PIDTYPE_PGID
, process_group(p
));
1205 attach_pid(p
, PIDTYPE_SID
, p
->signal
->session
);
1207 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1208 __get_cpu_var(process_counts
)++;
1210 attach_pid(p
, PIDTYPE_PID
, p
->pid
);
1215 spin_unlock(¤t
->sighand
->siglock
);
1216 write_unlock_irq(&tasklist_lock
);
1217 proc_fork_connector(p
);
1220 bad_fork_cleanup_namespace
:
1222 bad_fork_cleanup_keys
:
1224 bad_fork_cleanup_mm
:
1227 bad_fork_cleanup_signal
:
1229 bad_fork_cleanup_sighand
:
1230 __cleanup_sighand(p
->sighand
);
1231 bad_fork_cleanup_fs
:
1232 exit_fs(p
); /* blocking */
1233 bad_fork_cleanup_files
:
1234 exit_files(p
); /* blocking */
1235 bad_fork_cleanup_semundo
:
1237 bad_fork_cleanup_audit
:
1239 bad_fork_cleanup_security
:
1240 security_task_free(p
);
1241 bad_fork_cleanup_policy
:
1243 mpol_free(p
->mempolicy
);
1244 bad_fork_cleanup_cpuset
:
1249 module_put(p
->binfmt
->module
);
1250 bad_fork_cleanup_put_domain
:
1251 module_put(task_thread_info(p
)->exec_domain
->module
);
1252 bad_fork_cleanup_count
:
1253 put_group_info(p
->group_info
);
1254 atomic_dec(&p
->user
->processes
);
1259 return ERR_PTR(retval
);
1262 struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1264 memset(regs
, 0, sizeof(struct pt_regs
));
1268 task_t
* __devinit
fork_idle(int cpu
)
1271 struct pt_regs regs
;
1273 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
, 0);
1275 return ERR_PTR(-ENOMEM
);
1276 init_idle(task
, cpu
);
1281 static inline int fork_traceflag (unsigned clone_flags
)
1283 if (clone_flags
& CLONE_UNTRACED
)
1285 else if (clone_flags
& CLONE_VFORK
) {
1286 if (current
->ptrace
& PT_TRACE_VFORK
)
1287 return PTRACE_EVENT_VFORK
;
1288 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1289 if (current
->ptrace
& PT_TRACE_CLONE
)
1290 return PTRACE_EVENT_CLONE
;
1291 } else if (current
->ptrace
& PT_TRACE_FORK
)
1292 return PTRACE_EVENT_FORK
;
1298 * Ok, this is the main fork-routine.
1300 * It copies the process, and if successful kick-starts
1301 * it and waits for it to finish using the VM if required.
1303 long do_fork(unsigned long clone_flags
,
1304 unsigned long stack_start
,
1305 struct pt_regs
*regs
,
1306 unsigned long stack_size
,
1307 int __user
*parent_tidptr
,
1308 int __user
*child_tidptr
)
1310 struct task_struct
*p
;
1312 struct pid
*pid
= alloc_pid();
1318 if (unlikely(current
->ptrace
)) {
1319 trace
= fork_traceflag (clone_flags
);
1321 clone_flags
|= CLONE_PTRACE
;
1324 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, nr
);
1326 * Do this prior waking up the new thread - the thread pointer
1327 * might get invalid after that point, if the thread exits quickly.
1330 struct completion vfork
;
1332 if (clone_flags
& CLONE_VFORK
) {
1333 p
->vfork_done
= &vfork
;
1334 init_completion(&vfork
);
1337 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1339 * We'll start up with an immediate SIGSTOP.
1341 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1342 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1345 if (!(clone_flags
& CLONE_STOPPED
))
1346 wake_up_new_task(p
, clone_flags
);
1348 p
->state
= TASK_STOPPED
;
1350 if (unlikely (trace
)) {
1351 current
->ptrace_message
= nr
;
1352 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1355 if (clone_flags
& CLONE_VFORK
) {
1356 wait_for_completion(&vfork
);
1357 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
))
1358 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1367 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1368 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1371 static void sighand_ctor(void *data
, kmem_cache_t
*cachep
, unsigned long flags
)
1373 struct sighand_struct
*sighand
= data
;
1375 if ((flags
& (SLAB_CTOR_VERIFY
| SLAB_CTOR_CONSTRUCTOR
)) ==
1376 SLAB_CTOR_CONSTRUCTOR
)
1377 spin_lock_init(&sighand
->siglock
);
1380 void __init
proc_caches_init(void)
1382 sighand_cachep
= kmem_cache_create("sighand_cache",
1383 sizeof(struct sighand_struct
), 0,
1384 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1385 sighand_ctor
, NULL
);
1386 signal_cachep
= kmem_cache_create("signal_cache",
1387 sizeof(struct signal_struct
), 0,
1388 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1389 files_cachep
= kmem_cache_create("files_cache",
1390 sizeof(struct files_struct
), 0,
1391 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1392 fs_cachep
= kmem_cache_create("fs_cache",
1393 sizeof(struct fs_struct
), 0,
1394 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1395 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1396 sizeof(struct vm_area_struct
), 0,
1397 SLAB_PANIC
, NULL
, NULL
);
1398 mm_cachep
= kmem_cache_create("mm_struct",
1399 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1400 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1405 * Check constraints on flags passed to the unshare system call and
1406 * force unsharing of additional process context as appropriate.
