2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page
*page
)
113 return page
->flags
& FROZEN
;
116 static inline void SetSlabFrozen(struct page
*page
)
118 page
->flags
|= FROZEN
;
121 static inline void ClearSlabFrozen(struct page
*page
)
123 page
->flags
&= ~FROZEN
;
126 static inline int SlabDebug(struct page
*page
)
128 return page
->flags
& SLABDEBUG
;
131 static inline void SetSlabDebug(struct page
*page
)
133 page
->flags
|= SLABDEBUG
;
136 static inline void ClearSlabDebug(struct page
*page
)
138 page
->flags
&= ~SLABDEBUG
;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
153 * Currently fastpath is not supported if preemption is enabled.
155 #if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
156 #define SLUB_FASTPATH
162 * Small page size. Make sure that we do not fragment memory
164 #define DEFAULT_MAX_ORDER 1
165 #define DEFAULT_MIN_OBJECTS 4
170 * Large page machines are customarily able to handle larger
173 #define DEFAULT_MAX_ORDER 2
174 #define DEFAULT_MIN_OBJECTS 8
179 * Mininum number of partial slabs. These will be left on the partial
180 * lists even if they are empty. kmem_cache_shrink may reclaim them.
182 #define MIN_PARTIAL 5
185 * Maximum number of desirable partial slabs.
186 * The existence of more partial slabs makes kmem_cache_shrink
187 * sort the partial list by the number of objects in the.
189 #define MAX_PARTIAL 10
191 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
192 SLAB_POISON | SLAB_STORE_USER)
195 * Set of flags that will prevent slab merging
197 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
198 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
200 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
203 #ifndef ARCH_KMALLOC_MINALIGN
204 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
207 #ifndef ARCH_SLAB_MINALIGN
208 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
211 /* Internal SLUB flags */
212 #define __OBJECT_POISON 0x80000000 /* Poison object */
213 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
214 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
215 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
217 /* Not all arches define cache_line_size */
218 #ifndef cache_line_size
219 #define cache_line_size() L1_CACHE_BYTES
222 static int kmem_size
= sizeof(struct kmem_cache
);
225 static struct notifier_block slab_notifier
;
229 DOWN
, /* No slab functionality available */
230 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
231 UP
, /* Everything works but does not show up in sysfs */
235 /* A list of all slab caches on the system */
236 static DECLARE_RWSEM(slub_lock
);
237 static LIST_HEAD(slab_caches
);
240 * Tracking user of a slab.
243 void *addr
; /* Called from address */
244 int cpu
; /* Was running on cpu */
245 int pid
; /* Pid context */
246 unsigned long when
; /* When did the operation occur */
249 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
251 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
252 static int sysfs_slab_add(struct kmem_cache
*);
253 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
254 static void sysfs_slab_remove(struct kmem_cache
*);
257 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
258 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
260 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
267 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
269 #ifdef CONFIG_SLUB_STATS
274 /********************************************************************
275 * Core slab cache functions
276 *******************************************************************/
278 int slab_is_available(void)
280 return slab_state
>= UP
;
283 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
286 return s
->node
[node
];
288 return &s
->local_node
;
292 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
295 return s
->cpu_slab
[cpu
];
302 * The end pointer in a slab is special. It points to the first object in the
303 * slab but has bit 0 set to mark it.
305 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
306 * in the mapping set.
308 static inline int is_end(void *addr
)
310 return (unsigned long)addr
& PAGE_MAPPING_ANON
;
313 static void *slab_address(struct page
*page
)
315 return page
->end
- PAGE_MAPPING_ANON
;
318 static inline int check_valid_pointer(struct kmem_cache
*s
,
319 struct page
*page
, const void *object
)
323 if (object
== page
->end
)
326 base
= slab_address(page
);
327 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
328 (object
- base
) % s
->size
) {
336 * Slow version of get and set free pointer.
338 * This version requires touching the cache lines of kmem_cache which
339 * we avoid to do in the fast alloc free paths. There we obtain the offset
340 * from the page struct.
342 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
344 return *(void **)(object
+ s
->offset
);
347 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
349 *(void **)(object
+ s
->offset
) = fp
;
352 /* Loop over all objects in a slab */
353 #define for_each_object(__p, __s, __addr) \
354 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
358 #define for_each_free_object(__p, __s, __free) \
359 for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
362 /* Determine object index from a given position */
363 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
365 return (p
- addr
) / s
->size
;
368 #ifdef CONFIG_SLUB_DEBUG
372 #ifdef CONFIG_SLUB_DEBUG_ON
373 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
375 static int slub_debug
;
378 static char *slub_debug_slabs
;
383 static void print_section(char *text
, u8
*addr
, unsigned int length
)
391 for (i
= 0; i
< length
; i
++) {
393 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
396 printk(KERN_CONT
" %02x", addr
[i
]);
398 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
400 printk(KERN_CONT
" %s\n", ascii
);
407 printk(KERN_CONT
" ");
411 printk(KERN_CONT
" %s\n", ascii
);
415 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
416 enum track_item alloc
)
421 p
= object
+ s
->offset
+ sizeof(void *);
423 p
= object
+ s
->inuse
;
428 static void set_track(struct kmem_cache
*s
, void *object
,
429 enum track_item alloc
, void *addr
)
434 p
= object
+ s
->offset
+ sizeof(void *);
436 p
= object
+ s
->inuse
;
441 p
->cpu
= smp_processor_id();
442 p
->pid
= current
? current
->pid
: -1;
445 memset(p
, 0, sizeof(struct track
));
448 static void init_tracking(struct kmem_cache
*s
, void *object
)
450 if (!(s
->flags
& SLAB_STORE_USER
))
453 set_track(s
, object
, TRACK_FREE
, NULL
);
454 set_track(s
, object
, TRACK_ALLOC
, NULL
);
457 static void print_track(const char *s
, struct track
*t
)
462 printk(KERN_ERR
"INFO: %s in ", s
);
463 __print_symbol("%s", (unsigned long)t
->addr
);
464 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
467 static void print_tracking(struct kmem_cache
*s
, void *object
)
469 if (!(s
->flags
& SLAB_STORE_USER
))
472 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
473 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
476 static void print_page_info(struct page
*page
)
478 printk(KERN_ERR
"INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
479 page
, page
->inuse
, page
->freelist
, page
->flags
);
483 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
489 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
491 printk(KERN_ERR
"========================================"
492 "=====================================\n");
493 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
494 printk(KERN_ERR
"----------------------------------------"
495 "-------------------------------------\n\n");
498 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
504 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
506 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
509 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
511 unsigned int off
; /* Offset of last byte */
512 u8
*addr
= slab_address(page
);
514 print_tracking(s
, p
);
516 print_page_info(page
);
518 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
519 p
, p
- addr
, get_freepointer(s
, p
));
522 print_section("Bytes b4", p
- 16, 16);
524 print_section("Object", p
, min(s
->objsize
, 128));
526 if (s
->flags
& SLAB_RED_ZONE
)
527 print_section("Redzone", p
+ s
->objsize
,
528 s
->inuse
- s
->objsize
);
531 off
= s
->offset
+ sizeof(void *);
535 if (s
->flags
& SLAB_STORE_USER
)
536 off
+= 2 * sizeof(struct track
);
539 /* Beginning of the filler is the free pointer */
540 print_section("Padding", p
+ off
, s
->size
- off
);
545 static void object_err(struct kmem_cache
*s
, struct page
*page
,
546 u8
*object
, char *reason
)
549 print_trailer(s
, page
, object
);
552 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
558 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
561 print_page_info(page
);
565 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
569 if (s
->flags
& __OBJECT_POISON
) {
570 memset(p
, POISON_FREE
, s
->objsize
- 1);
571 p
[s
->objsize
- 1] = POISON_END
;
574 if (s
->flags
& SLAB_RED_ZONE
)
575 memset(p
+ s
->objsize
,
576 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
577 s
->inuse
- s
->objsize
);
580 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
583 if (*start
!= (u8
)value
)
591 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
592 void *from
, void *to
)
594 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
595 memset(from
, data
, to
- from
);
598 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
599 u8
*object
, char *what
,
600 u8
*start
, unsigned int value
, unsigned int bytes
)
605 fault
= check_bytes(start
, value
, bytes
);
610 while (end
> fault
&& end
[-1] == value
)
613 slab_bug(s
, "%s overwritten", what
);
614 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
615 fault
, end
- 1, fault
[0], value
);
616 print_trailer(s
, page
, object
);
618 restore_bytes(s
, what
, value
, fault
, end
);
626 * Bytes of the object to be managed.
627 * If the freepointer may overlay the object then the free
628 * pointer is the first word of the object.
630 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
633 * object + s->objsize
634 * Padding to reach word boundary. This is also used for Redzoning.
635 * Padding is extended by another word if Redzoning is enabled and
638 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
639 * 0xcc (RED_ACTIVE) for objects in use.
642 * Meta data starts here.
644 * A. Free pointer (if we cannot overwrite object on free)
645 * B. Tracking data for SLAB_STORE_USER
646 * C. Padding to reach required alignment boundary or at mininum
647 * one word if debuggin is on to be able to detect writes
648 * before the word boundary.
650 * Padding is done using 0x5a (POISON_INUSE)
653 * Nothing is used beyond s->size.
655 * If slabcaches are merged then the objsize and inuse boundaries are mostly
656 * ignored. And therefore no slab options that rely on these boundaries
657 * may be used with merged slabcaches.
660 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
662 unsigned long off
= s
->inuse
; /* The end of info */
665 /* Freepointer is placed after the object. */
666 off
+= sizeof(void *);
668 if (s
->flags
& SLAB_STORE_USER
)
669 /* We also have user information there */
670 off
+= 2 * sizeof(struct track
);
675 return check_bytes_and_report(s
, page
, p
, "Object padding",
676 p
+ off
, POISON_INUSE
, s
->size
- off
);
679 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
687 if (!(s
->flags
& SLAB_POISON
))
690 start
= slab_address(page
);
691 end
= start
+ (PAGE_SIZE
<< s
->order
);
692 length
= s
->objects
* s
->size
;
693 remainder
= end
- (start
+ length
);
697 fault
= check_bytes(start
+ length
, POISON_INUSE
, remainder
);
700 while (end
> fault
&& end
[-1] == POISON_INUSE
)
703 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
704 print_section("Padding", start
, length
);
706 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
710 static int check_object(struct kmem_cache
*s
, struct page
*page
,
711 void *object
, int active
)
714 u8
*endobject
= object
+ s
->objsize
;
716 if (s
->flags
& SLAB_RED_ZONE
) {
718 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
720 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
721 endobject
, red
, s
->inuse
- s
->objsize
))
724 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
725 check_bytes_and_report(s
, page
, p
, "Alignment padding",
726 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
730 if (s
->flags
& SLAB_POISON
) {
731 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
732 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
733 POISON_FREE
, s
->objsize
- 1) ||
734 !check_bytes_and_report(s
, page
, p
, "Poison",
735 p
+ s
->objsize
- 1, POISON_END
, 1)))
738 * check_pad_bytes cleans up on its own.
740 check_pad_bytes(s
, page
, p
);
743 if (!s
->offset
&& active
)
745 * Object and freepointer overlap. Cannot check
746 * freepointer while object is allocated.
750 /* Check free pointer validity */
751 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
752 object_err(s
, page
, p
, "Freepointer corrupt");
754 * No choice but to zap it and thus loose the remainder
755 * of the free objects in this slab. May cause
756 * another error because the object count is now wrong.
758 set_freepointer(s
, p
, page
->end
);
764 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
766 VM_BUG_ON(!irqs_disabled());
768 if (!PageSlab(page
)) {
769 slab_err(s
, page
, "Not a valid slab page");
772 if (page
->inuse
> s
->objects
) {
773 slab_err(s
, page
, "inuse %u > max %u",
774 s
->name
, page
->inuse
, s
->objects
);
777 /* Slab_pad_check fixes things up after itself */
778 slab_pad_check(s
, page
);
783 * Determine if a certain object on a page is on the freelist. Must hold the
784 * slab lock to guarantee that the chains are in a consistent state.
786 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
789 void *fp
= page
->freelist
;
792 while (fp
!= page
->end
&& nr
<= s
->objects
) {
795 if (!check_valid_pointer(s
, page
, fp
)) {
797 object_err(s
, page
, object
,
798 "Freechain corrupt");
799 set_freepointer(s
, object
, page
->end
);
802 slab_err(s
, page
, "Freepointer corrupt");
803 page
->freelist
= page
->end
;
804 page
->inuse
= s
->objects
;
805 slab_fix(s
, "Freelist cleared");
811 fp
= get_freepointer(s
, object
);
815 if (page
->inuse
!= s
->objects
- nr
) {
816 slab_err(s
, page
, "Wrong object count. Counter is %d but "
817 "counted were %d", page
->inuse
, s
->objects
- nr
);
818 page
->inuse
= s
->objects
- nr
;
819 slab_fix(s
, "Object count adjusted.");
821 return search
== NULL
;
824 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
826 if (s
->flags
& SLAB_TRACE
) {
827 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
829 alloc
? "alloc" : "free",
834 print_section("Object", (void *)object
, s
->objsize
);
841 * Tracking of fully allocated slabs for debugging purposes.
843 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
845 spin_lock(&n
->list_lock
);
846 list_add(&page
->lru
, &n
->full
);
847 spin_unlock(&n
->list_lock
);
850 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
852 struct kmem_cache_node
*n
;
854 if (!(s
->flags
& SLAB_STORE_USER
))
857 n
= get_node(s
, page_to_nid(page
));
859 spin_lock(&n
->list_lock
);
860 list_del(&page
->lru
);
861 spin_unlock(&n
->list_lock
);
864 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
867 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
870 init_object(s
, object
, 0);
871 init_tracking(s
, object
);
874 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
875 void *object
, void *addr
)
877 if (!check_slab(s
, page
))
880 if (object
&& !on_freelist(s
, page
, object
)) {
881 object_err(s
, page
, object
, "Object already allocated");
885 if (!check_valid_pointer(s
, page
, object
)) {
886 object_err(s
, page
, object
, "Freelist Pointer check fails");
890 if (object
&& !check_object(s
, page
, object
, 0))
893 /* Success perform special debug activities for allocs */
894 if (s
->flags
& SLAB_STORE_USER
)
895 set_track(s
, object
, TRACK_ALLOC
, addr
);
896 trace(s
, page
, object
, 1);
897 init_object(s
, object
, 1);
901 if (PageSlab(page
)) {
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
907 slab_fix(s
, "Marking all objects used");
908 page
->inuse
= s
->objects
;
909 page
->freelist
= page
->end
;
914 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
915 void *object
, void *addr
)
917 if (!check_slab(s
, page
))
920 if (!check_valid_pointer(s
, page
, object
)) {
921 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
925 if (on_freelist(s
, page
, object
)) {
926 object_err(s
, page
, object
, "Object already free");
930 if (!check_object(s
, page
, object
, 1))
933 if (unlikely(s
!= page
->slab
)) {
934 if (!PageSlab(page
)) {
935 slab_err(s
, page
, "Attempt to free object(0x%p) "
936 "outside of slab", object
);
937 } else if (!page
->slab
) {
939 "SLUB <none>: no slab for object 0x%p.\n",
943 object_err(s
, page
, object
,
944 "page slab pointer corrupt.");
948 /* Special debug activities for freeing objects */
949 if (!SlabFrozen(page
) && page
->freelist
== page
->end
)
950 remove_full(s
, page
);
951 if (s
->flags
& SLAB_STORE_USER
)
952 set_track(s
, object
, TRACK_FREE
, addr
);
953 trace(s
, page
, object
, 0);
954 init_object(s
, object
, 0);
958 slab_fix(s
, "Object at 0x%p not freed", object
);
962 static int __init
setup_slub_debug(char *str
)
964 slub_debug
= DEBUG_DEFAULT_FLAGS
;
965 if (*str
++ != '=' || !*str
)
967 * No options specified. Switch on full debugging.
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
981 * Switch off all debugging measures.
986 * Determine which debug features should be switched on
988 for (; *str
&& *str
!= ','; str
++) {
989 switch (tolower(*str
)) {
991 slub_debug
|= SLAB_DEBUG_FREE
;
994 slub_debug
|= SLAB_RED_ZONE
;
997 slub_debug
|= SLAB_POISON
;
1000 slub_debug
|= SLAB_STORE_USER
;
1003 slub_debug
|= SLAB_TRACE
;
1006 printk(KERN_ERR
"slub_debug option '%c' "
1007 "unknown. skipped\n", *str
);
1013 slub_debug_slabs
= str
+ 1;
1018 __setup("slub_debug", setup_slub_debug
);
1020 static unsigned long kmem_cache_flags(unsigned long objsize
,
1021 unsigned long flags
, const char *name
,
1022 void (*ctor
)(struct kmem_cache
*, void *))
1025 * The page->offset field is only 16 bit wide. This is an offset
1026 * in units of words from the beginning of an object. If the slab
1027 * size is bigger then we cannot move the free pointer behind the
1030 * On 32 bit platforms the limit is 256k. On 64bit platforms
1031 * the limit is 512k.
1033 * Debugging or ctor may create a need to move the free
1034 * pointer. Fail if this happens.
1036 if (objsize
>= 65535 * sizeof(void *)) {
1037 BUG_ON(flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
1038 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
1042 * Enable debugging if selected on the kernel commandline.
1044 if (slub_debug
&& (!slub_debug_slabs
||
1045 strncmp(slub_debug_slabs
, name
,
1046 strlen(slub_debug_slabs
)) == 0))
1047 flags
|= slub_debug
;
1053 static inline void setup_object_debug(struct kmem_cache
*s
,
1054 struct page
*page
, void *object
) {}
1056 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1057 struct page
*page
, void *object
, void *addr
) { return 0; }
1059 static inline int free_debug_processing(struct kmem_cache
*s
,
1060 struct page
*page
, void *object
, void *addr
) { return 0; }
1062 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1064 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1065 void *object
, int active
) { return 1; }
1066 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1067 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1068 unsigned long flags
, const char *name
,
1069 void (*ctor
)(struct kmem_cache
*, void *))
1073 #define slub_debug 0
1076 * Slab allocation and freeing
1078 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1081 int pages
= 1 << s
->order
;
1083 flags
|= s
->allocflags
;
1086 page
= alloc_pages(flags
, s
->order
);
1088 page
= alloc_pages_node(node
, flags
, s
->order
);
1093 mod_zone_page_state(page_zone(page
),
1094 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1095 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1101 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1104 setup_object_debug(s
, page
, object
);
1105 if (unlikely(s
->ctor
))
1109 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1112 struct kmem_cache_node
*n
;
1117 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1119 page
= allocate_slab(s
,
1120 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1124 n
= get_node(s
, page_to_nid(page
));
1126 atomic_long_inc(&n
->nr_slabs
);
1128 page
->flags
|= 1 << PG_slab
;
1129 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1130 SLAB_STORE_USER
| SLAB_TRACE
))
1133 start
= page_address(page
);
1134 page
->end
= start
+ 1;
1136 if (unlikely(s
->flags
& SLAB_POISON
))
1137 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1140 for_each_object(p
, s
, start
) {
1141 setup_object(s
, page
, last
);
1142 set_freepointer(s
, last
, p
);
1145 setup_object(s
, page
, last
);
1146 set_freepointer(s
, last
, page
->end
);
1148 page
->freelist
= start
;
1154 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1156 int pages
= 1 << s
->order
;
1158 if (unlikely(SlabDebug(page
))) {
1161 slab_pad_check(s
, page
);
1162 for_each_object(p
, s
, slab_address(page
))
1163 check_object(s
, page
, p
, 0);
1164 ClearSlabDebug(page
);
1167 mod_zone_page_state(page_zone(page
),
1168 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1169 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1172 page
->mapping
= NULL
;
1173 __free_pages(page
, s
->order
);
1176 static void rcu_free_slab(struct rcu_head
*h
)
1180 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1181 __free_slab(page
->slab
, page
);
1184 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1186 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1188 * RCU free overloads the RCU head over the LRU
1190 struct rcu_head
*head
= (void *)&page
->lru
;
1192 call_rcu(head
, rcu_free_slab
);
1194 __free_slab(s
, page
);
1197 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1199 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1201 atomic_long_dec(&n
->nr_slabs
);
1202 reset_page_mapcount(page
);
1203 __ClearPageSlab(page
);
1208 * Per slab locking using the pagelock
1210 static __always_inline
void slab_lock(struct page
*page
)
1212 bit_spin_lock(PG_locked
, &page
->flags
);
1215 static __always_inline
void slab_unlock(struct page
*page
)
1217 __bit_spin_unlock(PG_locked
, &page
->flags
);
1220 static __always_inline
int slab_trylock(struct page
*page
)
1224 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1229 * Management of partially allocated slabs
1231 static void add_partial(struct kmem_cache_node
*n
,
1232 struct page
*page
, int tail
)
1234 spin_lock(&n
->list_lock
);
1237 list_add_tail(&page
->lru
, &n
->partial
);
1239 list_add(&page
->lru
, &n
->partial
);
1240 spin_unlock(&n
->list_lock
);
1243 static void remove_partial(struct kmem_cache
*s
,
1246 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1248 spin_lock(&n
->list_lock
);
1249 list_del(&page
->lru
);
1251 spin_unlock(&n
->list_lock
);
1255 * Lock slab and remove from the partial list.
1257 * Must hold list_lock.
1259 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1261 if (slab_trylock(page
)) {
1262 list_del(&page
->lru
);
1264 SetSlabFrozen(page
);
1271 * Try to allocate a partial slab from a specific node.
1273 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1278 * Racy check. If we mistakenly see no partial slabs then we
1279 * just allocate an empty slab. If we mistakenly try to get a
1280 * partial slab and there is none available then get_partials()
1283 if (!n
|| !n
->nr_partial
)
1286 spin_lock(&n
->list_lock
);
1287 list_for_each_entry(page
, &n
->partial
, lru
)
1288 if (lock_and_freeze_slab(n
, page
))
1292 spin_unlock(&n
->list_lock
);
1297 * Get a page from somewhere. Search in increasing NUMA distances.
1299 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1302 struct zonelist
*zonelist
;
1307 * The defrag ratio allows a configuration of the tradeoffs between
1308 * inter node defragmentation and node local allocations. A lower
1309 * defrag_ratio increases the tendency to do local allocations
1310 * instead of attempting to obtain partial slabs from other nodes.
1312 * If the defrag_ratio is set to 0 then kmalloc() always
1313 * returns node local objects. If the ratio is higher then kmalloc()
1314 * may return off node objects because partial slabs are obtained
1315 * from other nodes and filled up.
1317 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1318 * defrag_ratio = 1000) then every (well almost) allocation will
1319 * first attempt to defrag slab caches on other nodes. This means
1320 * scanning over all nodes to look for partial slabs which may be
1321 * expensive if we do it every time we are trying to find a slab
1322 * with available objects.
1324 if (!s
->remote_node_defrag_ratio
||
1325 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1328 zonelist
= &NODE_DATA(
1329 slab_node(current
->mempolicy
))->node_zonelists
[gfp_zone(flags
)];
1330 for (z
= zonelist
->zones
; *z
; z
++) {
1331 struct kmem_cache_node
*n
;
1333 n
= get_node(s
, zone_to_nid(*z
));
1335 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1336 n
->nr_partial
> MIN_PARTIAL
) {
1337 page
= get_partial_node(n
);
1347 * Get a partial page, lock it and return it.
1349 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1352 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1354 page
= get_partial_node(get_node(s
, searchnode
));
1355 if (page
|| (flags
& __GFP_THISNODE
))
1358 return get_any_partial(s
, flags
);
1362 * Move a page back to the lists.
1364 * Must be called with the slab lock held.
1366 * On exit the slab lock will have been dropped.
1368 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1370 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1371 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1373 ClearSlabFrozen(page
);
1376 if (page
->freelist
!= page
->end
) {
1377 add_partial(n
, page
, tail
);
1378 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1380 stat(c
, DEACTIVATE_FULL
);
1381 if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1386 stat(c
, DEACTIVATE_EMPTY
);
1387 if (n
->nr_partial
< MIN_PARTIAL
) {
1389 * Adding an empty slab to the partial slabs in order
1390 * to avoid page allocator overhead. This slab needs
1391 * to come after the other slabs with objects in
1392 * order to fill them up. That way the size of the
1393 * partial list stays small. kmem_cache_shrink can
1394 * reclaim empty slabs from the partial list.
1396 add_partial(n
, page
, 1);
1400 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1401 discard_slab(s
, page
);
1407 * Remove the cpu slab
1409 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1411 struct page
*page
= c
->page
;
1415 stat(c
, DEACTIVATE_REMOTE_FREES
);
1417 * Merge cpu freelist into freelist. Typically we get here
1418 * because both freelists are empty. So this is unlikely
1421 * We need to use _is_end here because deactivate slab may
1422 * be called for a debug slab. Then c->freelist may contain
1425 while (unlikely(!is_end(c
->freelist
))) {
1428 tail
= 0; /* Hot objects. Put the slab first */
1430 /* Retrieve object from cpu_freelist */
1431 object
= c
->freelist
;
1432 c
->freelist
= c
->freelist
[c
->offset
];
1434 /* And put onto the regular freelist */
1435 object
[c
->offset
] = page
->freelist
;
1436 page
->freelist
= object
;
1440 unfreeze_slab(s
, page
, tail
);
1443 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1445 stat(c
, CPUSLAB_FLUSH
);
1447 deactivate_slab(s
, c
);
1452 * Called from IPI handler with interrupts disabled.
1454 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1456 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1458 if (likely(c
&& c
->page
))
1462 static void flush_cpu_slab(void *d
)
1464 struct kmem_cache
*s
= d
;
1466 __flush_cpu_slab(s
, smp_processor_id());
1469 static void flush_all(struct kmem_cache
*s
)
1472 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1474 unsigned long flags
;
1476 local_irq_save(flags
);
1478 local_irq_restore(flags
);
1483 * Check if the objects in a per cpu structure fit numa
1484 * locality expectations.
1486 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1489 if (node
!= -1 && c
->node
!= node
)
1496 * Slow path. The lockless freelist is empty or we need to perform
1499 * Interrupts are disabled.
1501 * Processing is still very fast if new objects have been freed to the
1502 * regular freelist. In that case we simply take over the regular freelist
1503 * as the lockless freelist and zap the regular freelist.
1505 * If that is not working then we fall back to the partial lists. We take the
1506 * first element of the freelist as the object to allocate now and move the
1507 * rest of the freelist to the lockless freelist.
1509 * And if we were unable to get a new slab from the partial slab lists then
1510 * we need to allocate a new slab. This is slowest path since we may sleep.
1512 static void *__slab_alloc(struct kmem_cache
*s
,
1513 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1517 #ifdef SLUB_FASTPATH
1518 unsigned long flags
;
1520 local_irq_save(flags
);
1526 if (unlikely(!node_match(c
, node
)))
1528 stat(c
, ALLOC_REFILL
);
1530 object
= c
->page
->freelist
;
1531 if (unlikely(object
== c
->page
->end
))
1533 if (unlikely(SlabDebug(c
->page
)))
1536 object
= c
->page
->freelist
;
1537 c
->freelist
= object
[c
->offset
];
1538 c
->page
->inuse
= s
->objects
;
1539 c
->page
->freelist
= c
->page
->end
;
1540 c
->node
= page_to_nid(c
->page
);
1542 slab_unlock(c
->page
);
1543 stat(c
, ALLOC_SLOWPATH
);
1544 #ifdef SLUB_FASTPATH
1545 local_irq_restore(flags
);
1550 deactivate_slab(s
, c
);
1553 new = get_partial(s
, gfpflags
, node
);
1556 stat(c
, ALLOC_FROM_PARTIAL
);
1560 if (gfpflags
& __GFP_WAIT
)
1563 new = new_slab(s
, gfpflags
, node
);
1565 if (gfpflags
& __GFP_WAIT
)
1566 local_irq_disable();
1569 c
= get_cpu_slab(s
, smp_processor_id());
1570 stat(c
, ALLOC_SLAB
);
1578 #ifdef SLUB_FASTPATH
1579 local_irq_restore(flags
);
1582 * No memory available.
1584 * If the slab uses higher order allocs but the object is
1585 * smaller than a page size then we can fallback in emergencies
1586 * to the page allocator via kmalloc_large. The page allocator may
1587 * have failed to obtain a higher order page and we can try to
1588 * allocate a single page if the object fits into a single page.
1589 * That is only possible if certain conditions are met that are being
1590 * checked when a slab is created.
1592 if (!(gfpflags
& __GFP_NORETRY
) && (s
->flags
& __PAGE_ALLOC_FALLBACK
))
1593 return kmalloc_large(s
->objsize
, gfpflags
);
1597 object
= c
->page
->freelist
;
1598 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1602 c
->page
->freelist
= object
[c
->offset
];
1608 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1609 * have the fastpath folded into their functions. So no function call
1610 * overhead for requests that can be satisfied on the fastpath.
1612 * The fastpath works by first checking if the lockless freelist can be used.
1613 * If not then __slab_alloc is called for slow processing.
1615 * Otherwise we can simply pick the next object from the lockless free list.
1617 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1618 gfp_t gfpflags
, int node
, void *addr
)
1621 struct kmem_cache_cpu
*c
;
1624 * The SLUB_FASTPATH path is provisional and is currently disabled if the
1625 * kernel is compiled with preemption or if the arch does not support
1626 * fast cmpxchg operations. There are a couple of coming changes that will
1627 * simplify matters and allow preemption. Ultimately we may end up making
1628 * SLUB_FASTPATH the default.
1630 * 1. The introduction of the per cpu allocator will avoid array lookups
1631 * through get_cpu_slab(). A special register can be used instead.
1633 * 2. The introduction of per cpu atomic operations (cpu_ops) means that
1634 * we can realize the logic here entirely with per cpu atomics. The
1635 * per cpu atomic ops will take care of the preemption issues.
1638 #ifdef SLUB_FASTPATH
1639 c
= get_cpu_slab(s
, raw_smp_processor_id());
1641 object
= c
->freelist
;
1642 if (unlikely(is_end(object
) || !node_match(c
, node
))) {
1643 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1646 stat(c
, ALLOC_FASTPATH
);
1647 } while (cmpxchg_local(&c
->freelist
, object
, object
[c
->offset
])
1650 unsigned long flags
;
1652 local_irq_save(flags
);
1653 c
= get_cpu_slab(s
, smp_processor_id());
1654 if (unlikely(is_end(c
->freelist
) || !node_match(c
, node
)))
1656 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1659 object
= c
->freelist
;
1660 c
->freelist
= object
[c
->offset
];
1661 stat(c
, ALLOC_FASTPATH
);
1663 local_irq_restore(flags
);
1666 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1667 memset(object
, 0, c
->objsize
);
1672 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1674 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1676 EXPORT_SYMBOL(kmem_cache_alloc
);
1679 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1681 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1683 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1687 * Slow patch handling. This may still be called frequently since objects
1688 * have a longer lifetime than the cpu slabs in most processing loads.
1690 * So we still attempt to reduce cache line usage. Just take the slab
1691 * lock and free the item. If there is no additional partial page
1692 * handling required then we can return immediately.
1694 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1695 void *x
, void *addr
, unsigned int offset
)
1698 void **object
= (void *)x
;
1699 struct kmem_cache_cpu
*c
;
1701 #ifdef SLUB_FASTPATH
1702 unsigned long flags
;
1704 local_irq_save(flags
);
1706 c
= get_cpu_slab(s
, raw_smp_processor_id());
1707 stat(c
, FREE_SLOWPATH
);
1710 if (unlikely(SlabDebug(page
)))
1713 prior
= object
[offset
] = page
->freelist
;
1714 page
->freelist
= object
;
1717 if (unlikely(SlabFrozen(page
))) {
1718 stat(c
, FREE_FROZEN
);
1722 if (unlikely(!page
->inuse
))
1726 * Objects left in the slab. If it
1727 * was not on the partial list before
1730 if (unlikely(prior
== page
->end
)) {
1731 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1732 stat(c
, FREE_ADD_PARTIAL
);
1737 #ifdef SLUB_FASTPATH
1738 local_irq_restore(flags
);
1743 if (prior
!= page
->end
) {
1745 * Slab still on the partial list.
1747 remove_partial(s
, page
);
1748 stat(c
, FREE_REMOVE_PARTIAL
);
1752 #ifdef SLUB_FASTPATH
1753 local_irq_restore(flags
);
1755 discard_slab(s
, page
);
1759 if (!free_debug_processing(s
, page
, x
, addr
))
1765 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1766 * can perform fastpath freeing without additional function calls.
1768 * The fastpath is only possible if we are freeing to the current cpu slab
1769 * of this processor. This typically the case if we have just allocated
1772 * If fastpath is not possible then fall back to __slab_free where we deal
1773 * with all sorts of special processing.
1775 static __always_inline
void slab_free(struct kmem_cache
*s
,
1776 struct page
*page
, void *x
, void *addr
)
1778 void **object
= (void *)x
;
1779 struct kmem_cache_cpu
*c
;
1781 #ifdef SLUB_FASTPATH
1784 c
= get_cpu_slab(s
, raw_smp_processor_id());
1785 debug_check_no_locks_freed(object
, s
->objsize
);
1787 freelist
= c
->freelist
;
1790 * If the compiler would reorder the retrieval of c->page to
1791 * come before c->freelist then an interrupt could
1792 * change the cpu slab before we retrieve c->freelist. We
1793 * could be matching on a page no longer active and put the
1794 * object onto the freelist of the wrong slab.
1796 * On the other hand: If we already have the freelist pointer
1797 * then any change of cpu_slab will cause the cmpxchg to fail
1798 * since the freelist pointers are unique per slab.
1800 if (unlikely(page
!= c
->page
|| c
->node
< 0)) {
1801 __slab_free(s
, page
, x
, addr
, c
->offset
);
1804 object
[c
->offset
] = freelist
;
1805 stat(c
, FREE_FASTPATH
);
1806 } while (cmpxchg_local(&c
->freelist
, freelist
, object
) != freelist
);
1808 unsigned long flags
;
1810 local_irq_save(flags
);
1811 debug_check_no_locks_freed(object
, s
->objsize
);
1812 c
= get_cpu_slab(s
, smp_processor_id());
1813 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1814 object
[c
->offset
] = c
->freelist
;
1815 c
->freelist
= object
;
1816 stat(c
, FREE_FASTPATH
);
1818 __slab_free(s
, page
, x
, addr
, c
->offset
);
1820 local_irq_restore(flags
);
1824 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1828 page
= virt_to_head_page(x
);
1830 slab_free(s
, page
, x
, __builtin_return_address(0));
1832 EXPORT_SYMBOL(kmem_cache_free
);
1834 /* Figure out on which slab object the object resides */
1835 static struct page
*get_object_page(const void *x
)
1837 struct page
*page
= virt_to_head_page(x
);
1839 if (!PageSlab(page
))
1846 * Object placement in a slab is made very easy because we always start at
1847 * offset 0. If we tune the size of the object to the alignment then we can
1848 * get the required alignment by putting one properly sized object after
1851 * Notice that the allocation order determines the sizes of the per cpu
1852 * caches. Each processor has always one slab available for allocations.
1853 * Increasing the allocation order reduces the number of times that slabs
1854 * must be moved on and off the partial lists and is therefore a factor in
1859 * Mininum / Maximum order of slab pages. This influences locking overhead
1860 * and slab fragmentation. A higher order reduces the number of partial slabs
1861 * and increases the number of allocations possible without having to
1862 * take the list_lock.
1864 static int slub_min_order
;
1865 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1866 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1869 * Merge control. If this is set then no merging of slab caches will occur.
1870 * (Could be removed. This was introduced to pacify the merge skeptics.)
1872 static int slub_nomerge
;
1875 * Calculate the order of allocation given an slab object size.
1877 * The order of allocation has significant impact on performance and other
1878 * system components. Generally order 0 allocations should be preferred since
1879 * order 0 does not cause fragmentation in the page allocator. Larger objects
1880 * be problematic to put into order 0 slabs because there may be too much
1881 * unused space left. We go to a higher order if more than 1/8th of the slab
1884 * In order to reach satisfactory performance we must ensure that a minimum
1885 * number of objects is in one slab. Otherwise we may generate too much
1886 * activity on the partial lists which requires taking the list_lock. This is
1887 * less a concern for large slabs though which are rarely used.
1889 * slub_max_order specifies the order where we begin to stop considering the
1890 * number of objects in a slab as critical. If we reach slub_max_order then
1891 * we try to keep the page order as low as possible. So we accept more waste
1892 * of space in favor of a small page order.
1894 * Higher order allocations also allow the placement of more objects in a
1895 * slab and thereby reduce object handling overhead. If the user has
1896 * requested a higher mininum order then we start with that one instead of
1897 * the smallest order which will fit the object.
1899 static inline int slab_order(int size
, int min_objects
,
1900 int max_order
, int fract_leftover
)
1904 int min_order
= slub_min_order
;
1906 for (order
= max(min_order
,
1907 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1908 order
<= max_order
; order
++) {
1910 unsigned long slab_size
= PAGE_SIZE
<< order
;
1912 if (slab_size
< min_objects
* size
)
1915 rem
= slab_size
% size
;
1917 if (rem
<= slab_size
/ fract_leftover
)
1925 static inline int calculate_order(int size
)
1932 * Attempt to find best configuration for a slab. This
1933 * works by first attempting to generate a layout with
1934 * the best configuration and backing off gradually.
1936 * First we reduce the acceptable waste in a slab. Then
1937 * we reduce the minimum objects required in a slab.
1939 min_objects
= slub_min_objects
;
1940 while (min_objects
> 1) {
1942 while (fraction
>= 4) {
1943 order
= slab_order(size
, min_objects
,
1944 slub_max_order
, fraction
);
1945 if (order
<= slub_max_order
)
1953 * We were unable to place multiple objects in a slab. Now
1954 * lets see if we can place a single object there.
1956 order
= slab_order(size
, 1, slub_max_order
, 1);
1957 if (order
<= slub_max_order
)
1961 * Doh this slab cannot be placed using slub_max_order.
1963 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1964 if (order
<= MAX_ORDER
)
1970 * Figure out what the alignment of the objects will be.
1972 static unsigned long calculate_alignment(unsigned long flags
,
1973 unsigned long align
, unsigned long size
)
1976 * If the user wants hardware cache aligned objects then
1977 * follow that suggestion if the object is sufficiently
1980 * The hardware cache alignment cannot override the
1981 * specified alignment though. If that is greater
1984 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1985 size
> cache_line_size() / 2)
1986 return max_t(unsigned long, align
, cache_line_size());
1988 if (align
< ARCH_SLAB_MINALIGN
)
1989 return ARCH_SLAB_MINALIGN
;
1991 return ALIGN(align
, sizeof(void *));
1994 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1995 struct kmem_cache_cpu
*c
)
1998 c
->freelist
= (void *)PAGE_MAPPING_ANON
;
2000 c
->offset
= s
->offset
/ sizeof(void *);
2001 c
->objsize
= s
->objsize
;
2004 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
2007 atomic_long_set(&n
->nr_slabs
, 0);
2008 spin_lock_init(&n
->list_lock
);
2009 INIT_LIST_HEAD(&n
->partial
);
2010 #ifdef CONFIG_SLUB_DEBUG
2011 INIT_LIST_HEAD(&n
->full
);
2017 * Per cpu array for per cpu structures.
2019 * The per cpu array places all kmem_cache_cpu structures from one processor
2020 * close together meaning that it becomes possible that multiple per cpu
2021 * structures are contained in one cacheline. This may be particularly
2022 * beneficial for the kmalloc caches.
2024 * A desktop system typically has around 60-80 slabs. With 100 here we are
2025 * likely able to get per cpu structures for all caches from the array defined
2026 * here. We must be able to cover all kmalloc caches during bootstrap.
2028 * If the per cpu array is exhausted then fall back to kmalloc
2029 * of individual cachelines. No sharing is possible then.
2031 #define NR_KMEM_CACHE_CPU 100
2033 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
2034 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
2036 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2037 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
2039 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2040 int cpu
, gfp_t flags
)
2042 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2045 per_cpu(kmem_cache_cpu_free
, cpu
) =
2046 (void *)c
->freelist
;
2048 /* Table overflow: So allocate ourselves */
2050 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2051 flags
, cpu_to_node(cpu
));
2056 init_kmem_cache_cpu(s
, c
);
2060 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2062 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2063 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2067 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2068 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2071 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2075 for_each_online_cpu(cpu
) {
2076 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2079 s
->cpu_slab
[cpu
] = NULL
;
2080 free_kmem_cache_cpu(c
, cpu
);
2085 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2089 for_each_online_cpu(cpu
) {
2090 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2095 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2097 free_kmem_cache_cpus(s
);
2100 s
->cpu_slab
[cpu
] = c
;
2106 * Initialize the per cpu array.
2108 static void init_alloc_cpu_cpu(int cpu
)
2112 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2115 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2116 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2118 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2121 static void __init
init_alloc_cpu(void)
2125 for_each_online_cpu(cpu
)
2126 init_alloc_cpu_cpu(cpu
);
2130 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2131 static inline void init_alloc_cpu(void) {}
2133 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2135 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2142 * No kmalloc_node yet so do it by hand. We know that this is the first
2143 * slab on the node for this slabcache. There are no concurrent accesses
2146 * Note that this function only works on the kmalloc_node_cache
2147 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2148 * memory on a fresh node that has no slab structures yet.
2150 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2154 struct kmem_cache_node
*n
;
2155 unsigned long flags
;
2157 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2159 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2162 if (page_to_nid(page
) != node
) {
2163 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2165 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2166 "in order to be able to continue\n");
2171 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2173 kmalloc_caches
->node
[node
] = n
;
2174 #ifdef CONFIG_SLUB_DEBUG
2175 init_object(kmalloc_caches
, n
, 1);
2176 init_tracking(kmalloc_caches
, n
);
2178 init_kmem_cache_node(n
);
2179 atomic_long_inc(&n
->nr_slabs
);
2181 * lockdep requires consistent irq usage for each lock
2182 * so even though there cannot be a race this early in
2183 * the boot sequence, we still disable irqs.
2185 local_irq_save(flags
);
2186 add_partial(n
, page
, 0);
2187 local_irq_restore(flags
);
2191 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2195 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2196 struct kmem_cache_node
*n
= s
->node
[node
];
2197 if (n
&& n
!= &s
->local_node
)
2198 kmem_cache_free(kmalloc_caches
, n
);
2199 s
->node
[node
] = NULL
;
2203 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2208 if (slab_state
>= UP
)
2209 local_node
= page_to_nid(virt_to_page(s
));
2213 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2214 struct kmem_cache_node
*n
;
2216 if (local_node
== node
)
2219 if (slab_state
== DOWN
) {
2220 n
= early_kmem_cache_node_alloc(gfpflags
,
2224 n
= kmem_cache_alloc_node(kmalloc_caches
,
2228 free_kmem_cache_nodes(s
);
2234 init_kmem_cache_node(n
);
2239 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2243 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2245 init_kmem_cache_node(&s
->local_node
);
2251 * calculate_sizes() determines the order and the distribution of data within
2254 static int calculate_sizes(struct kmem_cache
*s
)
2256 unsigned long flags
= s
->flags
;
2257 unsigned long size
= s
->objsize
;
2258 unsigned long align
= s
->align
;
2261 * Determine if we can poison the object itself. If the user of
2262 * the slab may touch the object after free or before allocation
2263 * then we should never poison the object itself.
