Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / tsi108_eth.c
blob6f33f84d37b0631652d04825b58a554cc7477dc7
1 /*******************************************************************************
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *******************************************************************************/
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
44 #include <linux/crc32.h>
45 #include <linux/mii.h>
46 #include <linux/device.h>
47 #include <linux/pci.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/timer.h>
50 #include <linux/platform_device.h>
52 #include <asm/system.h>
53 #include <asm/io.h>
54 #include <asm/tsi108.h>
56 #include "tsi108_eth.h"
58 #define MII_READ_DELAY 10000 /* max link wait time in msec */
60 #define TSI108_RXRING_LEN 256
62 /* NOTE: The driver currently does not support receiving packets
63 * larger than the buffer size, so don't decrease this (unless you
64 * want to add such support).
66 #define TSI108_RXBUF_SIZE 1536
68 #define TSI108_TXRING_LEN 256
70 #define TSI108_TX_INT_FREQ 64
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
75 static int tsi108_init_one(struct platform_device *pdev);
76 static int tsi108_ether_remove(struct platform_device *pdev);
78 struct tsi108_prv_data {
79 void __iomem *regs; /* Base of normal regs */
80 void __iomem *phyregs; /* Base of register bank used for PHY access */
82 struct net_device *dev;
83 struct napi_struct napi;
85 unsigned int phy; /* Index of PHY for this interface */
86 unsigned int irq_num;
87 unsigned int id;
88 unsigned int phy_type;
90 struct timer_list timer;/* Timer that triggers the check phy function */
91 unsigned int rxtail; /* Next entry in rxring to read */
92 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
93 unsigned int rxfree; /* Number of free, allocated RX buffers */
95 unsigned int rxpending; /* Non-zero if there are still descriptors
96 * to be processed from a previous descriptor
97 * interrupt condition that has been cleared */
99 unsigned int txtail; /* Next TX descriptor to check status on */
100 unsigned int txhead; /* Next TX descriptor to use */
102 /* Number of free TX descriptors. This could be calculated from
103 * rxhead and rxtail if one descriptor were left unused to disambiguate
104 * full and empty conditions, but it's simpler to just keep track
105 * explicitly. */
107 unsigned int txfree;
109 unsigned int phy_ok; /* The PHY is currently powered on. */
111 /* PHY status (duplex is 1 for half, 2 for full,
112 * so that the default 0 indicates that neither has
113 * yet been configured). */
115 unsigned int link_up;
116 unsigned int speed;
117 unsigned int duplex;
119 tx_desc *txring;
120 rx_desc *rxring;
121 struct sk_buff *txskbs[TSI108_TXRING_LEN];
122 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
124 dma_addr_t txdma, rxdma;
126 /* txlock nests in misclock and phy_lock */
128 spinlock_t txlock, misclock;
130 /* stats is used to hold the upper bits of each hardware counter,
131 * and tmpstats is used to hold the full values for returning
132 * to the caller of get_stats(). They must be separate in case
133 * an overflow interrupt occurs before the stats are consumed.
136 struct net_device_stats stats;
137 struct net_device_stats tmpstats;
139 /* These stats are kept separate in hardware, thus require individual
140 * fields for handling carry. They are combined in get_stats.
143 unsigned long rx_fcs; /* Add to rx_frame_errors */
144 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
145 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
146 unsigned long rx_underruns; /* Add to rx_length_errors */
147 unsigned long rx_overruns; /* Add to rx_length_errors */
149 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
150 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
152 unsigned long mc_hash[16];
153 u32 msg_enable; /* debug message level */
154 struct mii_if_info mii_if;
155 unsigned int init_media;
158 /* Structure for a device driver */
160 static struct platform_driver tsi_eth_driver = {
161 .probe = tsi108_init_one,
162 .remove = tsi108_ether_remove,
163 .driver = {
164 .name = "tsi-ethernet",
168 static void tsi108_timed_checker(unsigned long dev_ptr);
170 static void dump_eth_one(struct net_device *dev)
172 struct tsi108_prv_data *data = netdev_priv(dev);
174 printk("Dumping %s...\n", dev->name);
175 printk("intstat %x intmask %x phy_ok %d"
176 " link %d speed %d duplex %d\n",
177 TSI_READ(TSI108_EC_INTSTAT),
178 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
179 data->link_up, data->speed, data->duplex);
181 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
182 data->txhead, data->txtail, data->txfree,
183 TSI_READ(TSI108_EC_TXSTAT),
184 TSI_READ(TSI108_EC_TXESTAT),
185 TSI_READ(TSI108_EC_TXERR));
187 printk("RX: head %d, tail %d, free %d, stat %x,"
188 " estat %x, err %x, pending %d\n\n",
189 data->rxhead, data->rxtail, data->rxfree,
190 TSI_READ(TSI108_EC_RXSTAT),
191 TSI_READ(TSI108_EC_RXESTAT),
192 TSI_READ(TSI108_EC_RXERR), data->rxpending);
195 /* Synchronization is needed between the thread and up/down events.
196 * Note that the PHY is accessed through the same registers for both
197 * interfaces, so this can't be made interface-specific.
