2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations prepare_write and/or commit_write are not available on the
45 * Anton Altaparmakov, 16 Feb 2005
48 * - Advisory locking is ignored here.
49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/freezer.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h> /* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
77 #include <linux/kthread.h>
78 #include <linux/splice.h>
80 #include <asm/uaccess.h>
82 static LIST_HEAD(loop_devices
);
83 static DEFINE_MUTEX(loop_devices_mutex
);
88 static int transfer_none(struct loop_device
*lo
, int cmd
,
89 struct page
*raw_page
, unsigned raw_off
,
90 struct page
*loop_page
, unsigned loop_off
,
91 int size
, sector_t real_block
)
93 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
94 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
97 memcpy(loop_buf
, raw_buf
, size
);
99 memcpy(raw_buf
, loop_buf
, size
);
101 kunmap_atomic(raw_buf
, KM_USER0
);
102 kunmap_atomic(loop_buf
, KM_USER1
);
107 static int transfer_xor(struct loop_device
*lo
, int cmd
,
108 struct page
*raw_page
, unsigned raw_off
,
109 struct page
*loop_page
, unsigned loop_off
,
110 int size
, sector_t real_block
)
112 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
113 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
114 char *in
, *out
, *key
;
125 key
= lo
->lo_encrypt_key
;
126 keysize
= lo
->lo_encrypt_key_size
;
127 for (i
= 0; i
< size
; i
++)
128 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
130 kunmap_atomic(raw_buf
, KM_USER0
);
131 kunmap_atomic(loop_buf
, KM_USER1
);
136 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
138 if (unlikely(info
->lo_encrypt_key_size
<= 0))
143 static struct loop_func_table none_funcs
= {
144 .number
= LO_CRYPT_NONE
,
145 .transfer
= transfer_none
,
148 static struct loop_func_table xor_funcs
= {
149 .number
= LO_CRYPT_XOR
,
150 .transfer
= transfer_xor
,
154 /* xfer_funcs[0] is special - its release function is never called */
155 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
160 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
162 loff_t size
, offset
, loopsize
;
164 /* Compute loopsize in bytes */
165 size
= i_size_read(file
->f_mapping
->host
);
166 offset
= lo
->lo_offset
;
167 loopsize
= size
- offset
;
168 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
169 loopsize
= lo
->lo_sizelimit
;
172 * Unfortunately, if we want to do I/O on the device,
173 * the number of 512-byte sectors has to fit into a sector_t.
175 return loopsize
>> 9;
179 figure_loop_size(struct loop_device
*lo
)
181 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
182 sector_t x
= (sector_t
)size
;
184 if (unlikely((loff_t
)x
!= size
))
187 set_capacity(lo
->lo_disk
, x
);
192 lo_do_transfer(struct loop_device
*lo
, int cmd
,
193 struct page
*rpage
, unsigned roffs
,
194 struct page
*lpage
, unsigned loffs
,
195 int size
, sector_t rblock
)
197 if (unlikely(!lo
->transfer
))
200 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
204 * do_lo_send_aops - helper for writing data to a loop device
206 * This is the fast version for backing filesystems which implement the address
207 * space operations prepare_write and commit_write.
209 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
210 int bsize
, loff_t pos
, struct page
*page
)
212 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
213 struct address_space
*mapping
= file
->f_mapping
;
214 const struct address_space_operations
*aops
= mapping
->a_ops
;
216 unsigned offset
, bv_offs
;
219 mutex_lock(&mapping
->host
->i_mutex
);
220 index
= pos
>> PAGE_CACHE_SHIFT
;
221 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
222 bv_offs
= bvec
->bv_offset
;
229 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
230 size
= PAGE_CACHE_SIZE
- offset
;
233 page
= grab_cache_page(mapping
, index
);
236 ret
= aops
->prepare_write(file
, page
, offset
,
239 if (ret
== AOP_TRUNCATED_PAGE
) {
240 page_cache_release(page
);
245 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
246 bvec
->bv_page
, bv_offs
, size
, IV
);
247 if (unlikely(transfer_result
)) {
249 * The transfer failed, but we still write the data to
250 * keep prepare/commit calls balanced.
