2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3 * August 2002: added remote node KVA remap - Martin J. Bligh
5 * Copyright (C) 2002, IBM Corp.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/bootmem.h>
27 #include <linux/mmzone.h>
28 #include <linux/highmem.h>
29 #include <linux/initrd.h>
30 #include <linux/nodemask.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 #include <linux/pfn.h>
34 #include <linux/swap.h>
35 #include <linux/acpi.h>
38 #include <asm/setup.h>
39 #include <asm/mmzone.h>
40 #include <asm/bios_ebda.h>
42 struct pglist_data
*node_data
[MAX_NUMNODES
] __read_mostly
;
43 EXPORT_SYMBOL(node_data
);
44 static bootmem_data_t node0_bdata
;
47 * numa interface - we expect the numa architecture specific code to have
48 * populated the following initialisation.
50 * 1) node_online_map - the map of all nodes configured (online) in the system
51 * 2) node_start_pfn - the starting page frame number for a node
52 * 3) node_end_pfn - the ending page fram number for a node
54 unsigned long node_start_pfn
[MAX_NUMNODES
] __read_mostly
;
55 unsigned long node_end_pfn
[MAX_NUMNODES
] __read_mostly
;
58 #ifdef CONFIG_DISCONTIGMEM
60 * 4) physnode_map - the mapping between a pfn and owning node
61 * physnode_map keeps track of the physical memory layout of a generic
62 * numa node on a 256Mb break (each element of the array will
63 * represent 256Mb of memory and will be marked by the node id. so,
64 * if the first gig is on node 0, and the second gig is on node 1
65 * physnode_map will contain:
67 * physnode_map[0-3] = 0;
68 * physnode_map[4-7] = 1;
69 * physnode_map[8- ] = -1;
71 s8 physnode_map
[MAX_ELEMENTS
] __read_mostly
= { [0 ... (MAX_ELEMENTS
- 1)] = -1};
72 EXPORT_SYMBOL(physnode_map
);
74 void memory_present(int nid
, unsigned long start
, unsigned long end
)
78 printk(KERN_INFO
"Node: %d, start_pfn: %ld, end_pfn: %ld\n",
80 printk(KERN_DEBUG
" Setting physnode_map array to node %d for pfns:\n", nid
);
81 printk(KERN_DEBUG
" ");
82 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_ELEMENT
) {
83 physnode_map
[pfn
/ PAGES_PER_ELEMENT
] = nid
;
89 unsigned long node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
90 unsigned long end_pfn
)
92 unsigned long nr_pages
= end_pfn
- start_pfn
;
97 return (nr_pages
+ 1) * sizeof(struct page
);
101 extern unsigned long find_max_low_pfn(void);
102 extern void add_one_highpage_init(struct page
*, int, int);
103 extern unsigned long highend_pfn
, highstart_pfn
;
105 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
107 unsigned long node_remap_size
[MAX_NUMNODES
];
108 static void *node_remap_start_vaddr
[MAX_NUMNODES
];
109 void set_pmd_pfn(unsigned long vaddr
, unsigned long pfn
, pgprot_t flags
);
111 static unsigned long kva_start_pfn
;
112 static unsigned long kva_pages
;
114 * FLAT - support for basic PC memory model with discontig enabled, essentially
115 * a single node with all available processors in it with a flat
118 int __init
get_memcfg_numa_flat(void)
120 printk("NUMA - single node, flat memory mode\n");
122 /* Run the memory configuration and find the top of memory. */
123 propagate_e820_map();
124 node_start_pfn
[0] = 0;
125 node_end_pfn
[0] = max_pfn
;
126 memory_present(0, 0, max_pfn
);
128 /* Indicate there is one node available. */
129 nodes_clear(node_online_map
);
135 * Find the highest page frame number we have available for the node
137 static void __init
propagate_e820_map_node(int nid
)
139 if (node_end_pfn
[nid
] > max_pfn
)
140 node_end_pfn
[nid
] = max_pfn
;
142 * if a user has given mem=XXXX, then we need to make sure
143 * that the node _starts_ before that, too, not just ends
145 if (node_start_pfn
[nid
] > max_pfn
)
146 node_start_pfn
[nid
] = max_pfn
;
147 BUG_ON(node_start_pfn
[nid
] > node_end_pfn
[nid
]);
151 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
152 * method. For node zero take this from the bottom of memory, for
153 * subsequent nodes place them at node_remap_start_vaddr which contains
154 * node local data in physically node local memory. See setup_memory()
157 static void __init
allocate_pgdat(int nid
)
159 if (nid
&& node_has_online_mem(nid
))
160 NODE_DATA(nid
) = (pg_data_t
*)node_remap_start_vaddr
[nid
];
162 NODE_DATA(nid
) = (pg_data_t
*)(pfn_to_kaddr(min_low_pfn
));
163 min_low_pfn
+= PFN_UP(sizeof(pg_data_t
));
167 #ifdef CONFIG_DISCONTIGMEM
169 * In the discontig memory model, a portion of the kernel virtual area (KVA)
170 * is reserved and portions of nodes are mapped using it. This is to allow
171 * node-local memory to be allocated for structures that would normally require
172 * ZONE_NORMAL. The memory is allocated with alloc_remap() and callers
173 * should be prepared to allocate from the bootmem allocator instead. This KVA
174 * mechanism is incompatible with SPARSEMEM as it makes assumptions about the
175 * layout of memory that are broken if alloc_remap() succeeds for some of the
176 * map and fails for others
178 static unsigned long node_remap_start_pfn
[MAX_NUMNODES
];
179 static void *node_remap_end_vaddr
[MAX_NUMNODES
];
180 static void *node_remap_alloc_vaddr
[MAX_NUMNODES
];
181 static unsigned long node_remap_offset
[MAX_NUMNODES
];
183 void *alloc_remap(int nid
, unsigned long size
)
185 void *allocation
= node_remap_alloc_vaddr
[nid
];
187 size
= ALIGN(size
, L1_CACHE_BYTES
);
189 if (!allocation
|| (allocation
+ size
) >= node_remap_end_vaddr
[nid
])
192 node_remap_alloc_vaddr
[nid
] += size
;
193 memset(allocation
, 0, size
);
198 void __init
remap_numa_kva(void)
204 for_each_online_node(node
) {
205 for (pfn
=0; pfn
< node_remap_size
[node
]; pfn
+= PTRS_PER_PTE
) {
206 vaddr
= node_remap_start_vaddr
[node
]+(pfn
<<PAGE_SHIFT
);
207 set_pmd_pfn((ulong
) vaddr
,
208 node_remap_start_pfn
[node
] + pfn
,
214 static unsigned long calculate_numa_remap_pages(void)
217 unsigned long size
, reserve_pages
= 0;
220 for_each_online_node(nid
) {
221 unsigned old_end_pfn
= node_end_pfn
[nid
];
224 * The acpi/srat node info can show hot-add memroy zones
225 * where memory could be added but not currently present.
227 if (node_start_pfn
[nid
] > max_pfn
)
229 if (node_end_pfn
[nid
] > max_pfn
)
230 node_end_pfn
[nid
] = max_pfn
;
232 /* ensure the remap includes space for the pgdat. */
233 size
= node_remap_size
[nid
] + sizeof(pg_data_t
);
235 /* convert size to large (pmd size) pages, rounding up */
236 size
= (size
+ LARGE_PAGE_BYTES
- 1) / LARGE_PAGE_BYTES
;
237 /* now the roundup is correct, convert to PAGE_SIZE pages */
238 size
= size
* PTRS_PER_PTE
;
241 * Validate the region we are allocating only contains valid
244 for (pfn
= node_end_pfn
[nid
] - size
;
245 pfn
< node_end_pfn
[nid
]; pfn
++)
246 if (!page_is_ram(pfn
))
249 if (pfn
!= node_end_pfn
[nid
])
252 printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
254 node_remap_size
[nid
] = size
;
255 node_remap_offset
[nid
] = reserve_pages
;
256 reserve_pages
+= size
;
257 printk("Shrinking node %d from %ld pages to %ld pages\n",
258 nid
, node_end_pfn
[nid
], node_end_pfn
[nid
] - size
);
260 if (node_end_pfn
[nid
] & (PTRS_PER_PTE
-1)) {
262 * Align node_end_pfn[] and node_remap_start_pfn[] to
263 * pmd boundary. remap_numa_kva will barf otherwise.