2265 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2267 s
->flags
|= __OBJECT_POISON
;
2269 s
->flags
&= ~__OBJECT_POISON
;
2272 * Round up object size to the next word boundary. We can only
2273 * place the free pointer at word boundaries and this determines
2274 * the possible location of the free pointer.
2276 size
= ALIGN(size
, sizeof(void *));
2278 #ifdef CONFIG_SLUB_DEBUG
2280 * If we are Redzoning then check if there is some space between the
2281 * end of the object and the free pointer. If not then add an
2282 * additional word to have some bytes to store Redzone information.
2284 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2285 size
+= sizeof(void *);
2289 * With that we have determined the number of bytes in actual use
2290 * by the object. This is the potential offset to the free pointer.
2294 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2297 * Relocate free pointer after the object if it is not
2298 * permitted to overwrite the first word of the object on
2301 * This is the case if we do RCU, have a constructor or
2302 * destructor or are poisoning the objects.
2305 size
+= sizeof(void *);
2308 #ifdef CONFIG_SLUB_DEBUG
2309 if (flags
& SLAB_STORE_USER
)
2311 * Need to store information about allocs and frees after
2314 size
+= 2 * sizeof(struct track
);
2316 if (flags
& SLAB_RED_ZONE
)
2318 * Add some empty padding so that we can catch
2319 * overwrites from earlier objects rather than let
2320 * tracking information or the free pointer be
2321 * corrupted if an user writes before the start
2324 size
+= sizeof(void *);
2328 * Determine the alignment based on various parameters that the
2329 * user specified and the dynamic determination of cache line size
2332 align
= calculate_alignment(flags
, align
, s
->objsize
);
2335 * SLUB stores one object immediately after another beginning from
2336 * offset 0. In order to align the objects we have to simply size
2337 * each object to conform to the alignment.
2339 size
= ALIGN(size
, align
);
2342 if ((flags
& __KMALLOC_CACHE
) &&
2343 PAGE_SIZE
/ size
< slub_min_objects
) {
2345 * Kmalloc cache that would not have enough objects in
2346 * an order 0 page. Kmalloc slabs can fallback to
2347 * page allocator order 0 allocs so take a reasonably large
2348 * order that will allows us a good number of objects.
2350 s
->order
= max(slub_max_order
, PAGE_ALLOC_COSTLY_ORDER
);
2351 s
->flags
|= __PAGE_ALLOC_FALLBACK
;
2352 s
->allocflags
|= __GFP_NOWARN
;
2354 s
->order
= calculate_order(size
);
2361 s
->allocflags
|= __GFP_COMP
;
2363 if (s
->flags
& SLAB_CACHE_DMA
)
2364 s
->allocflags
|= SLUB_DMA
;
2366 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2367 s
->allocflags
|= __GFP_RECLAIMABLE
;
2370 * Determine the number of objects per slab
2372 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
2374 return !!s
->objects
;
2378 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2379 const char *name
, size_t size
,
2380 size_t align
, unsigned long flags
,
2381 void (*ctor
)(struct kmem_cache
*, void *))
2383 memset(s
, 0, kmem_size
);
2388 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2390 if (!calculate_sizes(s
))
2395 s
->remote_node_defrag_ratio
= 100;
2397 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2400 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2402 free_kmem_cache_nodes(s
);
2404 if (flags
& SLAB_PANIC
)
2405 panic("Cannot create slab %s size=%lu realsize=%u "
2406 "order=%u offset=%u flags=%lx\n",
2407 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2413 * Check if a given pointer is valid
2415 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2419 page
= get_object_page(object
);
2421 if (!page
|| s
!= page
->slab
)
2422 /* No slab or wrong slab */
2425 if (!check_valid_pointer(s
, page
, object
))
2429 * We could also check if the object is on the slabs freelist.
2430 * But this would be too expensive and it seems that the main
2431 * purpose of kmem_ptr_valid is to check if the object belongs
2432 * to a certain slab.
2436 EXPORT_SYMBOL(kmem_ptr_validate
);
2439 * Determine the size of a slab object
2441 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2445 EXPORT_SYMBOL(kmem_cache_size
);
2447 const char *kmem_cache_name(struct kmem_cache
*s
)
2451 EXPORT_SYMBOL(kmem_cache_name
);
2454 * Attempt to free all slabs on a node. Return the number of slabs we
2455 * were unable to free.
2457 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2458 struct list_head
*list
)
2460 int slabs_inuse
= 0;
2461 unsigned long flags
;
2462 struct page
*page
, *h
;
2464 spin_lock_irqsave(&n
->list_lock
, flags
);
2465 list_for_each_entry_safe(page
, h
, list
, lru
)
2467 list_del(&page
->lru
);
2468 discard_slab(s
, page
);
2471 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2476 * Release all resources used by a slab cache.
2478 static inline int kmem_cache_close(struct kmem_cache
*s
)
2484 /* Attempt to free all objects */
2485 free_kmem_cache_cpus(s
);
2486 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2487 struct kmem_cache_node
*n
= get_node(s
, node
);
2489 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2490 if (atomic_long_read(&n
->nr_slabs
))
2493 free_kmem_cache_nodes(s
);
2498 * Close a cache and release the kmem_cache structure
2499 * (must be used for caches created using kmem_cache_create)
2501 void kmem_cache_destroy(struct kmem_cache
*s
)
2503 down_write(&slub_lock
);
2507 up_write(&slub_lock
);
2508 if (kmem_cache_close(s
))
2510 sysfs_slab_remove(s
);
2512 up_write(&slub_lock
);
2514 EXPORT_SYMBOL(kmem_cache_destroy
);
2516 /********************************************************************
2518 *******************************************************************/
2520 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
] __cacheline_aligned
;
2521 EXPORT_SYMBOL(kmalloc_caches
);
2523 #ifdef CONFIG_ZONE_DMA
2524 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
];
2527 static int __init
setup_slub_min_order(char *str
)
2529 get_option(&str
, &slub_min_order
);
2534 __setup("slub_min_order=", setup_slub_min_order
);
2536 static int __init
setup_slub_max_order(char *str
)
2538 get_option(&str
, &slub_max_order
);
2543 __setup("slub_max_order=", setup_slub_max_order
);
2545 static int __init
setup_slub_min_objects(char *str
)
2547 get_option(&str
, &slub_min_objects
);
2552 __setup("slub_min_objects=", setup_slub_min_objects
);
2554 static int __init
setup_slub_nomerge(char *str
)
2560 __setup("slub_nomerge", setup_slub_nomerge
);
2562 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2563 const char *name
, int size
, gfp_t gfp_flags
)
2565 unsigned int flags
= 0;
2567 if (gfp_flags
& SLUB_DMA
)
2568 flags
= SLAB_CACHE_DMA
;
2570 down_write(&slub_lock
);
2571 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2572 flags
| __KMALLOC_CACHE
, NULL
))
2575 list_add(&s
->list
, &slab_caches
);
2576 up_write(&slub_lock
);
2577 if (sysfs_slab_add(s
))
2582 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2585 #ifdef CONFIG_ZONE_DMA
2587 static void sysfs_add_func(struct work_struct
*w
)
2589 struct kmem_cache
*s
;
2591 down_write(&slub_lock
);
2592 list_for_each_entry(s
, &slab_caches
, list
) {
2593 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2594 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2598 up_write(&slub_lock
);
2601 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2603 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2605 struct kmem_cache
*s
;
2609 s
= kmalloc_caches_dma
[index
];
2613 /* Dynamically create dma cache */
2614 if (flags
& __GFP_WAIT
)
2615 down_write(&slub_lock
);
2617 if (!down_write_trylock(&slub_lock
))
2621 if (kmalloc_caches_dma
[index
])
2624 realsize
= kmalloc_caches
[index
].objsize
;
2625 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2626 (unsigned int)realsize
);
2627 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2629 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2630 realsize
, ARCH_KMALLOC_MINALIGN
,
2631 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2637 list_add(&s
->list
, &slab_caches
);
2638 kmalloc_caches_dma
[index
] = s
;
2640 schedule_work(&sysfs_add_work
);
2643 up_write(&slub_lock
);
2645 return kmalloc_caches_dma
[index
];
2650 * Conversion table for small slabs sizes / 8 to the index in the
2651 * kmalloc array. This is necessary for slabs < 192 since we have non power
2652 * of two cache sizes there. The size of larger slabs can be determined using
2655 static s8 size_index
[24] = {
2682 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2688 return ZERO_SIZE_PTR
;
2690 index
= size_index
[(size
- 1) / 8];
2692 index
= fls(size
- 1);
2694 #ifdef CONFIG_ZONE_DMA
2695 if (unlikely((flags
& SLUB_DMA
)))
2696 return dma_kmalloc_cache(index
, flags
);
2699 return &kmalloc_caches
[index
];
2702 void *__kmalloc(size_t size
, gfp_t flags
)
2704 struct kmem_cache
*s
;
2706 if (unlikely(size
> PAGE_SIZE
/ 2))
2707 return kmalloc_large(size
, flags
);
2709 s
= get_slab(size
, flags
);
2711 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2714 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2716 EXPORT_SYMBOL(__kmalloc
);
2719 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2721 struct kmem_cache
*s
;
2723 if (unlikely(size
> PAGE_SIZE
/ 2))
2724 return kmalloc_large(size
, flags
);
2726 s
= get_slab(size
, flags
);
2728 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2731 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2733 EXPORT_SYMBOL(__kmalloc_node
);
2736 size_t ksize(const void *object
)
2739 struct kmem_cache
*s
;
2742 if (unlikely(object
== ZERO_SIZE_PTR
))
2745 page
= virt_to_head_page(object
);
2748 if (unlikely(!PageSlab(page
)))
2749 return PAGE_SIZE
<< compound_order(page
);
2755 * Debugging requires use of the padding between object
2756 * and whatever may come after it.
2758 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2762 * If we have the need to store the freelist pointer
2763 * back there or track user information then we can
2764 * only use the space before that information.
2766 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2770 * Else we can use all the padding etc for the allocation
2774 EXPORT_SYMBOL(ksize
);
2776 void kfree(const void *x
)
2779 void *object
= (void *)x
;
2781 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2784 page
= virt_to_head_page(x
);
2785 if (unlikely(!PageSlab(page
))) {
2789 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2791 EXPORT_SYMBOL(kfree
);
2793 static unsigned long count_partial(struct kmem_cache_node
*n
)
2795 unsigned long flags
;
2796 unsigned long x
= 0;
2799 spin_lock_irqsave(&n
->list_lock
, flags
);
2800 list_for_each_entry(page
, &n
->partial
, lru
)
2802 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2807 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2808 * the remaining slabs by the number of items in use. The slabs with the
2809 * most items in use come first. New allocations will then fill those up
2810 * and thus they can be removed from the partial lists.