200 static DEFINE_SPINLOCK(phy_lock);
202 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
204 unsigned i;
206 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
207 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
208 (reg << TSI108_MAC_MII_ADDR_REG));
209 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
210 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
211 for (i = 0; i < 100; i++) {
212 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
213 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
214 break;
215 udelay(10);
218 if (i == 100)
219 return 0xffff;
220 else
221 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
224 static void tsi108_write_mii(struct tsi108_prv_data *data,
225 int reg, u16 val)
227 unsigned i = 100;
228 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
229 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
230 (reg << TSI108_MAC_MII_ADDR_REG));
231 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
232 while (i--) {
233 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
234 TSI108_MAC_MII_IND_BUSY))
235 break;
236 udelay(10);
240 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
242 struct tsi108_prv_data *data = netdev_priv(dev);
243 return tsi108_read_mii(data, reg);
246 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
248 struct tsi108_prv_data *data = netdev_priv(dev);
249 tsi108_write_mii(data, reg, val);
252 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
253 int reg, u16 val)
255 unsigned i = 1000;
256 TSI_WRITE(TSI108_MAC_MII_ADDR,
257 (0x1e << TSI108_MAC_MII_ADDR_PHY)
258 | (reg << TSI108_MAC_MII_ADDR_REG));
259 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
260 while(i--) {
261 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
262 return;
263 udelay(10);
265 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
268 static int mii_speed(struct mii_if_info *mii)
270 int advert, lpa, val, media;
271 int lpa2 = 0;
272 int speed;
274 if (!mii_link_ok(mii))
275 return 0;
277 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
278 if ((val & BMSR_ANEGCOMPLETE) == 0)
279 return 0;
281 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
282 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
283 media = mii_nway_result(advert & lpa);
285 if (mii->supports_gmii)
286 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
288 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
289 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
290 return speed;
293 static void tsi108_check_phy(struct net_device *dev)
295 struct tsi108_prv_data *data = netdev_priv(dev);
296 u32 mac_cfg2_reg, portctrl_reg;
297 u32 duplex;
298 u32 speed;
299 unsigned long flags;
301 spin_lock_irqsave(&phy_lock, flags);
303 if (!data->phy_ok)
304 goto out;
306 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
307 data->init_media = 0;
309 if (netif_carrier_ok(dev)) {
311 speed = mii_speed(&data->mii_if);
313 if ((speed != data->speed) || duplex) {
315 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
316 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
318 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
320 if (speed == 1000) {
321 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
322 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
323 } else {
324 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
325 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
328 data->speed = speed;
330 if (data->mii_if.full_duplex) {
331 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
332 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
333 data->duplex = 2;
334 } else {
335 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
336 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
337 data->duplex = 1;
340 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
341 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
344 if (data->link_up == 0) {
345 /* The manual says it can take 3-4 usecs for the speed change
346 * to take effect.
348 udelay(5);
350 spin_lock(&data->txlock);
351 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
352 netif_wake_queue(dev);
354 data->link_up = 1;
355 spin_unlock(&data->txlock);
357 } else {
358 if (data->link_up == 1) {
359 netif_stop_queue(dev);
360 data->link_up = 0;
361 printk(KERN_NOTICE "%s : link is down\n", dev->name);
364 goto out;
368 out:
369 spin_unlock_irqrestore(&phy_lock, flags);
372 static inline void
373 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
374 unsigned long *upper)
376 if (carry & carry_bit)
377 *upper += carry_shift;
380 static void tsi108_stat_carry(struct net_device *dev)
382 struct tsi108_prv_data *data = netdev_priv(dev);
383 u32 carry1, carry2;
385 spin_lock_irq(&data->misclock);
387 carry1 = TSI_READ(TSI108_STAT_CARRY1);
388 carry2 = TSI_READ(TSI108_STAT_CARRY2);
390 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
391 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
393 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
394 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
396 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
397 TSI108_STAT_RXPKTS_CARRY,
398 &data->stats.rx_packets);
400 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
401 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
403 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
404 TSI108_STAT_RXMCAST_CARRY,
405 &data->stats.multicast);
407 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
408 TSI108_STAT_RXALIGN_CARRY,
409 &data->stats.rx_frame_errors);
411 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
412 TSI108_STAT_RXLENGTH_CARRY,
413 &data->stats.rx_length_errors);
415 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
416 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
418 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
419 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
421 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
422 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
424 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
425 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
427 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
428 TSI108_STAT_RXDROP_CARRY,
429 &data->stats.rx_missed_errors);
431 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
432 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
434 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
435 TSI108_STAT_TXPKTS_CARRY,
436 &data->stats.tx_packets);
438 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
439 TSI108_STAT_TXEXDEF_CARRY,
440 &data->stats.tx_aborted_errors);
442 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
443 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
445 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
446 TSI108_STAT_TXTCOL_CARRY,
447 &data->stats.collisions);
449 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
450 TSI108_STAT_TXPAUSEDROP_CARRY,
451 &data->tx_pause_drop);
453 spin_unlock_irq(&data->misclock);
456 /* Read a stat counter atomically with respect to carries.
457 * data->misclock must be held.
459 static inline unsigned long
460 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
461 int carry_shift, unsigned long *upper)
463 int carryreg;
464 unsigned long val;
466 if (reg < 0xb0)
467 carryreg = TSI108_STAT_CARRY1;
468 else
469 carryreg = TSI108_STAT_CARRY2;
471 again:
472 val = TSI_READ(reg) | *upper;
474 /* Check to see if it overflowed, but the interrupt hasn't
475 * been serviced yet. If so, handle the carry here, and
476 * try again.