252 printk(KERN_ERR
"loop: transfer error block %llu\n",
253 (unsigned long long)index
);
254 zero_user_page(page
, offset
, size
, KM_USER0
);
256 flush_dcache_page(page
);
257 ret
= aops
->commit_write(file
, page
, offset
,
260 if (ret
== AOP_TRUNCATED_PAGE
) {
261 page_cache_release(page
);
266 if (unlikely(transfer_result
))
274 page_cache_release(page
);
278 mutex_unlock(&mapping
->host
->i_mutex
);
282 page_cache_release(page
);
289 * __do_lo_send_write - helper for writing data to a loop device
291 * This helper just factors out common code between do_lo_send_direct_write()
292 * and do_lo_send_write().
294 static int __do_lo_send_write(struct file
*file
,
295 u8
*buf
, const int len
, loff_t pos
)
298 mm_segment_t old_fs
= get_fs();
301 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
303 if (likely(bw
== len
))
305 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
306 (unsigned long long)pos
, len
);
313 * do_lo_send_direct_write - helper for writing data to a loop device
315 * This is the fast, non-transforming version for backing filesystems which do
316 * not implement the address space operations prepare_write and commit_write.
317 * It uses the write file operation which should be present on all writeable
320 static int do_lo_send_direct_write(struct loop_device
*lo
,
321 struct bio_vec
*bvec
, int bsize
, loff_t pos
, struct page
*page
)
323 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
324 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
326 kunmap(bvec
->bv_page
);
332 * do_lo_send_write - helper for writing data to a loop device
334 * This is the slow, transforming version for filesystems which do not
335 * implement the address space operations prepare_write and commit_write. It
336 * uses the write file operation which should be present on all writeable
339 * Using fops->write is slower than using aops->{prepare,commit}_write in the
340 * transforming case because we need to double buffer the data as we cannot do
341 * the transformations in place as we do not have direct access to the
342 * destination pages of the backing file.
344 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
345 int bsize
, loff_t pos
, struct page
*page
)
347 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
348 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
350 return __do_lo_send_write(lo
->lo_backing_file
,
351 page_address(page
), bvec
->bv_len
,
353 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
354 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
360 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, int bsize
,
363 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, int, loff_t
,
365 struct bio_vec
*bvec
;
366 struct page
*page
= NULL
;
369 do_lo_send
= do_lo_send_aops
;
370 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
371 do_lo_send
= do_lo_send_direct_write
;
372 if (lo
->transfer
!= transfer_none
) {
373 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
377 do_lo_send
= do_lo_send_write
;
380 bio_for_each_segment(bvec
, bio
, i
) {
381 ret
= do_lo_send(lo
, bvec
, bsize
, pos
, page
);
393 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
398 struct lo_read_data
{
399 struct loop_device
*lo
;
406 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
407 struct splice_desc
*sd
)
409 struct lo_read_data
*p
= sd
->u
.data
;
410 struct loop_device
*lo
= p
->lo
;
411 struct page
*page
= buf
->page
;
416 ret
= buf
->ops
->confirm(pipe
, buf
);
420 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
426 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
427 printk(KERN_ERR
"loop: transfer error block %ld\n",
432 flush_dcache_page(p
->page
);
441 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
443 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
447 do_lo_receive(struct loop_device
*lo
,
448 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
450 struct lo_read_data cookie
;
451 struct splice_desc sd
;
456 cookie
.page
= bvec
->bv_page
;
457 cookie
.offset
= bvec
->bv_offset
;
458 cookie
.bsize
= bsize
;
461 sd
.total_len
= bvec
->bv_len
;
466 file
= lo
->lo_backing_file
;
467 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
476 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
478 struct bio_vec
*bvec
;
481 bio_for_each_segment(bvec
, bio
, i
) {
482 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
490 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
495 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
496 if (bio_rw(bio
) == WRITE
)
497 ret
= lo_send(lo
, bio
, lo
->lo_blocksize
, pos
);
499 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
504 * Add bio to back of pending list
506 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
508 if (lo
->lo_biotail
) {
509 lo
->lo_biotail
->bi_next
= bio
;
510 lo
->lo_biotail
= bio
;
512 lo
->lo_bio
= lo
->lo_biotail
= bio
;
516 * Grab first pending buffer
518 static struct bio
*loop_get_bio(struct loop_device
*lo
)
522 if ((bio
= lo
->lo_bio
)) {
523 if (bio
== lo
->lo_biotail
)
524 lo
->lo_biotail
= NULL
;
525 lo
->lo_bio
= bio
->bi_next
;
532 static int loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
534 struct loop_device
*lo
= q
->queuedata
;
535 int rw
= bio_rw(old_bio
);
540 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
542 spin_lock_irq(&lo
->lo_lock
);
543 if (lo
->lo_state
!= Lo_bound
)
545 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
547 loop_add_bio(lo
, old_bio
);
548 wake_up(&lo
->lo_event
);
549 spin_unlock_irq(&lo
->lo_lock
);
553 spin_unlock_irq(&lo
->lo_lock
);
554 bio_io_error(old_bio
, old_bio
->bi_size
);
559 * kick off io on the underlying address space
561 static void loop_unplug(struct request_queue
*q
)
563 struct loop_device
*lo
= q
->queuedata
;
565 clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
);
566 blk_run_address_space(lo
->lo_backing_file
->f_mapping
);
569 struct switch_request
{
571 struct completion wait
;
574 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
576 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
578 if (unlikely(!bio
->bi_bdev
)) {
579 do_loop_switch(lo
, bio
->bi_private
);
582 int ret
= do_bio_filebacked(lo
, bio
);
583 bio_endio(bio
, bio
->bi_size
, ret
);
588 * worker thread that handles reads/writes to file backed loop devices,
589 * to avoid blocking in our make_request_fn. it also does loop decrypting
590 * on reads for block backed loop, as that is too heavy to do from
591 * b_end_io context where irqs may be disabled.
593 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
594 * calling kthread_stop(). Therefore once kthread_should_stop() is
595 * true, make_request will not place any more requests. Therefore
596 * once kthread_should_stop() is true and lo_bio is NULL, we are
597 * done with the loop.
599 static int loop_thread(void *data
)
601 struct loop_device
*lo
= data
;
604 set_user_nice(current
, -20);
606 while (!kthread_should_stop() || lo
->lo_bio
) {
608 wait_event_interruptible(lo
->lo_event
,
609 lo
->lo_bio
|| kthread_should_stop());
613 spin_lock_irq(&lo
->lo_lock
);
614 bio
= loop_get_bio(lo
);
615 spin_unlock_irq(&lo
->lo_lock
);
618 loop_handle_bio(lo
, bio
);
625 * loop_switch performs the hard work of switching a backing store.
626 * First it needs to flush existing IO, it does this by sending a magic
627 * BIO down the pipe. The completion of this BIO does the actual switch.
629 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
631 struct switch_request w
;
632 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 1);
635 init_completion(&w
.wait
);
637 bio
->bi_private
= &w
;
639 loop_make_request(lo
->lo_queue
, bio
);
640 wait_for_completion(&w
.wait
);
645 * Do the actual switch; called from the BIO completion routine
647 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
649 struct file
*file
= p
->file
;
650 struct file
*old_file
= lo
->lo_backing_file
;
651 struct address_space
*mapping
= file
->f_mapping
;
653 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
654 lo
->lo_backing_file
= file
;
655 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
656 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
657 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
658 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
664 * loop_change_fd switched the backing store of a loopback device to
665 * a new file. This is useful for operating system installers to free up
666 * the original file and in High Availability environments to switch to
667 * an alternative location for the content in case of server meltdown.
668 * This can only work if the loop device is used read-only, and if the
669 * new backing store is the same size and type as the old backing store.
671 static int loop_change_fd(struct loop_device
*lo
, struct file
*lo_file
,
672 struct block_device
*bdev
, unsigned int arg
)
674 struct file
*file
, *old_file
;
679 if (lo
->lo_state
!= Lo_bound
)
682 /* the loop device has to be read-only */
684 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
692 inode
= file
->f_mapping
->host
;
693 old_file
= lo
->lo_backing_file
;
697 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
700 /* new backing store needs to support loop (eg splice_read) */
701 if (!inode
->i_fop
->splice_read
)
704 /* size of the new backing store needs to be the same */
705 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
709 error
= loop_switch(lo
, file
);
722 static inline int is_loop_device(struct file
*file
)
724 struct inode
*i
= file
->f_mapping
->host
;
726 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
729 static int loop_set_fd(struct loop_device
*lo
, struct file
*lo_file
,
730 struct block_device
*bdev
, unsigned int arg
)
732 struct file
*file
, *f
;
734 struct address_space
*mapping
;
735 unsigned lo_blocksize
;
740 /* This is safe, since we have a reference from open(). */
741 __module_get(THIS_MODULE
);
749 if (lo
->lo_state
!= Lo_unbound
)
752 /* Avoid recursion */
754 while (is_loop_device(f
)) {
755 struct loop_device
*l
;
757 if (f
->f_mapping
->host
->i_rdev
== lo_file
->f_mapping
->host
->i_rdev
)
760 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
761 if (l
->lo_state
== Lo_unbound
) {
765 f
= l
->lo_backing_file
;
768 mapping
= file
->f_mapping
;
769 inode
= mapping
->host
;
771 if (!(file
->f_mode
& FMODE_WRITE
))
772 lo_flags
|= LO_FLAGS_READ_ONLY
;
775 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
776 const struct address_space_operations
*aops
= mapping
->a_ops
;
778 * If we can't read - sorry. If we only can't write - well,
779 * it's going to be read-only.
781 if (!file
->f_op
->splice_read
)
783 if (aops
->prepare_write
&& aops
->commit_write
)
784 lo_flags
|= LO_FLAGS_USE_AOPS
;
785 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
786 lo_flags
|= LO_FLAGS_READ_ONLY
;
788 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
789 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
796 size
= get_loop_size(lo
, file
);
798 if ((loff_t
)(sector_t
)size
!= size
) {
803 if (!(lo_file
->f_mode
& FMODE_WRITE
))
804 lo_flags
|= LO_FLAGS_READ_ONLY
;
806 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
808 lo
->lo_blocksize
= lo_blocksize
;
809 lo
->lo_device
= bdev
;
810 lo
->lo_flags
= lo_flags
;
811 lo
->lo_backing_file
= file
;
812 lo
->transfer
= transfer_none
;
814 lo
->lo_sizelimit
= 0;
815 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
816 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
818 lo
->lo_bio
= lo
->lo_biotail
= NULL
;
821 * set queue make_request_fn, and add limits based on lower level
824 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
825 lo
->lo_queue
->queuedata
= lo
;
826 lo
->lo_queue
->unplug_fn
= loop_unplug
;
828 set_capacity(lo
->lo_disk
, size
);
829 bd_set_size(bdev
, size
<< 9);
831 set_blocksize(bdev
, lo_blocksize
);
833 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
835 if (IS_ERR(lo
->lo_thread
)) {
836 error
= PTR_ERR(lo
->lo_thread
);
839 lo
->lo_state
= Lo_bound
;
840 wake_up_process(lo
->lo_thread
);
844 lo
->lo_thread
= NULL
;
845 lo
->lo_device
= NULL
;
846 lo
->lo_backing_file
= NULL
;
848 set_capacity(lo
->lo_disk
, 0);
849 invalidate_bdev(bdev
);
850 bd_set_size(bdev
, 0);
851 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
852 lo
->lo_state
= Lo_unbound
;
856 /* This is safe: open() is still holding a reference. */
857 module_put(THIS_MODULE
);
862 loop_release_xfer(struct loop_device
*lo
)
865 struct loop_func_table
*xfer
= lo
->lo_encryption
;
869 err
= xfer
->release(lo
);
871 lo
->lo_encryption
= NULL
;
872 module_put(xfer
->owner
);
878 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
879 const struct loop_info64
*i
)
884 struct module
*owner
= xfer
->owner
;
886 if (!try_module_get(owner
))
889 err
= xfer
->init(lo
, i
);
893 lo
->lo_encryption
= xfer
;
898 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
900 struct file
*filp
= lo
->lo_backing_file
;
901 gfp_t gfp
= lo
->old_gfp_mask
;
903 if (lo
->lo_state
!= Lo_bound
)
906 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
912 spin_lock_irq(&lo
->lo_lock
);
913 lo
->lo_state
= Lo_rundown
;
914 spin_unlock_irq(&lo
->lo_lock
);
916 kthread_stop(lo
->lo_thread
);
918 lo
->lo_backing_file
= NULL
;
920 loop_release_xfer(lo
);
923 lo
->lo_device
= NULL
;
924 lo
->lo_encryption
= NULL
;
926 lo
->lo_sizelimit
= 0;
927 lo
->lo_encrypt_key_size
= 0;
929 lo
->lo_thread
= NULL
;
930 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
931 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
932 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
933 invalidate_bdev(bdev
);
934 set_capacity(lo
->lo_disk
, 0);
935 bd_set_size(bdev
, 0);
936 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
937 lo
->lo_state
= Lo_unbound
;
939 /* This is safe: open() is still holding a reference. */
940 module_put(THIS_MODULE
);
945 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
948 struct loop_func_table
*xfer
;
950 if (lo
->lo_encrypt_key_size
&& lo
->lo_key_owner
!= current
->uid
&&
951 !capable(CAP_SYS_ADMIN
))
953 if (lo
->lo_state
!= Lo_bound
)
955 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
958 err
= loop_release_xfer(lo
);
962 if (info
->lo_encrypt_type
) {
963 unsigned int type
= info
->lo_encrypt_type
;
965 if (type
>= MAX_LO_CRYPT
)
967 xfer
= xfer_funcs
[type
];
973 err
= loop_init_xfer(lo
, xfer
, info
);
977 if (lo
->lo_offset
!= info
->lo_offset
||
978 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
979 lo
->lo_offset
= info
->lo_offset
;
980 lo
->lo_sizelimit
= info
->lo_sizelimit
;
981 if (figure_loop_size(lo
))
985 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
986 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
987 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
988 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
992 lo
->transfer
= xfer
->transfer
;
993 lo
->ioctl
= xfer
->ioctl
;
995 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
996 lo
->lo_init
[0] = info
->lo_init
[0];
997 lo
->lo_init
[1] = info
->lo_init
[1];
998 if (info
->lo_encrypt_key_size
) {
999 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1000 info
->lo_encrypt_key_size
);
1001 lo
->lo_key_owner
= current
->uid
;
1008 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1010 struct file
*file
= lo
->lo_backing_file
;
1014 if (lo
->lo_state
!= Lo_bound
)
1016 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1019 memset(info
, 0, sizeof(*info
));
1020 info
->lo_number
= lo
->lo_number
;
1021 info
->lo_device
= huge_encode_dev(stat
.dev
);
1022 info
->lo_inode
= stat
.ino
;
1023 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1024 info
->lo_offset
= lo
->lo_offset
;
1025 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1026 info
->lo_flags
= lo
->lo_flags
;
1027 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1028 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1029 info
->lo_encrypt_type
=
1030 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1031 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1032 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1033 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1034 lo
->lo_encrypt_key_size
);
1040 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1042 memset(info64
, 0, sizeof(*info64
));
1043 info64
->lo_number
= info
->lo_number
;
1044 info64
->lo_device
= info
->lo_device
;
1045 info64
->lo_inode
= info
->lo_inode
;
1046 info64
->lo_rdevice
= info
->lo_rdevice
;
1047 info64
->lo_offset
= info
->lo_offset
;
1048 info64
->lo_sizelimit
= 0;
1049 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1050 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1051 info64
->lo_flags
= info
->lo_flags
;
1052 info64
->lo_init