2812 * The slabs with the least items are placed last. This results in them
2813 * being allocated from last increasing the chance that the last objects
2814 * are freed in them.
2816 int kmem_cache_shrink(struct kmem_cache
*s
)
2820 struct kmem_cache_node
*n
;
2823 struct list_head
*slabs_by_inuse
=
2824 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2825 unsigned long flags
;
2827 if (!slabs_by_inuse
)
2831 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2832 n
= get_node(s
, node
);
2837 for (i
= 0; i
< s
->objects
; i
++)
2838 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2840 spin_lock_irqsave(&n
->list_lock
, flags
);
2843 * Build lists indexed by the items in use in each slab.
2845 * Note that concurrent frees may occur while we hold the
2846 * list_lock. page->inuse here is the upper limit.
2848 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2849 if (!page
->inuse
&& slab_trylock(page
)) {
2851 * Must hold slab lock here because slab_free
2852 * may have freed the last object and be
2853 * waiting to release the slab.
2855 list_del(&page
->lru
);
2858 discard_slab(s
, page
);
2860 list_move(&page
->lru
,
2861 slabs_by_inuse
+ page
->inuse
);
2866 * Rebuild the partial list with the slabs filled up most
2867 * first and the least used slabs at the end.
2869 for (i
= s
->objects
- 1; i
>= 0; i
--)
2870 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2872 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2875 kfree(slabs_by_inuse
);
2878 EXPORT_SYMBOL(kmem_cache_shrink
);
2880 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2881 static int slab_mem_going_offline_callback(void *arg
)
2883 struct kmem_cache
*s
;
2885 down_read(&slub_lock
);
2886 list_for_each_entry(s
, &slab_caches
, list
)
2887 kmem_cache_shrink(s
);
2888 up_read(&slub_lock
);
2893 static void slab_mem_offline_callback(void *arg
)
2895 struct kmem_cache_node
*n
;
2896 struct kmem_cache
*s
;
2897 struct memory_notify
*marg
= arg
;
2900 offline_node
= marg
->status_change_nid
;
2903 * If the node still has available memory. we need kmem_cache_node
2906 if (offline_node
< 0)
2909 down_read(&slub_lock
);
2910 list_for_each_entry(s
, &slab_caches
, list
) {
2911 n
= get_node(s
, offline_node
);
2914 * if n->nr_slabs > 0, slabs still exist on the node
2915 * that is going down. We were unable to free them,
2916 * and offline_pages() function shoudn't call this
2917 * callback. So, we must fail.
2919 BUG_ON(atomic_long_read(&n
->nr_slabs
));
2921 s
->node
[offline_node
] = NULL
;
2922 kmem_cache_free(kmalloc_caches
, n
);
2925 up_read(&slub_lock
);
2928 static int slab_mem_going_online_callback(void *arg
)
2930 struct kmem_cache_node
*n
;
2931 struct kmem_cache
*s
;
2932 struct memory_notify
*marg
= arg
;
2933 int nid
= marg
->status_change_nid
;
2937 * If the node's memory is already available, then kmem_cache_node is
2938 * already created. Nothing to do.
2944 * We are bringing a node online. No memory is availabe yet. We must
2945 * allocate a kmem_cache_node structure in order to bring the node
2948 down_read(&slub_lock
);
2949 list_for_each_entry(s
, &slab_caches
, list
) {
2951 * XXX: kmem_cache_alloc_node will fallback to other nodes
2952 * since memory is not yet available from the node that
2955 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2960 init_kmem_cache_node(n
);
2964 up_read(&slub_lock
);
2968 static int slab_memory_callback(struct notifier_block
*self
,
2969 unsigned long action
, void *arg
)
2974 case MEM_GOING_ONLINE
:
2975 ret
= slab_mem_going_online_callback(arg
);
2977 case MEM_GOING_OFFLINE
:
2978 ret
= slab_mem_going_offline_callback(arg
);
2981 case MEM_CANCEL_ONLINE
:
2982 slab_mem_offline_callback(arg
);
2985 case MEM_CANCEL_OFFLINE
:
2989 ret
= notifier_from_errno(ret
);
2993 #endif /* CONFIG_MEMORY_HOTPLUG */
2995 /********************************************************************
2996 * Basic setup of slabs
2997 *******************************************************************/
2999 void __init
kmem_cache_init(void)
3008 * Must first have the slab cache available for the allocations of the
3009 * struct kmem_cache_node's. There is special bootstrap code in
3010 * kmem_cache_open for slab_state == DOWN.
3012 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3013 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
3014 kmalloc_caches
[0].refcount
= -1;
3017 hotplug_memory_notifier(slab_memory_callback
, 1);
3020 /* Able to allocate the per node structures */
3021 slab_state
= PARTIAL
;
3023 /* Caches that are not of the two-to-the-power-of size */
3024 if (KMALLOC_MIN_SIZE
<= 64) {
3025 create_kmalloc_cache(&kmalloc_caches
[1],
3026 "kmalloc-96", 96, GFP_KERNEL
);
3029 if (KMALLOC_MIN_SIZE
<= 128) {
3030 create_kmalloc_cache(&kmalloc_caches
[2],
3031 "kmalloc-192", 192, GFP_KERNEL
);
3035 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++) {
3036 create_kmalloc_cache(&kmalloc_caches
[i
],
3037 "kmalloc", 1 << i
, GFP_KERNEL
);
3043 * Patch up the size_index table if we have strange large alignment
3044 * requirements for the kmalloc array. This is only the case for
3045 * mips it seems. The standard arches will not generate any code here.
3047 * Largest permitted alignment is 256 bytes due to the way we
3048 * handle the index determination for the smaller caches.
3050 * Make sure that nothing crazy happens if someone starts tinkering
3051 * around with ARCH_KMALLOC_MINALIGN
3053 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3054 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3056 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3057 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3061 /* Provide the correct kmalloc names now that the caches are up */
3062 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++)
3063 kmalloc_caches
[i
]. name
=
3064 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3067 register_cpu_notifier(&slab_notifier
);
3068 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3069 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3071 kmem_size
= sizeof(struct kmem_cache
);
3076 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3077 " CPUs=%d, Nodes=%d\n",
3078 caches
, cache_line_size(),
3079 slub_min_order
, slub_max_order
, slub_min_objects
,
3080 nr_cpu_ids
, nr_node_ids
);
3084 * Find a mergeable slab cache
3086 static int slab_unmergeable(struct kmem_cache
*s
)
3088 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3091 if ((s
->flags
& __PAGE_ALLOC_FALLBACK
)
3098 * We may have set a slab to be unmergeable during bootstrap.
3100 if (s
->refcount
< 0)
3106 static struct kmem_cache
*find_mergeable(size_t size
,
3107 size_t align
, unsigned long flags
, const char *name
,
3108 void (*ctor
)(struct kmem_cache
*, void *))
3110 struct kmem_cache
*s
;
3112 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3118 size
= ALIGN(size
, sizeof(void *));
3119 align
= calculate_alignment(flags
, align
, size
);
3120 size
= ALIGN(size
, align
);
3121 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3123 list_for_each_entry(s
, &slab_caches
, list
) {
3124 if (slab_unmergeable(s
))
3130 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3133 * Check if alignment is compatible.
3134 * Courtesy of Adrian Drzewiecki
3136 if ((s
->size
& ~(align
- 1)) != s
->size
)
3139 if (s
->size
- size
>= sizeof(void *))
3147 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3148 size_t align
, unsigned long flags
,
3149 void (*ctor
)(struct kmem_cache
*, void *))
3151 struct kmem_cache
*s
;
3153 down_write(&slub_lock
);
3154 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3160 * Adjust the object sizes so that we clear
3161 * the complete object on kzalloc.
3163 s
->objsize
= max(s
->objsize
, (int)size
);
3166 * And then we need to update the object size in the
3167 * per cpu structures
3169 for_each_online_cpu(cpu
)
3170 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3171 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3172 up_write(&slub_lock
);
3173 if (sysfs_slab_alias(s
, name
))
3177 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3179 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3180 size
, align
, flags
, ctor
)) {
3181 list_add(&s
->list
, &slab_caches
);
3182 up_write(&slub_lock
);
3183 if (sysfs_slab_add(s
))
3189 up_write(&slub_lock
);
3192 if (flags
& SLAB_PANIC
)
3193 panic("Cannot create slabcache %s\n", name
);
3198 EXPORT_SYMBOL(kmem_cache_create
);
3202 * Use the cpu notifier to insure that the cpu slabs are flushed when
3205 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3206 unsigned long action
, void *hcpu
)
3208 long cpu
= (long)hcpu
;
3209 struct kmem_cache
*s
;
3210 unsigned long flags
;
3213 case CPU_UP_PREPARE
:
3214 case CPU_UP_PREPARE_FROZEN
:
3215 init_alloc_cpu_cpu(cpu
);
3216 down_read(&slub_lock
);
3217 list_for_each_entry(s
, &slab_caches
, list
)
3218 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3220 up_read(&slub_lock
);
3223 case CPU_UP_CANCELED
:
3224 case CPU_UP_CANCELED_FROZEN
:
3226 case CPU_DEAD_FROZEN
:
3227 down_read(&slub_lock
);
3228 list_for_each_entry(s
, &slab_caches
, list
) {
3229 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3231 local_irq_save(flags
);
3232 __flush_cpu_slab(s
, cpu
);
3233 local_irq_restore(flags
);
3234 free_kmem_cache_cpu(c
, cpu
);
3235 s
->cpu_slab
[cpu
] = NULL
;
3237 up_read(&slub_lock
);
3245 static struct notifier_block __cpuinitdata slab_notifier
= {
3246 .notifier_call
= slab_cpuup_callback
3251 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3253 struct kmem_cache
*s
;
3255 if (unlikely(size
> PAGE_SIZE
/ 2))
3256 return kmalloc_large(size
, gfpflags
);
3258 s
= get_slab(size
, gfpflags
);
3260 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3263 return slab_alloc(s
, gfpflags
, -1, caller
);
3266 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3267 int node
, void *caller
)
3269 struct kmem_cache
*s
;
3271 if (unlikely(size
> PAGE_SIZE
/ 2))
3272 return kmalloc_large(size
, gfpflags
);
3274 s
= get_slab(size
, gfpflags
);
3276 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3279 return slab_alloc(s
, gfpflags
, node
, caller
);
3282 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3283 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3287 void *addr
= slab_address(page
);
3289 if (!check_slab(s
, page
) ||
3290 !on_freelist(s
, page
, NULL
))
3293 /* Now we know that a valid freelist exists */
3294 bitmap_zero(map
, s
->objects
);
3296 for_each_free_object(p
, s
, page
->freelist
) {
3297 set_bit(slab_index(p
, s
, addr
), map
);
3298 if (!check_object(s
, page
, p
, 0))
3302 for_each_object(p
, s
, addr
)
3303 if (!test_bit(slab_index(p
, s
, addr
), map
))
3304 if (!check_object(s
, page
, p
, 1))
3309 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3312 if (slab_trylock(page
)) {
3313 validate_slab(s
, page
, map
);
3316 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3319 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3320 if (!SlabDebug(page
))
3321 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3322 "on slab 0x%p\n", s
->name
, page
);
3324 if (SlabDebug(page
))
3325 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3326 "slab 0x%p\n", s
->name
, page
);