479 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
480 *upper += carry_shift;
481 TSI_WRITE(carryreg, carry_bit);
482 goto again;
485 return val;
488 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
490 unsigned long excol;
492 struct tsi108_prv_data *data = netdev_priv(dev);
493 spin_lock_irq(&data->misclock);
495 data->tmpstats.rx_packets =
496 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
497 TSI108_STAT_CARRY1_RXPKTS,
498 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
500 data->tmpstats.tx_packets =
501 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
502 TSI108_STAT_CARRY2_TXPKTS,
503 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
505 data->tmpstats.rx_bytes =
506 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
507 TSI108_STAT_CARRY1_RXBYTES,
508 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
510 data->tmpstats.tx_bytes =
511 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
512 TSI108_STAT_CARRY2_TXBYTES,
513 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
515 data->tmpstats.multicast =
516 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
517 TSI108_STAT_CARRY1_RXMCAST,
518 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
520 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
521 TSI108_STAT_CARRY2_TXEXCOL,
522 TSI108_STAT_TXEXCOL_CARRY,
523 &data->tx_coll_abort);
525 data->tmpstats.collisions =
526 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
527 TSI108_STAT_CARRY2_TXTCOL,
528 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
530 data->tmpstats.collisions += excol;
532 data->tmpstats.rx_length_errors =
533 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
534 TSI108_STAT_CARRY1_RXLENGTH,
535 TSI108_STAT_RXLENGTH_CARRY,
536 &data->stats.rx_length_errors);
538 data->tmpstats.rx_length_errors +=
539 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
540 TSI108_STAT_CARRY1_RXRUNT,
541 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
543 data->tmpstats.rx_length_errors +=
544 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
545 TSI108_STAT_CARRY1_RXJUMBO,
546 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
548 data->tmpstats.rx_frame_errors =
549 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
550 TSI108_STAT_CARRY1_RXALIGN,
551 TSI108_STAT_RXALIGN_CARRY,
552 &data->stats.rx_frame_errors);
554 data->tmpstats.rx_frame_errors +=
555 tsi108_read_stat(data, TSI108_STAT_RXFCS,
556 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
557 &data->rx_fcs);
559 data->tmpstats.rx_frame_errors +=
560 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
561 TSI108_STAT_CARRY1_RXFRAG,
562 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
564 data->tmpstats.rx_missed_errors =
565 tsi108_read_stat(data, TSI108_STAT_RXDROP,
566 TSI108_STAT_CARRY1_RXDROP,
567 TSI108_STAT_RXDROP_CARRY,
568 &data->stats.rx_missed_errors);
570 /* These three are maintained by software. */
571 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
572 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
574 data->tmpstats.tx_aborted_errors =
575 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
576 TSI108_STAT_CARRY2_TXEXDEF,
577 TSI108_STAT_TXEXDEF_CARRY,
578 &data->stats.tx_aborted_errors);
580 data->tmpstats.tx_aborted_errors +=
581 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
582 TSI108_STAT_CARRY2_TXPAUSE,
583 TSI108_STAT_TXPAUSEDROP_CARRY,
584 &data->tx_pause_drop);
586 data->tmpstats.tx_aborted_errors += excol;
588 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
589 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
590 data->tmpstats.rx_crc_errors +
591 data->tmpstats.rx_frame_errors +
592 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
594 spin_unlock_irq(&data->misclock);
595 return &data->tmpstats;
598 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
600 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
601 TSI108_EC_RXQ_PTRHIGH_VALID);
603 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
604 | TSI108_EC_RXCTRL_QUEUE0);
607 static void tsi108_restart_tx(struct tsi108_prv_data * data)
609 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
610 TSI108_EC_TXQ_PTRHIGH_VALID);
612 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
613 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
616 /* txlock must be held by caller, with IRQs disabled, and
617 * with permission to re-enable them when the lock is dropped.
619 static void tsi108_complete_tx(struct net_device *dev)
621 struct tsi108_prv_data *data = netdev_priv(dev);
622 int tx;
623 struct sk_buff *skb;
624 int release = 0;
626 while (!data->txfree || data->txhead != data->txtail) {
627 tx = data->txtail;
629 if (data->txring[tx].misc & TSI108_TX_OWN)
630 break;
632 skb = data->txskbs[tx];
634 if (!(data->txring[tx].misc & TSI108_TX_OK))
635 printk("%s: bad tx packet, misc %x\n",
636 dev->name, data->txring[tx].misc);
638 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
639 data->txfree++;
641 if (data->txring[tx].misc & TSI108_TX_EOF) {
642 dev_kfree_skb_any(skb);
643 release++;
647 if (release) {
648 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
649 netif_wake_queue(dev);
653 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
655 struct tsi108_prv_data *data = netdev_priv(dev);
656 int frags = skb_shinfo(skb)->nr_frags + 1;
657 int i;
659 if (!data->phy_ok && net_ratelimit())
660 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
662 if (!data->link_up) {
663 printk(KERN_ERR "%s: Transmit while link is down!\n",
664 dev->name);
665 netif_stop_queue(dev);
666 return NETDEV_TX_BUSY;
669 if (data->txfree < MAX_SKB_FRAGS + 1) {
670 netif_stop_queue(dev);
672 if (net_ratelimit())
673 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
674 dev->name);
675 return NETDEV_TX_BUSY;
678 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
679 netif_stop_queue(dev);
682 spin_lock_irq(&data->txlock);
684 for (i = 0; i < frags; i++) {
685 int misc = 0;
686 int tx = data->txhead;
688 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
689 * the interrupt bit. TX descriptor-complete interrupts are
690 * enabled when the queue fills up, and masked when there is
691 * still free space. This way, when saturating the outbound
692 * link, the tx interrupts are kept to a reasonable level.
693 * When the queue is not full, reclamation of skbs still occurs
694 * as new packets are transmitted, or on a queue-empty
695 * interrupt.
698 if ((tx % TSI108_TX_INT_FREQ == 0) &&
699 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
700 misc = TSI108_TX_INT;
702 data->txskbs[tx] = skb;
704 if (i == 0) {
705 data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
706 skb->len - skb->data_len, DMA_TO_DEVICE);
707 data->txring[tx].len = skb->len - skb->data_len;
708 misc |= TSI108_TX_SOF;
709 } else {
710 skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
712 data->txring[tx].buf0 =
713 dma_map_page(NULL, frag->page, frag->page_offset,
714 frag->size, DMA_TO_DEVICE);
715 data->txring[tx].len = frag->size;
718 if (i == frags - 1)
719 misc |= TSI108_TX_EOF;
721 if (netif_msg_pktdata(data)) {
722 int i;
723 printk("%s: Tx Frame contents (%d)\n", dev->name,
724 skb->len);
725 for (i = 0; i < skb->len; i++)
726 printk(" %2.2x", skb->data[i]);
727 printk(".\n");
729 data->txring[tx].misc = misc | TSI108_TX_OWN;
731 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
732 data->txfree--;
735 tsi108_complete_tx(dev);
737 /* This must be done after the check for completed tx descriptors,
738 * so that the tail pointer is correct.
741 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
742 tsi108_restart_tx(data);
744 spin_unlock_irq(&data->txlock);
745 return NETDEV_TX_OK;
748 static int tsi108_complete_rx(struct net_device *dev, int budget)
750 struct tsi108_prv_data *data = netdev_priv(dev);
751 int done = 0;
753 while (data->rxfree && done != budget) {
754 int rx = data->rxtail;
755 struct sk_buff *skb;
757 if (data->rxring[rx].misc & TSI108_RX_OWN)
758 break;
760 skb = data->rxskbs[rx];
761 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
762 data->rxfree--;
763 done++;
765 if (data->rxring[rx].misc & TSI108_RX_BAD) {
766 spin_lock_irq(&data->misclock);
768 if (data->rxring[rx].misc & TSI108_RX_CRC)
769 data->stats.rx_crc_errors++;
770 if (data->rxring[rx].misc & TSI108_RX_OVER)
771 data->stats.rx_fifo_errors++;
773 spin_unlock_irq(&data->misclock);
775 dev_kfree_skb_any(skb);
776 continue;
778 if (netif_msg_pktdata(data)) {
779 int i;
780 printk("%s: Rx Frame contents (%d)\n",
781 dev->name, data->rxring[rx].len);
782 for (i = 0; i < data->rxring[rx].len; i++)
783 printk(" %2.2x", skb->data[i]);
784 printk(".\n");
787 skb_put(skb, data->rxring[rx].len);
788 skb->protocol = eth_type_trans(skb, dev);
789 netif_receive_skb(skb);
790 dev->last_rx = jiffies;
793 return done;
796 static int tsi108_refill_rx(struct net_device *dev, int budget)
798 struct tsi108_prv_data *data = netdev_priv(dev);
799 int done = 0;
801 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
802 int rx = data->rxhead;
803 struct sk_buff *skb;
805 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
806 if (!skb)
807 break;
809 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
811 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
812 TSI108_RX_SKB_SIZE,
813 DMA_FROM_DEVICE);
815 /* Sometimes the hardware sets blen to zero after packet
816 * reception, even though the manual says that it's only ever
817 * modified by the driver.
820 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
821 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
823 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
824 data->rxfree++;
825 done++;
828 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
829 TSI108_EC_RXSTAT_QUEUE0))
830 tsi108_restart_rx(data, dev);
832 return done;
835 static int tsi108_poll(struct napi_struct *napi, int budget)
837 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
838 struct net_device *dev = data->dev;
839 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
840 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
841 int num_received = 0, num_filled = 0;
843 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
844 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
846 TSI_WRITE(TSI108_EC_RXESTAT, estat);
847 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
849 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
850 num_received = tsi108_complete_rx(dev, budget);
852 /* This should normally fill no more slots than the number of
853 * packets received in tsi108_complete_rx(). The exception
854 * is when we previously ran out of memory for RX SKBs. In that
855 * case, it's helpful to obey the budget, not only so that the
856 * CPU isn't hogged, but so that memory (which may still be low)
857 * is not hogged by one device.
859 * A work unit is considered to be two SKBs to allow us to catch
860 * up when the ring has shrunk due to out-of-memory but we're
861 * still removing the full budget's worth of packets each time.
864 if (data->rxfree < TSI108_RXRING_LEN)
865 num_filled = tsi108_refill_rx(dev, budget * 2);
867 if (intstat & TSI108_INT_RXERROR) {
868 u32 err = TSI_READ(TSI108_EC_RXERR);
869 TSI_WRITE(TSI108_EC_RXERR, err);
871 if (err) {
872 if (net_ratelimit())
873 printk(KERN_DEBUG "%s: RX error %x\n",
874 dev->name, err);
876 if (!(TSI_READ(TSI108_EC_RXSTAT) &
877 TSI108_EC_RXSTAT_QUEUE0))
878 tsi108_restart_rx(data, dev);
882 if (intstat & TSI108_INT_RXOVERRUN) {
883 spin_lock_irq(&data->misclock);
884 data->stats.rx_fifo_errors++;
885 spin_unlock_irq(&data->misclock);
888 if (num_received < budget) {
889 data->rxpending = 0;
890 netif_rx_complete(dev, napi);
892 TSI_WRITE(TSI108_EC_INTMASK,
893 TSI_READ(TSI108_EC_INTMASK)
894 & ~(TSI108_INT_RXQUEUE0
895 | TSI108_INT_RXTHRESH |
896 TSI108_INT_RXOVERRUN |
897 TSI108_INT_RXERROR |
898 TSI108_INT_RXWAIT));
899 } else {
900 data->rxpending = 1;
903 return num_received;
906 static void tsi108_rx_int(struct net_device *dev)
908 struct tsi108_prv_data *data = netdev_priv(dev);
910 /* A race could cause dev to already be scheduled, so it's not an
911 * error if that happens (and interrupts shouldn't be re-masked,
912 * because that can cause harmful races, if poll has already
913 * unmasked them but not cleared LINK_STATE_SCHED).
