Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[linux-2.6/openmoko-kernel/knife-kernel.git] / mm / page_alloc.c
blob63835579323a7ca70722154f5b3e6560872da409
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
101 #endif
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
193 return ret;
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
203 return 1;
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
215 return 0;
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
220 return 0;
222 #endif
224 static void bad_page(struct page *page)
226 void *pc = page_get_page_cgroup(page);
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~(1 << PG_lru |
241 1 << PG_private |
242 1 << PG_locked |
243 1 << PG_active |
244 1 << PG_dirty |
245 1 << PG_reclaim |
246 1 << PG_slab |
247 1 << PG_swapcache |
248 1 << PG_writeback |
249 1 << PG_buddy );
250 set_page_count(page, 0);
251 reset_page_mapcount(page);
252 page->mapping = NULL;
253 add_taint(TAINT_BAD_PAGE);
257 * Higher-order pages are called "compound pages". They are structured thusly:
259 * The first PAGE_SIZE page is called the "head page".
261 * The remaining PAGE_SIZE pages are called "tail pages".
263 * All pages have PG_compound set. All pages have their ->private pointing at
264 * the head page (even the head page has this).
266 * The first tail page's ->lru.next holds the address of the compound page's
267 * put_page() function. Its ->lru.prev holds the order of allocation.
268 * This usage means that zero-order pages may not be compound.
271 static void free_compound_page(struct page *page)
273 __free_pages_ok(page, compound_order(page));
276 static void prep_compound_page(struct page *page, unsigned long order)
278 int i;
279 int nr_pages = 1 << order;
281 set_compound_page_dtor(page, free_compound_page);
282 set_compound_order(page, order);
283 __SetPageHead(page);
284 for (i = 1; i < nr_pages; i++) {
285 struct page *p = page + i;
287 __SetPageTail(p);
288 p->first_page = page;
292 static void destroy_compound_page(struct page *page, unsigned long order)
294 int i;
295 int nr_pages = 1 << order;
297 if (unlikely(compound_order(page) != order))
298 bad_page(page);
300 if (unlikely(!PageHead(page)))
301 bad_page(page);
302 __ClearPageHead(page);
303 for (i = 1; i < nr_pages; i++) {
304 struct page *p = page + i;
306 if (unlikely(!PageTail(p) |
307 (p->first_page != page)))
308 bad_page(page);
309 __ClearPageTail(p);
313 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
315 int i;
318 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
319 * and __GFP_HIGHMEM from hard or soft interrupt context.
321 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
322 for (i = 0; i < (1 << order); i++)
323 clear_highpage(page + i);
326 static inline void set_page_order(struct page *page, int order)
328 set_page_private(page, order);
329 __SetPageBuddy(page);
332 static inline void rmv_page_order(struct page *page)
334 __ClearPageBuddy(page);
335 set_page_private(page, 0);
339 * Locate the struct page for both the matching buddy in our
340 * pair (buddy1) and the combined O(n+1) page they form (page).
342 * 1) Any buddy B1 will have an order O twin B2 which satisfies
343 * the following equation:
344 * B2 = B1 ^ (1 << O)
345 * For example, if the starting buddy (buddy2) is #8 its order
346 * 1 buddy is #10:
347 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
349 * 2) Any buddy B will have an order O+1 parent P which
350 * satisfies the following equation:
351 * P = B & ~(1 << O)
353 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
355 static inline struct page *
356 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
358 unsigned long buddy_idx = page_idx ^ (1 << order);
360 return page + (buddy_idx - page_idx);
363 static inline unsigned long
364 __find_combined_index(unsigned long page_idx, unsigned int order)
366 return (page_idx & ~(1 << order));
370 * This function checks whether a page is free && is the buddy
371 * we can do coalesce a page and its buddy if
372 * (a) the buddy is not in a hole &&
373 * (b) the buddy is in the buddy system &&
374 * (c) a page and its buddy have the same order &&
375 * (d) a page and its buddy are in the same zone.
377 * For recording whether a page is in the buddy system, we use PG_buddy.
378 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
380 * For recording page's order, we use page_private(page).
382 static inline int page_is_buddy(struct page *page, struct page *buddy,
383 int order)
385 if (!pfn_valid_within(page_to_pfn(buddy)))
386 return 0;
388 if (page_zone_id(page) != page_zone_id(buddy))
389 return 0;
391 if (PageBuddy(buddy) && page_order(buddy) == order) {
392 BUG_ON(page_count(buddy) != 0);
393 return 1;
395 return 0;
399 * Freeing function for a buddy system allocator.
401 * The concept of a buddy system is to maintain direct-mapped table
402 * (containing bit values) for memory blocks of various "orders".
403 * The bottom level table contains the map for the smallest allocatable
404 * units of memory (here, pages), and each level above it describes
405 * pairs of units from the levels below, hence, "buddies".
406 * At a high level, all that happens here is marking the table entry
407 * at the bottom level available, and propagating the changes upward
408 * as necessary, plus some accounting needed to play nicely with other
409 * parts of the VM system.
410 * At each level, we keep a list of pages, which are heads of continuous
411 * free pages of length of (1 << order) and marked with PG_buddy. Page's
412 * order is recorded in page_private(page) field.
413 * So when we are allocating or freeing one, we can derive the state of the
414 * other. That is, if we allocate a small block, and both were
415 * free, the remainder of the region must be split into blocks.
416 * If a block is freed, and its buddy is also free, then this
417 * triggers coalescing into a block of larger size.
419 * -- wli
422 static inline void __free_one_page(struct page *page,
423 struct zone *zone, unsigned int order)
425 unsigned long page_idx;
426 int order_size = 1 << order;
427 int migratetype = get_pageblock_migratetype(page);
429 if (unlikely(PageCompound(page)))
430 destroy_compound_page(page, order);
432 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
434 VM_BUG_ON(page_idx & (order_size - 1));
435 VM_BUG_ON(bad_range(zone, page));
437 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
438 while (order < MAX_ORDER-1) {
439 unsigned long combined_idx;
440 struct page *buddy;
442 buddy = __page_find_buddy(page, page_idx, order);
443 if (!page_is_buddy(page, buddy, order))
444 break; /* Move the buddy up one level. */
446 list_del(&buddy->lru);
447 zone->free_area[order].nr_free--;
448 rmv_page_order(buddy);
449 combined_idx = __find_combined_index(page_idx, order);
450 page = page + (combined_idx - page_idx);
451 page_idx = combined_idx;
452 order++;
454 set_page_order(page, order);
455 list_add(&page->lru,
456 &zone->free_area[order].free_list[migratetype]);
457 zone->free_area[order].nr_free++;
460 static inline int free_pages_check(struct page *page)
462 if (unlikely(page_mapcount(page) |
463 (page->mapping != NULL) |
464 (page_get_page_cgroup(page) != NULL) |
465 (page_count(page) != 0) |
466 (page->flags & (
467 1 << PG_lru |
468 1 << PG_private |
469 1 << PG_locked |
470 1 << PG_active |
471 1 << PG_slab |
472 1 << PG_swapcache |
473 1 << PG_writeback |
474 1 << PG_reserved |
475 1 << PG_buddy ))))
476 bad_page(page);
477 if (PageDirty(page))
478 __ClearPageDirty(page);
480 * For now, we report if PG_reserved was found set, but do not
481 * clear it, and do not free the page. But we shall soon need
482 * to do more, for when the ZERO_PAGE count wraps negative.
484 return PageReserved(page);
488 * Frees a list of pages.
489 * Assumes all pages on list are in same zone, and of same order.
490 * count is the number of pages to free.
492 * If the zone was previously in an "all pages pinned" state then look to
493 * see if this freeing clears that state.
495 * And clear the zone's pages_scanned counter, to hold off the "all pages are
496 * pinned" detection logic.
498 static void free_pages_bulk(struct zone *zone, int count,
499 struct list_head *list, int order)
501 spin_lock(&zone->lock);
502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 zone->pages_scanned = 0;
504 while (count--) {
505 struct page *page;
507 VM_BUG_ON(list_empty(list));
508 page = list_entry(list->prev, struct page, lru);
509 /* have to delete it as __free_one_page list manipulates */
510 list_del(&page->lru);
511 __free_one_page(page, zone, order);
513 spin_unlock(&zone->lock);
516 static void free_one_page(struct zone *zone, struct page *page, int order)
518 spin_lock(&zone->lock);
519 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
520 zone->pages_scanned = 0;
521 __free_one_page(page, zone, order);
522 spin_unlock(&zone->lock);
525 static void __free_pages_ok(struct page *page, unsigned int order)
527 unsigned long flags;
528 int i;
529 int reserved = 0;
531 for (i = 0 ; i < (1 << order) ; ++i)
532 reserved += free_pages_check(page + i);
533 if (reserved)
534 return;
536 if (!PageHighMem(page)) {
537 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
538 debug_check_no_obj_freed(page_address(page),
539 PAGE_SIZE << order);
541 arch_free_page(page, order);
542 kernel_map_pages(page, 1 << order, 0);
544 local_irq_save(flags);
545 __count_vm_events(PGFREE, 1 << order);
546 free_one_page(page_zone(page), page, order);
547 local_irq_restore(flags);
551 * permit the bootmem allocator to evade page validation on high-order frees
553 void __free_pages_bootmem(struct page *page, unsigned int order)
555 if (order == 0) {
556 __ClearPageReserved(page);
557 set_page_count(page, 0);
558 set_page_refcounted(page);
559 __free_page(page);
560 } else {
561 int loop;
563 prefetchw(page);
564 for (loop = 0; loop < BITS_PER_LONG; loop++) {
565 struct page *p = &page[loop];
567 if (loop + 1 < BITS_PER_LONG)
568 prefetchw(p + 1);
569 __ClearPageReserved(p);
570 set_page_count(p, 0);
573 set_page_refcounted(page);
574 __free_pages(page, order);
580 * The order of subdivision here is critical for the IO subsystem.
581 * Please do not alter this order without good reasons and regression
582 * testing. Specifically, as large blocks of memory are subdivided,
583 * the order in which smaller blocks are delivered depends on the order
584 * they're subdivided in this function. This is the primary factor
585 * influencing the order in which pages are delivered to the IO
586 * subsystem according to empirical testing, and this is also justified
587 * by considering the behavior of a buddy system containing a single
588 * large block of memory acted on by a series of small allocations.
589 * This behavior is a critical factor in sglist merging's success.
591 * -- wli
593 static inline void expand(struct zone *zone, struct page *page,
594 int low, int high, struct free_area *area,
595 int migratetype)
597 unsigned long size = 1 << high;
599 while (high > low) {
600 area--;
601 high--;
602 size >>= 1;
603 VM_BUG_ON(bad_range(zone, &page[size]));
604 list_add(&page[size].lru, &area->free_list[migratetype]);
605 area->nr_free++;
606 set_page_order(&page[size], high);
611 * This page is about to be returned from the page allocator
613 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
615 if (unlikely(page_mapcount(page) |
616 (page->mapping != NULL) |
617 (page_get_page_cgroup(page) != NULL) |
618 (page_count(page) != 0) |
619 (page->flags & (
620 1 << PG_lru |
621 1 << PG_private |
622 1 << PG_locked |
623 1 << PG_active |
624 1 << PG_dirty |
625 1 << PG_slab |
626 1 << PG_swapcache |
627 1 << PG_writeback |
628 1 << PG_reserved |
629 1 << PG_buddy ))))
630 bad_page(page);
633 * For now, we report if PG_reserved was found set, but do not
634 * clear it, and do not allocate the page: as a safety net.
636 if (PageReserved(page))
637 return 1;
639 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
640 1 << PG_referenced | 1 << PG_arch_1 |
641 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
642 set_page_private(page, 0);
643 set_page_refcounted(page);
645 arch_alloc_page(page, order);
646 kernel_map_pages(page, 1 << order, 1);
648 if (gfp_flags & __GFP_ZERO)
649 prep_zero_page(page, order, gfp_flags);
651 if (order && (gfp_flags & __GFP_COMP))
652 prep_compound_page(page, order);
654 return 0;
658 * Go through the free lists for the given migratetype and remove
659 * the smallest available page from the freelists
661 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
662 int migratetype)
664 unsigned int current_order;
665 struct free_area * area;
666 struct page *page;
668 /* Find a page of the appropriate size in the preferred list */
669 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
670 area = &(zone->free_area[current_order]);
671 if (list_empty(&area->free_list[migratetype]))
672 continue;
674 page = list_entry(area->free_list[migratetype].next,
675 struct page, lru);
676 list_del(&page->lru);
677 rmv_page_order(page);
678 area->nr_free--;
679 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
680 expand(zone, page, order, current_order, area, migratetype);
681 return page;
684 return NULL;
689 * This array describes the order lists are fallen back to when
690 * the free lists for the desirable migrate type are depleted
692 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
693 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
694 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
695 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
700 * Move the free pages in a range to the free lists of the requested type.
701 * Note that start_page and end_pages are not aligned on a pageblock
702 * boundary. If alignment is required, use move_freepages_block()
704 int move_freepages(struct zone *zone,
705 struct page *start_page, struct page *end_page,
706 int migratetype)
708 struct page *page;
709 unsigned long order;
710 int pages_moved = 0;
712 #ifndef CONFIG_HOLES_IN_ZONE
714 * page_zone is not safe to call in this context when
715 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
716 * anyway as we check zone boundaries in move_freepages_block().
717 * Remove at a later date when no bug reports exist related to
718 * grouping pages by mobility
720 BUG_ON(page_zone(start_page) != page_zone(end_page));
721 #endif
723 for (page = start_page; page <= end_page;) {
724 if (!pfn_valid_within(page_to_pfn(page))) {
725 page++;
726 continue;
729 if (!PageBuddy(page)) {
730 page++;
731 continue;
734 order = page_order(page);
735 list_del(&page->lru);
736 list_add(&page->lru,
737 &zone->free_area[order].free_list[migratetype]);
738 page += 1 << order;
739 pages_moved += 1 << order;
742 return pages_moved;
745 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
747 unsigned long start_pfn, end_pfn;
748 struct page *start_page, *end_page;
750 start_pfn = page_to_pfn(page);
751 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
752 start_page = pfn_to_page(start_pfn);
753 end_page = start_page + pageblock_nr_pages - 1;
754 end_pfn = start_pfn + pageblock_nr_pages - 1;
756 /* Do not cross zone boundaries */
757 if (start_pfn < zone->zone_start_pfn)
758 start_page = page;
759 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
760 return 0;
762 return move_freepages(zone, start_page, end_page, migratetype);
765 /* Remove an element from the buddy allocator from the fallback list */
766 static struct page *__rmqueue_fallback(struct zone *zone, int order,
767 int start_migratetype)
769 struct free_area * area;
770 int current_order;
771 struct page *page;
772 int migratetype, i;
774 /* Find the largest possible block of pages in the other list */
775 for (current_order = MAX_ORDER-1; current_order >= order;
776 --current_order) {
777 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
778 migratetype = fallbacks[start_migratetype][i];
780 /* MIGRATE_RESERVE handled later if necessary */
781 if (migratetype == MIGRATE_RESERVE)
782 continue;
784 area = &(zone->free_area[current_order]);
785 if (list_empty(&area->free_list[migratetype]))
786 continue;
788 page = list_entry(area->free_list[migratetype].next,
789 struct page, lru);
790 area->nr_free--;
793 * If breaking a large block of pages, move all free
794 * pages to the preferred allocation list. If falling
795 * back for a reclaimable kernel allocation, be more
796 * agressive about taking ownership of free pages
798 if (unlikely(current_order >= (pageblock_order >> 1)) ||
799 start_migratetype == MIGRATE_RECLAIMABLE) {
800 unsigned long pages;
801 pages = move_freepages_block(zone, page,
802 start_migratetype);
804 /* Claim the whole block if over half of it is free */
805 if (pages >= (1 << (pageblock_order-1)))
806 set_pageblock_migratetype(page,
807 start_migratetype);
809 migratetype = start_migratetype;
812 /* Remove the page from the freelists */
813 list_del(&page->lru);
814 rmv_page_order(page);
815 __mod_zone_page_state(zone, NR_FREE_PAGES,
816 -(1UL << order));
818 if (current_order == pageblock_order)
819 set_pageblock_migratetype(page,
820 start_migratetype);
822 expand(zone, page, order, current_order, area, migratetype);
823 return page;
827 /* Use MIGRATE_RESERVE rather than fail an allocation */
828 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
832 * Do the hard work of removing an element from the buddy allocator.