265 printk("Shrinking node %d further by %ld pages for proper alignment\n",
266 nid
, node_end_pfn
[nid
] & (PTRS_PER_PTE
-1));
267 size
+= node_end_pfn
[nid
] & (PTRS_PER_PTE
-1);
270 node_end_pfn
[nid
] -= size
;
271 node_remap_start_pfn
[nid
] = node_end_pfn
[nid
];
272 shrink_active_range(nid
, old_end_pfn
, node_end_pfn
[nid
]);
274 printk("Reserving total of %ld pages for numa KVA remap\n",
276 return reserve_pages
;
279 static void init_remap_allocator(int nid
)
281 node_remap_start_vaddr
[nid
] = pfn_to_kaddr(
282 kva_start_pfn
+ node_remap_offset
[nid
]);
283 node_remap_end_vaddr
[nid
] = node_remap_start_vaddr
[nid
] +
284 (node_remap_size
[nid
] * PAGE_SIZE
);
285 node_remap_alloc_vaddr
[nid
] = node_remap_start_vaddr
[nid
] +
286 ALIGN(sizeof(pg_data_t
), PAGE_SIZE
);
288 printk ("node %d will remap to vaddr %08lx - %08lx\n", nid
,
289 (ulong
) node_remap_start_vaddr
[nid
],
290 (ulong
) pfn_to_kaddr(highstart_pfn
291 + node_remap_offset
[nid
] + node_remap_size
[nid
]));
294 void *alloc_remap(int nid
, unsigned long size
)
299 static unsigned long calculate_numa_remap_pages(void)
304 static void init_remap_allocator(int nid
)
308 void __init
remap_numa_kva(void)
311 #endif /* CONFIG_DISCONTIGMEM */
313 extern void setup_bootmem_allocator(void);
314 unsigned long __init
setup_memory(void)
317 unsigned long system_start_pfn
, system_max_low_pfn
;
318 unsigned long wasted_pages
;
321 * When mapping a NUMA machine we allocate the node_mem_map arrays
322 * from node local memory. They are then mapped directly into KVA
323 * between zone normal and vmalloc space. Calculate the size of
324 * this space and use it to adjust the boundary between ZONE_NORMAL
329 kva_pages
= calculate_numa_remap_pages();
331 /* partially used pages are not usable - thus round upwards */
332 system_start_pfn
= min_low_pfn
= PFN_UP(init_pg_tables_end
);
334 kva_start_pfn
= find_max_low_pfn() - kva_pages
;
336 #ifdef CONFIG_BLK_DEV_INITRD
337 /* Numa kva area is below the initrd */
339 kva_start_pfn
= PFN_DOWN(initrd_start
- PAGE_OFFSET
)
344 * We waste pages past at the end of the KVA for no good reason other
345 * than how it is located. This is bad.
