Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / igb / e1000_phy.c
blob08a86b107229cde92e30594e45215d5850616e02
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
34 static s32 igb_get_phy_cfg_done(struct e1000_hw *hw);
35 static void igb_release_phy(struct e1000_hw *hw);
36 static s32 igb_acquire_phy(struct e1000_hw *hw);
37 static s32 igb_phy_reset_dsp(struct e1000_hw *hw);
38 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
39 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
40 u16 *phy_ctrl);
41 static s32 igb_wait_autoneg(struct e1000_hw *hw);
43 /* Cable length tables */
44 static const u16 e1000_m88_cable_length_table[] =
45 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
46 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
47 (sizeof(e1000_m88_cable_length_table) / \
48 sizeof(e1000_m88_cable_length_table[0]))
50 static const u16 e1000_igp_2_cable_length_table[] =
51 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
52 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
53 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
54 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
55 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
56 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
57 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
58 104, 109, 114, 118, 121, 124};
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 (sizeof(e1000_igp_2_cable_length_table) / \
61 sizeof(e1000_igp_2_cable_length_table[0]))
63 /**
64 * e1000_check_reset_block - Check if PHY reset is blocked
65 * @hw: pointer to the HW structure
67 * Read the PHY management control register and check whether a PHY reset
68 * is blocked. If a reset is not blocked return 0, otherwise
69 * return E1000_BLK_PHY_RESET (12).
70 **/
71 s32 igb_check_reset_block(struct e1000_hw *hw)
73 u32 manc;
75 manc = rd32(E1000_MANC);
77 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
78 E1000_BLK_PHY_RESET : 0;
81 /**
82 * e1000_get_phy_id - Retrieve the PHY ID and revision
83 * @hw: pointer to the HW structure
85 * Reads the PHY registers and stores the PHY ID and possibly the PHY
86 * revision in the hardware structure.
87 **/
88 s32 igb_get_phy_id(struct e1000_hw *hw)
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val = 0;
92 u16 phy_id;
94 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_ID1, &phy_id);
95 if (ret_val)
96 goto out;
98 phy->id = (u32)(phy_id << 16);
99 udelay(20);
100 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_ID2, &phy_id);
101 if (ret_val)
102 goto out;
104 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
105 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
107 out:
108 return ret_val;
112 * e1000_phy_reset_dsp - Reset PHY DSP
113 * @hw: pointer to the HW structure
115 * Reset the digital signal processor.
117 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
119 s32 ret_val;
121 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
122 if (ret_val)
123 goto out;
125 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
127 out:
128 return ret_val;
132 * e1000_read_phy_reg_mdic - Read MDI control register
133 * @hw: pointer to the HW structure
134 * @offset: register offset to be read
135 * @data: pointer to the read data
137 * Reads the MDI control regsiter in the PHY at offset and stores the
138 * information read to data.
140 static s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
142 struct e1000_phy_info *phy = &hw->phy;
143 u32 i, mdic = 0;
144 s32 ret_val = 0;
146 if (offset > MAX_PHY_REG_ADDRESS) {
147 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
148 ret_val = -E1000_ERR_PARAM;
149 goto out;
153 * Set up Op-code, Phy Address, and register offset in the MDI
154 * Control register. The MAC will take care of interfacing with the
155 * PHY to retrieve the desired data.
157 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
158 (phy->addr << E1000_MDIC_PHY_SHIFT) |
159 (E1000_MDIC_OP_READ));
161 wr32(E1000_MDIC, mdic);
164 * Poll the ready bit to see if the MDI read completed
165 * Increasing the time out as testing showed failures with
166 * the lower time out
168 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
169 udelay(50);
170 mdic = rd32(E1000_MDIC);
171 if (mdic & E1000_MDIC_READY)
172 break;
174 if (!(mdic & E1000_MDIC_READY)) {
175 hw_dbg(hw, "MDI Read did not complete\n");
176 ret_val = -E1000_ERR_PHY;
177 goto out;
179 if (mdic & E1000_MDIC_ERROR) {
180 hw_dbg(hw, "MDI Error\n");
181 ret_val = -E1000_ERR_PHY;
182 goto out;
184 *data = (u16) mdic;
186 out:
187 return ret_val;
191 * e1000_write_phy_reg_mdic - Write MDI control register
192 * @hw: pointer to the HW structure
193 * @offset: register offset to write to
194 * @data: data to write to register at offset
196 * Writes data to MDI control register in the PHY at offset.
198 static s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
200 struct e1000_phy_info *phy = &hw->phy;
201 u32 i, mdic = 0;
202 s32 ret_val = 0;
204 if (offset > MAX_PHY_REG_ADDRESS) {
205 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
206 ret_val = -E1000_ERR_PARAM;
207 goto out;
211 * Set up Op-code, Phy Address, and register offset in the MDI
212 * Control register. The MAC will take care of interfacing with the
213 * PHY to retrieve the desired data.
215 mdic = (((u32)data) |
216 (offset << E1000_MDIC_REG_SHIFT) |
217 (phy->addr << E1000_MDIC_PHY_SHIFT) |
218 (E1000_MDIC_OP_WRITE));
220 wr32(E1000_MDIC, mdic);
223 * Poll the ready bit to see if the MDI read completed
224 * Increasing the time out as testing showed failures with
225 * the lower time out
227 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
228 udelay(50);
229 mdic = rd32(E1000_MDIC);
230 if (mdic & E1000_MDIC_READY)
231 break;
233 if (!(mdic & E1000_MDIC_READY)) {
234 hw_dbg(hw, "MDI Write did not complete\n");
235 ret_val = -E1000_ERR_PHY;
236 goto out;
238 if (mdic & E1000_MDIC_ERROR) {
239 hw_dbg(hw, "MDI Error\n");
240 ret_val = -E1000_ERR_PHY;
241 goto out;
244 out:
245 return ret_val;
249 * e1000_read_phy_reg_igp - Read igp PHY register
250 * @hw: pointer to the HW structure
251 * @offset: register offset to be read
252 * @data: pointer to the read data
254 * Acquires semaphore, if necessary, then reads the PHY register at offset
255 * and storing the retrieved information in data. Release any acquired
256 * semaphores before exiting.
258 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
260 s32 ret_val;
262 ret_val = igb_acquire_phy(hw);
263 if (ret_val)
264 goto out;
266 if (offset > MAX_PHY_MULTI_PAGE_REG) {
267 ret_val = igb_write_phy_reg_mdic(hw,
268 IGP01E1000_PHY_PAGE_SELECT,
269 (u16)offset);
270 if (ret_val) {
271 igb_release_phy(hw);
272 goto out;
276 ret_val = igb_read_phy_reg_mdic(hw,
277 MAX_PHY_REG_ADDRESS & offset,
278 data);
280 igb_release_phy(hw);
282 out:
283 return ret_val;
287 * e1000_write_phy_reg_igp - Write igp PHY register
288 * @hw: pointer to the HW structure
289 * @offset: register offset to write to
290 * @data: data to write at register offset
292 * Acquires semaphore, if necessary, then writes the data to PHY register
293 * at the offset. Release any acquired semaphores before exiting.
295 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
297 s32 ret_val;
299 ret_val = igb_acquire_phy(hw);
300 if (ret_val)
301 goto out;
303 if (offset > MAX_PHY_MULTI_PAGE_REG) {
304 ret_val = igb_write_phy_reg_mdic(hw,
305 IGP01E1000_PHY_PAGE_SELECT,
306 (u16)offset);
307 if (ret_val) {
308 igb_release_phy(hw);
309 goto out;
313 ret_val = igb_write_phy_reg_mdic(hw,
314 MAX_PHY_REG_ADDRESS & offset,
315 data);
317 igb_release_phy(hw);
319 out:
320 return ret_val;
324 * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
325 * @hw: pointer to the HW structure
327 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
328 * and downshift values are set also.
330 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
332 struct e1000_phy_info *phy = &hw->phy;
333 s32 ret_val;
334 u16 phy_data;
336 if (phy->reset_disable) {
337 ret_val = 0;
338 goto out;
341 /* Enable CRS on TX. This must be set for half-duplex operation. */
342 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
343 &phy_data);
344 if (ret_val)
345 goto out;
347 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
350 * Options:
351 * MDI/MDI-X = 0 (default)
352 * 0 - Auto for all speeds
353 * 1 - MDI mode
354 * 2 - MDI-X mode
355 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
357 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
359 switch (phy->mdix) {
360 case 1:
361 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
362 break;
363 case 2:
364 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
365 break;
366 case 3:
367 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
368 break;
369 case 0:
370 default:
371 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
372 break;
376 * Options:
377 * disable_polarity_correction = 0 (default)
378 * Automatic Correction for Reversed Cable Polarity
379 * 0 - Disabled
380 * 1 - Enabled
382 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
383 if (phy->disable_polarity_correction == 1)
384 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
386 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
387 phy_data);
388 if (ret_val)
389 goto out;
391 if (phy->revision < E1000_REVISION_4) {
393 * Force TX_CLK in the Extended PHY Specific Control Register
394 * to 25MHz clock.
396 ret_val = hw->phy.ops.read_phy_reg(hw,
397 M88E1000_EXT_PHY_SPEC_CTRL,
398 &phy_data);
399 if (ret_val)
400 goto out;
402 phy_data |= M88E1000_EPSCR_TX_CLK_25;
404 if ((phy->revision == E1000_REVISION_2) &&
405 (phy->id == M88E1111_I_PHY_ID)) {
406 /* 82573L PHY - set the downshift counter to 5x. */
407 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
408 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
409 } else {
410 /* Configure Master and Slave downshift values */
411 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
412 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
413 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
414 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
416 ret_val = hw->phy.ops.write_phy_reg(hw,
417 M88E1000_EXT_PHY_SPEC_CTRL,
418 phy_data);
419 if (ret_val)
420 goto out;
423 /* Commit the changes. */
424 ret_val = igb_phy_sw_reset(hw);
425 if (ret_val) {
426 hw_dbg(hw, "Error committing the PHY changes\n");
427 goto out;
430 out:
431 return ret_val;
435 * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
436 * @hw: pointer to the HW structure
438 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
439 * igp PHY's.
441 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
443 struct e1000_phy_info *phy = &hw->phy;
444 s32 ret_val;
445 u16 data;
447 if (phy->reset_disable) {
448 ret_val = 0;
449 goto out;
452 ret_val = hw->phy.ops.reset_phy(hw);
453 if (ret_val) {
454 hw_dbg(hw, "Error resetting the PHY.\n");
455 goto out;
458 /* Wait 15ms for MAC to configure PHY from NVM settings. */
459 msleep(15);
462 * The NVM settings will configure LPLU in D3 for
463 * non-IGP1 PHYs.
465 if (phy->type == e1000_phy_igp) {
466 /* disable lplu d3 during driver init */
467 if (hw->phy.ops.set_d3_lplu_state)
468 ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
469 if (ret_val) {
470 hw_dbg(hw, "Error Disabling LPLU D3\n");
471 goto out;
475 /* disable lplu d0 during driver init */
476 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
477 if (ret_val) {
478 hw_dbg(hw, "Error Disabling LPLU D0\n");
479 goto out;
481 /* Configure mdi-mdix settings */
482 ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
483 if (ret_val)
484 goto out;
486 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
488 switch (phy->mdix) {
489 case 1:
490 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
491 break;
492 case 2:
493 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
494 break;
495 case 0:
496 default:
497 data |= IGP01E1000_PSCR_AUTO_MDIX;
498 break;
500 ret_val = hw->phy.ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
501 if (ret_val)
502 goto out;
504 /* set auto-master slave resolution settings */
505 if (hw->mac.autoneg) {
507 * when autonegotiation advertisement is only 1000Mbps then we
508 * should disable SmartSpeed and enable Auto MasterSlave
509 * resolution as hardware default.
511 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
512 /* Disable SmartSpeed */
513 ret_val = hw->phy.ops.read_phy_reg(hw,
514 IGP01E1000_PHY_PORT_CONFIG,
515 &data);
516 if (ret_val)
517 goto out;
519 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
520 ret_val = hw->phy.ops.write_phy_reg(hw,
521 IGP01E1000_PHY_PORT_CONFIG,
522 data);
523 if (ret_val)
524 goto out;
526 /* Set auto Master/Slave resolution process */
527 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_CTRL,
528 &data);
529 if (ret_val)
530 goto out;
532 data &= ~CR_1000T_MS_ENABLE;
533 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_1000T_CTRL,
534 data);
535 if (ret_val)
536 goto out;
539 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_CTRL, &data);
540 if (ret_val)
541 goto out;
543 /* load defaults for future use */
544 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
545 ((data & CR_1000T_MS_VALUE) ?
546 e1000_ms_force_master :
547 e1000_ms_force_slave) :
548 e1000_ms_auto;
550 switch (phy->ms_type) {
551 case e1000_ms_force_master:
552 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
553 break;
554 case e1000_ms_force_slave:
555 data |= CR_1000T_MS_ENABLE;
556 data &= ~(CR_1000T_MS_VALUE);
557 break;
558 case e1000_ms_auto:
559 data &= ~CR_1000T_MS_ENABLE;
560 default:
561 break;
563 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_1000T_CTRL, data);
564 if (ret_val)
565 goto out;
568 out:
569 return ret_val;
573 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
574 * @hw: pointer to the HW structure
576 * Performs initial bounds checking on autoneg advertisement parameter, then
577 * configure to advertise the full capability. Setup the PHY to autoneg
578 * and restart the negotiation process between the link partner. If
579 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
581 s32 igb_copper_link_autoneg(struct e1000_hw *hw)
583 struct e1000_phy_info *phy = &hw->phy;
584 s32 ret_val;
585 u16 phy_ctrl;
588 * Perform some bounds checking on the autoneg advertisement
589 * parameter.
591 phy->autoneg_advertised &= phy->autoneg_mask;
594 * If autoneg_advertised is zero, we assume it was not defaulted
595 * by the calling code so we set to advertise full capability.
597 if (phy->autoneg_advertised == 0)
598 phy->autoneg_advertised = phy->autoneg_mask;
600 hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
601 ret_val = igb_phy_setup_autoneg(hw);
602 if (ret_val) {
603 hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
604 goto out;
606 hw_dbg(hw, "Restarting Auto-Neg\n");
609 * Restart auto-negotiation by setting the Auto Neg Enable bit and
610 * the Auto Neg Restart bit in the PHY control register.
612 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
613 if (ret_val)
614 goto out;
616 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
617 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
618 if (ret_val)
619 goto out;
622 * Does the user want to wait for Auto-Neg to complete here, or
623 * check at a later time (for example, callback routine).
625 if (phy->autoneg_wait_to_complete) {
626 ret_val = igb_wait_autoneg(hw);
627 if (ret_val) {
628 hw_dbg(hw, "Error while waiting for "
629 "autoneg to complete\n");
630 goto out;
634 hw->mac.get_link_status = true;
636 out:
637 return ret_val;
641 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
642 * @hw: pointer to the HW structure
644 * Reads the MII auto-neg advertisement register and/or the 1000T control
645 * register and if the PHY is already setup for auto-negotiation, then
646 * return successful. Otherwise, setup advertisement and flow control to
647 * the appropriate values for the wanted auto-negotiation.
649 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
651 struct e1000_phy_info *phy = &hw->phy;
652 s32 ret_val;
653 u16 mii_autoneg_adv_reg;
654 u16 mii_1000t_ctrl_reg = 0;
656 phy->autoneg_advertised &= phy->autoneg_mask;
658 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
659 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV,
660 &mii_autoneg_adv_reg);
661 if (ret_val)
662 goto out;
664 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
665 /* Read the MII 1000Base-T Control Register (Address 9). */
666 ret_val = hw->phy.ops.read_phy_reg(hw,
667 PHY_1000T_CTRL,
668 &mii_1000t_ctrl_reg);
669 if (ret_val)
670 goto out;
674 * Need to parse both autoneg_advertised and fc and set up
675 * the appropriate PHY registers. First we will parse for
676 * autoneg_advertised software override. Since we can advertise
677 * a plethora of combinations, we need to check each bit
678 * individually.
682 * First we clear all the 10/100 mb speed bits in the Auto-Neg
683 * Advertisement Register (Address 4) and the 1000 mb speed bits in
684 * the 1000Base-T Control Register (Address 9).
686 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
687 NWAY_AR_100TX_HD_CAPS |
688 NWAY_AR_10T_FD_CAPS |
689 NWAY_AR_10T_HD_CAPS);
690 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
692 hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
694 /* Do we want to advertise 10 Mb Half Duplex? */
695 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
696 hw_dbg(hw, "Advertise 10mb Half duplex\n");
697 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
700 /* Do we want to advertise 10 Mb Full Duplex? */
701 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
702 hw_dbg(hw, "Advertise 10mb Full duplex\n");
703 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
706 /* Do we want to advertise 100 Mb Half Duplex? */
707 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
708 hw_dbg(hw, "Advertise 100mb Half duplex\n");
709 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
712 /* Do we want to advertise 100 Mb Full Duplex? */
713 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
714 hw_dbg(hw, "Advertise 100mb Full duplex\n");
715 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
718 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
719 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
720 hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
722 /* Do we want to advertise 1000 Mb Full Duplex? */
723 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
724 hw_dbg(hw, "Advertise 1000mb Full duplex\n");
725 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
729 * Check for a software override of the flow control settings, and
730 * setup the PHY advertisement registers accordingly. If
731 * auto-negotiation is enabled, then software will have to set the
732 * "PAUSE" bits to the correct value in the Auto-Negotiation
733 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
734 * negotiation.
736 * The possible values of the "fc" parameter are:
737 * 0: Flow control is completely disabled
738 * 1: Rx flow control is enabled (we can receive pause frames
739 * but not send pause frames).
740 * 2: Tx flow control is enabled (we can send pause frames
741 * but we do not support receiving pause frames).
742 * 3: Both Rx and TX flow control (symmetric) are enabled.
743 * other: No software override. The flow control configuration
744 * in the EEPROM is used.
746 switch (hw->fc.type) {
747 case e1000_fc_none:
749 * Flow control (RX & TX) is completely disabled by a
750 * software over-ride.
752 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
753 break;
754 case e1000_fc_rx_pause:
756 * RX Flow control is enabled, and TX Flow control is
757 * disabled, by a software over-ride.
759 * Since there really isn't a way to advertise that we are
760 * capable of RX Pause ONLY, we will advertise that we
761 * support both symmetric and asymmetric RX PAUSE. Later
762 * (in e1000_config_fc_after_link_up) we will disable the
763 * hw's ability to send PAUSE frames.
765 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
766 break;
767 case e1000_fc_tx_pause:
769 * TX Flow control is enabled, and RX Flow control is
770 * disabled, by a software over-ride.
772 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
773 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
774 break;
775 case e1000_fc_full:
777 * Flow control (both RX and TX) is enabled by a software
778 * over-ride.
780 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
781 break;
782 default:
783 hw_dbg(hw, "Flow control param set incorrectly\n");
784 ret_val = -E1000_ERR_CONFIG;
785 goto out;
788 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_AUTONEG_ADV,
789 mii_autoneg_adv_reg);
790 if (ret_val)
791 goto out;
793 hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
795 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
796 ret_val = hw->phy.ops.write_phy_reg(hw,
797 PHY_1000T_CTRL,
798 mii_1000t_ctrl_reg);
799 if (ret_val)
800 goto out;
803 out:
804 return ret_val;
808 * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
809 * @hw: pointer to the HW structure
811 * Calls the PHY setup function to force speed and duplex. Clears the
812 * auto-crossover to force MDI manually. Waits for link and returns
813 * successful if link up is successful, else -E1000_ERR_PHY (-2).
815 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
817 struct e1000_phy_info *phy = &hw->phy;
818 s32 ret_val;
819 u16 phy_data;
820 bool link;
822 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data);
823 if (ret_val)
824 goto out;
826 igb_phy_force_speed_duplex_setup(hw, &phy_data);
828 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_data);
829 if (ret_val)
830 goto out;
833 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
834 * forced whenever speed and duplex are forced.
836 ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
837 &phy_data);
838 if (ret_val)
839 goto out;
841 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
842 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
844 ret_val = hw->phy.ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
845 phy_data);
846 if (ret_val)
847 goto out;
849 hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
851 udelay(1);
853 if (phy->autoneg_wait_to_complete) {
854 hw_dbg(hw,
855 "Waiting for forced speed/duplex link on IGP phy.\n");
857 ret_val = igb_phy_has_link(hw,
858 PHY_FORCE_LIMIT,
859 100000,
860 &link);
861 if (ret_val)
862 goto out;
864 if (!link)
865 hw_dbg(hw, "Link taking longer than expected.\n");
867 /* Try once more */
868 ret_val = igb_phy_has_link(hw,
869 PHY_FORCE_LIMIT,
870 100000,
871 &link);
872 if (ret_val)
873 goto out;
876 out:
877 return ret_val;
881 * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
882 * @hw: pointer to the HW structure
884 * Calls the PHY setup function to force speed and duplex. Clears the
885 * auto-crossover to force MDI manually. Resets the PHY to commit the
886 * changes. If time expires while waiting for link up, we reset the DSP.
887 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
888 * successful completion, else return corresponding error code.
890 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
892 struct e1000_phy_info *phy = &hw->phy;
893 s32 ret_val;
894 u16 phy_data;
895 bool link;
898 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
899 * forced whenever speed and duplex are forced.
901 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
902 &phy_data);
903 if (ret_val)
904 goto out;
906 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
907 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
908 phy_data);
909 if (ret_val)
910 goto out;
912 hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
914 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data);
915 if (ret_val)
916 goto out;
918 igb_phy_force_speed_duplex_setup(hw, &phy_data);
920 /* Reset the phy to commit changes. */
921 phy_data |= MII_CR_RESET;
923 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_data);
924 if (ret_val)
925 goto out;
927 udelay(1);
929 if (phy->autoneg_wait_to_complete) {
930 hw_dbg(hw,
931 "Waiting for forced speed/duplex link on M88 phy.\n");
933 ret_val = igb_phy_has_link(hw,
934 PHY_FORCE_LIMIT,
935 100000,
936 &link);
937 if (ret_val)
938 goto out;
940 if (!link) {
942 * We didn't get link.
943 * Reset the DSP and cross our fingers.
945 ret_val = hw->phy.ops.write_phy_reg(hw,
946 M88E1000_PHY_PAGE_SELECT,
947 0x001d);
948 if (ret_val)
949 goto out;
950 ret_val = igb_phy_reset_dsp(hw);
951 if (ret_val)
952 goto out;
955 /* Try once more */
956 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
957 100000, &link);
958 if (ret_val)
959 goto out;
962 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
963 &phy_data);
964 if (ret_val)
965 goto out;
968 * Resetting the phy means we need to re-force TX_CLK in the
969 * Extended PHY Specific Control Register to 25MHz clock from
970 * the reset value of 2.5MHz.
972 phy_data |= M88E1000_EPSCR_TX_CLK_25;
973 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
974 phy_data);
975 if (ret_val)
976 goto out;
979 * In addition, we must re-enable CRS on Tx for both half and full
980 * duplex.
982 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
983 &phy_data);
984 if (ret_val)
985 goto out;
987 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
988 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
989 phy_data);
991 out:
992 return ret_val;
996 * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
997 * @hw: pointer to the HW structure
998 * @phy_ctrl: pointer to current value of PHY_CONTROL
1000 * Forces speed and duplex on the PHY by doing the following: disable flow
1001 * control, force speed/duplex on the MAC, disable auto speed detection,
1002 * disable auto-negotiation, configure duplex, configure speed, configure
1003 * the collision distance, write configuration to CTRL register. The
1004 * caller must write to the PHY_CONTROL register for these settings to
1005 * take affect.
1007 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1008 u16 *phy_ctrl)
1010 struct e1000_mac_info *mac = &hw->mac;
1011 u32 ctrl;
1013 /* Turn off flow control when forcing speed/duplex */
1014 hw->fc.type = e1000_fc_none;
1016 /* Force speed/duplex on the mac */
1017 ctrl = rd32(E1000_CTRL);
1018 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1019 ctrl &= ~E1000_CTRL_SPD_SEL;
1021 /* Disable Auto Speed Detection */
1022 ctrl &= ~E1000_CTRL_ASDE;
1024 /* Disable autoneg on the phy */
1025 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1027 /* Forcing Full or Half Duplex? */
1028 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1029 ctrl &= ~E1000_CTRL_FD;
1030 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1031 hw_dbg(hw, "Half Duplex\n");
1032 } else {
1033 ctrl |= E1000_CTRL_FD;
1034 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1035 hw_dbg(hw, "Full Duplex\n");
1038 /* Forcing 10mb or 100mb? */
1039 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1040 ctrl |= E1000_CTRL_SPD_100;
1041 *phy_ctrl |= MII_CR_SPEED_100;
1042 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1043 hw_dbg(hw, "Forcing 100mb\n");
1044 } else {
1045 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1046 *phy_ctrl |= MII_CR_SPEED_10;
1047 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1048 hw_dbg(hw, "Forcing 10mb\n");
1051 igb_config_collision_dist(hw);
1053 wr32(E1000_CTRL, ctrl);
1057 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1058 * @hw: pointer to the HW structure
1059 * @active: boolean used to enable/disable lplu
1061 * Success returns 0, Failure returns 1
1063 * The low power link up (lplu) state is set to the power management level D3
1064 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1065 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1066 * is used during Dx states where the power conservation is most important.
1067 * During driver activity, SmartSpeed should be enabled so performance is
1068 * maintained.
1070 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1072 struct e1000_phy_info *phy = &hw->phy;
1073 s32 ret_val;
1074 u16 data;
1076 ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1077 &data);
1078 if (ret_val)
1079 goto out;
1081 if (!active) {
1082 data &= ~IGP02E1000_PM_D3_LPLU;
1083 ret_val = hw->phy.ops.write_phy_reg(hw,
1084 IGP02E1000_PHY_POWER_MGMT,
1085 data);
1086 if (ret_val)
1087 goto out;
1089 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1090 * during Dx states where the power conservation is most
1091 * important. During driver activity we should enable
1092 * SmartSpeed, so performance is maintained.
1094 if (phy->smart_speed == e1000_smart_speed_on) {
1095 ret_val = hw->phy.ops.read_phy_reg(hw,
1096 IGP01E1000_PHY_PORT_CONFIG,
1097 &data);
1098 if (ret_val)
1099 goto out;
1101 data |= IGP01E1000_PSCFR_SMART_SPEED;
1102 ret_val = hw->phy.ops.write_phy_reg(hw,
1103 IGP01E1000_PHY_PORT_CONFIG,
1104 data);
1105 if (ret_val)
1106 goto out;
1107 } else if (phy->smart_speed == e1000_smart_speed_off) {
1108 ret_val = hw->phy.ops.read_phy_reg(hw,
1109 IGP01E1000_PHY_PORT_CONFIG,
1110 &data);
1111 if (ret_val)
1112 goto out;
1114 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1115 ret_val = hw->phy.ops.write_phy_reg(hw,
1116 IGP01E1000_PHY_PORT_CONFIG,
1117 data);
1118 if (ret_val)
1119 goto out;
1121 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1122 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1123 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1124 data |= IGP02E1000_PM_D3_LPLU;
1125 ret_val = hw->phy.ops.write_phy_reg(hw,
1126 IGP02E1000_PHY_POWER_MGMT,
1127 data);
1128 if (ret_val)
1129 goto out;
1131 /* When LPLU is enabled, we should disable SmartSpeed */
1132 ret_val = hw->phy.ops.read_phy_reg(hw,
1133 IGP01E1000_PHY_PORT_CONFIG,
1134 &data);
1135 if (ret_val)
1136 goto out;
1138 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1139 ret_val = hw->phy.ops.write_phy_reg(hw,
1140 IGP01E1000_PHY_PORT_CONFIG,
1141 data);
1144 out:
1145 return ret_val;
1149 * e1000_check_downshift - Checks whether a downshift in speed occured
1150 * @hw: pointer to the HW structure
1152 * Success returns 0, Failure returns 1
1154 * A downshift is detected by querying the PHY link health.
1156 s32 igb_check_downshift(struct e1000_hw *hw)
1158 struct e1000_phy_info *phy = &hw->phy;
1159 s32 ret_val;
1160 u16 phy_data, offset, mask;
1162 switch (phy->type) {
1163 case e1000_phy_m88:
1164 case e1000_phy_gg82563:
1165 offset = M88E1000_PHY_SPEC_STATUS;
1166 mask = M88E1000_PSSR_DOWNSHIFT;
1167 break;
1168 case e1000_phy_igp_2:
1169 case e1000_phy_igp:
1170 case e1000_phy_igp_3:
1171 offset = IGP01E1000_PHY_LINK_HEALTH;
1172 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1173 break;
1174 default:
1175 /* speed downshift not supported */
1176 phy->speed_downgraded = false;
1177 ret_val = 0;
1178 goto out;
1181 ret_val = hw->phy.ops.read_phy_reg(hw, offset, &phy_data);
1183 if (!ret_val)
1184 phy->speed_downgraded = (phy_data & mask) ? true : false;
1186 out:
1187 return ret_val;
1191 * e1000_check_polarity_m88 - Checks the polarity.
1192 * @hw: pointer to the HW structure
1194 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1196 * Polarity is determined based on the PHY specific status register.
1198 static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1200 struct e1000_phy_info *phy = &hw->phy;
1201 s32 ret_val;
1202 u16 data;
1204 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1206 if (!ret_val)
1207 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1208 ? e1000_rev_polarity_reversed
1209 : e1000_rev_polarity_normal;
1211 return ret_val;
1215 * e1000_check_polarity_igp - Checks the polarity.
1216 * @hw: pointer to the HW structure
1218 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1220 * Polarity is determined based on the PHY port status register, and the
1221 * current speed (since there is no polarity at 100Mbps).
1223 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1225 struct e1000_phy_info *phy = &hw->phy;
1226 s32 ret_val;
1227 u16 data, offset, mask;
1230 * Polarity is determined based on the speed of
1231 * our connection.
1233 ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
1234 &data);
1235 if (ret_val)
1236 goto out;
1238 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1239 IGP01E1000_PSSR_SPEED_1000MBPS) {
1240 offset = IGP01E1000_PHY_PCS_INIT_REG;
1241 mask = IGP01E1000_PHY_POLARITY_MASK;
1242 } else {
1244 * This really only applies to 10Mbps since
1245 * there is no polarity for 100Mbps (always 0).
1247 offset = IGP01E1000_PHY_PORT_STATUS;
1248 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1251 ret_val = hw->phy.ops.read_phy_reg(hw, offset, &data);
1253 if (!ret_val)
1254 phy->cable_polarity = (data & mask)
1255 ? e1000_rev_polarity_reversed
1256 : e1000_rev_polarity_normal;
1258 out:
1259 return ret_val;
1263 * e1000_wait_autoneg - Wait for auto-neg compeletion
1264 * @hw: pointer to the HW structure
1266 * Waits for auto-negotiation to complete or for the auto-negotiation time
1267 * limit to expire, which ever happens first.
1269 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1271 s32 ret_val = 0;
1272 u16 i, phy_status;
1274 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1275 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1276 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status);
1277 if (ret_val)
1278 break;
1279 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status);
1280 if (ret_val)
1281 break;
1282 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1283 break;
1284 msleep(100);
1288 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1289 * has completed.
1291 return ret_val;
1295 * e1000_phy_has_link - Polls PHY for link
1296 * @hw: pointer to the HW structure
1297 * @iterations: number of times to poll for link
1298 * @usec_interval: delay between polling attempts
1299 * @success: pointer to whether polling was successful or not
1301 * Polls the PHY status register for link, 'iterations' number of times.
1303 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1304 u32 usec_interval, bool *success)
1306 s32 ret_val = 0;
1307 u16 i, phy_status;
1309 for (i = 0; i < iterations; i++) {
1311 * Some PHYs require the PHY_STATUS register to be read
1312 * twice due to the link bit being sticky. No harm doing
1313 * it across the board.
1315 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status);
1316 if (ret_val)
1317 break;
1318 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status);
1319 if (ret_val)
1320 break;
1321 if (phy_status & MII_SR_LINK_STATUS)
1322 break;
1323 if (usec_interval >= 1000)
1324 mdelay(usec_interval/1000);
1325 else
1326 udelay(usec_interval);
1329 *success = (i < iterations) ? true : false;
1331 return ret_val;
1335 * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
1336 * @hw: pointer to the HW structure
1338 * Reads the PHY specific status register to retrieve the cable length
1339 * information. The cable length is determined by averaging the minimum and
1340 * maximum values to get the "average" cable length. The m88 PHY has four
1341 * possible cable length values, which are:
1342 * Register Value Cable Length
1343 * 0 < 50 meters
1344 * 1 50 - 80 meters
1345 * 2 80 - 110 meters
1346 * 3 110 - 140 meters
1347 * 4 > 140 meters
1349 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1351 struct e1000_phy_info *phy = &hw->phy;
1352 s32 ret_val;
1353 u16 phy_data, index;
1355 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1356 &phy_data);
1357 if (ret_val)
1358 goto out;
1360 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1361 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1362 phy->min_cable_length = e1000_m88_cable_length_table[index];
1363 phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1365 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1367 out:
1368 return ret_val;
1372 * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1373 * @hw: pointer to the HW structure
1375 * The automatic gain control (agc) normalizes the amplitude of the
1376 * received signal, adjusting for the attenuation produced by the
1377 * cable. By reading the AGC registers, which reperesent the
1378 * cobination of course and fine gain value, the value can be put
1379 * into a lookup table to obtain the approximate cable length
1380 * for each channel.
1382 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1384 struct e1000_phy_info *phy = &hw->phy;
1385 s32 ret_val = 0;
1386 u16 phy_data, i, agc_value = 0;
1387 u16 cur_agc_index, max_agc_index = 0;
1388 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1389 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1390 {IGP02E1000_PHY_AGC_A,
1391 IGP02E1000_PHY_AGC_B,
1392 IGP02E1000_PHY_AGC_C,
1393 IGP02E1000_PHY_AGC_D};
1395 /* Read the AGC registers for all channels */
1396 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1397 ret_val = hw->phy.ops.read_phy_reg(hw, agc_reg_array[i],
1398 &phy_data);
1399 if (ret_val)
1400 goto out;
1403 * Getting bits 15:9, which represent the combination of
1404 * course and fine gain values. The result is a number
1405 * that can be put into the lookup table to obtain the
1406 * approximate cable length.
1408 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1409 IGP02E1000_AGC_LENGTH_MASK;
1411 /* Array index bound check. */
1412 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1413 (cur_agc_index == 0)) {
1414 ret_val = -E1000_ERR_PHY;
1415 goto out;
1418 /* Remove min & max AGC values from calculation. */
1419 if (e1000_igp_2_cable_length_table[min_agc_index] >
1420 e1000_igp_2_cable_length_table[cur_agc_index])
1421 min_agc_index = cur_agc_index;
1422 if (e1000_igp_2_cable_length_table[max_agc_index] <
1423 e1000_igp_2_cable_length_table[cur_agc_index])
1424 max_agc_index = cur_agc_index;
1426 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1429 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1430 e1000_igp_2_cable_length_table[max_agc_index]);
1431 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1433 /* Calculate cable length with the error range of +/- 10 meters. */
1434 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1435 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1436 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1438 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1440 out:
1441 return ret_val;
1445 * e1000_get_phy_info_m88 - Retrieve PHY information
1446 * @hw: pointer to the HW structure
1448 * Valid for only copper links. Read the PHY status register (sticky read)
1449 * to verify that link is up. Read the PHY special control register to
1450 * determine the polarity and 10base-T extended distance. Read the PHY
1451 * special status register to determine MDI/MDIx and current speed. If
1452 * speed is 1000, then determine cable length, local and remote receiver.
1454 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1456 struct e1000_phy_info *phy = &hw->phy;
1457 s32 ret_val;
1458 u16 phy_data;
1459 bool link;
1461 if (hw->phy.media_type != e1000_media_type_copper) {
1462 hw_dbg(hw, "Phy info is only valid for copper media\n");
1463 ret_val = -E1000_ERR_CONFIG;
1464 goto out;
1467 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1468 if (ret_val)
1469 goto out;
1471 if (!link) {
1472 hw_dbg(hw, "Phy info is only valid if link is up\n");
1473 ret_val = -E1000_ERR_CONFIG;
1474 goto out;
1477 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
1478 &phy_data);
1479 if (ret_val)
1480 goto out;
1482 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1483 ? true
1484 : false;
1486 ret_val = igb_check_polarity_m88(hw);
1487 if (ret_val)
1488 goto out;
1490 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1491 &phy_data);
1492 if (ret_val)
1493 goto out;
1495 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1497 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1498 ret_val = hw->phy.ops.get_cable_length(hw);
1499 if (ret_val)
1500 goto out;
1502 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
1503 &phy_data);
1504 if (ret_val)
1505 goto out;
1507 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1508 ? e1000_1000t_rx_status_ok
1509 : e1000_1000t_rx_status_not_ok;
1511 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1512 ? e1000_1000t_rx_status_ok
1513 : e1000_1000t_rx_status_not_ok;
1514 } else {
1515 /* Set values to "undefined" */
1516 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1517 phy->local_rx = e1000_1000t_rx_status_undefined;
1518 phy->remote_rx = e1000_1000t_rx_status_undefined;
1521 out:
1522 return ret_val;
1526 * e1000_get_phy_info_igp - Retrieve igp PHY information
1527 * @hw: pointer to the HW structure
1529 * Read PHY status to determine if link is up. If link is up, then
1530 * set/determine 10base-T extended distance and polarity correction. Read
1531 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1532 * determine on the cable length, local and remote receiver.
1534 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1536 struct e1000_phy_info *phy = &hw->phy;
1537 s32 ret_val;
1538 u16 data;
1539 bool link;
1541 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1542 if (ret_val)
1543 goto out;
1545 if (!link) {
1546 hw_dbg(hw, "Phy info is only valid if link is up\n");
1547 ret_val = -E1000_ERR_CONFIG;
1548 goto out;
1551 phy->polarity_correction = true;
1553 ret_val = igb_check_polarity_igp(hw);
1554 if (ret_val)
1555 goto out;
1557 ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
1558 &data);
1559 if (ret_val)
1560 goto out;
1562 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1564 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1565 IGP01E1000_PSSR_SPEED_1000MBPS) {
1566 ret_val = hw->phy.ops.get_cable_length(hw);
1567 if (ret_val)
1568 goto out;
1570 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
1571 &data);
1572 if (ret_val)
1573 goto out;
1575 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1576 ? e1000_1000t_rx_status_ok
1577 : e1000_1000t_rx_status_not_ok;
1579 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1580 ? e1000_1000t_rx_status_ok
1581 : e1000_1000t_rx_status_not_ok;
1582 } else {
1583 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1584 phy->local_rx = e1000_1000t_rx_status_undefined;
1585 phy->remote_rx = e1000_1000t_rx_status_undefined;
1588 out:
1589 return ret_val;
1593 * e1000_phy_sw_reset - PHY software reset
1594 * @hw: pointer to the HW structure
1596 * Does a software reset of the PHY by reading the PHY control register and
1597 * setting/write the control register reset bit to the PHY.
1599 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1601 s32 ret_val;
1602 u16 phy_ctrl;
1604 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
1605 if (ret_val)
1606 goto out;
1608 phy_ctrl |= MII_CR_RESET;
1609 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
1610 if (ret_val)
1611 goto out;
1613 udelay(1);
1615 out:
1616 return ret_val;
1620 * e1000_phy_hw_reset - PHY hardware reset
1621 * @hw: pointer to the HW structure
1623 * Verify the reset block is not blocking us from resetting. Acquire
1624 * semaphore (if necessary) and read/set/write the device control reset
1625 * bit in the PHY. Wait the appropriate delay time for the device to
1626 * reset and relase the semaphore (if necessary).
1628 s32 igb_phy_hw_reset(struct e1000_hw *hw)
1630 struct e1000_phy_info *phy = &hw->phy;
1631 s32 ret_val;
1632 u32 ctrl;
1634 ret_val = igb_check_reset_block(hw);
1635 if (ret_val) {
1636 ret_val = 0;
1637 goto out;
1640 ret_val = igb_acquire_phy(hw);
1641 if (ret_val)
1642 goto out;
1644 ctrl = rd32(E1000_CTRL);
1645 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
1646 wrfl();
1648 udelay(phy->reset_delay_us);
1650 wr32(E1000_CTRL, ctrl);
1651 wrfl();
1653 udelay(150);
1655 igb_release_phy(hw);
1657 ret_val = igb_get_phy_cfg_done(hw);
1659 out:
1660 return ret_val;
1663 /* Internal function pointers */
1666 * e1000_get_phy_cfg_done - Generic PHY configuration done
1667 * @hw: pointer to the HW structure
1669 * Return success if silicon family did not implement a family specific
1670 * get_cfg_done function.
1672 static s32 igb_get_phy_cfg_done(struct e1000_hw *hw)
1674 if (hw->phy.ops.get_cfg_done)
1675 return hw->phy.ops.get_cfg_done(hw);
1677 return 0;
1681 * e1000_release_phy - Generic release PHY
1682 * @hw: pointer to the HW structure
1684 * Return if silicon family does not require a semaphore when accessing the
1685 * PHY.
1687 static void igb_release_phy(struct e1000_hw *hw)
1689 if (hw->phy.ops.release_phy)
1690 hw->phy.ops.release_phy(hw);
1694 * e1000_acquire_phy - Generic acquire PHY
1695 * @hw: pointer to the HW structure
1697 * Return success if silicon family does not require a semaphore when
1698 * accessing the PHY.
1700 static s32 igb_acquire_phy(struct e1000_hw *hw)
1702 if (hw->phy.ops.acquire_phy)
1703 return hw->phy.ops.acquire_phy(hw);
1705 return 0;
1709 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1710 * @hw: pointer to the HW structure
1712 * When the silicon family has not implemented a forced speed/duplex
1713 * function for the PHY, simply return 0.
1715 s32 igb_phy_force_speed_duplex(struct e1000_hw *hw)
1717 if (hw->phy.ops.force_speed_duplex)
1718 return hw->phy.ops.force_speed_duplex(hw);
1720 return 0;
1724 * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
1725 * @hw: pointer to the HW structure
1727 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
1729 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
1731 hw_dbg(hw, "Running IGP 3 PHY init script\n");
1733 /* PHY init IGP 3 */
1734 /* Enable rise/fall, 10-mode work in class-A */
1735 hw->phy.ops.write_phy_reg(hw, 0x2F5B, 0x9018);
1736 /* Remove all caps from Replica path filter */
1737 hw->phy.ops.write_phy_reg(hw, 0x2F52, 0x0000);
1738 /* Bias trimming for ADC, AFE and Driver (Default) */
1739 hw->phy.ops.write_phy_reg(hw, 0x2FB1, 0x8B24);
1740 /* Increase Hybrid poly bias */
1741 hw->phy.ops.write_phy_reg(hw, 0x2FB2, 0xF8F0);
1742 /* Add 4% to TX amplitude in Giga mode */
1743 hw->phy.ops.write_phy_reg(hw, 0x2010, 0x10B0);
1744 /* Disable trimming (TTT) */
1745 hw->phy.ops.write_phy_reg(hw, 0x2011, 0x0000);
1746 /* Poly DC correction to 94.6% + 2% for all channels */
1747 hw->phy.ops.write_phy_reg(hw, 0x20DD, 0x249A);
1748 /* ABS DC correction to 95.9% */
1749 hw->phy.ops.write_phy_reg(hw, 0x20DE, 0x00D3);
1750 /* BG temp curve trim */
1751 hw->phy.ops.write_phy_reg(hw, 0x28B4, 0x04CE);
1752 /* Increasing ADC OPAMP stage 1 currents to max */
1753 hw->phy.ops.write_phy_reg(hw, 0x2F70, 0x29E4);
1754 /* Force 1000 ( required for enabling PHY regs configuration) */
1755 hw->phy.ops.write_phy_reg(hw, 0x0000, 0x0140);
1756 /* Set upd_freq to 6 */
1757 hw->phy.ops.write_phy_reg(hw, 0x1F30, 0x1606);
1758 /* Disable NPDFE */
1759 hw->phy.ops.write_phy_reg(hw, 0x1F31, 0xB814);
1760 /* Disable adaptive fixed FFE (Default) */
1761 hw->phy.ops.write_phy_reg(hw, 0x1F35, 0x002A);
1762 /* Enable FFE hysteresis */
1763 hw->phy.ops.write_phy_reg(hw, 0x1F3E, 0x0067);
1764 /* Fixed FFE for short cable lengths */
1765 hw->phy.ops.write_phy_reg(hw, 0x1F54, 0x0065);
1766 /* Fixed FFE for medium cable lengths */
1767 hw->phy.ops.write_phy_reg(hw, 0x1F55, 0x002A);
1768 /* Fixed FFE for long cable lengths */
1769 hw->phy.ops.write_phy_reg(hw, 0x1F56, 0x002A);
1770 /* Enable Adaptive Clip Threshold */
1771 hw->phy.ops.write_phy_reg(hw, 0x1F72, 0x3FB0);
1772 /* AHT reset limit to 1 */
1773 hw->phy.ops.write_phy_reg(hw, 0x1F76, 0xC0FF);
1774 /* Set AHT master delay to 127 msec */
1775 hw->phy.ops.write_phy_reg(hw, 0x1F77, 0x1DEC);
1776 /* Set scan bits for AHT */
1777 hw->phy.ops.write_phy_reg(hw, 0x1F78, 0xF9EF);
1778 /* Set AHT Preset bits */
1779 hw->phy.ops.write_phy_reg(hw, 0x1F79, 0x0210);
1780 /* Change integ_factor of channel A to 3 */
1781 hw->phy.ops.write_phy_reg(hw, 0x1895, 0x0003);
1782 /* Change prop_factor of channels BCD to 8 */
1783 hw->phy.ops.write_phy_reg(hw, 0x1796, 0x0008);
1784 /* Change cg_icount + enable integbp for channels BCD */
1785 hw->phy.ops.write_phy_reg(hw, 0x1798, 0xD008);
1787 * Change cg_icount + enable integbp + change prop_factor_master
1788 * to 8 for channel A
1790 hw->phy.ops.write_phy_reg(hw, 0x1898, 0xD918);
1791 /* Disable AHT in Slave mode on channel A */
1792 hw->phy.ops.write_phy_reg(hw, 0x187A, 0x0800);
1794 * Enable LPLU and disable AN to 1000 in non-D0a states,
1795 * Enable SPD+B2B
1797 hw->phy.ops.write_phy_reg(hw, 0x0019, 0x008D);
1798 /* Enable restart AN on an1000_dis change */
1799 hw->phy.ops.write_phy_reg(hw, 0x001B, 0x2080);
1800 /* Enable wh_fifo read clock in 10/100 modes */
1801 hw->phy.ops.write_phy_reg(hw, 0x0014, 0x0045);
1802 /* Restart AN, Speed selection is 1000 */
1803 hw->phy.ops.write_phy_reg(hw, 0x0000, 0x1340);
1805 return 0;