915 * This can happen if this code races with tsi108_poll(), which masks
916 * the interrupts after tsi108_irq_one() read the mask, but before
917 * netif_rx_schedule is called. It could also happen due to calls
918 * from tsi108_check_rxring().
921 if (netif_rx_schedule_prep(dev, &data->napi)) {
922 /* Mask, rather than ack, the receive interrupts. The ack
923 * will happen in tsi108_poll().
926 TSI_WRITE(TSI108_EC_INTMASK,
927 TSI_READ(TSI108_EC_INTMASK) |
928 TSI108_INT_RXQUEUE0
929 | TSI108_INT_RXTHRESH |
930 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
931 TSI108_INT_RXWAIT);
932 __netif_rx_schedule(dev, &data->napi);
933 } else {
934 if (!netif_running(dev)) {
935 /* This can happen if an interrupt occurs while the
936 * interface is being brought down, as the START
937 * bit is cleared before the stop function is called.
939 * In this case, the interrupts must be masked, or
940 * they will continue indefinitely.
942 * There's a race here if the interface is brought down
943 * and then up in rapid succession, as the device could
944 * be made running after the above check and before
945 * the masking below. This will only happen if the IRQ
946 * thread has a lower priority than the task brining
947 * up the interface. Fixing this race would likely
948 * require changes in generic code.
951 TSI_WRITE(TSI108_EC_INTMASK,
952 TSI_READ
953 (TSI108_EC_INTMASK) |
954 TSI108_INT_RXQUEUE0 |
955 TSI108_INT_RXTHRESH |
956 TSI108_INT_RXOVERRUN |
957 TSI108_INT_RXERROR |
958 TSI108_INT_RXWAIT);
963 /* If the RX ring has run out of memory, try periodically
964 * to allocate some more, as otherwise poll would never
965 * get called (apart from the initial end-of-queue condition).
967 * This is called once per second (by default) from the thread.
970 static void tsi108_check_rxring(struct net_device *dev)
972 struct tsi108_prv_data *data = netdev_priv(dev);
974 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
975 * directly, so as to keep the receive path single-threaded
976 * (and thus not needing a lock).
979 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
980 tsi108_rx_int(dev);
983 static void tsi108_tx_int(struct net_device *dev)
985 struct tsi108_prv_data *data = netdev_priv(dev);
986 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
988 TSI_WRITE(TSI108_EC_TXESTAT, estat);
989 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
990 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
991 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
992 u32 err = TSI_READ(TSI108_EC_TXERR);
993 TSI_WRITE(TSI108_EC_TXERR, err);
995 if (err && net_ratelimit())
996 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
999 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1000 spin_lock(&data->txlock);
1001 tsi108_complete_tx(dev);
1002 spin_unlock(&data->txlock);
1007 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1009 struct net_device *dev = dev_id;
1010 struct tsi108_prv_data *data = netdev_priv(dev);
1011 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1013 if (!(stat & TSI108_INT_ANY))
1014 return IRQ_NONE; /* Not our interrupt */
1016 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1018 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1019 TSI108_INT_TXERROR))
1020 tsi108_tx_int(dev);
1021 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1022 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1023 TSI108_INT_RXERROR))
1024 tsi108_rx_int(dev);
1026 if (stat & TSI108_INT_SFN) {
1027 if (net_ratelimit())
1028 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1029 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1032 if (stat & TSI108_INT_STATCARRY) {
1033 tsi108_stat_carry(dev);
1034 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1037 return IRQ_HANDLED;
1040 static void tsi108_stop_ethernet(struct net_device *dev)
1042 struct tsi108_prv_data *data = netdev_priv(dev);
1043 int i = 1000;
1044 /* Disable all TX and RX queues ... */
1045 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1046 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1048 /* ...and wait for them to become idle */
1049 while(i--) {
1050 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1051 break;
1052 udelay(10);
1054 i = 1000;
1055 while(i--){
1056 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1057 return;
1058 udelay(10);
1060 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1063 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1065 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1066 udelay(100);
1067 TSI_WRITE(TSI108_MAC_CFG1, 0);
1069 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1070 udelay(100);
1071 TSI_WRITE(TSI108_EC_PORTCTRL,
1072 TSI_READ(TSI108_EC_PORTCTRL) &
1073 ~TSI108_EC_PORTCTRL_STATRST);
1075 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1076 udelay(100);
1077 TSI_WRITE(TSI108_EC_TXCFG,
1078 TSI_READ(TSI108_EC_TXCFG) &
1079 ~TSI108_EC_TXCFG_RST);
1081 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1082 udelay(100);
1083 TSI_WRITE(TSI108_EC_RXCFG,
1084 TSI_READ(TSI108_EC_RXCFG) &
1085 ~TSI108_EC_RXCFG_RST);
1087 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1088 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1089 TSI108_MAC_MII_MGMT_RST);
1090 udelay(100);
1091 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1092 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1093 ~(TSI108_MAC_MII_MGMT_RST |
1094 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1097 static int tsi108_get_mac(struct net_device *dev)
1099 struct tsi108_prv_data *data = netdev_priv(dev);
1100 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1101 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1103 /* Note that the octets are reversed from what the manual says,
1104 * producing an even weirder ordering...
1106 if (word2 == 0 && word1 == 0) {
1107 dev->dev_addr[0] = 0x00;
1108 dev->dev_addr[1] = 0x06;
1109 dev->dev_addr[2] = 0xd2;
1110 dev->dev_addr[3] = 0x00;
1111 dev->dev_addr[4] = 0x00;
1112 if (0x8 == data->phy)
1113 dev->dev_addr[5] = 0x01;
1114 else
1115 dev->dev_addr[5] = 0x02;
1117 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1119 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1120 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1122 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1123 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1124 } else {
1125 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1126 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1127 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1128 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1129 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1130 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1133 if (!is_valid_ether_addr(dev->dev_addr)) {
1134 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1135 return -EINVAL;
1138 return 0;
1141 static int tsi108_set_mac(struct net_device *dev, void *addr)
1143 struct tsi108_prv_data *data = netdev_priv(dev);
1144 u32 word1, word2;
1145 int i;
1147 if (!is_valid_ether_addr(addr))
1148 return -EINVAL;
1150 for (i = 0; i < 6; i++)
1151 /* +2 is for the offset of the HW addr type */
1152 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1154 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1156 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1157 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1159 spin_lock_irq(&data->misclock);
1160 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1161 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1162 spin_lock(&data->txlock);
1164 if (data->txfree && data->link_up)
1165 netif_wake_queue(dev);
1167 spin_unlock(&data->txlock);
1168 spin_unlock_irq(&data->misclock);
1169 return 0;
1172 /* Protected by dev->xmit_lock. */
1173 static void tsi108_set_rx_mode(struct net_device *dev)
1175 struct tsi108_prv_data *data = netdev_priv(dev);
1176 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1178 if (dev->flags & IFF_PROMISC) {
1179 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1180 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1181 goto out;
1184 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1186 if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1187 int i;
1188 struct dev_mc_list *mc = dev->mc_list;
1189 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1191 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1193 while (mc) {
1194 u32 hash, crc;
1196 if (mc->dmi_addrlen == 6) {
1197 crc = ether_crc(6, mc->dmi_addr);
1198 hash = crc >> 23;
1200 __set_bit(hash, &data->mc_hash[0]);
1201 } else {
1202 printk(KERN_ERR
1203 "%s: got multicast address of length %d "
1204 "instead of 6.\n", dev->name,
1205 mc->dmi_addrlen);
1208 mc = mc->next;
1211 TSI_WRITE(TSI108_EC_HASHADDR,
1212 TSI108_EC_HASHADDR_AUTOINC |
1213 TSI108_EC_HASHADDR_MCAST);
1215 for (i = 0; i < 16; i++) {
1216 /* The manual says that the hardware may drop
1217 * back-to-back writes to the data register.
1219 udelay(1);
1220 TSI_WRITE(TSI108_EC_HASHDATA,
1221 data->mc_hash[i]);
1225 out:
1226 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1229 static void tsi108_init_phy(struct net_device *dev)
1231 struct tsi108_prv_data *data = netdev_priv(dev);
1232 u32 i = 0;
1233 u16 phyval = 0;
1234 unsigned long flags;
1236 spin_lock_irqsave(&phy_lock, flags);
1238 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1239 while (i--){
1240 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1241 break;
1242 udelay(10);
1244 if (i == 0)
1245 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1247 if (data->phy_type == TSI108_PHY_BCM54XX) {
1248 tsi108_write_mii(data, 0x09, 0x0300);
1249 tsi108_write_mii(data, 0x10, 0x1020);
1250 tsi108_write_mii(data, 0x1c, 0x8c00);
1253 tsi108_write_mii(data,
1254 MII_BMCR,
1255 BMCR_ANENABLE | BMCR_ANRESTART);
1256 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1257 cpu_relax();
1259 /* Set G/MII mode and receive clock select in TBI control #2. The
1260 * second port won't work if this isn't done, even though we don't
1261 * use TBI mode.
1264 tsi108_write_tbi(data, 0x11, 0x30);
1266 /* FIXME: It seems to take more than 2 back-to-back reads to the
1267 * PHY_STAT register before the link up status bit is set.
1270 data->link_up = 0;
1272 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1273 BMSR_LSTATUS)) {
1274 if (i++ > (MII_READ_DELAY / 10)) {
1275 break;
1277 spin_unlock_irqrestore(&phy_lock, flags);
1278 msleep(10);
1279 spin_lock_irqsave(&phy_lock, flags);
1282 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1283 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1284 data->phy_ok = 1;
1285 data->init_media = 1;
1286 spin_unlock_irqrestore(&phy_lock, flags);
1289 static void tsi108_kill_phy(struct net_device *dev)
1291 struct tsi108_prv_data *data = netdev_priv(dev);
1292 unsigned long flags;
1294 spin_lock_irqsave(&phy_lock, flags);
1295 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1296 data->phy_ok = 0;
1297 spin_unlock_irqrestore(&phy_lock, flags);
1300 static int tsi108_open(struct net_device *dev)
1302 int i;
1303 struct tsi108_prv_data *data = netdev_priv(dev);
1304 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1305 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1307 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1308 if (i != 0) {
1309 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1310 data->id, data->irq_num);
1311 return i;
1312 } else {
1313 dev->irq = data->irq_num;
1314 printk(KERN_NOTICE
1315 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1316 data->id, dev->irq, dev->name);
1319 data->rxring = dma_alloc_coherent(NULL, rxring_size,
1320 &data->rxdma, GFP_KERNEL);
1322 if (!data->rxring) {
1323 printk(KERN_DEBUG
1324 "TSI108_ETH: failed to allocate memory for rxring!\n");
1325 return -ENOMEM;
1326 } else {
1327 memset(data->rxring, 0, rxring_size);
1330 data->txring = dma_alloc_coherent(NULL, txring_size,
1331 &data->txdma, GFP_KERNEL);
1333 if (!data->txring) {
1334 printk(KERN_DEBUG
1335 "TSI108_ETH: failed to allocate memory for txring!\n");
1336 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1337 return -ENOMEM;
1338 } else {
1339 memset(data->txring, 0, txring_size);
1342 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1343 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1344 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1345 data->rxring[i].vlan = 0;
1348 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1350 data->rxtail = 0;
1351 data->rxhead = 0;
1353 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1354 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1356 if (!skb) {
1357 /* Bah. No memory for now, but maybe we'll get
1358 * some more later.
1359 * For now, we'll live with the smaller ring.
1361 printk(KERN_WARNING
1362 "%s: Could only allocate %d receive skb(s).\n",
1363 dev->name, i);
1364 data->rxhead = i;
1365 break;
1368 data->rxskbs[i] = skb;
1369 /* Align the payload on a 4-byte boundary */
1370 skb_reserve(skb, 2);
1371 data->rxskbs[i] = skb;
1372 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1373 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1376 data->rxfree = i;
1377 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1379 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1380 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1381 data->txring[i].misc = 0;
1384 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1385 data->txtail = 0;
1386 data->txhead = 0;
1387 data->txfree = TSI108_TXRING_LEN;
1388 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1389 tsi108_init_phy(dev);
1391 napi_enable(&data->napi);
1393 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1394 mod_timer(&data->timer, jiffies + 1);
1396 tsi108_restart_rx(data, dev);
1398 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1400 TSI_WRITE(TSI108_EC_INTMASK,
1401 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1402 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1403 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1404 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1406 TSI_WRITE(TSI108_MAC_CFG1,
1407 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1408 netif_start_queue(dev);
1409 return 0;
1412 static int tsi108_close(struct net_device *dev)
1414 struct tsi108_prv_data *data = netdev_priv(dev);
1416 netif_stop_queue(dev);
1417 napi_disable(&data->napi);
1419 del_timer_sync(&data->timer);
1421 tsi108_stop_ethernet(dev);
1422 tsi108_kill_phy(dev);
1423 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1424 TSI_WRITE(TSI108_MAC_CFG1, 0);
1426 /* Check for any pending TX packets, and drop them. */
1428 while (!data->txfree || data->txhead != data->txtail) {
1429 int tx = data->txtail;
1430 struct sk_buff *skb;
1431 skb = data->txskbs[tx];
1432 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1433 data->txfree++;
1434 dev_kfree_skb(skb);
1437 synchronize_irq(data->irq_num);
1438 free_irq(data->irq_num, dev);
1440 /* Discard the RX ring. */
1442 while (data->rxfree) {
1443 int rx = data->rxtail;
1444 struct sk_buff *skb;
1446 skb = data->rxskbs[rx];
1447 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1448 data->rxfree--;
1449 dev_kfree_skb(skb);
1452 dma_free_coherent(0,
1453 TSI108_RXRING_LEN * sizeof(rx_desc),
1454 data->rxring, data->rxdma);
1455 dma_free_coherent(0,
1456 TSI108_TXRING_LEN * sizeof(tx_desc),
1457 data->txring, data->txdma);
1459 return 0;
1462 static void tsi108_init_mac(struct net_device *dev)
1464 struct tsi108_prv_data *data = netdev_priv(dev);
1466 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1467 TSI108_MAC_CFG2_PADCRC);
1469 TSI_WRITE(TSI108_EC_TXTHRESH,
1470 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1471 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1473 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1474 ~(TSI108_STAT_CARRY1_RXBYTES |
1475 TSI108_STAT_CARRY1_RXPKTS |
1476 TSI108_STAT_CARRY1_RXFCS |
1477 TSI108_STAT_CARRY1_RXMCAST |
1478 TSI108_STAT_CARRY1_RXALIGN |
1479 TSI108_STAT_CARRY1_RXLENGTH |
1480 TSI108_STAT_CARRY1_RXRUNT |
1481 TSI108_STAT_CARRY1_RXJUMBO |
1482 TSI108_STAT_CARRY1_RXFRAG |
1483 TSI108_STAT_CARRY1_RXJABBER |
1484 TSI108_STAT_CARRY1_RXDROP));
1486 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1487 ~(TSI108_STAT_CARRY2_TXBYTES |
1488 TSI108_STAT_CARRY2_TXPKTS |
1489 TSI108_STAT_CARRY2_TXEXDEF |
1490 TSI108_STAT_CARRY2_TXEXCOL |
1491 TSI108_STAT_CARRY2_TXTCOL |
1492 TSI108_STAT_CARRY2_TXPAUSE));
1494 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1495 TSI_WRITE(TSI108_MAC_CFG1, 0);
1497 TSI_WRITE(TSI108_EC_RXCFG,
1498 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1500 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1501 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1502 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1503 TSI108_EC_TXQ_CFG_SFNPORT));
1505 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1506 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1507 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1508 TSI108_EC_RXQ_CFG_SFNPORT));
1510 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1511 TSI108_EC_TXQ_BUFCFG_BURST256 |
1512 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1513 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1515 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1516 TSI108_EC_RXQ_BUFCFG_BURST256 |
1517 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1518 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1520 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1523 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1525 struct tsi108_prv_data *data = netdev_priv(dev);
1526 unsigned long flags;
1527 int rc;
1529 spin_lock_irqsave(&data->txlock, flags);
1530 rc = mii_ethtool_gset(&data->mii_if, cmd);
1531 spin_unlock_irqrestore(&data->txlock, flags);
1533 return rc;
1536 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1538 struct tsi108_prv_data *data = netdev_priv(dev);