3330 static int validate_slab_node(struct kmem_cache
*s
,
3331 struct kmem_cache_node
*n
, unsigned long *map
)
3333 unsigned long count
= 0;
3335 unsigned long flags
;
3337 spin_lock_irqsave(&n
->list_lock
, flags
);
3339 list_for_each_entry(page
, &n
->partial
, lru
) {
3340 validate_slab_slab(s
, page
, map
);
3343 if (count
!= n
->nr_partial
)
3344 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3345 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3347 if (!(s
->flags
& SLAB_STORE_USER
))
3350 list_for_each_entry(page
, &n
->full
, lru
) {
3351 validate_slab_slab(s
, page
, map
);
3354 if (count
!= atomic_long_read(&n
->nr_slabs
))
3355 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3356 "counter=%ld\n", s
->name
, count
,
3357 atomic_long_read(&n
->nr_slabs
));
3360 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3364 static long validate_slab_cache(struct kmem_cache
*s
)
3367 unsigned long count
= 0;
3368 unsigned long *map
= kmalloc(BITS_TO_LONGS(s
->objects
) *
3369 sizeof(unsigned long), GFP_KERNEL
);
3375 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3376 struct kmem_cache_node
*n
= get_node(s
, node
);
3378 count
+= validate_slab_node(s
, n
, map
);
3384 #ifdef SLUB_RESILIENCY_TEST
3385 static void resiliency_test(void)
3389 printk(KERN_ERR
"SLUB resiliency testing\n");
3390 printk(KERN_ERR
"-----------------------\n");
3391 printk(KERN_ERR
"A. Corruption after allocation\n");
3393 p
= kzalloc(16, GFP_KERNEL
);
3395 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3396 " 0x12->0x%p\n\n", p
+ 16);
3398 validate_slab_cache(kmalloc_caches
+ 4);
3400 /* Hmmm... The next two are dangerous */
3401 p
= kzalloc(32, GFP_KERNEL
);
3402 p
[32 + sizeof(void *)] = 0x34;
3403 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3404 " 0x34 -> -0x%p\n", p
);
3406 "If allocated object is overwritten then not detectable\n\n");
3408 validate_slab_cache(kmalloc_caches
+ 5);
3409 p
= kzalloc(64, GFP_KERNEL
);
3410 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3412 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3415 "If allocated object is overwritten then not detectable\n\n");
3416 validate_slab_cache(kmalloc_caches
+ 6);
3418 printk(KERN_ERR
"\nB. Corruption after free\n");
3419 p
= kzalloc(128, GFP_KERNEL
);
3422 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3423 validate_slab_cache(kmalloc_caches
+ 7);
3425 p
= kzalloc(256, GFP_KERNEL
);
3428 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3430 validate_slab_cache(kmalloc_caches
+ 8);
3432 p
= kzalloc(512, GFP_KERNEL
);
3435 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3436 validate_slab_cache(kmalloc_caches
+ 9);
3439 static void resiliency_test(void) {};
3443 * Generate lists of code addresses where slabcache objects are allocated
3448 unsigned long count
;
3461 unsigned long count
;
3462 struct location
*loc
;
3465 static void free_loc_track(struct loc_track
*t
)
3468 free_pages((unsigned long)t
->loc
,
3469 get_order(sizeof(struct location
) * t
->max
));
3472 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3477 order
= get_order(sizeof(struct location
) * max
);
3479 l
= (void *)__get_free_pages(flags
, order
);
3484 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3492 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3493 const struct track
*track
)
3495 long start
, end
, pos
;
3498 unsigned long age
= jiffies
- track
->when
;
3504 pos
= start
+ (end
- start
+ 1) / 2;
3507 * There is nothing at "end". If we end up there
3508 * we need to add something to before end.
3513 caddr
= t
->loc
[pos
].addr
;
3514 if (track
->addr
== caddr
) {
3520 if (age
< l
->min_time
)
3522 if (age
> l
->max_time
)
3525 if (track
->pid
< l
->min_pid
)
3526 l
->min_pid
= track
->pid
;
3527 if (track
->pid
> l
->max_pid
)
3528 l
->max_pid
= track
->pid
;
3530 cpu_set(track
->cpu
, l
->cpus
);
3532 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3536 if (track
->addr
< caddr
)
3543 * Not found. Insert new tracking element.
3545 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3551 (t
->count
- pos
) * sizeof(struct location
));
3554 l
->addr
= track
->addr
;
3558 l
->min_pid
= track
->pid
;
3559 l
->max_pid
= track
->pid
;
3560 cpus_clear(l
->cpus
);
3561 cpu_set(track
->cpu
, l
->cpus
);
3562 nodes_clear(l
->nodes
);
3563 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3567 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3568 struct page
*page
, enum track_item alloc
)
3570 void *addr
= slab_address(page
);
3571 DECLARE_BITMAP(map
, s
->objects
);
3574 bitmap_zero(map
, s
->objects
);
3575 for_each_free_object(p
, s
, page
->freelist
)
3576 set_bit(slab_index(p
, s
, addr
), map
);
3578 for_each_object(p
, s
, addr
)
3579 if (!test_bit(slab_index(p
, s
, addr
), map
))
3580 add_location(t
, s
, get_track(s
, p
, alloc
));
3583 static int list_locations(struct kmem_cache
*s
, char *buf
,
3584 enum track_item alloc
)
3588 struct loc_track t
= { 0, 0, NULL
};
3591 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3593 return sprintf(buf
, "Out of memory\n");
3595 /* Push back cpu slabs */
3598 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3599 struct kmem_cache_node
*n
= get_node(s
, node
);
3600 unsigned long flags
;
3603 if (!atomic_long_read(&n
->nr_slabs
))
3606 spin_lock_irqsave(&n
->list_lock
, flags
);
3607 list_for_each_entry(page
, &n
->partial
, lru
)
3608 process_slab(&t
, s
, page
, alloc
);
3609 list_for_each_entry(page
, &n
->full
, lru
)
3610 process_slab(&t
, s
, page
, alloc
);
3611 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3614 for (i
= 0; i
< t
.count
; i
++) {
3615 struct location
*l
= &t
.loc
[i
];
3617 if (len
> PAGE_SIZE
- 100)
3619 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3622 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3624 len
+= sprintf(buf
+ len
, "<not-available>");
3626 if (l
->sum_time
!= l
->min_time
) {
3627 unsigned long remainder
;
3629 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3631 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3634 len
+= sprintf(buf
+ len
, " age=%ld",
3637 if (l
->min_pid
!= l
->max_pid
)
3638 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3639 l
->min_pid
, l
->max_pid
);
3641 len
+= sprintf(buf
+ len
, " pid=%ld",
3644 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3645 len
< PAGE_SIZE
- 60) {
3646 len
+= sprintf(buf
+ len
, " cpus=");
3647 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3651 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3652 len
< PAGE_SIZE
- 60) {
3653 len
+= sprintf(buf
+ len
, " nodes=");
3654 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3658 len
+= sprintf(buf
+ len
, "\n");
3663 len
+= sprintf(buf
, "No data\n");
3667 enum slab_stat_type
{
3674 #define SO_FULL (1 << SL_FULL)
3675 #define SO_PARTIAL (1 << SL_PARTIAL)
3676 #define SO_CPU (1 << SL_CPU)
3677 #define SO_OBJECTS (1 << SL_OBJECTS)
3679 static unsigned long slab_objects(struct kmem_cache
*s
,
3680 char *buf
, unsigned long flags
)
3682 unsigned long total
= 0;
3686 unsigned long *nodes
;
3687 unsigned long *per_cpu
;
3689 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3690 per_cpu
= nodes
+ nr_node_ids
;
3692 for_each_possible_cpu(cpu
) {
3694 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3704 if (flags
& SO_CPU
) {
3705 if (flags
& SO_OBJECTS
)
3716 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3717 struct kmem_cache_node
*n
= get_node(s
, node
);
3719 if (flags
& SO_PARTIAL
) {
3720 if (flags
& SO_OBJECTS
)
3721 x
= count_partial(n
);
3728 if (flags
& SO_FULL
) {
3729 int full_slabs
= atomic_long_read(&n
->nr_slabs
)
3733 if (flags
& SO_OBJECTS
)
3734 x
= full_slabs
* s
->objects
;
3742 x
= sprintf(buf
, "%lu", total
);
3744 for_each_node_state(node
, N_NORMAL_MEMORY
)
3746 x
+= sprintf(buf
+ x
, " N%d=%lu",
3750 return x
+ sprintf(buf
+ x
, "\n");
3753 static int any_slab_objects(struct kmem_cache
*s
)
3758 for_each_possible_cpu(cpu
) {
3759 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3765 for_each_online_node(node
) {
3766 struct kmem_cache_node
*n
= get_node(s
, node
);
3771 if (n
->nr_partial
|| atomic_long_read(&n
->nr_slabs
))
3777 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3778 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3780 struct slab_attribute
{
3781 struct attribute attr
;
3782 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3783 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3786 #define SLAB_ATTR_RO(_name) \
3787 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3789 #define SLAB_ATTR(_name) \
3790 static struct slab_attribute _name##_attr = \
3791 __ATTR(_name, 0644, _name##_show, _name##_store)
3793 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3795 return sprintf(buf
, "%d\n", s
->size
);
3797 SLAB_ATTR_RO(slab_size
);
3799 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3801 return sprintf(buf
, "%d\n", s
->align
);
3803 SLAB_ATTR_RO(align
);
3805 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3807 return sprintf(buf
, "%d\n", s
->objsize
);
3809 SLAB_ATTR_RO(object_size
);
3811 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3813 return sprintf(buf
, "%d\n", s
->objects
);
3815 SLAB_ATTR_RO(objs_per_slab
);
3817 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3819 return sprintf(buf
, "%d\n", s
->order
);
3821 SLAB_ATTR_RO(order
);
3823 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3826 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3828 return n
+ sprintf(buf
+ n
, "\n");
3834 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3836 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3838 SLAB_ATTR_RO(aliases
);
3840 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3842 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3844 SLAB_ATTR_RO(slabs
);
3846 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3848 return slab_objects(s
, buf
, SO_PARTIAL
);
3850 SLAB_ATTR_RO(partial
);
3852 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3854 return slab_objects(s
, buf
, SO_CPU
);
3856 SLAB_ATTR_RO(cpu_slabs
);
3858 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3860 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3862 SLAB_ATTR_RO(objects
);
3864 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3866 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3869 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3870 const char *buf
, size_t length
)
3872 s
->flags
&= ~SLAB_DEBUG_FREE
;
3874 s
->flags
|= SLAB_DEBUG_FREE
;
3877 SLAB_ATTR(sanity_checks
);
3879 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3881 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3884 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3887 s
->flags
&= ~SLAB_TRACE
;
3889 s
->flags
|= SLAB_TRACE
;
3894 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3896 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3899 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3900 const char *buf
, size_t length
)
3902 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3904 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3907 SLAB_ATTR(reclaim_account
);
3909 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3911 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3913 SLAB_ATTR_RO(hwcache_align