1408 static inline void check_unshare_flags(unsigned long *flags_ptr
)
1411 * If unsharing a thread from a thread group, must also
1414 if (*flags_ptr
& CLONE_THREAD
)
1415 *flags_ptr
|= CLONE_VM
;
1418 * If unsharing vm, must also unshare signal handlers.
1420 if (*flags_ptr
& CLONE_VM
)
1421 *flags_ptr
|= CLONE_SIGHAND
;
1424 * If unsharing signal handlers and the task was created
1425 * using CLONE_THREAD, then must unshare the thread
1427 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1428 (atomic_read(¤t
->signal
->count
) > 1))
1429 *flags_ptr
|= CLONE_THREAD
;
1432 * If unsharing namespace, must also unshare filesystem information.
1434 if (*flags_ptr
& CLONE_NEWNS
)
1435 *flags_ptr
|= CLONE_FS
;
1439 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1441 static int unshare_thread(unsigned long unshare_flags
)
1443 if (unshare_flags
& CLONE_THREAD
)
1450 * Unshare the filesystem structure if it is being shared
1452 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1454 struct fs_struct
*fs
= current
->fs
;
1456 if ((unshare_flags
& CLONE_FS
) &&
1457 (fs
&& atomic_read(&fs
->count
) > 1)) {
1458 *new_fsp
= __copy_fs_struct(current
->fs
);
1467 * Unshare the namespace structure if it is being shared
1469 static int unshare_namespace(unsigned long unshare_flags
, struct namespace **new_nsp
, struct fs_struct
*new_fs
)
1471 struct namespace *ns
= current
->namespace;
1473 if ((unshare_flags
& CLONE_NEWNS
) &&
1474 (ns
&& atomic_read(&ns
->count
) > 1)) {
1475 if (!capable(CAP_SYS_ADMIN
))
1478 *new_nsp
= dup_namespace(current
, new_fs
? new_fs
: current
->fs
);
1487 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1490 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1492 struct sighand_struct
*sigh
= current
->sighand
;
1494 if ((unshare_flags
& CLONE_SIGHAND
) &&
1495 (sigh
&& atomic_read(&sigh
->count
) > 1))
1502 * Unshare vm if it is being shared
1504 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1506 struct mm_struct
*mm
= current
->mm
;
1508 if ((unshare_flags
& CLONE_VM
) &&
1509 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1517 * Unshare file descriptor table if it is being shared
1519 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1521 struct files_struct
*fd
= current
->files
;
1524 if ((unshare_flags
& CLONE_FILES
) &&
1525 (fd
&& atomic_read(&fd
->count
) > 1)) {
1526 *new_fdp
= dup_fd(fd
, &error
);
1535 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1538 static int unshare_semundo(unsigned long unshare_flags
, struct sem_undo_list
**new_ulistp
)
1540 if (unshare_flags
& CLONE_SYSVSEM
)
1547 * unshare allows a process to 'unshare' part of the process
1548 * context which was originally shared using clone. copy_*
1549 * functions used by do_fork() cannot be used here directly
1550 * because they modify an inactive task_struct that is being
1551 * constructed. Here we are modifying the current, active,
1554 asmlinkage
long sys_unshare(unsigned long unshare_flags
)
1557 struct fs_struct
*fs
, *new_fs
= NULL
;
1558 struct namespace *ns
, *new_ns
= NULL
;
1559 struct sighand_struct
*sigh
, *new_sigh
= NULL
;
1560 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1561 struct files_struct
*fd
, *new_fd
= NULL
;
1562 struct sem_undo_list
*new_ulist
= NULL
;
1564 check_unshare_flags(&unshare_flags
);
1566 /* Return -EINVAL for all unsupported flags */
1568 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1569 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
))
1570 goto bad_unshare_out
;
1572 if ((err
= unshare_thread(unshare_flags
)))
1573 goto bad_unshare_out
;
1574 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1575 goto bad_unshare_cleanup_thread
;
1576 if ((err
= unshare_namespace(unshare_flags
, &new_ns
, new_fs
)))
1577 goto bad_unshare_cleanup_fs
;
1578 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1579 goto bad_unshare_cleanup_ns
;
1580 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1581 goto bad_unshare_cleanup_sigh
;
1582 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1583 goto bad_unshare_cleanup_vm
;
1584 if ((err
= unshare_semundo(unshare_flags
, &new_ulist
)))
1585 goto bad_unshare_cleanup_fd
;
1587 if (new_fs
|| new_ns
|| new_sigh
|| new_mm
|| new_fd
|| new_ulist
) {
1593 current
->fs
= new_fs
;
1598 ns
= current
->namespace;
1599 current
->namespace = new_ns
;
1604 sigh
= current
->sighand
;
1605 rcu_assign_pointer(current
->sighand
, new_sigh
);
1611 active_mm
= current
->active_mm
;
1612 current
->mm
= new_mm
;
1613 current
->active_mm
= new_mm
;
1614 activate_mm(active_mm
, new_mm
);
1619 fd
= current
->files
;
1620 current
->files
= new_fd
;
1624 task_unlock(current
);
1627 bad_unshare_cleanup_fd
:
1629 put_files_struct(new_fd
);
1631 bad_unshare_cleanup_vm
:
1635 bad_unshare_cleanup_sigh
:
1637 if (atomic_dec_and_test(&new_sigh
->count
))
1638 kmem_cache_free(sighand_cachep
, new_sigh
);
1640 bad_unshare_cleanup_ns
:
1642 put_namespace(new_ns
);
1644 bad_unshare_cleanup_fs
:
1646 put_fs_struct(new_fs
);
1648 bad_unshare_cleanup_thread
: