drivers/net/netxen/: cleanups
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / kvm / vmx.c
blobbb56ae3f89b601f9c2ae428dd92498f35b8aa181
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "irq.h"
21 #include "vmx.h"
22 #include "segment_descriptor.h"
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
30 #include <asm/io.h>
31 #include <asm/desc.h>
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
36 struct vmcs {
37 u32 revision_id;
38 u32 abort;
39 char data[0];
42 struct vcpu_vmx {
43 struct kvm_vcpu vcpu;
44 int launched;
45 u8 fail;
46 struct kvm_msr_entry *guest_msrs;
47 struct kvm_msr_entry *host_msrs;
48 int nmsrs;
49 int save_nmsrs;
50 int msr_offset_efer;
51 #ifdef CONFIG_X86_64
52 int msr_offset_kernel_gs_base;
53 #endif
54 struct vmcs *vmcs;
55 struct {
56 int loaded;
57 u16 fs_sel, gs_sel, ldt_sel;
58 int gs_ldt_reload_needed;
59 int fs_reload_needed;
60 }host_state;
64 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
66 return container_of(vcpu, struct vcpu_vmx, vcpu);
69 static int init_rmode_tss(struct kvm *kvm);
71 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
72 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
74 static struct page *vmx_io_bitmap_a;
75 static struct page *vmx_io_bitmap_b;
77 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
79 static struct vmcs_config {
80 int size;
81 int order;
82 u32 revision_id;
83 u32 pin_based_exec_ctrl;
84 u32 cpu_based_exec_ctrl;
85 u32 vmexit_ctrl;
86 u32 vmentry_ctrl;
87 } vmcs_config;
89 #define VMX_SEGMENT_FIELD(seg) \
90 [VCPU_SREG_##seg] = { \
91 .selector = GUEST_##seg##_SELECTOR, \
92 .base = GUEST_##seg##_BASE, \
93 .limit = GUEST_##seg##_LIMIT, \
94 .ar_bytes = GUEST_##seg##_AR_BYTES, \
97 static struct kvm_vmx_segment_field {
98 unsigned selector;
99 unsigned base;
100 unsigned limit;
101 unsigned ar_bytes;
102 } kvm_vmx_segment_fields[] = {
103 VMX_SEGMENT_FIELD(CS),
104 VMX_SEGMENT_FIELD(DS),
105 VMX_SEGMENT_FIELD(ES),
106 VMX_SEGMENT_FIELD(FS),
107 VMX_SEGMENT_FIELD(GS),
108 VMX_SEGMENT_FIELD(SS),
109 VMX_SEGMENT_FIELD(TR),
110 VMX_SEGMENT_FIELD(LDTR),
114 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
115 * away by decrementing the array size.
117 static const u32 vmx_msr_index[] = {
118 #ifdef CONFIG_X86_64
119 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
120 #endif
121 MSR_EFER, MSR_K6_STAR,
123 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
125 static void load_msrs(struct kvm_msr_entry *e, int n)
127 int i;
129 for (i = 0; i < n; ++i)
130 wrmsrl(e[i].index, e[i].data);
133 static void save_msrs(struct kvm_msr_entry *e, int n)
135 int i;
137 for (i = 0; i < n; ++i)
138 rdmsrl(e[i].index, e[i].data);
141 static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
143 return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
146 static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
148 int efer_offset = vmx->msr_offset_efer;
149 return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
150 msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
153 static inline int is_page_fault(u32 intr_info)
155 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156 INTR_INFO_VALID_MASK)) ==
157 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
160 static inline int is_no_device(u32 intr_info)
162 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163 INTR_INFO_VALID_MASK)) ==
164 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
167 static inline int is_external_interrupt(u32 intr_info)
169 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
170 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
173 static inline int cpu_has_vmx_tpr_shadow(void)
175 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
178 static inline int vm_need_tpr_shadow(struct kvm *kvm)
180 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
183 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
185 int i;
187 for (i = 0; i < vmx->nmsrs; ++i)
188 if (vmx->guest_msrs[i].index == msr)
189 return i;
190 return -1;
193 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
195 int i;
197 i = __find_msr_index(vmx, msr);
198 if (i >= 0)
199 return &vmx->guest_msrs[i];
200 return NULL;
203 static void vmcs_clear(struct vmcs *vmcs)
205 u64 phys_addr = __pa(vmcs);
206 u8 error;
208 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
209 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
210 : "cc", "memory");
211 if (error)
212 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
213 vmcs, phys_addr);
216 static void __vcpu_clear(void *arg)
218 struct vcpu_vmx *vmx = arg;
219 int cpu = raw_smp_processor_id();
221 if (vmx->vcpu.cpu == cpu)
222 vmcs_clear(vmx->vmcs);
223 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
224 per_cpu(current_vmcs, cpu) = NULL;
225 rdtscll(vmx->vcpu.host_tsc);
228 static void vcpu_clear(struct vcpu_vmx *vmx)
230 if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
231 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
232 vmx, 0, 1);
233 else
234 __vcpu_clear(vmx);
235 vmx->launched = 0;
238 static unsigned long vmcs_readl(unsigned long field)
240 unsigned long value;
242 asm volatile (ASM_VMX_VMREAD_RDX_RAX
243 : "=a"(value) : "d"(field) : "cc");
244 return value;
247 static u16 vmcs_read16(unsigned long field)
249 return vmcs_readl(field);
252 static u32 vmcs_read32(unsigned long field)
254 return vmcs_readl(field);
257 static u64 vmcs_read64(unsigned long field)
259 #ifdef CONFIG_X86_64
260 return vmcs_readl(field);
261 #else
262 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
263 #endif
266 static noinline void vmwrite_error(unsigned long field, unsigned long value)
268 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
269 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
270 dump_stack();
273 static void vmcs_writel(unsigned long field, unsigned long value)
275 u8 error;
277 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
278 : "=q"(error) : "a"(value), "d"(field) : "cc" );
279 if (unlikely(error))
280 vmwrite_error(field, value);
283 static void vmcs_write16(unsigned long field, u16 value)
285 vmcs_writel(field, value);
288 static void vmcs_write32(unsigned long field, u32 value)
290 vmcs_writel(field, value);
293 static void vmcs_write64(unsigned long field, u64 value)
295 #ifdef CONFIG_X86_64
296 vmcs_writel(field, value);
297 #else
298 vmcs_writel(field, value);
299 asm volatile ("");
300 vmcs_writel(field+1, value >> 32);
301 #endif
304 static void vmcs_clear_bits(unsigned long field, u32 mask)
306 vmcs_writel(field, vmcs_readl(field) & ~mask);
309 static void vmcs_set_bits(unsigned long field, u32 mask)
311 vmcs_writel(field, vmcs_readl(field) | mask);
314 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
316 u32 eb;
318 eb = 1u << PF_VECTOR;
319 if (!vcpu->fpu_active)
320 eb |= 1u << NM_VECTOR;
321 if (vcpu->guest_debug.enabled)
322 eb |= 1u << 1;
323 if (vcpu->rmode.active)
324 eb = ~0;
325 vmcs_write32(EXCEPTION_BITMAP, eb);
328 static void reload_tss(void)
330 #ifndef CONFIG_X86_64
333 * VT restores TR but not its size. Useless.
335 struct descriptor_table gdt;
336 struct segment_descriptor *descs;
338 get_gdt(&gdt);
339 descs = (void *)gdt.base;
340 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
341 load_TR_desc();
342 #endif
345 static void load_transition_efer(struct vcpu_vmx *vmx)
347 u64 trans_efer;
348 int efer_offset = vmx->msr_offset_efer;
350 trans_efer = vmx->host_msrs[efer_offset].data;
351 trans_efer &= ~EFER_SAVE_RESTORE_BITS;
352 trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
353 wrmsrl(MSR_EFER, trans_efer);
354 vmx->vcpu.stat.efer_reload++;
357 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
359 struct vcpu_vmx *vmx = to_vmx(vcpu);
361 if (vmx->host_state.loaded)
362 return;
364 vmx->host_state.loaded = 1;
366 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
367 * allow segment selectors with cpl > 0 or ti == 1.
369 vmx->host_state.ldt_sel = read_ldt();
370 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
371 vmx->host_state.fs_sel = read_fs();
372 if (!(vmx->host_state.fs_sel & 7)) {
373 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
374 vmx->host_state.fs_reload_needed = 0;
375 } else {
376 vmcs_write16(HOST_FS_SELECTOR, 0);
377 vmx->host_state.fs_reload_needed = 1;
379 vmx->host_state.gs_sel = read_gs();
380 if (!(vmx->host_state.gs_sel & 7))
381 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
382 else {
383 vmcs_write16(HOST_GS_SELECTOR, 0);
384 vmx->host_state.gs_ldt_reload_needed = 1;
387 #ifdef CONFIG_X86_64
388 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
389 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
390 #else
391 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
392 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
393 #endif
395 #ifdef CONFIG_X86_64
396 if (is_long_mode(&vmx->vcpu)) {
397 save_msrs(vmx->host_msrs +
398 vmx->msr_offset_kernel_gs_base, 1);
400 #endif
401 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
402 if (msr_efer_need_save_restore(vmx))
403 load_transition_efer(vmx);
406 static void vmx_load_host_state(struct vcpu_vmx *vmx)
408 unsigned long flags;
410 if (!vmx->host_state.loaded)
411 return;
413 vmx->host_state.loaded = 0;
414 if (vmx->host_state.fs_reload_needed)
415 load_fs(vmx->host_state.fs_sel);
416 if (vmx->host_state.gs_ldt_reload_needed) {
417 load_ldt(vmx->host_state.ldt_sel);
419 * If we have to reload gs, we must take care to
420 * preserve our gs base.
422 local_irq_save(flags);
423 load_gs(vmx->host_state.gs_sel);
424 #ifdef CONFIG_X86_64
425 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
426 #endif
427 local_irq_restore(flags);
429 reload_tss();
430 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
431 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
432 if (msr_efer_need_save_restore(vmx))
433 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
437 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
438 * vcpu mutex is already taken.
440 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
442 struct vcpu_vmx *vmx = to_vmx(vcpu);
443 u64 phys_addr = __pa(vmx->vmcs);
444 u64 tsc_this, delta;
446 if (vcpu->cpu != cpu) {
447 vcpu_clear(vmx);
448 kvm_migrate_apic_timer(vcpu);
451 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
452 u8 error;
454 per_cpu(current_vmcs, cpu) = vmx->vmcs;
455 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
456 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
457 : "cc");
458 if (error)
459 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
460 vmx->vmcs, phys_addr);
463 if (vcpu->cpu != cpu) {
464 struct descriptor_table dt;
465 unsigned long sysenter_esp;
467 vcpu->cpu = cpu;
469 * Linux uses per-cpu TSS and GDT, so set these when switching
470 * processors.
472 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
473 get_gdt(&dt);
474 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
476 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
477 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
480 * Make sure the time stamp counter is monotonous.
482 rdtscll(tsc_this);
483 delta = vcpu->host_tsc - tsc_this;
484 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
490 vmx_load_host_state(to_vmx(vcpu));
491 kvm_put_guest_fpu(vcpu);
494 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
496 if (vcpu->fpu_active)
497 return;
498 vcpu->fpu_active = 1;
499 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
500 if (vcpu->cr0 & X86_CR0_TS)
501 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
502 update_exception_bitmap(vcpu);
505 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
507 if (!vcpu->fpu_active)
508 return;
509 vcpu->fpu_active = 0;
510 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
511 update_exception_bitmap(vcpu);
514 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
516 vcpu_clear(to_vmx(vcpu));
519 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
521 return vmcs_readl(GUEST_RFLAGS);
524 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
526 if (vcpu->rmode.active)
527 rflags |= IOPL_MASK | X86_EFLAGS_VM;
528 vmcs_writel(GUEST_RFLAGS, rflags);
531 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
533 unsigned long rip;
534 u32 interruptibility;
536 rip = vmcs_readl(GUEST_RIP);
537 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
538 vmcs_writel(GUEST_RIP, rip);
541 * We emulated an instruction, so temporary interrupt blocking
542 * should be removed, if set.
544 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
545 if (interruptibility & 3)
546 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
547 interruptibility & ~3);
548 vcpu->interrupt_window_open = 1;
551 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
553 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
554 vmcs_readl(GUEST_RIP));
555 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
556 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
557 GP_VECTOR |
558 INTR_TYPE_EXCEPTION |
559 INTR_INFO_DELIEVER_CODE_MASK |
560 INTR_INFO_VALID_MASK);
564 * Swap MSR entry in host/guest MSR entry array.
566 #ifdef CONFIG_X86_64
567 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
569 struct kvm_msr_entry tmp;
571 tmp = vmx->guest_msrs[to];
572 vmx->guest_msrs[to] = vmx->guest_msrs[from];
573 vmx->guest_msrs[from] = tmp;
574 tmp = vmx->host_msrs[to];
575 vmx->host_msrs[to] = vmx->host_msrs[from];
576 vmx->host_msrs[from] = tmp;
578 #endif
581 * Set up the vmcs to automatically save and restore system
582 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
583 * mode, as fiddling with msrs is very expensive.
585 static void setup_msrs(struct vcpu_vmx *vmx)
587 int save_nmsrs;
589 save_nmsrs = 0;
590 #ifdef CONFIG_X86_64
591 if (is_long_mode(&vmx->vcpu)) {
592 int index;
594 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
595 if (index >= 0)
596 move_msr_up(vmx, index, save_nmsrs++);
597 index = __find_msr_index(vmx, MSR_LSTAR);
598 if (index >= 0)
599 move_msr_up(vmx, index, save_nmsrs++);
600 index = __find_msr_index(vmx, MSR_CSTAR);
601 if (index >= 0)
602 move_msr_up(vmx, index, save_nmsrs++);
603 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
604 if (index >= 0)
605 move_msr_up(vmx, index, save_nmsrs++);
607 * MSR_K6_STAR is only needed on long mode guests, and only
608 * if efer.sce is enabled.
610 index = __find_msr_index(vmx, MSR_K6_STAR);
611 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
612 move_msr_up(vmx, index, save_nmsrs++);
614 #endif
615 vmx->save_nmsrs = save_nmsrs;
617 #ifdef CONFIG_X86_64
618 vmx->msr_offset_kernel_gs_base =
619 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
620 #endif
621 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
625 * reads and returns guest's timestamp counter "register"
626 * guest_tsc = host_tsc + tsc_offset -- 21.3
628 static u64 guest_read_tsc(void)
630 u64 host_tsc, tsc_offset;
632 rdtscll(host_tsc);
633 tsc_offset = vmcs_read64(TSC_OFFSET);
634 return host_tsc + tsc_offset;
638 * writes 'guest_tsc' into guest's timestamp counter "register"
639 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
641 static void guest_write_tsc(u64 guest_tsc)
643 u64 host_tsc;
645 rdtscll(host_tsc);
646 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
650 * Reads an msr value (of 'msr_index') into 'pdata'.
651 * Returns 0 on success, non-0 otherwise.
652 * Assumes vcpu_load() was already called.
654 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
656 u64 data;
657 struct kvm_msr_entry *msr;
659 if (!pdata) {
660 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
661 return -EINVAL;
664 switch (msr_index) {
665 #ifdef CONFIG_X86_64
666 case MSR_FS_BASE:
667 data = vmcs_readl(GUEST_FS_BASE);
668 break;
669 case MSR_GS_BASE:
670 data = vmcs_readl(GUEST_GS_BASE);
671 break;
672 case MSR_EFER:
673 return kvm_get_msr_common(vcpu, msr_index, pdata);
674 #endif
675 case MSR_IA32_TIME_STAMP_COUNTER:
676 data = guest_read_tsc();
677 break;
678 case MSR_IA32_SYSENTER_CS:
679 data = vmcs_read32(GUEST_SYSENTER_CS);
680 break;
681 case MSR_IA32_SYSENTER_EIP:
682 data = vmcs_readl(GUEST_SYSENTER_EIP);
683 break;
684 case MSR_IA32_SYSENTER_ESP:
685 data = vmcs_readl(GUEST_SYSENTER_ESP);
686 break;
687 default:
688 msr = find_msr_entry(to_vmx(vcpu), msr_index);
689 if (msr) {
690 data = msr->data;
691 break;
693 return kvm_get_msr_common(vcpu, msr_index, pdata);
696 *pdata = data;
697 return 0;
701 * Writes msr value into into the appropriate "register".
702 * Returns 0 on success, non-0 otherwise.
703 * Assumes vcpu_load() was already called.
705 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
707 struct vcpu_vmx *vmx = to_vmx(vcpu);
708 struct kvm_msr_entry *msr;
709 int ret = 0;
711 switch (msr_index) {
712 #ifdef CONFIG_X86_64
713 case MSR_EFER:
714 ret = kvm_set_msr_common(vcpu, msr_index, data);
715 if (vmx->host_state.loaded)
716 load_transition_efer(vmx);
717 break;
718 case MSR_FS_BASE:
719 vmcs_writel(GUEST_FS_BASE, data);
720 break;
721 case MSR_GS_BASE:
722 vmcs_writel(GUEST_GS_BASE, data);
723 break;
724 #endif
725 case MSR_IA32_SYSENTER_CS:
726 vmcs_write32(GUEST_SYSENTER_CS, data);
727 break;
728 case MSR_IA32_SYSENTER_EIP:
729 vmcs_writel(GUEST_SYSENTER_EIP, data);
730 break;
731 case MSR_IA32_SYSENTER_ESP:
732 vmcs_writel(GUEST_SYSENTER_ESP, data);
733 break;
734 case MSR_IA32_TIME_STAMP_COUNTER:
735 guest_write_tsc(data);
736 break;
737 default:
738 msr = find_msr_entry(vmx, msr_index);
739 if (msr) {
740 msr->data = data;
741 if (vmx->host_state.loaded)
742 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
743 break;
745 ret = kvm_set_msr_common(vcpu, msr_index, data);
748 return ret;
752 * Sync the rsp and rip registers into the vcpu structure. This allows
753 * registers to be accessed by indexing vcpu->regs.
755 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
757 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
758 vcpu->rip = vmcs_readl(GUEST_RIP);
762 * Syncs rsp and rip back into the vmcs. Should be called after possible
763 * modification.
765 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
767 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
768 vmcs_writel(GUEST_RIP, vcpu->rip);
771 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
773 unsigned long dr7 = 0x400;
774 int old_singlestep;
776 old_singlestep = vcpu->guest_debug.singlestep;
778 vcpu->guest_debug.enabled = dbg->enabled;
779 if (vcpu->guest_debug.enabled) {
780 int i;
782 dr7 |= 0x200; /* exact */
783 for (i = 0; i < 4; ++i) {
784 if (!dbg->breakpoints[i].enabled)
785 continue;
786 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
787 dr7 |= 2 << (i*2); /* global enable */
788 dr7 |= 0 << (i*4+16); /* execution breakpoint */
791 vcpu->guest_debug.singlestep = dbg->singlestep;
792 } else
793 vcpu->guest_debug.singlestep = 0;
795 if (old_singlestep && !vcpu->guest_debug.singlestep) {
796 unsigned long flags;
798 flags = vmcs_readl(GUEST_RFLAGS);
799 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
800 vmcs_writel(GUEST_RFLAGS, flags);
803 update_exception_bitmap(vcpu);
804 vmcs_writel(GUEST_DR7, dr7);
806 return 0;
809 static int vmx_get_irq(struct kvm_vcpu *vcpu)
811 u32 idtv_info_field;
813 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
814 if (idtv_info_field & INTR_INFO_VALID_MASK) {
815 if (is_external_interrupt(idtv_info_field))
816 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
817 else
818 printk("pending exception: not handled yet\n");
820 return -1;
823 static __init int cpu_has_kvm_support(void)
825 unsigned long ecx = cpuid_ecx(1);
826 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
829 static __init int vmx_disabled_by_bios(void)
831 u64 msr;
833 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
834 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
835 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
836 == MSR_IA32_FEATURE_CONTROL_LOCKED;
837 /* locked but not enabled */
840 static void hardware_enable(void *garbage)
842 int cpu = raw_smp_processor_id();
843 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
844 u64 old;
846 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
847 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
848 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
849 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
850 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
851 /* enable and lock */
852 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
853 MSR_IA32_FEATURE_CONTROL_LOCKED |
854 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
855 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
856 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
857 : "memory", "cc");
860 static void hardware_disable(void *garbage)
862 asm volatile (ASM_VMX_VMXOFF : : : "cc");
865 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
866 u32 msr, u32* result)
868 u32 vmx_msr_low, vmx_msr_high;
869 u32 ctl = ctl_min | ctl_opt;
871 rdmsr(msr, vmx_msr_low, vmx_msr_high);
873 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
874 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
876 /* Ensure minimum (required) set of control bits are supported. */
877 if (ctl_min & ~ctl)
878 return -EIO;
880 *result = ctl;
881 return 0;
884 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
886 u32 vmx_msr_low, vmx_msr_high;
887 u32 min, opt;
888 u32 _pin_based_exec_control = 0;
889 u32 _cpu_based_exec_control = 0;
890 u32 _vmexit_control = 0;
891 u32 _vmentry_control = 0;
893 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
894 opt = 0;
895 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
896 &_pin_based_exec_control) < 0)
897 return -EIO;
899 min = CPU_BASED_HLT_EXITING |
900 #ifdef CONFIG_X86_64
901 CPU_BASED_CR8_LOAD_EXITING |
902 CPU_BASED_CR8_STORE_EXITING |
903 #endif
904 CPU_BASED_USE_IO_BITMAPS |
905 CPU_BASED_MOV_DR_EXITING |
906 CPU_BASED_USE_TSC_OFFSETING;
907 #ifdef CONFIG_X86_64
908 opt = CPU_BASED_TPR_SHADOW;
909 #else
910 opt = 0;
911 #endif
912 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
913 &_cpu_based_exec_control) < 0)
914 return -EIO;
915 #ifdef CONFIG_X86_64
916 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
917 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
918 ~CPU_BASED_CR8_STORE_EXITING;
919 #endif
921 min = 0;
922 #ifdef CONFIG_X86_64
923 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
924 #endif
925 opt = 0;
926 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
927 &_vmexit_control) < 0)
928 return -EIO;
930 min = opt = 0;
931 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
932 &_vmentry_control) < 0)
933 return -EIO;
935 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
937 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
938 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
939 return -EIO;
941 #ifdef CONFIG_X86_64
942 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
943 if (vmx_msr_high & (1u<<16))
944 return -EIO;
945 #endif
947 /* Require Write-Back (WB) memory type for VMCS accesses. */
948 if (((vmx_msr_high >> 18) & 15) != 6)
949 return -EIO;
951 vmcs_conf->size = vmx_msr_high & 0x1fff;
952 vmcs_conf->order = get_order(vmcs_config.size);
953 vmcs_conf->revision_id = vmx_msr_low;
955 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
956 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
957 vmcs_conf->vmexit_ctrl = _vmexit_control;
958 vmcs_conf->vmentry_ctrl = _vmentry_control;
960 return 0;
963 static struct vmcs *alloc_vmcs_cpu(int cpu)
965 int node = cpu_to_node(cpu);
966 struct page *pages;
967 struct vmcs *vmcs;
969 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
970 if (!pages)
971 return NULL;
972 vmcs = page_address(pages);
973 memset(vmcs, 0, vmcs_config.size);
974 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
975 return vmcs;
978 static struct vmcs *alloc_vmcs(void)
980 return alloc_vmcs_cpu(raw_smp_processor_id());
983 static void free_vmcs(struct vmcs *vmcs)
985 free_pages((unsigned long)vmcs, vmcs_config.order);
988 static void free_kvm_area(void)
990 int cpu;
992 for_each_online_cpu(cpu)
993 free_vmcs(per_cpu(vmxarea, cpu));
996 static __init int alloc_kvm_area(void)
998 int cpu;
1000 for_each_online_cpu(cpu) {
1001 struct vmcs *vmcs;
1003 vmcs = alloc_vmcs_cpu(cpu);
1004 if (!vmcs) {
1005 free_kvm_area();
1006 return -ENOMEM;
1009 per_cpu(vmxarea, cpu) = vmcs;
1011 return 0;
1014 static __init int hardware_setup(void)
1016 if (setup_vmcs_config(&vmcs_config) < 0)
1017 return -EIO;
1018 return alloc_kvm_area();
1021 static __exit void hardware_unsetup(void)
1023 free_kvm_area();
1026 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1028 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1030 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1031 vmcs_write16(sf->selector, save->selector);
1032 vmcs_writel(sf->base, save->base);
1033 vmcs_write32(sf->limit, save->limit);
1034 vmcs_write32(sf->ar_bytes, save->ar);
1035 } else {
1036 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1037 << AR_DPL_SHIFT;
1038 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1042 static void enter_pmode(struct kvm_vcpu *vcpu)
1044 unsigned long flags;
1046 vcpu->rmode.active = 0;
1048 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1049 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1050 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1052 flags = vmcs_readl(GUEST_RFLAGS);
1053 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
1054 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1055 vmcs_writel(GUEST_RFLAGS, flags);
1057 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1058 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1060 update_exception_bitmap(vcpu);
1062 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1063 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1064 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1065 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1067 vmcs_write16(GUEST_SS_SELECTOR, 0);
1068 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1070 vmcs_write16(GUEST_CS_SELECTOR,
1071 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1072 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1075 static gva_t rmode_tss_base(struct kvm* kvm)
1077 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1078 return base_gfn << PAGE_SHIFT;
1081 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1083 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1085 save->selector = vmcs_read16(sf->selector);