347 wasted_pages
= kva_start_pfn
& (PTRS_PER_PTE
-1);
348 kva_start_pfn
-= wasted_pages
;
349 kva_pages
+= wasted_pages
;
351 system_max_low_pfn
= max_low_pfn
= find_max_low_pfn();
352 printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
353 kva_start_pfn
, max_low_pfn
);
354 printk("max_pfn = %ld\n", max_pfn
);
355 #ifdef CONFIG_HIGHMEM
356 highstart_pfn
= highend_pfn
= max_pfn
;
357 if (max_pfn
> system_max_low_pfn
)
358 highstart_pfn
= system_max_low_pfn
;
359 printk(KERN_NOTICE
"%ldMB HIGHMEM available.\n",
360 pages_to_mb(highend_pfn
- highstart_pfn
));
361 num_physpages
= highend_pfn
;
362 high_memory
= (void *) __va(highstart_pfn
* PAGE_SIZE
- 1) + 1;
364 num_physpages
= system_max_low_pfn
;
365 high_memory
= (void *) __va(system_max_low_pfn
* PAGE_SIZE
- 1) + 1;
367 printk(KERN_NOTICE
"%ldMB LOWMEM available.\n",
368 pages_to_mb(system_max_low_pfn
));
369 printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
370 min_low_pfn
, max_low_pfn
, highstart_pfn
);
372 printk("Low memory ends at vaddr %08lx\n",
373 (ulong
) pfn_to_kaddr(max_low_pfn
));
374 for_each_online_node(nid
) {
375 init_remap_allocator(nid
);
379 printk("High memory starts at vaddr %08lx\n",
380 (ulong
) pfn_to_kaddr(highstart_pfn
));
381 for_each_online_node(nid
)
382 propagate_e820_map_node(nid
);
384 memset(NODE_DATA(0), 0, sizeof(struct pglist_data
));
385 NODE_DATA(0)->bdata
= &node0_bdata
;
386 setup_bootmem_allocator();
390 void __init
numa_kva_reserve(void)
393 reserve_bootmem(PFN_PHYS(kva_start_pfn
), PFN_PHYS(kva_pages
),
397 void __init
zone_sizes_init(void)
400 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
401 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
402 max_zone_pfns
[ZONE_DMA
] =
403 virt_to_phys((char *)MAX_DMA_ADDRESS
) >> PAGE_SHIFT
;
404 max_zone_pfns
[ZONE_NORMAL
] = max_low_pfn
;
405 #ifdef CONFIG_HIGHMEM
406 max_zone_pfns
[ZONE_HIGHMEM
] = highend_pfn
;
409 /* If SRAT has not registered memory, register it now */
410 if (find_max_pfn_with_active_regions() == 0) {
411 for_each_online_node(nid
) {
412 if (node_has_online_mem(nid
))
413 add_active_range(nid
, node_start_pfn
[nid
],
418 free_area_init_nodes(max_zone_pfns
);
422 void __init
set_highmem_pages_init(int bad_ppro
)
424 #ifdef CONFIG_HIGHMEM
428 for_each_zone(zone
) {
429 unsigned long node_pfn
, zone_start_pfn
, zone_end_pfn
;
431 if (!is_highmem(zone
))
434 zone_start_pfn
= zone
->zone_start_pfn
;
435 zone_end_pfn
= zone_start_pfn
+ zone
->spanned_pages
;
437 printk("Initializing %s for node %d (%08lx:%08lx)\n",
438 zone
->name
, zone_to_nid(zone
),
439 zone_start_pfn
, zone_end_pfn
);
441 for (node_pfn
= zone_start_pfn
; node_pfn
< zone_end_pfn
; node_pfn
++) {
442 if (!pfn_valid(node_pfn
))
444 page
= pfn_to_page(node_pfn
);
445 add_one_highpage_init(page
, node_pfn
, bad_ppro
);
448 totalram_pages
+= totalhigh_pages
;
452 #ifdef CONFIG_MEMORY_HOTPLUG
453 static int paddr_to_nid(u64 addr
)
456 unsigned long pfn
= PFN_DOWN(addr
);
459 if (node_start_pfn
[nid
] <= pfn
&&
460 pfn
< node_end_pfn
[nid
])
467 * This function is used to ask node id BEFORE memmap and mem_section's
468 * initialization (pfn_to_nid() can't be used yet).
469 * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
471 int memory_add_physaddr_to_nid(u64 addr
)
473 int nid
= paddr_to_nid(addr
);
474 return (nid
>= 0) ? nid
: 0;
477 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid
);
480 #ifndef CONFIG_HAVE_ARCH_PARSE_SRAT
482 * XXX FIXME: Make SLIT table parsing available to 32-bit NUMA
484 * These stub functions are needed to compile 32-bit NUMA when SRAT is
485 * not set. There are functions in srat_64.c for parsing this table
486 * and it may be possible to make them common functions.
488 void acpi_numa_slit_init (struct acpi_table_slit
*slit
)
490 printk(KERN_INFO
"ACPI: No support for parsing SLIT table\n");
493 void acpi_numa_processor_affinity_init (struct acpi_srat_cpu_affinity
*pa
)
497 void acpi_numa_memory_affinity_init (struct acpi_srat_mem_affinity
*ma
)
501 void acpi_numa_arch_fixup(void)
504 #endif /* CONFIG_HAVE_ARCH_PARSE_SRAT */