833 * Call me with the zone->lock already held.
835 static struct page *__rmqueue(struct zone *zone, unsigned int order,
836 int migratetype)
838 struct page *page;
840 page = __rmqueue_smallest(zone, order, migratetype);
842 if (unlikely(!page))
843 page = __rmqueue_fallback(zone, order, migratetype);
845 return page;
849 * Obtain a specified number of elements from the buddy allocator, all under
850 * a single hold of the lock, for efficiency. Add them to the supplied list.
851 * Returns the number of new pages which were placed at *list.
853 static int rmqueue_bulk(struct zone *zone, unsigned int order,
854 unsigned long count, struct list_head *list,
855 int migratetype)
857 int i;
859 spin_lock(&zone->lock);
860 for (i = 0; i < count; ++i) {
861 struct page *page = __rmqueue(zone, order, migratetype);
862 if (unlikely(page == NULL))
863 break;
866 * Split buddy pages returned by expand() are received here
867 * in physical page order. The page is added to the callers and
868 * list and the list head then moves forward. From the callers
869 * perspective, the linked list is ordered by page number in
870 * some conditions. This is useful for IO devices that can
871 * merge IO requests if the physical pages are ordered
872 * properly.
874 list_add(&page->lru, list);
875 set_page_private(page, migratetype);
876 list = &page->lru;
878 spin_unlock(&zone->lock);
879 return i;
882 #ifdef CONFIG_NUMA
884 * Called from the vmstat counter updater to drain pagesets of this
885 * currently executing processor on remote nodes after they have
886 * expired.
888 * Note that this function must be called with the thread pinned to
889 * a single processor.
891 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
893 unsigned long flags;
894 int to_drain;
896 local_irq_save(flags);
897 if (pcp->count >= pcp->batch)
898 to_drain = pcp->batch;
899 else
900 to_drain = pcp->count;
901 free_pages_bulk(zone, to_drain, &pcp->list, 0);
902 pcp->count -= to_drain;
903 local_irq_restore(flags);
905 #endif
908 * Drain pages of the indicated processor.
910 * The processor must either be the current processor and the
911 * thread pinned to the current processor or a processor that
912 * is not online.
914 static void drain_pages(unsigned int cpu)
916 unsigned long flags;
917 struct zone *zone;
919 for_each_zone(zone) {
920 struct per_cpu_pageset *pset;
921 struct per_cpu_pages *pcp;
923 if (!populated_zone(zone))
924 continue;
926 pset = zone_pcp(zone, cpu);
928 pcp = &pset->pcp;
929 local_irq_save(flags);
930 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
931 pcp->count = 0;
932 local_irq_restore(flags);
937 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
939 void drain_local_pages(void *arg)
941 drain_pages(smp_processor_id());
945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
947 void drain_all_pages(void)
949 on_each_cpu(drain_local_pages, NULL, 0, 1);
952 #ifdef CONFIG_HIBERNATION
954 void mark_free_pages(struct zone *zone)
956 unsigned long pfn, max_zone_pfn;
957 unsigned long flags;
958 int order, t;
959 struct list_head *curr;
961 if (!zone->spanned_pages)
962 return;
964 spin_lock_irqsave(&zone->lock, flags);
966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
968 if (pfn_valid(pfn)) {
969 struct page *page = pfn_to_page(pfn);
971 if (!swsusp_page_is_forbidden(page))
972 swsusp_unset_page_free(page);
975 for_each_migratetype_order(order, t) {
976 list_for_each(curr, &zone->free_area[order].free_list[t]) {
977 unsigned long i;
979 pfn = page_to_pfn(list_entry(curr, struct page, lru));
980 for (i = 0; i < (1UL << order); i++)
981 swsusp_set_page_free(pfn_to_page(pfn + i));
984 spin_unlock_irqrestore(&zone->lock, flags);
986 #endif /* CONFIG_PM */
989 * Free a 0-order page
991 static void free_hot_cold_page(struct page *page, int cold)
993 struct zone *zone = page_zone(page);
994 struct per_cpu_pages *pcp;
995 unsigned long flags;
997 if (PageAnon(page))
998 page->mapping = NULL;
999 if (free_pages_check(page))
1000 return;
1002 if (!PageHighMem(page)) {
1003 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1004 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1006 arch_free_page(page, 0);
1007 kernel_map_pages(page, 1, 0);
1009 pcp = &zone_pcp(zone, get_cpu())->pcp;
1010 local_irq_save(flags);
1011 __count_vm_event(PGFREE);
1012 if (cold)
1013 list_add_tail(&page->lru, &pcp->list);
1014 else
1015 list_add(&page->lru, &pcp->list);
1016 set_page_private(page, get_pageblock_migratetype(page));
1017 pcp->count++;
1018 if (pcp->count >= pcp->high) {
1019 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1020 pcp->count -= pcp->batch;
1022 local_irq_restore(flags);
1023 put_cpu();
1026 void free_hot_page(struct page *page)
1028 free_hot_cold_page(page, 0);
1031 void free_cold_page(struct page *page)
1033 free_hot_cold_page(page, 1);
1037 * split_page takes a non-compound higher-order page, and splits it into
1038 * n (1<<order) sub-pages: page[0..n]
1039 * Each sub-page must be freed individually.
1041 * Note: this is probably too low level an operation for use in drivers.
1042 * Please consult with lkml before using this in your driver.
1044 void split_page(struct page *page, unsigned int order)
1046 int i;
1048 VM_BUG_ON(PageCompound(page));
1049 VM_BUG_ON(!page_count(page));
1050 for (i = 1; i < (1 << order); i++)
1051 set_page_refcounted(page + i);
1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1057 * or two.
1059 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1060 struct zone *zone, int order, gfp_t gfp_flags)
1062 unsigned long flags;
1063 struct page *page;
1064 int cold = !!(gfp_flags & __GFP_COLD);
1065 int cpu;
1066 int migratetype = allocflags_to_migratetype(gfp_flags);
1068 again:
1069 cpu = get_cpu();
1070 if (likely(order == 0)) {
1071 struct per_cpu_pages *pcp;
1073 pcp = &zone_pcp(zone, cpu)->pcp;
1074 local_irq_save(flags);
1075 if (!pcp->count) {
1076 pcp->count = rmqueue_bulk(zone, 0,
1077 pcp->batch, &pcp->list, migratetype);
1078 if (unlikely(!pcp->count))
1079 goto failed;
1082 /* Find a page of the appropriate migrate type */
1083 if (cold) {
1084 list_for_each_entry_reverse(page, &pcp->list, lru)
1085 if (page_private(page) == migratetype)
1086 break;
1087 } else {
1088 list_for_each_entry(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1093 /* Allocate more to the pcp list if necessary */
1094 if (unlikely(&page->lru == &pcp->list)) {
1095 pcp->count += rmqueue_bulk(zone, 0,
1096 pcp->batch, &pcp->list, migratetype);
1097 page = list_entry(pcp->list.next, struct page, lru);
1100 list_del(&page->lru);
1101 pcp->count--;
1102 } else {
1103 spin_lock_irqsave(&zone->lock, flags);
1104 page = __rmqueue(zone, order, migratetype);
1105 spin_unlock(&zone->lock);
1106 if (!page)
1107 goto failed;
1110 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1111 zone_statistics(preferred_zone, zone);
1112 local_irq_restore(flags);
1113 put_cpu();
1115 VM_BUG_ON(bad_range(zone, page));
1116 if (prep_new_page(page, order, gfp_flags))
1117 goto again;
1118 return page;
1120 failed:
1121 local_irq_restore(flags);
1122 put_cpu();
1123 return NULL;
1126 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1127 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1128 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1129 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1130 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1131 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1132 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1134 #ifdef CONFIG_FAIL_PAGE_ALLOC
1136 static struct fail_page_alloc_attr {
1137 struct fault_attr attr;
1139 u32 ignore_gfp_highmem;
1140 u32 ignore_gfp_wait;
1141 u32 min_order;
1143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1145 struct dentry *ignore_gfp_highmem_file;
1146 struct dentry *ignore_gfp_wait_file;
1147 struct dentry *min_order_file;
1149 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1151 } fail_page_alloc = {
1152 .attr = FAULT_ATTR_INITIALIZER,
1153 .ignore_gfp_wait = 1,
1154 .ignore_gfp_highmem = 1,
1155 .min_order = 1,
1158 static int __init setup_fail_page_alloc(char *str)
1160 return setup_fault_attr(&fail_page_alloc.attr, str);
1162 __setup("fail_page_alloc=", setup_fail_page_alloc);
1164 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1166 if (order < fail_page_alloc.min_order)
1167 return 0;
1168 if (gfp_mask & __GFP_NOFAIL)
1169 return 0;
1170 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1171 return 0;
1172 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1173 return 0;
1175 return should_fail(&fail_page_alloc.attr, 1 << order);
1178 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1180 static int __init fail_page_alloc_debugfs(void)
1182 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1183 struct dentry *dir;
1184 int err;
1186 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1187 "fail_page_alloc");
1188 if (err)
1189 return err;
1190 dir = fail_page_alloc.attr.dentries.dir;
1192 fail_page_alloc.ignore_gfp_wait_file =
1193 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1194 &fail_page_alloc.ignore_gfp_wait);
1196 fail_page_alloc.ignore_gfp_highmem_file =
1197 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1198 &fail_page_alloc.ignore_gfp_highmem);
1199 fail_page_alloc.min_order_file =
1200 debugfs_create_u32("min-order", mode, dir,
1201 &fail_page_alloc.min_order);
1203 if (!fail_page_alloc.ignore_gfp_wait_file ||
1204 !fail_page_alloc.ignore_gfp_highmem_file ||
1205 !fail_page_alloc.min_order_file) {
1206 err = -ENOMEM;
1207 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1208 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1209 debugfs_remove(fail_page_alloc.min_order_file);
1210 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1213 return err;
1216 late_initcall(fail_page_alloc_debugfs);
1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1220 #else /* CONFIG_FAIL_PAGE_ALLOC */
1222 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1224 return 0;
1227 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1230 * Return 1 if free pages are above 'mark'. This takes into account the order
1231 * of the allocation.
1233 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1234 int classzone_idx, int alloc_flags)
1236 /* free_pages my go negative - that's OK */
1237 long min = mark;
1238 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1239 int o;
1241 if (alloc_flags & ALLOC_HIGH)
1242 min -= min / 2;
1243 if (alloc_flags & ALLOC_HARDER)
1244 min -= min / 4;
1246 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1247 return 0;
1248 for (o = 0; o < order; o++) {
1249 /* At the next order, this order's pages become unavailable */
1250 free_pages -= z->free_area[o].nr_free << o;
1252 /* Require fewer higher order pages to be free */
1253 min >>= 1;
1255 if (free_pages <= min)
1256 return 0;
1258 return 1;
1261 #ifdef CONFIG_NUMA
1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1264 * skip over zones that are not allowed by the cpuset, or that have
1265 * been recently (in last second) found to be nearly full. See further
1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1267 * that have to skip over a lot of full or unallowed zones.
1269 * If the zonelist cache is present in the passed in zonelist, then
1270 * returns a pointer to the allowed node mask (either the current
1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1273 * If the zonelist cache is not available for this zonelist, does
1274 * nothing and returns NULL.
1276 * If the fullzones BITMAP in the zonelist cache is stale (more than
1277 * a second since last zap'd) then we zap it out (clear its bits.)
1279 * We hold off even calling zlc_setup, until after we've checked the
1280 * first zone in the zonelist, on the theory that most allocations will
1281 * be satisfied from that first zone, so best to examine that zone as
1282 * quickly as we can.
1284 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1286 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1287 nodemask_t *allowednodes; /* zonelist_cache approximation */
1289 zlc = zonelist->zlcache_ptr;
1290 if (!zlc)
1291 return NULL;
1293 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1294 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1295 zlc->last_full_zap = jiffies;
1298 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1299 &cpuset_current_mems_allowed :
1300 &node_states[N_HIGH_MEMORY];
1301 return allowednodes;
1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1306 * if it is worth looking at further for free memory:
1307 * 1) Check that the zone isn't thought to be full (doesn't have its
1308 * bit set in the zonelist_cache fullzones BITMAP).
1309 * 2) Check that the zones node (obtained from the zonelist_cache
1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1311 * Return true (non-zero) if zone is worth looking at further, or
1312 * else return false (zero) if it is not.
1314 * This check -ignores- the distinction between various watermarks,
1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1316 * found to be full for any variation of these watermarks, it will
1317 * be considered full for up to one second by all requests, unless
1318 * we are so low on memory on all allowed nodes that we are forced
1319 * into the second scan of the zonelist.
1321 * In the second scan we ignore this zonelist cache and exactly
1322 * apply the watermarks to all zones, even it is slower to do so.
1323 * We are low on memory in the second scan, and should leave no stone
1324 * unturned looking for a free page.
1326 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1327 nodemask_t *allowednodes)
1329 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1330 int i; /* index of *z in zonelist zones */
1331 int n; /* node that zone *z is on */
1333 zlc = zonelist->zlcache_ptr;
1334 if (!zlc)
1335 return 1;
1337 i = z - zonelist->_zonerefs;
1338 n = zlc->z_to_n[i];
1340 /* This zone is worth trying if it is allowed but not full */
1341 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1345 * Given 'z' scanning a zonelist, set the corresponding bit in
1346 * zlc->fullzones, so that subsequent attempts to allocate a page
1347 * from that zone don't waste time re-examining it.
1349 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1351 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1352 int i; /* index of *z in zonelist zones */
1354 zlc = zonelist->zlcache_ptr;
1355 if (!zlc)
1356 return;
1358 i = z - zonelist->_zonerefs;
1360 set_bit(i, zlc->fullzones);
1363 #else /* CONFIG_NUMA */
1365 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1367 return NULL;
1370 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1371 nodemask_t *allowednodes)
1373 return 1;
1376 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1379 #endif /* CONFIG_NUMA */
1382 * get_page_from_freelist goes through the zonelist trying to allocate
1383 * a page.
1385 static struct page *
1386 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1387 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1389 struct zoneref *z;
1390 struct page *page = NULL;
1391 int classzone_idx;
1392 struct zone *zone, *preferred_zone;
1393 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1394 int zlc_active = 0; /* set if using zonelist_cache */
1395 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1397 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1398 &preferred_zone);
1399 classzone_idx = zone_idx(preferred_zone);
1401 zonelist_scan:
1403 * Scan zonelist, looking for a zone with enough free.
1404 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1406 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1407 high_zoneidx, nodemask) {
1408 if (NUMA_BUILD && zlc_active &&
1409 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1410 continue;
1411 if ((alloc_flags & ALLOC_CPUSET) &&
1412 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1413 goto try_next_zone;
1415 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1416 unsigned long mark;
1417 if (alloc_flags & ALLOC_WMARK_MIN)
1418 mark = zone->pages_min;
1419 else if (alloc_flags & ALLOC_WMARK_LOW)
1420 mark = zone->pages_low;
1421 else
1422 mark = zone->pages_high;
1423 if (!zone_watermark_ok(zone, order, mark,
1424 classzone_idx, alloc_flags)) {
1425 if (!zone_reclaim_mode ||
1426 !zone_reclaim(zone, gfp_mask, order))
1427 goto this_zone_full;
1431 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1432 if (page)
1433 break;
1434 this_zone_full:
1435 if (NUMA_BUILD)
1436 zlc_mark_zone_full(zonelist, z);
1437 try_next_zone:
1438 if (NUMA_BUILD && !did_zlc_setup) {
1439 /* we do zlc_setup after the first zone is tried */
1440 allowednodes = zlc_setup(zonelist, alloc_flags);
1441 zlc_active = 1;
1442 did_zlc_setup = 1;
1446 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1447 /* Disable zlc cache for second zonelist scan */
1448 zlc_active = 0;
1449 goto zonelist_scan;
1451 return page;
1455 * This is the 'heart' of the zoned buddy allocator.
1457 static struct page *
1458 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1459 struct zonelist *zonelist, nodemask_t *nodemask)
1461 const gfp_t wait = gfp_mask & __GFP_WAIT;
1462 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1463 struct zoneref *z;
1464 struct zone *zone;
1465 struct page *page;
1466 struct reclaim_state reclaim_state;
1467 struct task_struct *p = current;
1468 int do_retry;
1469 int alloc_flags;
1470 unsigned long did_some_progress;
1471 unsigned long pages_reclaimed = 0;
1473 might_sleep_if(wait);
1475 if (should_fail_alloc_page(gfp_mask, order))
1476 return NULL;
1478 restart:
1479 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1481 if (unlikely(!z->zone)) {
1483 * Happens if we have an empty zonelist as a result of
1484 * GFP_THISNODE being used on a memoryless node
1486 return NULL;
1489 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1490 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1491 if (page)
1492 goto got_pg;
1495 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1496 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1497 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1498 * using a larger set of nodes after it has established that the
1499 * allowed per node queues are empty and that nodes are
1500 * over allocated.
1502 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1503 goto nopage;
1505 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1506 wakeup_kswapd(zone, order);
1509 * OK, we're below the kswapd watermark and have kicked background
1510 * reclaim. Now things get more complex, so set up alloc_flags according
1511 * to how we want to proceed.
1513 * The caller may dip into page reserves a bit more if the caller
1514 * cannot run direct reclaim, or if the caller has realtime scheduling
1515 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1516 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1518 alloc_flags = ALLOC_WMARK_MIN;
1519 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1520 alloc_flags |= ALLOC_HARDER;
1521 if (gfp_mask & __GFP_HIGH)
1522 alloc_flags |= ALLOC_HIGH;
1523 if (wait)
1524 alloc_flags |= ALLOC_CPUSET;
1527 * Go through the zonelist again. Let __GFP_HIGH and allocations
1528 * coming from realtime tasks go deeper into reserves.
1530 * This is the last chance, in general, before the goto nopage.
1531 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1532 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1534 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1535 high_zoneidx, alloc_flags);
1536 if (page)
1537 goto got_pg;
1539 /* This allocation should allow future memory freeing. */
1541 rebalance:
1542 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1543 && !in_interrupt()) {
1544 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1545 nofail_alloc:
1546 /* go through the zonelist yet again, ignoring mins */
1547 page = get_page_from_freelist(gfp_mask, nodemask, order,
1548 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1549 if (page)
1550 goto got_pg;
1551 if (gfp_mask & __GFP_NOFAIL) {
1552 congestion_wait(WRITE, HZ/50);
1553 goto nofail_alloc;
1556 goto nopage;
1559 /* Atomic allocations - we can't balance anything */
1560 if (!wait)
1561 goto nopage;
1563 cond_resched();
1565 /* We now go into synchronous reclaim */
1566 cpuset_memory_pressure_bump();
1567 p->flags |= PF_MEMALLOC;
1568 reclaim_state.reclaimed_slab = 0;
1569 p->reclaim_state = &reclaim_state;
1571 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1573 p->reclaim_state = NULL;
1574 p->flags &= ~PF_MEMALLOC;
1576 cond_resched();
1578 if (order != 0)
1579 drain_all_pages();
1581 if (likely(did_some_progress)) {
1582 page = get_page_from_freelist(gfp_mask, nodemask, order,
1583 zonelist, high_zoneidx, alloc_flags);
1584 if (page)
1585 goto got_pg;
1586 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1587 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1588 schedule_timeout_uninterruptible(1);
1589 goto restart;
1593 * Go through the zonelist yet one more time, keep
1594 * very high watermark here, this is only to catch
1595 * a parallel oom killing, we must fail if we're still
1596 * under heavy pressure.
1598 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1599 order, zonelist, high_zoneidx,
1600 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1601 if (page) {
1602 clear_zonelist_oom(zonelist, gfp_mask);
1603 goto got_pg;
1606 /* The OOM killer will not help higher order allocs so fail */
1607 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1608 clear_zonelist_oom(zonelist, gfp_mask);
1609 goto nopage;
1612 out_of_memory(zonelist, gfp_mask, order);
1613 clear_zonelist_oom(zonelist, gfp_mask);
1614 goto restart;
1618 * Don't let big-order allocations loop unless the caller explicitly
1619 * requests that. Wait for some write requests to complete then retry.
1621 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1622 * means __GFP_NOFAIL, but that may not be true in other
1623 * implementations.
1625 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1626 * specified, then we retry until we no longer reclaim any pages
1627 * (above), or we've reclaimed an order of pages at least as
1628 * large as the allocation's order. In both cases, if the
1629 * allocation still fails, we stop retrying.
1631 pages_reclaimed += did_some_progress;
1632 do_retry = 0;
1633 if (!(gfp_mask & __GFP_NORETRY)) {
1634 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1635 do_retry = 1;
1636 } else {
1637 if (gfp_mask & __GFP_REPEAT &&
1638 pages_reclaimed < (1 << order))
1639 do_retry = 1;
1641 if (gfp_mask & __GFP_NOFAIL)
1642 do_retry = 1;
1644 if (do_retry) {
1645 congestion_wait(WRITE, HZ/50);
1646 goto rebalance;
1649 nopage:
1650 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1651 printk(KERN_WARNING "%s: page allocation failure."
1652 " order:%d, mode:0x%x\n",
1653 p->comm, order, gfp_mask);
1654 dump_stack();
1655 show_mem();
1657 got_pg:
1658 return page;
1661 struct page *
1662 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1663 struct zonelist *zonelist)
1665 return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
1668 struct page *
1669 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1670 struct zonelist *zonelist, nodemask_t *nodemask)
1672 return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
1675 EXPORT_SYMBOL(__alloc_pages);
1678 * Common helper functions.
1680 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1682 struct page * page;
1683 page = alloc_pages(gfp_mask, order);
1684 if (!page)
1685 return 0;
1686 return (unsigned long) page_address(page);
1689 EXPORT_SYMBOL(__get_free_pages);
1691 unsigned long get_zeroed_page(gfp_t gfp_mask)
1693 struct page * page;
1696 * get_zeroed_page() returns a 32-bit address, which cannot represent
1697 * a highmem page
1699 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1701 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1702 if (page)
1703 return (unsigned long) page_address(page);
1704 return 0;
1707 EXPORT_SYMBOL(get_zeroed_page);
1709 void __pagevec_free(struct pagevec *pvec)
1711 int i = pagevec_count(pvec);
1713 while (--i >= 0)
1714 free_hot_cold_page(pvec->pages[i], pvec->cold);
1717 void __free_pages(struct page *page, unsigned int order)
1719 if (put_page_testzero(page)) {
1720 if (order == 0)
1721 free_hot_page(page);
1722 else
1723 __free_pages_ok(page, order);
1727 EXPORT_SYMBOL(__free_pages);
1729 void free_pages(unsigned long addr, unsigned int order)
1731 if (addr != 0) {
1732 VM_BUG_ON(!virt_addr_valid((void *)addr));
1733 __free_pages(virt_to_page((void *)addr), order);
1737 EXPORT_SYMBOL(free_pages);
1739 static unsigned int nr_free_zone_pages(int offset)
1741 struct zoneref *z;
1742 struct zone *zone;
1744 /* Just pick one node, since fallback list is circular */
1745 unsigned int sum = 0;
1747 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1749 for_each_zone_zonelist(zone, z, zonelist, offset) {
1750 unsigned long size = zone->present_pages;
1751 unsigned long high = zone->pages_high;
1752 if (size > high)
1753 sum += size - high;
1756 return sum;
1760 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1762 unsigned int nr_free_buffer_pages(void)
1764 return nr_free_zone_pages(gfp_zone(GFP_USER));
1766 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1769 * Amount of free RAM allocatable within all zones
1771 unsigned int nr_free_pagecache_pages(void)
1773 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1776 static inline void show_node(struct zone *zone)
1778 if (NUMA_BUILD)
1779 printk("Node %d ", zone_to_nid(zone));
1782 void si_meminfo(struct sysinfo *val)
1784 val->totalram = totalram_pages;
1785 val->sharedram = 0;
1786 val->freeram = global_page_state(NR_FREE_PAGES);
1787 val->bufferram = nr_blockdev_pages();
1788 val->totalhigh = totalhigh_pages;
1789 val->freehigh = nr_free_highpages();
1790 val->mem_unit = PAGE_SIZE;
1793 EXPORT_SYMBOL(si_meminfo);
1795 #ifdef CONFIG_NUMA
1796 void si_meminfo_node(struct sysinfo *val, int nid)
1798 pg_data_t *pgdat = NODE_DATA(nid);
1800 val->totalram = pgdat->node_present_pages;
1801 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1802 #ifdef CONFIG_HIGHMEM
1803 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1804 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1805 NR_FREE_PAGES);
1806 #else
1807 val->totalhigh = 0;
1808 val->freehigh = 0;
1809 #endif
1810 val->mem_unit = PAGE_SIZE;
1812 #endif
1814 #define K(x) ((x) << (PAGE_SHIFT-10))
1817 * Show free area list (used inside shift_scroll-lock stuff)
1818 * We also calculate the percentage fragmentation. We do this by counting the
1819 * memory on each free list with the exception of the first item on the list.
1821 void show_free_areas(void)
1823 int cpu;
1824 struct zone *zone;
1826 for_each_zone(zone) {
1827 if (!populated_zone(zone))
1828 continue;
1830 show_node(zone);
1831 printk("%s per-cpu:\n", zone->name);
1833 for_each_online_cpu(cpu) {
1834 struct per_cpu_pageset *pageset;
1836 pageset = zone_pcp(zone, cpu);
1838 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1839 cpu, pageset->pcp.high,
1840 pageset->pcp.batch, pageset->pcp.count);
1844 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1845 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1846 global_page_state(NR_ACTIVE),
1847 global_page_state(NR_INACTIVE),
1848 global_page_state(NR_FILE_DIRTY),
1849 global_page_state(NR_WRITEBACK),
1850 global_page_state(NR_UNSTABLE_NFS),
1851 global_page_state(NR_FREE_PAGES),
1852 global_page_state(NR_SLAB_RECLAIMABLE) +
1853 global_page_state(NR_SLAB_UNRECLAIMABLE),
1854 global_page_state(NR_FILE_MAPPED),
1855 global_page_state(NR_PAGETABLE),
1856 global_page_state(NR_BOUNCE));
1858 for_each_zone(zone) {
1859 int i;
1861 if (!populated_zone(zone))
1862 continue;
1864 show_node(zone);
1865 printk("%s"
1866 " free:%lukB"
1867 " min:%lukB"
1868 " low:%lukB"
1869 " high:%lukB"
1870 " active:%lukB"
1871 " inactive:%lukB"
1872 " present:%lukB"
1873 " pages_scanned:%lu"
1874 " all_unreclaimable? %s"
1875 "\n",
1876 zone->name,
1877 K(zone_page_state(zone, NR_FREE_PAGES)),
1878 K(zone->pages_min),
1879 K(zone->pages_low),
1880 K(zone->pages_high),
1881 K(zone_page_state(zone, NR_ACTIVE)),
1882 K(zone_page_state(zone, NR_INACTIVE)),
1883 K(zone->present_pages),
1884 zone->pages_scanned,
1885 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1887 printk("lowmem_reserve[]:");
1888 for (i = 0; i < MAX_NR_ZONES; i++)
1889 printk(" %lu", zone->lowmem_reserve[i]);
1890 printk("\n");
1893 for_each_zone(zone) {
1894 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1896 if (!populated_zone(zone))
1897 continue;
1899 show_node(zone);
1900 printk("%s: ", zone->name);
1902 spin_lock_irqsave(&zone->lock, flags);
1903 for (order = 0; order < MAX_ORDER; order++) {
1904 nr[order] = zone->free_area[order].nr_free;
1905 total += nr[order] << order;
1907 spin_unlock_irqrestore(&zone->lock, flags);
1908 for (order = 0; order < MAX_ORDER; order++)
1909 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1910 printk("= %lukB\n", K(total));
1913 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1915 show_swap_cache_info();
1918 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1920 zoneref->zone = zone;
1921 zoneref->zone_idx = zone_idx(zone);
1925 * Builds allocation fallback zone lists.
1927 * Add all populated zones of a node to the zonelist.
1929 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1930 int nr_zones, enum zone_type zone_type)
1932 struct zone *zone;
1934 BUG_ON(zone_type >= MAX_NR_ZONES);
1935 zone_type++;
1937 do {
1938 zone_type--;
1939 zone = pgdat->node_zones + zone_type;
1940 if (populated_zone(zone)) {
1941 zoneref_set_zone(zone,
1942 &zonelist->_zonerefs[nr_zones++]);
1943 check_highest_zone(zone_type);
1946 } while (zone_type);
1947 return nr_zones;
1952 * zonelist_order:
1953 * 0 = automatic detection of better ordering.
1954 * 1 = order by ([node] distance, -zonetype)
1955 * 2 = order by (-zonetype, [node] distance)
1957 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1958 * the same zonelist. So only NUMA can configure this param.
1960 #define ZONELIST_ORDER_DEFAULT 0
1961 #define ZONELIST_ORDER_NODE 1
1962 #define ZONELIST_ORDER_ZONE 2
1964 /* zonelist order in the kernel.
1965 * set_zonelist_order() will set this to NODE or ZONE.
1967 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1968 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1971 #ifdef CONFIG_NUMA
1972 /* The value user specified ....changed by config */
1973 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1974 /* string for sysctl */
1975 #define NUMA_ZONELIST_ORDER_LEN 16
1976 char numa_zonelist_order[16] = "default";
1979 * interface for configure zonelist ordering.
1980 * command line option "numa_zonelist_order"
1981 * = "[dD]efault - default, automatic configuration.
1982 * = "[nN]ode - order by node locality, then by zone within node
1983 * = "[zZ]one - order by zone, then by locality within zone
1986 static int __parse_numa_zonelist_order(char *s)
1988 if (*s == 'd' || *s == 'D') {
1989 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1990 } else if (*s == 'n' || *s == 'N') {
1991 user_zonelist_order = ZONELIST_ORDER_NODE;
1992 } else if (*s == 'z' || *s == 'Z') {
1993 user_zonelist_order = ZONELIST_ORDER_ZONE;
1994 } else {
1995 printk(KERN_WARNING
1996 "Ignoring invalid numa_zonelist_order value: "
1997 "%s\n", s);
1998 return -EINVAL;
2000 return 0;
2003 static __init int setup_numa_zonelist_order(char *s)
2005 if (s)
2006 return __parse_numa_zonelist_order(s);
2007 return 0;
2009 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2012 * sysctl handler for numa_zonelist_order
2014 int numa_zonelist_order_handler(ctl_table *table, int write,
2015 struct file *file, void __user *buffer, size_t *length,
2016 loff_t *ppos)
2018 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2019 int ret;
2021 if (write)
2022 strncpy(saved_string, (char*)table->data,
2023 NUMA_ZONELIST_ORDER_LEN);
2024 ret = proc_dostring(table, write, file, buffer, length, ppos);
2025 if (ret)
2026 return ret;
2027 if (write) {
2028 int oldval = user_zonelist_order;
2029 if (__parse_numa_zonelist_order((char*)table->data)) {
2031 * bogus value. restore saved string
2033 strncpy((char*)table->data, saved_string,
2034 NUMA_ZONELIST_ORDER_LEN);
2035 user_zonelist_order = oldval;
2036 } else if (oldval != user_zonelist_order)
2037 build_all_zonelists();
2039 return 0;
2043 #define MAX_NODE_LOAD (num_online_nodes())
2044 static int node_load[MAX_NUMNODES];
2047 * find_next_best_node - find the next node that should appear in a given node's fallback list
2048 * @node: node whose fallback list we're appending
2049 * @used_node_mask: nodemask_t of already used nodes
2051 * We use a number of factors to determine which is the next node that should
2052 * appear on a given node's fallback list. The node should not have appeared
2053 * already in @node's fallback list, and it should be the next closest node
2054 * according to the distance array (which contains arbitrary distance values
2055 * from each node to each node in the system), and should also prefer nodes
2056 * with no CPUs, since presumably they'll have very little allocation pressure
2057 * on them otherwise.
2058 * It returns -1 if no node is found.
2060 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2062 int n, val;
2063 int min_val = INT_MAX;
2064 int best_node = -1;
2065 node_to_cpumask_ptr(tmp, 0);
2067 /* Use the local node if we haven't already */
2068 if (!node_isset(node, *used_node_mask)) {
2069 node_set(node, *used_node_mask);
2070 return node;
2073 for_each_node_state(n, N_HIGH_MEMORY) {
2075 /* Don't want a node to appear more than once */
2076 if (node_isset(n, *used_node_mask))
2077 continue;
2079 /* Use the distance array to find the distance */
2080 val = node_distance(node, n);
2082 /* Penalize nodes under us ("prefer the next node") */
2083 val += (n < node);
2085 /* Give preference to headless and unused nodes */
2086 node_to_cpumask_ptr_next(tmp, n);
2087 if (!cpus_empty(*tmp))
2088 val += PENALTY_FOR_NODE_WITH_CPUS;
2090 /* Slight preference for less loaded node */
2091 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2092 val += node_load[n];
2094 if (val < min_val) {
2095 min_val = val;
2096 best_node = n;
2100 if (best_node >= 0)
2101 node_set(best_node, *used_node_mask);
2103 return best_node;
2108 * Build zonelists ordered by node and zones within node.
2109 * This results in maximum locality--normal zone overflows into local
2110 * DMA zone, if any--but risks exhausting DMA zone.
2112 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2114 int j;
2115 struct zonelist *zonelist;
2117 zonelist = &pgdat->node_zonelists[0];
2118 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2120 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2121 MAX_NR_ZONES - 1);
2122 zonelist->_zonerefs[j].zone = NULL;
2123 zonelist->_zonerefs[j].zone_idx = 0;
2127 * Build gfp_thisnode zonelists
2129 static void build_thisnode_zonelists(pg_data_t *pgdat)
2131 int j;
2132 struct zonelist *zonelist;
2134 zonelist = &pgdat->node_zonelists[1];
2135 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2136 zonelist->_zonerefs[j].zone = NULL;
2137 zonelist->_zonerefs[j].zone_idx = 0;
2141 * Build zonelists ordered by zone and nodes within zones.
2142 * This results in conserving DMA zone[s] until all Normal memory is
2143 * exhausted, but results in overflowing to remote node while memory
2144 * may still exist in local DMA zone.
2146 static int node_order[MAX_NUMNODES];
2148 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2150 int pos, j, node;
2151 int zone_type; /* needs to be signed */
2152 struct zone *z;
2153 struct zonelist *zonelist;
2155 zonelist = &pgdat->node_zonelists[0];
2156 pos = 0;
2157 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2158 for (j = 0; j < nr_nodes; j++) {
2159 node = node_order[j];
2160 z = &NODE_DATA(node)->node_zones[zone_type];
2161 if (populated_zone(z)) {
2162 zoneref_set_zone(z,
2163 &zonelist->_zonerefs[pos++]);
2164 check_highest_zone(zone_type);
2168 zonelist->_zonerefs[pos].zone = NULL;
2169 zonelist->_zonerefs[pos].zone_idx = 0;
2172 static int default_zonelist_order(void)
2174 int nid, zone_type;
2175 unsigned long low_kmem_size,total_size;
2176 struct zone *z;
2177 int average_size;
2179 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2180 * If they are really small and used heavily, the system can fall
2181 * into OOM very easily.
2182 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2184 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2185 low_kmem_size = 0;
2186 total_size = 0;
2187 for_each_online_node(nid) {
2188 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2189 z = &NODE_DATA(nid)->node_zones[zone_type];
2190 if (populated_zone(z)) {
2191 if (zone_type < ZONE_NORMAL)
2192 low_kmem_size += z->present_pages;
2193 total_size += z->present_pages;
2197 if (!low_kmem_size || /* there are no DMA area. */
2198 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2199 return ZONELIST_ORDER_NODE;
2201 * look into each node's config.
2202 * If there is a node whose DMA/DMA32 memory is very big area on
2203 * local memory, NODE_ORDER may be suitable.
2205 average_size = total_size /
2206 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2207 for_each_online_node(nid) {
2208 low_kmem_size = 0;
2209 total_size = 0;
2210 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2211 z = &NODE_DATA(nid)->node_zones[zone_type];
2212 if (populated_zone(z)) {
2213 if (zone_type < ZONE_NORMAL)
2214 low_kmem_size += z->present_pages;
2215 total_size += z->present_pages;
2218 if (low_kmem_size &&
2219 total_size > average_size && /* ignore small node */
2220 low_kmem_size > total_size * 70/100)
2221 return ZONELIST_ORDER_NODE;
2223 return ZONELIST_ORDER_ZONE;
2226 static void set_zonelist_order(void)
2228 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2229 current_zonelist_order = default_zonelist_order();
2230 else
2231 current_zonelist_order = user_zonelist_order;
2234 static void build_zonelists(pg_data_t *pgdat)
2236 int j, node, load;
2237 enum zone_type i;
2238 nodemask_t used_mask;
2239 int local_node, prev_node;
2240 struct zonelist *zonelist;
2241 int order = current_zonelist_order;
2243 /* initialize zonelists */
2244 for (i = 0; i < MAX_ZONELISTS; i++) {
2245 zonelist = pgdat->node_zonelists + i;
2246 zonelist->_zonerefs[0].zone = NULL;
2247 zonelist->_zonerefs[0].zone_idx = 0;
2250 /* NUMA-aware ordering of nodes */
2251 local_node = pgdat->node_id;
2252 load = num_online_nodes();
2253 prev_node = local_node;
2254 nodes_clear(used_mask);
2256 memset(node_load, 0, sizeof(node_load));
2257 memset(node_order, 0, sizeof(node_order));
2258 j = 0;
2260 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2261 int distance = node_distance(local_node, node);
2264 * If another node is sufficiently far away then it is better
2265 * to reclaim pages in a zone before going off node.
2267 if (distance > RECLAIM_DISTANCE)
2268 zone_reclaim_mode = 1;
2271 * We don't want to pressure a particular node.
2272 * So adding penalty to the first node in same
2273 * distance group to make it round-robin.
2275 if (distance != node_distance(local_node, prev_node))
2276 node_load[node] = load;
2278 prev_node = node;
2279 load--;
2280 if (order == ZONELIST_ORDER_NODE)
2281 build_zonelists_in_node_order(pgdat, node);
2282 else
2283 node_order[j++] = node; /* remember order */
2286 if (order == ZONELIST_ORDER_ZONE) {
2287 /* calculate node order -- i.e., DMA last! */
2288 build_zonelists_in_zone_order(pgdat, j);
2291 build_thisnode_zonelists(pgdat);
2294 /* Construct the zonelist performance cache - see further mmzone.h */
2295 static void build_zonelist_cache(pg_data_t *pgdat)
2297 struct zonelist *zonelist;
2298 struct zonelist_cache *zlc;
2299 struct zoneref *z;
2301 zonelist = &pgdat->node_zonelists[0];
2302 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2303 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2304 for (z = zonelist->_zonerefs; z->zone; z++)
2305 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2309 #else /* CONFIG_NUMA */
2311 static void set_zonelist_order(void)
2313 current_zonelist_order = ZONELIST_ORDER_ZONE;
2316 static void build_zonelists(pg_data_t *pgdat)
2318 int node, local_node;
2319 enum zone_type j;
2320 struct zonelist *zonelist;
2322 local_node = pgdat->node_id;
2324 zonelist = &pgdat->node_zonelists[0];
2325 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2328 * Now we build the zonelist so that it contains the zones
2329 * of all the other nodes.
2330 * We don't want to pressure a particular node, so when
2331 * building the zones for node N, we make sure that the
2332 * zones coming right after the local ones are those from
2333 * node N+1 (modulo N)
2335 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2336 if (!node_online(node))
2337 continue;
2338 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2339 MAX_NR_ZONES - 1);
2341 for (node = 0; node < local_node; node++) {
2342 if (!node_online(node))
2343 continue;
2344 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2345 MAX_NR_ZONES - 1);
2348 zonelist->_zonerefs[j].zone = NULL;
2349 zonelist->_zonerefs[j].zone_idx = 0;
2352 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2353 static void build_zonelist_cache(pg_data_t *pgdat)
2355 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2356 pgdat->node_zonelists[1].zlcache_ptr = NULL;
2359 #endif /* CONFIG_NUMA */
2361 /* return values int ....just for stop_machine_run() */
2362 static int __build_all_zonelists(void *dummy)
2364 int nid;
2366 for_each_online_node(nid) {
2367 pg_data_t *pgdat = NODE_DATA(nid);
2369 build_zonelists(pgdat);
2370 build_zonelist_cache(pgdat);
2372 return 0;
2375 void build_all_zonelists(void)
2377 set_zonelist_order();
2379 if (system_state == SYSTEM_BOOTING) {
2380 __build_all_zonelists(NULL);
2381 cpuset_init_current_mems_allowed();
2382 } else {
2383 /* we have to stop all cpus to guarantee there is no user
2384 of zonelist */
2385 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2386 /* cpuset refresh routine should be here */
2388 vm_total_pages = nr_free_pagecache_pages();
2390 * Disable grouping by mobility if the number of pages in the
2391 * system is too low to allow the mechanism to work. It would be
2392 * more accurate, but expensive to check per-zone. This check is
2393 * made on memory-hotadd so a system can start with mobility
2394 * disabled and enable it later
2396 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2397 page_group_by_mobility_disabled = 1;
2398 else
2399 page_group_by_mobility_disabled = 0;
2401 printk("Built %i zonelists in %s order, mobility grouping %s. "
2402 "Total pages: %ld\n",
2403 num_online_nodes(),
2404 zonelist_order_name[current_zonelist_order],
2405 page_group_by_mobility_disabled ? "off" : "on",
2406 vm_total_pages);
2407 #ifdef CONFIG_NUMA
2408 printk("Policy zone: %s\n", zone_names[policy_zone]);
2409 #endif
2413 * Helper functions to size the waitqueue hash table.
2414 * Essentially these want to choose hash table sizes sufficiently
2415 * large so that collisions trying to wait on pages are rare.
2416 * But in fact, the number of active page waitqueues on typical
2417 * systems is ridiculously low, less than 200. So this is even
2418 * conservative, even though it seems large.
2420 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2421 * waitqueues, i.e. the size of the waitq table given the number of pages.
2423 #define PAGES_PER_WAITQUEUE 256
2425 #ifndef CONFIG_MEMORY_HOTPLUG
2426 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2428 unsigned long size = 1;
2430 pages /= PAGES_PER_WAITQUEUE;
2432 while (size < pages)
2433 size <<= 1;
2436 * Once we have dozens or even hundreds of threads sleeping
2437 * on IO we've got bigger problems than wait queue collision.
2438 * Limit the size of the wait table to a reasonable size.
2440 size = min(size, 4096UL);
2442 return max(size, 4UL);
2444 #else
2446 * A zone's size might be changed by hot-add, so it is not possible to determine
2447 * a suitable size for its wait_table. So we use the maximum size now.
2449 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2451 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2452 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2453 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2455 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2456 * or more by the traditional way. (See above). It equals:
2458 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2459 * ia64(16K page size) : = ( 8G + 4M)byte.
2460 * powerpc (64K page size) : = (32G +16M)byte.
2462 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2464 return 4096UL;
2466 #endif
2469 * This is an integer logarithm so that shifts can be used later
2470 * to extract the more random high bits from the multiplicative
2471 * hash function before the remainder is taken.
2473 static inline unsigned long wait_table_bits(unsigned long size)
2475 return ffz(~size);
2478 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2481 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2482 * of blocks reserved is based on zone->pages_min. The memory within the
2483 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2484 * higher will lead to a bigger reserve which will get freed as contiguous
2485 * blocks as reclaim kicks in
2487 static void setup_zone_migrate_reserve(struct zone *zone)
2489 unsigned long start_pfn, pfn, end_pfn;
2490 struct page *page;
2491 unsigned long reserve, block_migratetype;
2493 /* Get the start pfn, end pfn and the number of blocks to reserve */
2494 start_pfn = zone->zone_start_pfn;
2495 end_pfn = start_pfn + zone->spanned_pages;
2496 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2497 pageblock_order;
2499 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2500 if (!pfn_valid(pfn))
2501 continue;
2502 page = pfn_to_page(pfn);
2504 /* Blocks with reserved pages will never free, skip them. */
2505 if (PageReserved(page))
2506 continue;
2508 block_migratetype = get_pageblock_migratetype(page);
2510 /* If this block is reserved, account for it */
2511 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2512 reserve--;
2513 continue;
2516 /* Suitable for reserving if this block is movable */
2517 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2518 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2519 move_freepages_block(zone, page, MIGRATE_RESERVE);
2520 reserve--;
2521 continue;
2525 * If the reserve is met and this is a previous reserved block,
2526 * take it back
2528 if (block_migratetype == MIGRATE_RESERVE) {
2529 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2530 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2536 * Initially all pages are reserved - free ones are freed
2537 * up by free_all_bootmem() once the early boot process is
2538 * done. Non-atomic initialization, single-pass.
2540 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2541 unsigned long start_pfn, enum memmap_context context)
2543 struct page *page;
2544 unsigned long end_pfn = start_pfn + size;
2545 unsigned long pfn;
2546 struct zone *z;
2548 z = &NODE_DATA(nid)->node_zones[zone];
2549 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2551 * There can be holes in boot-time mem_map[]s
2552 * handed to this function. They do not
2553 * exist on hotplugged memory.
2555 if (context == MEMMAP_EARLY) {
2556 if (!early_pfn_valid(pfn))
2557 continue;
2558 if (!early_pfn_in_nid(pfn, nid))
2559 continue;
2561 page = pfn_to_page(pfn);
2562 set_page_links(page, zone, nid, pfn);
2563 init_page_count(page);
2564 reset_page_mapcount(page);
2565 SetPageReserved(page);
2567 * Mark the block movable so that blocks are reserved for
2568 * movable at startup. This will force kernel allocations
2569 * to reserve their blocks rather than leaking throughout
2570 * the address space during boot when many long-lived
2571 * kernel allocations are made. Later some blocks near
2572 * the start are marked MIGRATE_RESERVE by
2573 * setup_zone_migrate_reserve()
2575 * bitmap is created for zone's valid pfn range. but memmap
2576 * can be created for invalid pages (for alignment)
2577 * check here not to call set_pageblock_migratetype() against
2578 * pfn out of zone.
2580 if ((z->zone_start_pfn <= pfn)
2581 && (pfn < z->zone_start_pfn + z->spanned_pages)
2582 && !(pfn & (pageblock_nr_pages - 1)))
2583 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2585 INIT_LIST_HEAD(&page->lru);
2586 #ifdef WANT_PAGE_VIRTUAL
2587 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2588 if (!is_highmem_idx(zone))
2589 set_page_address(page, __va(pfn << PAGE_SHIFT));
2590 #endif
2594 static void __meminit zone_init_free_lists(struct zone *zone)
2596 int order, t;
2597 for_each_migratetype_order(order, t) {
2598 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2599 zone->free_area[order].nr_free = 0;
2603 #ifndef __HAVE_ARCH_MEMMAP_INIT
2604 #define memmap_init(size, nid, zone, start_pfn) \
2605 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2606 #endif
2608 static int zone_batchsize(struct zone *zone)
2610 int batch;
2613 * The per-cpu-pages pools are set to around 1000th of the
2614 * size of the zone. But no more than 1/2 of a meg.
2616 * OK, so we don't know how big the cache is. So guess.
2618 batch = zone->present_pages / 1024;
2619 if (batch * PAGE_SIZE > 512 * 1024)
2620 batch = (512 * 1024) / PAGE_SIZE;
2621 batch /= 4; /* We effectively *= 4 below */
2622 if (batch < 1)
2623 batch = 1;
2626 * Clamp the batch to a 2^n - 1 value. Having a power
2627 * of 2 value was found to be more likely to have
2628 * suboptimal cache aliasing properties in some cases.
2630 * For example if 2 tasks are alternately allocating
2631 * batches of pages, one task can end up with a lot
2632 * of pages of one half of the possible page colors
2633 * and the other with pages of the other colors.
2635 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2637 return batch;
2640 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2642 struct per_cpu_pages *pcp;
2644 memset(p, 0, sizeof(*p));
2646 pcp = &p->pcp;
2647 pcp->count = 0;
2648 pcp->high = 6 * batch;
2649 pcp->batch = max(1UL, 1 * batch);
2650 INIT_LIST_HEAD(&pcp->list);
2654 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2655 * to the value high for the pageset p.
2658 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2659 unsigned long high)
2661 struct per_cpu_pages *pcp;
2663 pcp = &p->pcp;
2664 pcp->high = high;
2665 pcp->batch = max(1UL, high/4);
2666 if ((high/4) > (PAGE_SHIFT * 8))
2667 pcp->batch = PAGE_SHIFT * 8;
2671 #ifdef CONFIG_NUMA
2673 * Boot pageset table. One per cpu which is going to be used for all
2674 * zones and all nodes. The parameters will be set in such a way
2675 * that an item put on a list will immediately be handed over to
2676 * the buddy list. This is safe since pageset manipulation is done
2677 * with interrupts disabled.
2679 * Some NUMA counter updates may also be caught by the boot pagesets.
2681 * The boot_pagesets must be kept even after bootup is complete for
2682 * unused processors and/or zones. They do play a role for bootstrapping
2683 * hotplugged processors.
2685 * zoneinfo_show() and maybe other functions do
2686 * not check if the processor is online before following the pageset pointer.
2687 * Other parts of the kernel may not check if the zone is available.
2689 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2692 * Dynamically allocate memory for the
2693 * per cpu pageset array in struct zone.
2695 static int __cpuinit process_zones(int cpu)
2697 struct zone *zone, *dzone;
2698 int node = cpu_to_node(cpu);
2700 node_set_state(node, N_CPU); /* this node has a cpu */
2702 for_each_zone(zone) {
2704 if (!populated_zone(zone))
2705 continue;
2707 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2708 GFP_KERNEL, node);
2709 if (!zone_pcp(zone, cpu))
2710 goto bad;
2712 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2714 if (percpu_pagelist_fraction)
2715 setup_pagelist_highmark(zone_pcp(zone, cpu),
2716 (zone->present_pages / percpu_pagelist_fraction));
2719 return 0;
2720 bad:
2721 for_each_zone(dzone) {
2722 if (!populated_zone(dzone))
2723 continue;
2724 if (dzone == zone)
2725 break;
2726 kfree(zone_pcp(dzone, cpu));
2727 zone_pcp(dzone, cpu) = NULL;
2729 return -ENOMEM;
2732 static inline void free_zone_pagesets(int cpu)
2734 struct zone *zone;
2736 for_each_zone(zone) {
2737 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2739 /* Free per_cpu_pageset if it is slab allocated */
2740 if (pset != &boot_pageset[cpu])
2741 kfree(pset);
2742 zone_pcp(zone, cpu) = NULL;
2746 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2747 unsigned long action,
2748 void *hcpu)
2750 int cpu = (long)hcpu;
2751 int ret = NOTIFY_OK;
2753 switch (action) {
2754 case CPU_UP_PREPARE:
2755 case CPU_UP_PREPARE_FROZEN:
2756 if (process_zones(cpu))
2757 ret = NOTIFY_BAD;
2758 break;
2759 case CPU_UP_CANCELED:
2760 case CPU_UP_CANCELED_FROZEN:
2761 case CPU_DEAD:
2762 case CPU_DEAD_FROZEN:
2763 free_zone_pagesets(cpu);
2764 break;
2765 default:
2766 break;
2768 return ret;
2771 static struct notifier_block __cpuinitdata pageset_notifier =
2772 { &pageset_cpuup_callback, NULL, 0 };
2774 void __init setup_per_cpu_pageset(void)
2776 int err;
2778 /* Initialize per_cpu_pageset for cpu 0.
2779 * A cpuup callback will do this for every cpu
2780 * as it comes online
2782 err = process_zones(smp_processor_id());
2783 BUG_ON(err);
2784 register_cpu_notifier(&pageset_notifier);
2787 #endif
2789 static noinline __init_refok
2790 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2792 int i;
2793 struct pglist_data *pgdat = zone->zone_pgdat;
2794 size_t alloc_size;
2797 * The per-page waitqueue mechanism uses hashed waitqueues
2798 * per zone.
2800 zone->wait_table_hash_nr_entries =
2801 wait_table_hash_nr_entries(zone_size_pages);
2802 zone->wait_table_bits =
2803 wait_table_bits(zone->wait_table_hash_nr_entries);
2804 alloc_size = zone->wait_table_hash_nr_entries
2805 * sizeof(wait_queue_head_t);
2807 if (system_state == SYSTEM_BOOTING) {
2808 zone->wait_table = (wait_queue_head_t *)
2809 alloc_bootmem_node(pgdat, alloc_size);
2810 } else {
2812 * This case means that a zone whose size was 0 gets new memory
2813 * via memory hot-add.
2814 * But it may be the case that a new node was hot-added. In
2815 * this case vmalloc() will not be able to use this new node's
2816 * memory - this wait_table must be initialized to use this new
2817 * node itself as well.
2818 * To use this new node's memory, further consideration will be
2819 * necessary.
2821 zone->wait_table = vmalloc(alloc_size);
2823 if (!zone->wait_table)
2824 return -ENOMEM;
2826 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2827 init_waitqueue_head(zone->wait_table + i);
2829 return 0;
2832 static __meminit void zone_pcp_init(struct zone *zone)
2834 int cpu;
2835 unsigned long batch = zone_batchsize(zone);
2837 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2838 #ifdef CONFIG_NUMA
2839 /* Early boot. Slab allocator not functional yet */
2840 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2841 setup_pageset(&boot_pageset[cpu],0);
2842 #else
2843 setup_pageset(zone_pcp(zone,cpu), batch);
2844 #endif
2846 if (zone->present_pages)
2847 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2848 zone->name, zone->present_pages, batch);
2851 __meminit int init_currently_empty_zone(struct zone *zone,
2852 unsigned long zone_start_pfn,
2853 unsigned long size,
2854 enum memmap_context context)
2856 struct pglist_data *pgdat = zone->zone_pgdat;
2857 int ret;
2858 ret = zone_wait_table_init(zone, size);
2859 if (ret)
2860 return ret;
2861 pgdat->nr_zones = zone_idx(zone) + 1;
2863 zone->zone_start_pfn = zone_start_pfn;
2865 zone_init_free_lists(zone);
2867 return 0;
2870 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2872 * Basic iterator support. Return the first range of PFNs for a node
2873 * Note: nid == MAX_NUMNODES returns first region regardless of node
2875 static int __meminit first_active_region_index_in_nid(int nid)
2877 int i;
2879 for (i = 0; i < nr_nodemap_entries; i++)
2880 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2881 return i;
2883 return -1;
2887 * Basic iterator support. Return the next active range of PFNs for a node
2888 * Note: nid == MAX_NUMNODES returns next region regardless of node
2890 static int __meminit next_active_region_index_in_nid(int index, int nid)
2892 for (index = index + 1; index < nr_nodemap_entries; index++)
2893 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2894 return index;
2896 return -1;
2899 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2901 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2902 * Architectures may implement their own version but if add_active_range()
2903 * was used and there are no special requirements, this is a convenient
2904 * alternative
2906 int __meminit early_pfn_to_nid(unsigned long pfn)
2908 int i;
2910 for (i = 0; i < nr_nodemap_entries; i++) {
2911 unsigned long start_pfn = early_node_map[i].start_pfn;
2912 unsigned long end_pfn = early_node_map[i].end_pfn;
2914 if (start_pfn <= pfn && pfn < end_pfn)
2915 return early_node_map[i].nid;
2918 return 0;
2920 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2922 /* Basic iterator support to walk early_node_map[] */
2923 #define for_each_active_range_index_in_nid(i, nid) \
2924 for (i = first_active_region_index_in_nid(nid); i != -1; \
2925 i = next_active_region_index_in_nid(i, nid))
2928 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2929 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2930 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2932 * If an architecture guarantees that all ranges registered with
2933 * add_active_ranges() contain no holes and may be freed, this
2934 * this function may be used instead of calling free_bootmem() manually.
2936 void __init free_bootmem_with_active_regions(int nid,
2937 unsigned long max_low_pfn)
2939 int i;
2941 for_each_active_range_index_in_nid(i, nid) {
2942 unsigned long size_pages = 0;
2943 unsigned long end_pfn = early_node_map[i].end_pfn;
2945 if (early_node_map[i].start_pfn >= max_low_pfn)
2946 continue;
2948 if (end_pfn > max_low_pfn)
2949 end_pfn = max_low_pfn;
2951 size_pages = end_pfn - early_node_map[i].start_pfn;
2952 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2953 PFN_PHYS(early_node_map[i].start_pfn),
2954 size_pages << PAGE_SHIFT);
2959 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2960 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2962 * If an architecture guarantees that all ranges registered with
2963 * add_active_ranges() contain no holes and may be freed, this
2964 * function may be used instead of calling memory_present() manually.
2966 void __init sparse_memory_present_with_active_regions(int nid)
2968 int i;
2970 for_each_active_range_index_in_nid(i, nid)
2971 memory_present(early_node_map[i].nid,
2972 early_node_map[i].start_pfn,
2973 early_node_map[i].end_pfn);
2977 * push_node_boundaries - Push node boundaries to at least the requested boundary
2978 * @nid: The nid of the node to push the boundary for
2979 * @start_pfn: The start pfn of the node
2980 * @end_pfn: The end pfn of the node
2982 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2983 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2984 * be hotplugged even though no physical memory exists. This function allows
2985 * an arch to push out the node boundaries so mem_map is allocated that can
2986 * be used later.
2988 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2989 void __init push_node_boundaries(unsigned int nid,
2990 unsigned long start_pfn, unsigned long end_pfn)
2992 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2993 nid, start_pfn, end_pfn);
2995 /* Initialise the boundary for this node if necessary */
2996 if (node_boundary_end_pfn[nid] == 0)
2997 node_boundary_start_pfn[nid] = -1UL;
2999 /* Update the boundaries */
3000 if (node_boundary_start_pfn[nid] > start_pfn)
3001 node_boundary_start_pfn[nid] = start_pfn;
3002 if (node_boundary_end_pfn[nid] < end_pfn)
3003 node_boundary_end_pfn[nid] = end_pfn;
3006 /* If necessary, push the node boundary out for reserve hotadd */
3007 static void __meminit account_node_boundary(unsigned int nid,
3008 unsigned long *start_pfn, unsigned long *end_pfn)
3010 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
3011 nid, *start_pfn, *end_pfn);
3013 /* Return if boundary information has not been provided */
3014 if (node_boundary_end_pfn[nid] == 0)
3015 return;
3017 /* Check the boundaries and update if necessary */
3018 if (node_boundary_start_pfn[nid] < *start_pfn)
3019 *start_pfn = node_boundary_start_pfn[nid];
3020 if (node_boundary_end_pfn[nid] > *end_pfn)
3021 *end_pfn = node_boundary_end_pfn[nid];
3023 #else
3024 void __init push_node_boundaries(unsigned int nid,
3025 unsigned long start_pfn, unsigned long end_pfn) {}
3027 static void __meminit account_node_boundary(unsigned int nid,
3028 unsigned long *start_pfn, unsigned long *end_pfn) {}
3029 #endif
3033 * get_pfn_range_for_nid - Return the start and end page frames for a node
3034 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3035 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3036 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3038 * It returns the start and end page frame of a node based on information
3039 * provided by an arch calling add_active_range(). If called for a node
3040 * with no available memory, a warning is printed and the start and end
3041 * PFNs will be 0.
3043 void __meminit get_pfn_range_for_nid(unsigned int nid,
3044 unsigned long *start_pfn, unsigned long *end_pfn)
3046 int i;
3047 *start_pfn = -1UL;
3048 *end_pfn = 0;
3050 for_each_active_range_index_in_nid(i, nid) {
3051 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3052 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3055 if (*start_pfn == -1UL)
3056 *start_pfn = 0;
3058 /* Push the node boundaries out if requested */
3059 account_node_boundary(nid, start_pfn, end_pfn);
3063 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3064 * assumption is made that zones within a node are ordered in monotonic
3065 * increasing memory addresses so that the "highest" populated zone is used
3067 void __init find_usable_zone_for_movable(void)
3069 int zone_index;
3070 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3071 if (zone_index == ZONE_MOVABLE)
3072 continue;
3074 if (arch_zone_highest_possible_pfn[zone_index] >
3075 arch_zone_lowest_possible_pfn[zone_index])
3076 break;
3079 VM_BUG_ON(zone_index == -1);
3080 movable_zone = zone_index;
3084 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3085 * because it is sized independant of architecture. Unlike the other zones,
3086 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3087 * in each node depending on the size of each node and how evenly kernelcore
3088 * is distributed. This helper function adjusts the zone ranges
3089 * provided by the architecture for a given node by using the end of the
3090 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3091 * zones within a node are in order of monotonic increases memory addresses
3093 void __meminit adjust_zone_range_for_zone_movable(int nid,
3094 unsigned long zone_type,
3095 unsigned long node_start_pfn,
3096 unsigned long node_end_pfn,
3097 unsigned long *zone_start_pfn,
3098 unsigned long *zone_end_pfn)
3100 /* Only adjust if ZONE_MOVABLE is on this node */
3101 if (zone_movable_pfn[nid]) {
3102 /* Size ZONE_MOVABLE */
3103 if (zone_type == ZONE_MOVABLE) {
3104 *zone_start_pfn = zone_movable_pfn[nid];
3105 *zone_end_pfn = min(node_end_pfn,
3106 arch_zone_highest_possible_pfn[movable_zone]);
3108 /* Adjust for ZONE_MOVABLE starting within this range */
3109 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3110 *zone_end_pfn > zone_movable_pfn[nid]) {
3111 *zone_end_pfn = zone_movable_pfn[nid];
3113 /* Check if this whole range is within ZONE_MOVABLE */
3114 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3115 *zone_start_pfn = *zone_end_pfn;
3120 * Return the number of pages a zone spans in a node, including holes
3121 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3123 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3124 unsigned long zone_type,
3125 unsigned long *ignored)
3127 unsigned long node_start_pfn, node_end_pfn;
3128 unsigned long zone_start_pfn, zone_end_pfn;
3130 /* Get the start and end of the node and zone */
3131 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3132 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3133 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3134 adjust_zone_range_for_zone_movable(nid, zone_type,
3135 node_start_pfn, node_end_pfn,
3136 &zone_start_pfn, &zone_end_pfn);
3138 /* Check that this node has pages within the zone's required range */
3139 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3140 return 0;
3142 /* Move the zone boundaries inside the node if necessary */
3143 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3144 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3146 /* Return the spanned pages */
3147 return zone_end_pfn - zone_start_pfn;
3151 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3152 * then all holes in the requested range will be accounted for.
3154 unsigned long __meminit __absent_pages_in_range(int nid,
3155 unsigned long range_start_pfn,
3156 unsigned long range_end_pfn)
3158 int i = 0;
3159 unsigned long prev_end_pfn = 0, hole_pages = 0;
3160 unsigned long start_pfn;
3162 /* Find the end_pfn of the first active range of pfns in the node */
3163 i = first_active_region_index_in_nid(nid);
3164 if (i == -1)
3165 return 0;
3167 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3169 /* Account for ranges before physical memory on this node */
3170 if (early_node_map[i].start_pfn > range_start_pfn)
3171 hole_pages = prev_end_pfn - range_start_pfn;
3173 /* Find all holes for the zone within the node */
3174 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3176 /* No need to continue if prev_end_pfn is outside the zone */
3177 if (prev_end_pfn >= range_end_pfn)
3178 break;
3180 /* Make sure the end of the zone is not within the hole */
3181 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3182 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3184 /* Update the hole size cound and move on */
3185 if (start_pfn > range_start_pfn) {
3186 BUG_ON(prev_end_pfn > start_pfn);
3187 hole_pages += start_pfn - prev_end_pfn;
3189 prev_end_pfn = early_node_map[i].end_pfn;
3192 /* Account for ranges past physical memory on this node */
3193 if (range_end_pfn > prev_end_pfn)
3194 hole_pages += range_end_pfn -
3195 max(range_start_pfn, prev_end_pfn);
3197 return hole_pages;
3201 * absent_pages_in_range - Return number of page frames in holes within a range
3202 * @start_pfn: The start PFN to start searching for holes
3203 * @end_pfn: The end PFN to stop searching for holes
3205 * It returns the number of pages frames in memory holes within a range.
3207 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3208 unsigned long end_pfn)
3210 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3213 /* Return the number of page frames in holes in a zone on a node */
3214 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3215 unsigned long zone_type,
3216 unsigned long *ignored)
3218 unsigned long node_start_pfn, node_end_pfn;
3219 unsigned long zone_start_pfn, zone_end_pfn;
3221 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3222 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3223 node_start_pfn);
3224 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3225 node_end_pfn);
3227 adjust_zone_range_for_zone_movable(nid, zone_type,
3228 node_start_pfn, node_end_pfn,
3229 &zone_start_pfn, &zone_end_pfn);
3230 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3233 #else
3234 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3235 unsigned long zone_type,
3236 unsigned long *zones_size)
3238 return zones_size[zone_type];
3241 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3242 unsigned long zone_type,
3243 unsigned long *zholes_size)
3245 if (!zholes_size)
3246 return 0;
3248 return zholes_size[zone_type];
3251 #endif
3253 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3254 unsigned long *zones_size, unsigned long *zholes_size)
3256 unsigned long realtotalpages, totalpages = 0;
3257 enum zone_type i;
3259 for (i = 0; i < MAX_NR_ZONES; i++)
3260 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3261 zones_size);
3262 pgdat->node_spanned_pages = totalpages;
3264 realtotalpages = totalpages;
3265 for (i = 0; i < MAX_NR_ZONES; i++)
3266 realtotalpages -=
3267 zone_absent_pages_in_node(pgdat->node_id, i,
3268 zholes_size);
3269 pgdat->node_present_pages = realtotalpages;
3270 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3271 realtotalpages);
3274 #ifndef CONFIG_SPARSEMEM
3276 * Calculate the size of the zone->blockflags rounded to an unsigned long
3277 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3278 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3279 * round what is now in bits to nearest long in bits, then return it in
3280 * bytes.
3282 static unsigned long __init usemap_size(unsigned long zonesize)
3284 unsigned long usemapsize;
3286 usemapsize = roundup(zonesize, pageblock_nr_pages);
3287 usemapsize = usemapsize >> pageblock_order;
3288 usemapsize *= NR_PAGEBLOCK_BITS;
3289 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3291 return usemapsize / 8;
3294 static void __init setup_usemap(struct pglist_data *pgdat,
3295 struct zone *zone, unsigned long zonesize)
3297 unsigned long usemapsize = usemap_size(zonesize);
3298 zone->pageblock_flags = NULL;
3299 if (usemapsize) {
3300 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3301 memset(zone->pageblock_flags, 0, usemapsize);
3304 #else
3305 static void inline setup_usemap(struct pglist_data *pgdat,
3306 struct zone *zone, unsigned long zonesize) {}
3307 #endif /* CONFIG_SPARSEMEM */
3309 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3311 /* Return a sensible default order for the pageblock size. */
3312 static inline int pageblock_default_order(void)
3314 if (HPAGE_SHIFT > PAGE_SHIFT)
3315 return HUGETLB_PAGE_ORDER;
3317 return MAX_ORDER-1;
3320 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3321 static inline void __init set_pageblock_order(unsigned int order)
3323 /* Check that pageblock_nr_pages has not already been setup */
3324 if (pageblock_order)
3325 return;
3328 * Assume the largest contiguous order of interest is a huge page.
3329 * This value may be variable depending on boot parameters on IA64
3331 pageblock_order = order;
3333 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3336 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3337 * and pageblock_default_order() are unused as pageblock_order is set
3338 * at compile-time. See include/linux/pageblock-flags.h for the values of
3339 * pageblock_order based on the kernel config
3341 static inline int pageblock_default_order(unsigned int order)
3343 return MAX_ORDER-1;
3345 #define set_pageblock_order(x) do {} while (0)
3347 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3350 * Set up the zone data structures:
3351 * - mark all pages reserved
3352 * - mark all memory queues empty
3353 * - clear the memory bitmaps
3355 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3356 unsigned long *zones_size, unsigned long *zholes_size)
3358 enum zone_type j;
3359 int nid = pgdat->node_id;
3360 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3361 int ret;
3363 pgdat_resize_init(pgdat);
3364 pgdat->nr_zones = 0;
3365 init_waitqueue_head(&pgdat->kswapd_wait);
3366 pgdat->kswapd_max_order = 0;
3368 for (j = 0; j < MAX_NR_ZONES; j++) {
3369 struct zone *zone = pgdat->node_zones + j;
3370 unsigned long size, realsize, memmap_pages;
3372 size = zone_spanned_pages_in_node(nid, j, zones_size);
3373 realsize = size - zone_absent_pages_in_node(nid, j,
3374 zholes_size);
3377 * Adjust realsize so that it accounts for how much memory
3378 * is used by this zone for memmap. This affects the watermark
3379 * and per-cpu initialisations
3381 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3382 if (realsize >= memmap_pages) {
3383 realsize -= memmap_pages;
3384 printk(KERN_DEBUG
3385 " %s zone: %lu pages used for memmap\n",
3386 zone_names[j], memmap_pages);
3387 } else
3388 printk(KERN_WARNING
3389 " %s zone: %lu pages exceeds realsize %lu\n",
3390 zone_names[j], memmap_pages, realsize);
3392 /* Account for reserved pages */
3393 if (j == 0 && realsize > dma_reserve) {
3394 realsize -= dma_reserve;
3395 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3396 zone_names[0], dma_reserve);
3399 if (!is_highmem_idx(j))
3400 nr_kernel_pages += realsize;
3401 nr_all_pages += realsize;
3403 zone->spanned_pages = size;
3404 zone->present_pages = realsize;
3405 #ifdef CONFIG_NUMA
3406 zone->node = nid;
3407 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3408 / 100;
3409 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3410 #endif
3411 zone->name = zone_names[j];
3412 spin_lock_init(&zone->lock);
3413 spin_lock_init(&zone->lru_lock);
3414 zone_seqlock_init(zone);
3415 zone->zone_pgdat = pgdat;
3417 zone->prev_priority = DEF_PRIORITY;
3419 zone_pcp_init(zone);
3420 INIT_LIST_HEAD(&zone->active_list);
3421 INIT_LIST_HEAD(&zone->inactive_list);
3422 zone->nr_scan_active = 0;
3423 zone->nr_scan_inactive = 0;
3424 zap_zone_vm_stats(zone);
3425 zone->flags = 0;
3426 if (!size)
3427 continue;
3429 set_pageblock_order(pageblock_default_order());
3430 setup_usemap(pgdat, zone, size);
3431 ret = init_currently_empty_zone(zone, zone_start_pfn,
3432 size, MEMMAP_EARLY);
3433 BUG_ON(ret);
3434 memmap_init(size, nid, j, zone_start_pfn);
3435 zone_start_pfn += size;
3439 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3441 /* Skip empty nodes */
3442 if (!pgdat->node_spanned_pages)
3443 return;
3445 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3446 /* ia64 gets its own node_mem_map, before this, without bootmem */
3447 if (!pgdat->node_mem_map) {
3448 unsigned long size, start, end;
3449 struct page *map;
3452 * The zone's endpoints aren't required to be MAX_ORDER
3453 * aligned but the node_mem_map endpoints must be in order
3454 * for the buddy allocator to function correctly.
3456 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3457 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3458 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3459 size = (end - start) * sizeof(struct page);
3460 map = alloc_remap(pgdat->node_id, size);
3461 if (!map)
3462 map = alloc_bootmem_node(pgdat, size);
3463 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3465 #ifndef CONFIG_NEED_MULTIPLE_NODES
3467 * With no DISCONTIG, the global mem_map is just set as node 0's
3469 if (pgdat == NODE_DATA(0)) {
3470 mem_map = NODE_DATA(0)->node_mem_map;
3471 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3472 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3473 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3474 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3476 #endif
3477 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3480 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3481 unsigned long *zones_size, unsigned long node_start_pfn,
3482 unsigned long *zholes_size)
3484 pgdat->node_id = nid;
3485 pgdat->node_start_pfn = node_start_pfn;
3486 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3488 alloc_node_mem_map(pgdat);
3490 free_area_init_core(pgdat, zones_size, zholes_size);
3493 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3495 #if MAX_NUMNODES > 1
3497 * Figure out the number of possible node ids.