);
3915 #ifdef CONFIG_ZONE_DMA
3916 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3918 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3920 SLAB_ATTR_RO(cache_dma
);
3923 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3925 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3927 SLAB_ATTR_RO(destroy_by_rcu
);
3929 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3931 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3934 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3935 const char *buf
, size_t length
)
3937 if (any_slab_objects(s
))
3940 s
->flags
&= ~SLAB_RED_ZONE
;
3942 s
->flags
|= SLAB_RED_ZONE
;
3946 SLAB_ATTR(red_zone
);
3948 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3950 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3953 static ssize_t
poison_store(struct kmem_cache
*s
,
3954 const char *buf
, size_t length
)
3956 if (any_slab_objects(s
))
3959 s
->flags
&= ~SLAB_POISON
;
3961 s
->flags
|= SLAB_POISON
;
3967 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3969 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3972 static ssize_t
store_user_store(struct kmem_cache
*s
,
3973 const char *buf
, size_t length
)
3975 if (any_slab_objects(s
))
3978 s
->flags
&= ~SLAB_STORE_USER
;
3980 s
->flags
|= SLAB_STORE_USER
;
3984 SLAB_ATTR(store_user
);
3986 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3991 static ssize_t
validate_store(struct kmem_cache
*s
,
3992 const char *buf
, size_t length
)
3996 if (buf
[0] == '1') {
3997 ret
= validate_slab_cache(s
);
4003 SLAB_ATTR(validate
);
4005 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4010 static ssize_t
shrink_store(struct kmem_cache
*s
,
4011 const char *buf
, size_t length
)
4013 if (buf
[0] == '1') {
4014 int rc
= kmem_cache_shrink(s
);
4024 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4026 if (!(s
->flags
& SLAB_STORE_USER
))
4028 return list_locations(s
, buf
, TRACK_ALLOC
);
4030 SLAB_ATTR_RO(alloc_calls
);
4032 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4034 if (!(s
->flags
& SLAB_STORE_USER
))
4036 return list_locations(s
, buf
, TRACK_FREE
);
4038 SLAB_ATTR_RO(free_calls
);
4041 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4043 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4046 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4047 const char *buf
, size_t length
)
4049 int n
= simple_strtoul(buf
, NULL
, 10);
4052 s
->remote_node_defrag_ratio
= n
* 10;
4055 SLAB_ATTR(remote_node_defrag_ratio
);
4058 #ifdef CONFIG_SLUB_STATS
4060 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4062 unsigned long sum
= 0;
4065 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4070 for_each_online_cpu(cpu
) {
4071 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4077 len
= sprintf(buf
, "%lu", sum
);
4079 for_each_online_cpu(cpu
) {
4080 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4081 len
+= sprintf(buf
+ len
, " c%d=%u", cpu
, data
[cpu
]);
4084 return len
+ sprintf(buf
+ len
, "\n");
4087 #define STAT_ATTR(si, text) \
4088 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4090 return show_stat(s, buf, si); \
4092 SLAB_ATTR_RO(text); \
4094 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4095 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4096 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4097 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4098 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4099 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4100 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4101 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4102 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4103 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4104 STAT_ATTR(FREE_SLAB
, free_slab
);
4105 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4106 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4107 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4108 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4109 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4110 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4114 static struct attribute
*slab_attrs
[] = {
4115 &slab_size_attr
.attr
,
4116 &object_size_attr
.attr
,
4117 &objs_per_slab_attr
.attr
,
4122 &cpu_slabs_attr
.attr
,
4126 &sanity_checks_attr
.attr
,
4128 &hwcache_align_attr
.attr
,
4129 &reclaim_account_attr
.attr
,
4130 &destroy_by_rcu_attr
.attr
,
4131 &red_zone_attr
.attr
,
4133 &store_user_attr
.attr
,
4134 &validate_attr
.attr
,
4136 &alloc_calls_attr
.attr
,
4137 &free_calls_attr
.attr
,
4138 #ifdef CONFIG_ZONE_DMA
4139 &cache_dma_attr
.attr
,
4142 &remote_node_defrag_ratio_attr
.attr
,
4144 #ifdef CONFIG_SLUB_STATS
4145 &alloc_fastpath_attr
.attr
,
4146 &alloc_slowpath_attr
.attr
,
4147 &free_fastpath_attr
.attr
,
4148 &free_slowpath_attr
.attr
,
4149 &free_frozen_attr
.attr
,
4150 &free_add_partial_attr
.attr
,
4151 &free_remove_partial_attr
.attr
,
4152 &alloc_from_partial_attr
.attr
,
4153 &alloc_slab_attr
.attr
,
4154 &alloc_refill_attr
.attr
,
4155 &free_slab_attr
.attr
,
4156 &cpuslab_flush_attr
.attr
,
4157 &deactivate_full_attr
.attr
,
4158 &deactivate_empty_attr
.attr
,
4159 &deactivate_to_head_attr
.attr
,
4160 &deactivate_to_tail_attr
.attr
,
4161 &deactivate_remote_frees_attr
.attr
,
4166 static struct attribute_group slab_attr_group
= {
4167 .attrs
= slab_attrs
,
4170 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4171 struct attribute
*attr
,
4174 struct slab_attribute
*attribute
;
4175 struct kmem_cache
*s
;
4178 attribute
= to_slab_attr(attr
);
4181 if (!attribute
->show
)
4184 err
= attribute
->show(s
, buf
);
4189 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4190 struct attribute
*attr
,
4191 const char *buf
, size_t len
)
4193 struct slab_attribute
*attribute
;
4194 struct kmem_cache
*s
;
4197 attribute
= to_slab_attr(attr
);
4200 if (!attribute
->store
)
4203 err
= attribute
->store(s
, buf
, len
);
4208 static void kmem_cache_release(struct kobject
*kobj
)
4210 struct kmem_cache
*s
= to_slab(kobj
);
4215 static struct sysfs_ops slab_sysfs_ops
= {
4216 .show
= slab_attr_show
,
4217 .store
= slab_attr_store
,
4220 static struct kobj_type slab_ktype
= {
4221 .sysfs_ops
= &slab_sysfs_ops
,
4222 .release
= kmem_cache_release
4225 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4227 struct kobj_type
*ktype
= get_ktype(kobj
);
4229 if (ktype
== &slab_ktype
)
4234 static struct kset_uevent_ops slab_uevent_ops
= {
4235 .filter
= uevent_filter
,
4238 static struct kset
*slab_kset
;
4240 #define ID_STR_LENGTH 64
4242 /* Create a unique string id for a slab cache:
4244 * :[flags-]size:[memory address of kmemcache]
4246 static char *create_unique_id(struct kmem_cache
*s
)
4248 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4255 * First flags affecting slabcache operations. We will only
4256 * get here for aliasable slabs so we do not need to support
4257 * too many flags. The flags here must cover all flags that
4258 * are matched during merging to guarantee that the id is
4261 if (s
->flags
& SLAB_CACHE_DMA
)
4263 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4265 if (s
->flags
& SLAB_DEBUG_FREE
)
4269 p
+= sprintf(p
, "%07d", s
->size
);
4270 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4274 static int sysfs_slab_add(struct kmem_cache
*s
)
4280 if (slab_state
< SYSFS
)
4281 /* Defer until later */
4284 unmergeable
= slab_unmergeable(s
);
4287 * Slabcache can never be merged so we can use the name proper.
4288 * This is typically the case for debug situations. In that
4289 * case we can catch duplicate names easily.
4291 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4295 * Create a unique name for the slab as a target
4298 name
= create_unique_id(s
);
4301 s
->kobj
.kset
= slab_kset
;
4302 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4304 kobject_put(&s
->kobj
);
4308 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4311 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4313 /* Setup first alias */
4314 sysfs_slab_alias(s
, s
->name
);
4320 static void sysfs_slab_remove(struct kmem_cache
*s
)
4322 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4323 kobject_del(&s
->kobj
);
4324 kobject_put(&s
->kobj
);
4328 * Need to buffer aliases during bootup until sysfs becomes
4329 * available lest we loose that information.
4331 struct saved_alias
{
4332 struct kmem_cache
*s
;
4334 struct saved_alias
*next
;
4337 static struct saved_alias
*alias_list
;
4339 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4341 struct saved_alias
*al
;
4343 if (slab_state
== SYSFS
) {
4345 * If we have a leftover link then remove it.
4347 sysfs_remove_link(&slab_kset
->kobj
, name
);
4348 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4351 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4357 al
->next
= alias_list
;
4362 static int __init
slab_sysfs_init(void)
4364 struct kmem_cache
*s
;
4367 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4369 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4375 list_for_each_entry(s
, &slab_caches
, list
) {
4376 err
= sysfs_slab_add(s
);
4378 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4379 " to sysfs\n", s
->name
);
4382 while (alias_list
) {
4383 struct saved_alias
*al
= alias_list
;
4385 alias_list
= alias_list
->next
;
4386 err
= sysfs_slab_alias(al
->s
, al
->name
);
4388 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4389 " %s to sysfs\n", s
->name
);
4397 __initcall(slab_sysfs_init
);
4401 * The /proc/slabinfo ABI
4403 #ifdef CONFIG_SLABINFO
4405 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4406 size_t count
, loff_t
*ppos
)
4412 static void print_slabinfo_header(struct seq_file
*m
)
4414 seq_puts(m
, "slabinfo - version: 2.1\n");
4415 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4416 "<objperslab> <pagesperslab>");
4417 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4418 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4422 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4426 down_read(&slub_lock
);
4428 print_slabinfo_header(m
);
4430 return seq_list_start(&slab_caches
, *pos
);
4433 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4435 return seq_list_next(p
, &slab_caches
, pos
);
4438 static void s_stop(struct seq_file
*m
, void *p
)
4440 up_read(&slub_lock
);
4443 static int s_show(struct seq_file
*m
, void *p
)
4445 unsigned long nr_partials
= 0;
4446 unsigned long nr_slabs
= 0;
4447 unsigned long nr_inuse
= 0;
4448 unsigned long nr_objs
;
4449 struct kmem_cache
*s
;
4452 s
= list_entry(p
, struct kmem_cache
, list
);
4454 for_each_online_node(node
) {
4455 struct kmem_cache_node
*n
= get_node(s
, node
);
4460 nr_partials
+= n
->nr_partial
;
4461 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4462 nr_inuse
+= count_partial(n
);
4465 nr_objs
= nr_slabs
* s
->objects
;
4466 nr_inuse
+= (nr_slabs
- nr_partials
) * s
->objects
;
4468 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4469 nr_objs
, s
->size
, s
->objects
, (1 << s
->order
));
4470 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4471 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4477 const struct seq_operations slabinfo_op
= {
4484 #endif /* CONFIG_SLABINFO */