[0] = info
->lo_init
[0];
1053 info64
->lo_init
[1] = info
->lo_init
[1];
1054 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1055 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1057 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1058 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1062 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1064 memset(info
, 0, sizeof(*info
));
1065 info
->lo_number
= info64
->lo_number
;
1066 info
->lo_device
= info64
->lo_device
;
1067 info
->lo_inode
= info64
->lo_inode
;
1068 info
->lo_rdevice
= info64
->lo_rdevice
;
1069 info
->lo_offset
= info64
->lo_offset
;
1070 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1071 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1072 info
->lo_flags
= info64
->lo_flags
;
1073 info
->lo_init
[0] = info64
->lo_init
[0];
1074 info
->lo_init
[1] = info64
->lo_init
[1];
1075 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1076 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1078 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1079 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1081 /* error in case values were truncated */
1082 if (info
->lo_device
!= info64
->lo_device
||
1083 info
->lo_rdevice
!= info64
->lo_rdevice
||
1084 info
->lo_inode
!= info64
->lo_inode
||
1085 info
->lo_offset
!= info64
->lo_offset
)
1092 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1094 struct loop_info info
;
1095 struct loop_info64 info64
;
1097 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1099 loop_info64_from_old(&info
, &info64
);
1100 return loop_set_status(lo
, &info64
);
1104 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1106 struct loop_info64 info64
;
1108 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1110 return loop_set_status(lo
, &info64
);
1114 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1115 struct loop_info info
;
1116 struct loop_info64 info64
;
1122 err
= loop_get_status(lo
, &info64
);
1124 err
= loop_info64_to_old(&info64
, &info
);
1125 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1132 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1133 struct loop_info64 info64
;
1139 err
= loop_get_status(lo
, &info64
);
1140 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1146 static int lo_ioctl(struct inode
* inode
, struct file
* file
,
1147 unsigned int cmd
, unsigned long arg
)
1149 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1152 mutex_lock(&lo
->lo_ctl_mutex
);
1155 err
= loop_set_fd(lo
, file
, inode
->i_bdev
, arg
);
1157 case LOOP_CHANGE_FD
:
1158 err
= loop_change_fd(lo
, file
, inode
->i_bdev
, arg
);
1161 err
= loop_clr_fd(lo
, inode
->i_bdev
);
1163 case LOOP_SET_STATUS
:
1164 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1166 case LOOP_GET_STATUS
:
1167 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1169 case LOOP_SET_STATUS64
:
1170 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1172 case LOOP_GET_STATUS64
:
1173 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1176 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1178 mutex_unlock(&lo
->lo_ctl_mutex
);
1182 #ifdef CONFIG_COMPAT
1183 struct compat_loop_info
{
1184 compat_int_t lo_number
; /* ioctl r/o */
1185 compat_dev_t lo_device
; /* ioctl r/o */
1186 compat_ulong_t lo_inode
; /* ioctl r/o */
1187 compat_dev_t lo_rdevice
; /* ioctl r/o */
1188 compat_int_t lo_offset
;
1189 compat_int_t lo_encrypt_type
;
1190 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1191 compat_int_t lo_flags
; /* ioctl r/o */
1192 char lo_name
[LO_NAME_SIZE
];
1193 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1194 compat_ulong_t lo_init
[2];
1199 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1200 * - noinlined to reduce stack space usage in main part of driver
1203 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1204 struct loop_info64
*info64
)
1206 struct compat_loop_info info
;
1208 if (copy_from_user(&info
, arg
, sizeof(info
)))
1211 memset(info64
, 0, sizeof(*info64
));
1212 info64
->lo_number
= info
.lo_number
;
1213 info64
->lo_device
= info
.lo_device
;
1214 info64
->lo_inode
= info
.lo_inode
;
1215 info64
->lo_rdevice
= info
.lo_rdevice
;
1216 info64
->lo_offset
= info
.lo_offset
;
1217 info64
->lo_sizelimit
= 0;
1218 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1219 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1220 info64
->lo_flags
= info
.lo_flags
;
1221 info64
->lo_init
[0] = info
.lo_init
[0];
1222 info64
->lo_init
[1] = info
.lo_init
[1];
1223 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1224 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1226 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1227 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1232 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1233 * - noinlined to reduce stack space usage in main part of driver
1236 loop_info64_to_compat(const struct loop_info64
*info64
,
1237 struct compat_loop_info __user
*arg
)
1239 struct compat_loop_info info
;
1241 memset(&info
, 0, sizeof(info
));
1242 info
.lo_number
= info64
->lo_number
;
1243 info
.lo_device
= info64
->lo_device
;
1244 info
.lo_inode
= info64
->lo_inode
;
1245 info
.lo_rdevice
= info64
->lo_rdevice
;
1246 info
.lo_offset
= info64
->lo_offset
;
1247 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1248 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1249 info
.lo_flags
= info64
->lo_flags
;
1250 info
.lo_init
[0] = info64
->lo_init
[0];
1251 info
.lo_init
[1] = info64
->lo_init
[1];
1252 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1253 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1255 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1256 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1258 /* error in case values were truncated */
1259 if (info
.lo_device
!= info64
->lo_device
||
1260 info
.lo_rdevice
!= info64
->lo_rdevice
||
1261 info
.lo_inode
!= info64
->lo_inode
||
1262 info
.lo_offset
!= info64
->lo_offset
||
1263 info
.lo_init
[0] != info64
->lo_init
[0] ||
1264 info
.lo_init
[1] != info64
->lo_init
[1])
1267 if (copy_to_user(arg
, &info
, sizeof(info
)))
1273 loop_set_status_compat(struct loop_device
*lo
,
1274 const struct compat_loop_info __user
*arg
)
1276 struct loop_info64 info64
;
1279 ret
= loop_info64_from_compat(arg
, &info64
);
1282 return loop_set_status(lo
, &info64
);
1286 loop_get_status_compat(struct loop_device
*lo
,
1287 struct compat_loop_info __user
*arg
)
1289 struct loop_info64 info64
;
1295 err
= loop_get_status(lo
, &info64
);
1297 err
= loop_info64_to_compat(&info64
, arg
);
1301 static long lo_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1303 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1304 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1309 case LOOP_SET_STATUS
:
1310 mutex_lock(&lo
->lo_ctl_mutex
);
1311 err
= loop_set_status_compat(
1312 lo
, (const struct compat_loop_info __user
*) arg
);
1313 mutex_unlock(&lo
->lo_ctl_mutex
);
1315 case LOOP_GET_STATUS
:
1316 mutex_lock(&lo
->lo_ctl_mutex
);
1317 err
= loop_get_status_compat(
1318 lo
, (struct compat_loop_info __user
*) arg
);
1319 mutex_unlock(&lo
->lo_ctl_mutex
);
1322 case LOOP_GET_STATUS64
:
1323 case LOOP_SET_STATUS64
:
1324 arg
= (unsigned long) compat_ptr(arg
);
1326 case LOOP_CHANGE_FD
:
1327 err
= lo_ioctl(inode
, file
, cmd
, arg
);
1338 static int lo_open(struct inode
*inode
, struct file
*file
)
1340 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1342 mutex_lock(&lo
->lo_ctl_mutex
);
1344 mutex_unlock(&lo
->lo_ctl_mutex
);
1349 static int lo_release(struct inode
*inode
, struct file
*file
)
1351 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1353 mutex_lock(&lo
->lo_ctl_mutex
);
1355 mutex_unlock(&lo
->lo_ctl_mutex
);
1360 static struct block_device_operations lo_fops
= {
1361 .owner
= THIS_MODULE
,
1363 .release
= lo_release
,
1365 #ifdef CONFIG_COMPAT
1366 .compat_ioctl
= lo_compat_ioctl
,
1371 * And now the modules code and kernel interface.