1539 unsigned long flags;
1540 int rc;
1542 spin_lock_irqsave(&data->txlock, flags);
1543 rc = mii_ethtool_sset(&data->mii_if, cmd);
1544 spin_unlock_irqrestore(&data->txlock, flags);
1546 return rc;
1549 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1551 struct tsi108_prv_data *data = netdev_priv(dev);
1552 if (!netif_running(dev))
1553 return -EINVAL;
1554 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1557 static const struct ethtool_ops tsi108_ethtool_ops = {
1558 .get_link = ethtool_op_get_link,
1559 .get_settings = tsi108_get_settings,
1560 .set_settings = tsi108_set_settings,
1563 static int
1564 tsi108_init_one(struct platform_device *pdev)
1566 struct net_device *dev = NULL;
1567 struct tsi108_prv_data *data = NULL;
1568 hw_info *einfo;
1569 int err = 0;
1570 DECLARE_MAC_BUF(mac);
1572 einfo = pdev->dev.platform_data;
1574 if (NULL == einfo) {
1575 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1576 pdev->id);
1577 return -ENODEV;
1580 /* Create an ethernet device instance */
1582 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1583 if (!dev) {
1584 printk("tsi108_eth: Could not allocate a device structure\n");
1585 return -ENOMEM;
1588 printk("tsi108_eth%d: probe...\n", pdev->id);
1589 data = netdev_priv(dev);
1590 data->dev = dev;
1592 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1593 pdev->id, einfo->regs, einfo->phyregs,
1594 einfo->phy, einfo->irq_num);
1596 data->regs = ioremap(einfo->regs, 0x400);
1597 if (NULL == data->regs) {
1598 err = -ENOMEM;
1599 goto regs_fail;
1602 data->phyregs = ioremap(einfo->phyregs, 0x400);
1603 if (NULL == data->phyregs) {
1604 err = -ENOMEM;
1605 goto regs_fail;
1607 /* MII setup */
1608 data->mii_if.dev = dev;
1609 data->mii_if.mdio_read = tsi108_mdio_read;
1610 data->mii_if.mdio_write = tsi108_mdio_write;
1611 data->mii_if.phy_id = einfo->phy;
1612 data->mii_if.phy_id_mask = 0x1f;
1613 data->mii_if.reg_num_mask = 0x1f;
1615 data->phy = einfo->phy;
1616 data->phy_type = einfo->phy_type;
1617 data->irq_num = einfo->irq_num;
1618 data->id = pdev->id;
1619 dev->open = tsi108_open;
1620 dev->stop = tsi108_close;
1621 dev->hard_start_xmit = tsi108_send_packet;
1622 dev->set_mac_address = tsi108_set_mac;
1623 dev->set_multicast_list = tsi108_set_rx_mode;
1624 dev->get_stats = tsi108_get_stats;
1625 netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1626 dev->do_ioctl = tsi108_do_ioctl;
1627 dev->ethtool_ops = &tsi108_ethtool_ops;
1629 /* Apparently, the Linux networking code won't use scatter-gather
1630 * if the hardware doesn't do checksums. However, it's faster
1631 * to checksum in place and use SG, as (among other reasons)
1632 * the cache won't be dirtied (which then has to be flushed
1633 * before DMA). The checksumming is done by the driver (via
1634 * a new function skb_csum_dev() in net/core/skbuff.c).
1637 dev->features = NETIF_F_HIGHDMA;
1639 spin_lock_init(&data->txlock);
1640 spin_lock_init(&data->misclock);
1642 tsi108_reset_ether(data);
1643 tsi108_kill_phy(dev);
1645 if ((err = tsi108_get_mac(dev)) != 0) {
1646 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1647 dev->name);
1648 goto register_fail;
1651 tsi108_init_mac(dev);
1652 err = register_netdev(dev);
1653 if (err) {
1654 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1655 dev->name);
1656 goto register_fail;
1659 platform_set_drvdata(pdev, dev);
1660 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n",
1661 dev->name, print_mac(mac, dev->dev_addr));
1662 #ifdef DEBUG
1663 data->msg_enable = DEBUG;
1664 dump_eth_one(dev);
1665 #endif
1667 return 0;
1669 register_fail:
1670 iounmap(data->regs);
1671 iounmap(data->phyregs);
1673 regs_fail:
1674 free_netdev(dev);
1675 return err;
1678 /* There's no way to either get interrupts from the PHY when
1679 * something changes, or to have the Tsi108 automatically communicate
1680 * with the PHY to reconfigure itself.
1682 * Thus, we have to do it using a timer.
1685 static void tsi108_timed_checker(unsigned long dev_ptr)
1687 struct net_device *dev = (struct net_device *)dev_ptr;
1688 struct tsi108_prv_data *data = netdev_priv(dev);
1690 tsi108_check_phy(dev);
1691 tsi108_check_rxring(dev);
1692 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1695 static int tsi108_ether_init(void)
1697 int ret;
1698 ret = platform_driver_register (&tsi_eth_driver);
1699 if (ret < 0){
1700 printk("tsi108_ether_init: error initializing ethernet "
1701 "device\n");
1702 return ret;
1704 return 0;
1707 static int tsi108_ether_remove(struct platform_device *pdev)
1709 struct net_device *dev = platform_get_drvdata(pdev);
1710 struct tsi108_prv_data *priv = netdev_priv(dev);
1712 unregister_netdev(dev);
1713 tsi108_stop_ethernet(dev);
1714 platform_set_drvdata(pdev, NULL);
1715 iounmap(priv->regs);
1716 iounmap(priv->phyregs);
1717 free_netdev(dev);
1719 return 0;
1721 static void tsi108_ether_exit(void)
1723 platform_driver_unregister(&tsi_eth_driver);
1726 module_init(tsi108_ether_init);
1727 module_exit(tsi108_ether_exit);
1729 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1730 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1731 MODULE_LICENSE("GPL");