3499 static void __init setup_nr_node_ids(void)
3501 unsigned int node;
3502 unsigned int highest = 0;
3504 for_each_node_mask(node, node_possible_map)
3505 highest = node;
3506 nr_node_ids = highest + 1;
3508 #else
3509 static inline void setup_nr_node_ids(void)
3512 #endif
3515 * add_active_range - Register a range of PFNs backed by physical memory
3516 * @nid: The node ID the range resides on
3517 * @start_pfn: The start PFN of the available physical memory
3518 * @end_pfn: The end PFN of the available physical memory
3520 * These ranges are stored in an early_node_map[] and later used by
3521 * free_area_init_nodes() to calculate zone sizes and holes. If the
3522 * range spans a memory hole, it is up to the architecture to ensure
3523 * the memory is not freed by the bootmem allocator. If possible
3524 * the range being registered will be merged with existing ranges.
3526 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3527 unsigned long end_pfn)
3529 int i;
3531 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3532 "%d entries of %d used\n",
3533 nid, start_pfn, end_pfn,
3534 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3536 /* Merge with existing active regions if possible */
3537 for (i = 0; i < nr_nodemap_entries; i++) {
3538 if (early_node_map[i].nid != nid)
3539 continue;
3541 /* Skip if an existing region covers this new one */
3542 if (start_pfn >= early_node_map[i].start_pfn &&
3543 end_pfn <= early_node_map[i].end_pfn)
3544 return;
3546 /* Merge forward if suitable */
3547 if (start_pfn <= early_node_map[i].end_pfn &&
3548 end_pfn > early_node_map[i].end_pfn) {
3549 early_node_map[i].end_pfn = end_pfn;
3550 return;
3553 /* Merge backward if suitable */
3554 if (start_pfn < early_node_map[i].end_pfn &&
3555 end_pfn >= early_node_map[i].start_pfn) {
3556 early_node_map[i].start_pfn = start_pfn;
3557 return;
3561 /* Check that early_node_map is large enough */
3562 if (i >= MAX_ACTIVE_REGIONS) {
3563 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3564 MAX_ACTIVE_REGIONS);
3565 return;
3568 early_node_map[i].nid = nid;
3569 early_node_map[i].start_pfn = start_pfn;
3570 early_node_map[i].end_pfn = end_pfn;
3571 nr_nodemap_entries = i + 1;
3575 * shrink_active_range - Shrink an existing registered range of PFNs
3576 * @nid: The node id the range is on that should be shrunk
3577 * @old_end_pfn: The old end PFN of the range
3578 * @new_end_pfn: The new PFN of the range
3580 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3581 * The map is kept at the end physical page range that has already been
3582 * registered with add_active_range(). This function allows an arch to shrink
3583 * an existing registered range.
3585 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3586 unsigned long new_end_pfn)
3588 int i;
3590 /* Find the old active region end and shrink */
3591 for_each_active_range_index_in_nid(i, nid)
3592 if (early_node_map[i].end_pfn == old_end_pfn) {
3593 early_node_map[i].end_pfn = new_end_pfn;
3594 break;
3599 * remove_all_active_ranges - Remove all currently registered regions
3601 * During discovery, it may be found that a table like SRAT is invalid
3602 * and an alternative discovery method must be used. This function removes
3603 * all currently registered regions.
3605 void __init remove_all_active_ranges(void)
3607 memset(early_node_map, 0, sizeof(early_node_map));
3608 nr_nodemap_entries = 0;
3609 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3610 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3611 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3612 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3615 /* Compare two active node_active_regions */
3616 static int __init cmp_node_active_region(const void *a, const void *b)
3618 struct node_active_region *arange = (struct node_active_region *)a;
3619 struct node_active_region *brange = (struct node_active_region *)b;
3621 /* Done this way to avoid overflows */
3622 if (arange->start_pfn > brange->start_pfn)
3623 return 1;
3624 if (arange->start_pfn < brange->start_pfn)
3625 return -1;
3627 return 0;
3630 /* sort the node_map by start_pfn */
3631 static void __init sort_node_map(void)
3633 sort(early_node_map, (size_t)nr_nodemap_entries,
3634 sizeof(struct node_active_region),
3635 cmp_node_active_region, NULL);
3638 /* Find the lowest pfn for a node */
3639 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3641 int i;
3642 unsigned long min_pfn = ULONG_MAX;
3644 /* Assuming a sorted map, the first range found has the starting pfn */
3645 for_each_active_range_index_in_nid(i, nid)
3646 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3648 if (min_pfn == ULONG_MAX) {
3649 printk(KERN_WARNING
3650 "Could not find start_pfn for node %lu\n", nid);
3651 return 0;
3654 return min_pfn;
3658 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3660 * It returns the minimum PFN based on information provided via
3661 * add_active_range().
3663 unsigned long __init find_min_pfn_with_active_regions(void)
3665 return find_min_pfn_for_node(MAX_NUMNODES);
3669 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3671 * It returns the maximum PFN based on information provided via
3672 * add_active_range().
3674 unsigned long __init find_max_pfn_with_active_regions(void)
3676 int i;
3677 unsigned long max_pfn = 0;
3679 for (i = 0; i < nr_nodemap_entries; i++)
3680 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3682 return max_pfn;
3686 * early_calculate_totalpages()
3687 * Sum pages in active regions for movable zone.
3688 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3690 static unsigned long __init early_calculate_totalpages(void)
3692 int i;
3693 unsigned long totalpages = 0;
3695 for (i = 0; i < nr_nodemap_entries; i++) {
3696 unsigned long pages = early_node_map[i].end_pfn -
3697 early_node_map[i].start_pfn;
3698 totalpages += pages;
3699 if (pages)
3700 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3702 return totalpages;
3706 * Find the PFN the Movable zone begins in each node. Kernel memory
3707 * is spread evenly between nodes as long as the nodes have enough
3708 * memory. When they don't, some nodes will have more kernelcore than
3709 * others
3711 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3713 int i, nid;
3714 unsigned long usable_startpfn;
3715 unsigned long kernelcore_node, kernelcore_remaining;
3716 unsigned long totalpages = early_calculate_totalpages();
3717 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3720 * If movablecore was specified, calculate what size of
3721 * kernelcore that corresponds so that memory usable for
3722 * any allocation type is evenly spread. If both kernelcore
3723 * and movablecore are specified, then the value of kernelcore
3724 * will be used for required_kernelcore if it's greater than
3725 * what movablecore would have allowed.
3727 if (required_movablecore) {
3728 unsigned long corepages;
3731 * Round-up so that ZONE_MOVABLE is at least as large as what
3732 * was requested by the user
3734 required_movablecore =
3735 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3736 corepages = totalpages - required_movablecore;
3738 required_kernelcore = max(required_kernelcore, corepages);
3741 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3742 if (!required_kernelcore)
3743 return;
3745 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3746 find_usable_zone_for_movable();
3747 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3749 restart:
3750 /* Spread kernelcore memory as evenly as possible throughout nodes */
3751 kernelcore_node = required_kernelcore / usable_nodes;
3752 for_each_node_state(nid, N_HIGH_MEMORY) {
3754 * Recalculate kernelcore_node if the division per node
3755 * now exceeds what is necessary to satisfy the requested
3756 * amount of memory for the kernel
3758 if (required_kernelcore < kernelcore_node)
3759 kernelcore_node = required_kernelcore / usable_nodes;
3762 * As the map is walked, we track how much memory is usable
3763 * by the kernel using kernelcore_remaining. When it is
3764 * 0, the rest of the node is usable by ZONE_MOVABLE
3766 kernelcore_remaining = kernelcore_node;
3768 /* Go through each range of PFNs within this node */
3769 for_each_active_range_index_in_nid(i, nid) {
3770 unsigned long start_pfn, end_pfn;
3771 unsigned long size_pages;
3773 start_pfn = max(early_node_map[i].start_pfn,
3774 zone_movable_pfn[nid]);
3775 end_pfn = early_node_map[i].end_pfn;
3776 if (start_pfn >= end_pfn)
3777 continue;
3779 /* Account for what is only usable for kernelcore */
3780 if (start_pfn < usable_startpfn) {
3781 unsigned long kernel_pages;
3782 kernel_pages = min(end_pfn, usable_startpfn)
3783 - start_pfn;
3785 kernelcore_remaining -= min(kernel_pages,
3786 kernelcore_remaining);
3787 required_kernelcore -= min(kernel_pages,
3788 required_kernelcore);
3790 /* Continue if range is now fully accounted */
3791 if (end_pfn <= usable_startpfn) {
3794 * Push zone_movable_pfn to the end so
3795 * that if we have to rebalance
3796 * kernelcore across nodes, we will
3797 * not double account here
3799 zone_movable_pfn[nid] = end_pfn;
3800 continue;
3802 start_pfn = usable_startpfn;
3806 * The usable PFN range for ZONE_MOVABLE is from
3807 * start_pfn->end_pfn. Calculate size_pages as the
3808 * number of pages used as kernelcore
3810 size_pages = end_pfn - start_pfn;
3811 if (size_pages > kernelcore_remaining)
3812 size_pages = kernelcore_remaining;
3813 zone_movable_pfn[nid] = start_pfn + size_pages;
3816 * Some kernelcore has been met, update counts and
3817 * break if the kernelcore for this node has been
3818 * satisified
3820 required_kernelcore -= min(required_kernelcore,
3821 size_pages);
3822 kernelcore_remaining -= size_pages;
3823 if (!kernelcore_remaining)
3824 break;
3829 * If there is still required_kernelcore, we do another pass with one
3830 * less node in the count. This will push zone_movable_pfn[nid] further
3831 * along on the nodes that still have memory until kernelcore is
3832 * satisified
3834 usable_nodes--;
3835 if (usable_nodes && required_kernelcore > usable_nodes)
3836 goto restart;
3838 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3839 for (nid = 0; nid < MAX_NUMNODES; nid++)
3840 zone_movable_pfn[nid] =
3841 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3844 /* Any regular memory on that node ? */
3845 static void check_for_regular_memory(pg_data_t *pgdat)
3847 #ifdef CONFIG_HIGHMEM
3848 enum zone_type zone_type;
3850 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3851 struct zone *zone = &pgdat->node_zones[zone_type];
3852 if (zone->present_pages)
3853 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3855 #endif
3859 * free_area_init_nodes - Initialise all pg_data_t and zone data
3860 * @max_zone_pfn: an array of max PFNs for each zone
3862 * This will call free_area_init_node() for each active node in the system.
3863 * Using the page ranges provided by add_active_range(), the size of each
3864 * zone in each node and their holes is calculated. If the maximum PFN
3865 * between two adjacent zones match, it is assumed that the zone is empty.
3866 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3867 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3868 * starts where the previous one ended. For example, ZONE_DMA32 starts
3869 * at arch_max_dma_pfn.
3871 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3873 unsigned long nid;
3874 enum zone_type i;
3876 /* Sort early_node_map as initialisation assumes it is sorted */
3877 sort_node_map();
3879 /* Record where the zone boundaries are */
3880 memset(arch_zone_lowest_possible_pfn, 0,
3881 sizeof(arch_zone_lowest_possible_pfn));
3882 memset(arch_zone_highest_possible_pfn, 0,
3883 sizeof(arch_zone_highest_possible_pfn));
3884 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3885 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3886 for (i = 1; i < MAX_NR_ZONES; i++) {
3887 if (i == ZONE_MOVABLE)
3888 continue;
3889 arch_zone_lowest_possible_pfn[i] =
3890 arch_zone_highest_possible_pfn[i-1];
3891 arch_zone_highest_possible_pfn[i] =
3892 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3894 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3895 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3897 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3898 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3899 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3901 /* Print out the zone ranges */
3902 printk("Zone PFN ranges:\n");
3903 for (i = 0; i < MAX_NR_ZONES; i++) {
3904 if (i == ZONE_MOVABLE)
3905 continue;
3906 printk(" %-8s %8lu -> %8lu\n",
3907 zone_names[i],
3908 arch_zone_lowest_possible_pfn[i],
3909 arch_zone_highest_possible_pfn[i]);
3912 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3913 printk("Movable zone start PFN for each node\n");
3914 for (i = 0; i < MAX_NUMNODES; i++) {
3915 if (zone_movable_pfn[i])
3916 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3919 /* Print out the early_node_map[] */
3920 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3921 for (i = 0; i < nr_nodemap_entries; i++)
3922 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3923 early_node_map[i].start_pfn,
3924 early_node_map[i].end_pfn);
3926 /* Initialise every node */
3927 setup_nr_node_ids();
3928 for_each_online_node(nid) {
3929 pg_data_t *pgdat = NODE_DATA(nid);
3930 free_area_init_node(nid, pgdat, NULL,
3931 find_min_pfn_for_node(nid), NULL);
3933 /* Any memory on that node */
3934 if (pgdat->node_present_pages)
3935 node_set_state(nid, N_HIGH_MEMORY);
3936 check_for_regular_memory(pgdat);
3940 static int __init cmdline_parse_core(char *p, unsigned long *core)
3942 unsigned long long coremem;
3943 if (!p)
3944 return -EINVAL;
3946 coremem = memparse(p, &p);
3947 *core = coremem >> PAGE_SHIFT;
3949 /* Paranoid check that UL is enough for the coremem value */
3950 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3952 return 0;
3956 * kernelcore=size sets the amount of memory for use for allocations that
3957 * cannot be reclaimed or migrated.
3959 static int __init cmdline_parse_kernelcore(char *p)
3961 return cmdline_parse_core(p, &required_kernelcore);
3965 * movablecore=size sets the amount of memory for use for allocations that
3966 * can be reclaimed or migrated.
3968 static int __init cmdline_parse_movablecore(char *p)
3970 return cmdline_parse_core(p, &required_movablecore);
3973 early_param("kernelcore", cmdline_parse_kernelcore);
3974 early_param("movablecore", cmdline_parse_movablecore);
3976 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3979 * set_dma_reserve - set the specified number of pages reserved in the first zone
3980 * @new_dma_reserve: The number of pages to mark reserved
3982 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3983 * In the DMA zone, a significant percentage may be consumed by kernel image
3984 * and other unfreeable allocations which can skew the watermarks badly. This
3985 * function may optionally be used to account for unfreeable pages in the
3986 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3987 * smaller per-cpu batchsize.
3989 void __init set_dma_reserve(unsigned long new_dma_reserve)
3991 dma_reserve = new_dma_reserve;
3994 #ifndef CONFIG_NEED_MULTIPLE_NODES
3995 static bootmem_data_t contig_bootmem_data;
3996 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3998 EXPORT_SYMBOL(contig_page_data);
3999 #endif
4001 void __init free_area_init(unsigned long *zones_size)
4003 free_area_init_node(0, NODE_DATA(0), zones_size,
4004 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4007 static int page_alloc_cpu_notify(struct notifier_block *self,
4008 unsigned long action, void *hcpu)
4010 int cpu = (unsigned long)hcpu;
4012 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4013 drain_pages(cpu);
4016 * Spill the event counters of the dead processor
4017 * into the current processors event counters.
4018 * This artificially elevates the count of the current
4019 * processor.
4021 vm_events_fold_cpu(cpu);
4024 * Zero the differential counters of the dead processor
4025 * so that the vm statistics are consistent.
4027 * This is only okay since the processor is dead and cannot
4028 * race with what we are doing.