1373 static int max_loop
;
1374 module_param(max_loop
, int, 0);
1375 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1376 MODULE_LICENSE("GPL");
1377 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1379 int loop_register_transfer(struct loop_func_table
*funcs
)
1381 unsigned int n
= funcs
->number
;
1383 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1385 xfer_funcs
[n
] = funcs
;
1389 int loop_unregister_transfer(int number
)
1391 unsigned int n
= number
;
1392 struct loop_device
*lo
;
1393 struct loop_func_table
*xfer
;
1395 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1398 xfer_funcs
[n
] = NULL
;
1400 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1401 mutex_lock(&lo
->lo_ctl_mutex
);
1403 if (lo
->lo_encryption
== xfer
)
1404 loop_release_xfer(lo
);
1406 mutex_unlock(&lo
->lo_ctl_mutex
);
1412 EXPORT_SYMBOL(loop_register_transfer
);
1413 EXPORT_SYMBOL(loop_unregister_transfer
);
1415 static struct loop_device
*loop_alloc(int i
)
1417 struct loop_device
*lo
;
1418 struct gendisk
*disk
;
1420 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1424 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1428 disk
= lo
->lo_disk
= alloc_disk(1);
1430 goto out_free_queue
;
1432 mutex_init(&lo
->lo_ctl_mutex
);
1434 lo
->lo_thread
= NULL
;
1435 init_waitqueue_head(&lo
->lo_event
);
1436 spin_lock_init(&lo
->lo_lock
);
1437 disk
->major
= LOOP_MAJOR
;
1438 disk
->first_minor
= i
;
1439 disk
->fops
= &lo_fops
;
1440 disk
->private_data
= lo
;
1441 disk
->queue
= lo
->lo_queue
;
1442 sprintf(disk
->disk_name
, "loop%d", i
);
1446 blk_cleanup_queue(lo
->lo_queue
);
1453 static void loop_free(struct loop_device
*lo
)
1455 blk_cleanup_queue(lo
->lo_queue
);
1456 put_disk(lo
->lo_disk
);
1457 list_del(&lo
->lo_list
);
1461 static struct loop_device
*loop_init_one(int i
)
1463 struct loop_device
*lo
;
1465 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1466 if (lo
->lo_number
== i
)
1472 add_disk(lo
->lo_disk
);
1473 list_add_tail(&lo
->lo_list
, &loop_devices
);
1478 static void loop_del_one(struct loop_device
*lo
)
1480 del_gendisk(lo
->lo_disk
);
1484 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1486 struct loop_device
*lo
;
1487 struct kobject
*kobj
;
1489 mutex_lock(&loop_devices_mutex
);
1490 lo
= loop_init_one(dev
& MINORMASK
);
1491 kobj
= lo
? get_disk(lo
->lo_disk
) : ERR_PTR(-ENOMEM
);
1492 mutex_unlock(&loop_devices_mutex
);
1498 static int __init
loop_init(void)
1501 unsigned long range
;
1502 struct loop_device
*lo
, *next
;
1505 * loop module now has a feature to instantiate underlying device
1506 * structure on-demand, provided that there is an access dev node.
1507 * However, this will not work well with user space tool that doesn't
1508 * know about such "feature". In order to not break any existing
1509 * tool, we do the following:
1511 * (1) if max_loop is specified, create that many upfront, and this
1512 * also becomes a hard limit.
1513 * (2) if max_loop is not specified, create 8 loop device on module
1514 * load, user can further extend loop device by create dev node
1515 * themselves and have kernel automatically instantiate actual
1518 if (max_loop
> 1UL << MINORBITS
)
1526 range
= 1UL << MINORBITS
;
1529 if (register_blkdev(LOOP_MAJOR
, "loop"))
1532 for (i
= 0; i
< nr
; i
++) {
1536 list_add_tail(&lo
->lo_list
, &loop_devices
);
1539 /* point of no return */
1541 list_for_each_entry(lo
, &loop_devices
, lo_list
)
1542 add_disk(lo
->lo_disk
);
1544 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1545 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1547 printk(KERN_INFO
"loop: module loaded\n");
1551 printk(KERN_INFO
"loop: out of memory\n");
1553 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1556 unregister_blkdev(LOOP_MAJOR
, "loop");
1560 static void __exit
loop_exit(void)
1562 unsigned long range
;
1563 struct loop_device
*lo
, *next
;
1565 range
= max_loop
? max_loop
: 1UL << MINORBITS
;
1567 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1570 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1571 unregister_blkdev(LOOP_MAJOR
, "loop");
1574 module_init(loop_init
);
1575 module_exit(loop_exit
);
1578 static int __init
max_loop_setup(char *str
)
1580 max_loop
= simple_strtol(str
, NULL
, 0);
1584 __setup("max_loop=", max_loop_setup
);