4030 refresh_cpu_vm_stats(cpu);
4032 return NOTIFY_OK;
4035 void __init page_alloc_init(void)
4037 hotcpu_notifier(page_alloc_cpu_notify, 0);
4041 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4042 * or min_free_kbytes changes.
4044 static void calculate_totalreserve_pages(void)
4046 struct pglist_data *pgdat;
4047 unsigned long reserve_pages = 0;
4048 enum zone_type i, j;
4050 for_each_online_pgdat(pgdat) {
4051 for (i = 0; i < MAX_NR_ZONES; i++) {
4052 struct zone *zone = pgdat->node_zones + i;
4053 unsigned long max = 0;
4055 /* Find valid and maximum lowmem_reserve in the zone */
4056 for (j = i; j < MAX_NR_ZONES; j++) {
4057 if (zone->lowmem_reserve[j] > max)
4058 max = zone->lowmem_reserve[j];
4061 /* we treat pages_high as reserved pages. */
4062 max += zone->pages_high;
4064 if (max > zone->present_pages)
4065 max = zone->present_pages;
4066 reserve_pages += max;
4069 totalreserve_pages = reserve_pages;
4073 * setup_per_zone_lowmem_reserve - called whenever
4074 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4075 * has a correct pages reserved value, so an adequate number of
4076 * pages are left in the zone after a successful __alloc_pages().
4078 static void setup_per_zone_lowmem_reserve(void)
4080 struct pglist_data *pgdat;
4081 enum zone_type j, idx;
4083 for_each_online_pgdat(pgdat) {
4084 for (j = 0; j < MAX_NR_ZONES; j++) {
4085 struct zone *zone = pgdat->node_zones + j;
4086 unsigned long present_pages = zone->present_pages;
4088 zone->lowmem_reserve[j] = 0;
4090 idx = j;
4091 while (idx) {
4092 struct zone *lower_zone;
4094 idx--;
4096 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4097 sysctl_lowmem_reserve_ratio[idx] = 1;
4099 lower_zone = pgdat->node_zones + idx;
4100 lower_zone->lowmem_reserve[j] = present_pages /
4101 sysctl_lowmem_reserve_ratio[idx];
4102 present_pages += lower_zone->present_pages;
4107 /* update totalreserve_pages */
4108 calculate_totalreserve_pages();
4112 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4114 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4115 * with respect to min_free_kbytes.
4117 void setup_per_zone_pages_min(void)
4119 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4120 unsigned long lowmem_pages = 0;
4121 struct zone *zone;
4122 unsigned long flags;
4124 /* Calculate total number of !ZONE_HIGHMEM pages */
4125 for_each_zone(zone) {
4126 if (!is_highmem(zone))
4127 lowmem_pages += zone->present_pages;
4130 for_each_zone(zone) {
4131 u64 tmp;
4133 spin_lock_irqsave(&zone->lru_lock, flags);
4134 tmp = (u64)pages_min * zone->present_pages;
4135 do_div(tmp, lowmem_pages);
4136 if (is_highmem(zone)) {
4138 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4139 * need highmem pages, so cap pages_min to a small
4140 * value here.
4142 * The (pages_high-pages_low) and (pages_low-pages_min)
4143 * deltas controls asynch page reclaim, and so should
4144 * not be capped for highmem.
4146 int min_pages;
4148 min_pages = zone->present_pages / 1024;
4149 if (min_pages < SWAP_CLUSTER_MAX)
4150 min_pages = SWAP_CLUSTER_MAX;
4151 if (min_pages > 128)
4152 min_pages = 128;
4153 zone->pages_min = min_pages;
4154 } else {
4156 * If it's a lowmem zone, reserve a number of pages
4157 * proportionate to the zone's size.
4159 zone->pages_min = tmp;
4162 zone->pages_low = zone->pages_min + (tmp >> 2);
4163 zone->pages_high = zone->pages_min + (tmp >> 1);
4164 setup_zone_migrate_reserve(zone);
4165 spin_unlock_irqrestore(&zone->lru_lock, flags);
4168 /* update totalreserve_pages */
4169 calculate_totalreserve_pages();
4173 * Initialise min_free_kbytes.
4175 * For small machines we want it small (128k min). For large machines
4176 * we want it large (64MB max). But it is not linear, because network
4177 * bandwidth does not increase linearly with machine size. We use
4179 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4180 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4182 * which yields
4184 * 16MB: 512k
4185 * 32MB: 724k
4186 * 64MB: 1024k
4187 * 128MB: 1448k
4188 * 256MB: 2048k
4189 * 512MB: 2896k
4190 * 1024MB: 4096k
4191 * 2048MB: 5792k
4192 * 4096MB: 8192k
4193 * 8192MB: 11584k
4194 * 16384MB: 16384k
4196 static int __init init_per_zone_pages_min(void)
4198 unsigned long lowmem_kbytes;
4200 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4202 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4203 if (min_free_kbytes < 128)
4204 min_free_kbytes = 128;
4205 if (min_free_kbytes > 65536)
4206 min_free_kbytes = 65536;
4207 setup_per_zone_pages_min();
4208 setup_per_zone_lowmem_reserve();
4209 return 0;
4211 module_init(init_per_zone_pages_min)
4214 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4215 * that we can call two helper functions whenever min_free_kbytes
4216 * changes.
4218 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4219 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4221 proc_dointvec(table, write, file, buffer, length, ppos);
4222 if (write)
4223 setup_per_zone_pages_min();
4224 return 0;
4227 #ifdef CONFIG_NUMA
4228 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4229 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4231 struct zone *zone;
4232 int rc;
4234 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4235 if (rc)
4236 return rc;
4238 for_each_zone(zone)
4239 zone->min_unmapped_pages = (zone->present_pages *
4240 sysctl_min_unmapped_ratio) / 100;
4241 return 0;
4244 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4245 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4247 struct zone *zone;
4248 int rc;
4250 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4251 if (rc)
4252 return rc;
4254 for_each_zone(zone)
4255 zone->min_slab_pages = (zone->present_pages *
4256 sysctl_min_slab_ratio) / 100;
4257 return 0;
4259 #endif
4262 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4263 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4264 * whenever sysctl_lowmem_reserve_ratio changes.
4266 * The reserve ratio obviously has absolutely no relation with the
4267 * pages_min watermarks. The lowmem reserve ratio can only make sense
4268 * if in function of the boot time zone sizes.
4270 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4271 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4273 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4274 setup_per_zone_lowmem_reserve();
4275 return 0;
4279 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4280 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4281 * can have before it gets flushed back to buddy allocator.
4284 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4285 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4287 struct zone *zone;
4288 unsigned int cpu;
4289 int ret;
4291 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4292 if (!write || (ret == -EINVAL))
4293 return ret;
4294 for_each_zone(zone) {
4295 for_each_online_cpu(cpu) {
4296 unsigned long high;
4297 high = zone->present_pages / percpu_pagelist_fraction;
4298 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4301 return 0;
4304 int hashdist = HASHDIST_DEFAULT;
4306 #ifdef CONFIG_NUMA
4307 static int __init set_hashdist(char *str)
4309 if (!str)
4310 return 0;
4311 hashdist = simple_strtoul(str, &str, 0);
4312 return 1;
4314 __setup("hashdist=", set_hashdist);
4315 #endif
4318 * allocate a large system hash table from bootmem
4319 * - it is assumed that the hash table must contain an exact power-of-2
4320 * quantity of entries
4321 * - limit is the number of hash buckets, not the total allocation size
4323 void *__init alloc_large_system_hash(const char *tablename,
4324 unsigned long bucketsize,
4325 unsigned long numentries,
4326 int scale,
4327 int flags,
4328 unsigned int *_hash_shift,
4329 unsigned int *_hash_mask,
4330 unsigned long limit)
4332 unsigned long long max = limit;
4333 unsigned long log2qty, size;
4334 void *table = NULL;
4336 /* allow the kernel cmdline to have a say */
4337 if (!numentries) {
4338 /* round applicable memory size up to nearest megabyte */
4339 numentries = nr_kernel_pages;
4340 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4341 numentries >>= 20 - PAGE_SHIFT;
4342 numentries <<= 20 - PAGE_SHIFT;
4344 /* limit to 1 bucket per 2^scale bytes of low memory */
4345 if (scale > PAGE_SHIFT)
4346 numentries >>= (scale - PAGE_SHIFT);
4347 else
4348 numentries <<= (PAGE_SHIFT - scale);
4350 /* Make sure we've got at least a 0-order allocation.. */
4351 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4352 numentries = PAGE_SIZE / bucketsize;
4354 numentries = roundup_pow_of_two(numentries);
4356 /* limit allocation size to 1/16 total memory by default */
4357 if (max == 0) {
4358 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4359 do_div(max, bucketsize);
4362 if (numentries > max)
4363 numentries = max;
4365 log2qty = ilog2(numentries);
4367 do {
4368 size = bucketsize << log2qty;
4369 if (flags & HASH_EARLY)
4370 table = alloc_bootmem(size);
4371 else if (hashdist)
4372 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4373 else {
4374 unsigned long order = get_order(size);
4375 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4377 * If bucketsize is not a power-of-two, we may free
4378 * some pages at the end of hash table.
4380 if (table) {
4381 unsigned long alloc_end = (unsigned long)table +
4382 (PAGE_SIZE << order);
4383 unsigned long used = (unsigned long)table +
4384 PAGE_ALIGN(size);
4385 split_page(virt_to_page(table), order);
4386 while (used < alloc_end) {
4387 free_page(used);
4388 used += PAGE_SIZE;
4392 } while (!table && size > PAGE_SIZE && --log2qty);
4394 if (!table)
4395 panic("Failed to allocate %s hash table\n", tablename);
4397 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4398 tablename,
4399 (1U << log2qty),
4400 ilog2(size) - PAGE_SHIFT,
4401 size);
4403 if (_hash_shift)
4404 *_hash_shift = log2qty;
4405 if (_hash_mask)
4406 *_hash_mask = (1 << log2qty) - 1;
4408 return table;
4411 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4412 struct page *pfn_to_page(unsigned long pfn)
4414 return __pfn_to_page(pfn);
4416 unsigned long page_to_pfn(struct page *page)
4418 return __page_to_pfn(page);
4420 EXPORT_SYMBOL(pfn_to_page);
4421 EXPORT_SYMBOL(page_to_pfn);
4422 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4424 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4425 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4426 unsigned long pfn)
4428 #ifdef CONFIG_SPARSEMEM
4429 return __pfn_to_section(pfn)->pageblock_flags;
4430 #else
4431 return zone->pageblock_flags;
4432 #endif /* CONFIG_SPARSEMEM */
4435 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4437 #ifdef CONFIG_SPARSEMEM
4438 pfn &= (PAGES_PER_SECTION-1);
4439 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4440 #else
4441 pfn = pfn - zone->zone_start_pfn;
4442 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4443 #endif /* CONFIG_SPARSEMEM */
4447 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4448 * @page: The page within the block of interest
4449 * @start_bitidx: The first bit of interest to retrieve
4450 * @end_bitidx: The last bit of interest
4451 * returns pageblock_bits flags
4453 unsigned long get_pageblock_flags_group(struct page *page,
4454 int start_bitidx, int end_bitidx)
4456 struct zone *zone;
4457 unsigned long *bitmap;
4458 unsigned long pfn, bitidx;
4459 unsigned long flags = 0;
4460 unsigned long value = 1;
4462 zone = page_zone(page);
4463 pfn = page_to_pfn(page);
4464 bitmap = get_pageblock_bitmap(zone, pfn);
4465 bitidx = pfn_to_bitidx(zone, pfn);
4467 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4468 if (test_bit(bitidx + start_bitidx, bitmap))
4469 flags |= value;
4471 return flags;
4475 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4476 * @page: The page within the block of interest
4477 * @start_bitidx: The first bit of interest
4478 * @end_bitidx: The last bit of interest
4479 * @flags: The flags to set
4481 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4482 int start_bitidx, int end_bitidx)
4484 struct zone *zone;
4485 unsigned long *bitmap;
4486 unsigned long pfn, bitidx;
4487 unsigned long value = 1;
4489 zone = page_zone(page);
4490 pfn = page_to_pfn(page);
4491 bitmap = get_pageblock_bitmap(zone, pfn);
4492 bitidx = pfn_to_bitidx(zone, pfn);
4493 VM_BUG_ON(pfn < zone->zone_start_pfn);
4494 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4496 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4497 if (flags & value)
4498 __set_bit(bitidx + start_bitidx, bitmap);
4499 else
4500 __clear_bit(bitidx + start_bitidx, bitmap);
4504 * This is designed as sub function...plz see page_isolation.c also.
4505 * set/clear page block's type to be ISOLATE.
4506 * page allocater never alloc memory from ISOLATE block.
4509 int set_migratetype_isolate(struct page *page)
4511 struct zone *zone;
4512 unsigned long flags;
4513 int ret = -EBUSY;
4515 zone = page_zone(page);
4516 spin_lock_irqsave(&zone->lock, flags);
4518 * In future, more migrate types will be able to be isolation target.
4520 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4521 goto out;
4522 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4523 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4524 ret = 0;
4525 out:
4526 spin_unlock_irqrestore(&zone->lock, flags);
4527 if (!ret)
4528 drain_all_pages();
4529 return ret;
4532 void unset_migratetype_isolate(struct page *page)
4534 struct zone *zone;
4535 unsigned long flags;
4536 zone = page_zone(page);
4537 spin_lock_irqsave(&zone->lock, flags);
4538 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4539 goto out;
4540 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4541 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4542 out:
4543 spin_unlock_irqrestore(&zone->lock, flags);
4546 #ifdef CONFIG_MEMORY_HOTREMOVE
4548 * All pages in the range must be isolated before calling this.
4550 void
4551 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4553 struct page *page;
4554 struct zone *zone;
4555 int order, i;
4556 unsigned long pfn;
4557 unsigned long flags;
4558 /* find the first valid pfn */
4559 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4560 if (pfn_valid(pfn))
4561 break;
4562 if (pfn == end_pfn)
4563 return;
4564 zone = page_zone(pfn_to_page(pfn));
4565 spin_lock_irqsave(&zone->lock, flags);
4566 pfn = start_pfn;
4567 while (pfn < end_pfn) {
4568 if (!pfn_valid(pfn)) {
4569 pfn++;
4570 continue;
4572 page = pfn_to_page(pfn);
4573 BUG_ON(page_count(page));
4574 BUG_ON(!PageBuddy(page));
4575 order = page_order(page);
4576 #ifdef CONFIG_DEBUG_VM
4577 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4578 pfn, 1 << order, end_pfn);
4579 #endif
4580 list_del(&page->lru);
4581 rmv_page_order(page);
4582 zone->free_area[order].nr_free--;
4583 __mod_zone_page_state(zone, NR_FREE_PAGES,
4584 - (1UL << order));
4585 for (i = 0; i < (1 << order); i++)
4586 SetPageReserved((page+i));
4587 pfn += (1 << order);
4589 spin_unlock_irqrestore(&zone->lock, flags);
4591 #endif