1086 save->base = vmcs_readl(sf->base);
1087 save->limit = vmcs_read32(sf->limit);
1088 save->ar = vmcs_read32(sf->ar_bytes);
1089 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1090 vmcs_write32(sf->limit, 0xffff);
1091 vmcs_write32(sf->ar_bytes, 0xf3);
1094 static void enter_rmode(struct kvm_vcpu *vcpu)
1096 unsigned long flags;
1098 vcpu->rmode.active = 1;
1100 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1101 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1103 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1104 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1106 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1107 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1109 flags = vmcs_readl(GUEST_RFLAGS);
1110 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
1112 flags |= IOPL_MASK | X86_EFLAGS_VM;
1114 vmcs_writel(GUEST_RFLAGS, flags);
1115 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1116 update_exception_bitmap(vcpu);
1118 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1119 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1120 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1122 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1123 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1124 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1125 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1126 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1128 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1129 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1130 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1131 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1133 kvm_mmu_reset_context(vcpu);
1134 init_rmode_tss(vcpu->kvm);
1137 #ifdef CONFIG_X86_64
1139 static void enter_lmode(struct kvm_vcpu *vcpu)
1141 u32 guest_tr_ar;
1143 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1144 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1145 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1146 __FUNCTION__);
1147 vmcs_write32(GUEST_TR_AR_BYTES,
1148 (guest_tr_ar & ~AR_TYPE_MASK)
1149 | AR_TYPE_BUSY_64_TSS);
1152 vcpu->shadow_efer |= EFER_LMA;
1154 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1155 vmcs_write32(VM_ENTRY_CONTROLS,
1156 vmcs_read32(VM_ENTRY_CONTROLS)
1157 | VM_ENTRY_IA32E_MODE);
1160 static void exit_lmode(struct kvm_vcpu *vcpu)
1162 vcpu->shadow_efer &= ~EFER_LMA;
1164 vmcs_write32(VM_ENTRY_CONTROLS,
1165 vmcs_read32(VM_ENTRY_CONTROLS)
1166 & ~VM_ENTRY_IA32E_MODE);
1169 #endif
1171 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1173 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1174 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1177 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1179 vmx_fpu_deactivate(vcpu);
1181 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1182 enter_pmode(vcpu);
1184 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1185 enter_rmode(vcpu);
1187 #ifdef CONFIG_X86_64
1188 if (vcpu->shadow_efer & EFER_LME) {
1189 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1190 enter_lmode(vcpu);
1191 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1192 exit_lmode(vcpu);
1194 #endif
1196 vmcs_writel(CR0_READ_SHADOW, cr0);
1197 vmcs_writel(GUEST_CR0,
1198 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1199 vcpu->cr0 = cr0;
1201 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1202 vmx_fpu_activate(vcpu);
1205 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1207 vmcs_writel(GUEST_CR3, cr3);
1208 if (vcpu->cr0 & X86_CR0_PE)
1209 vmx_fpu_deactivate(vcpu);
1212 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1214 vmcs_writel(CR4_READ_SHADOW, cr4);
1215 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1216 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1217 vcpu->cr4 = cr4;
1220 #ifdef CONFIG_X86_64
1222 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1224 struct vcpu_vmx *vmx = to_vmx(vcpu);
1225 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1227 vcpu->shadow_efer = efer;
1228 if (efer & EFER_LMA) {
1229 vmcs_write32(VM_ENTRY_CONTROLS,
1230 vmcs_read32(VM_ENTRY_CONTROLS) |
1231 VM_ENTRY_IA32E_MODE);
1232 msr->data = efer;
1234 } else {
1235 vmcs_write32(VM_ENTRY_CONTROLS,
1236 vmcs_read32(VM_ENTRY_CONTROLS) &
1237 ~VM_ENTRY_IA32E_MODE);
1239 msr->data = efer & ~EFER_LME;
1241 setup_msrs(vmx);
1244 #endif
1246 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1248 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1250 return vmcs_readl(sf->base);
1253 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1254 struct kvm_segment *var, int seg)
1256 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1257 u32 ar;
1259 var->base = vmcs_readl(sf->base);
1260 var->limit = vmcs_read32(sf->limit);
1261 var->selector = vmcs_read16(sf->selector);
1262 ar = vmcs_read32(sf->ar_bytes);
1263 if (ar & AR_UNUSABLE_MASK)
1264 ar = 0;
1265 var->type = ar & 15;
1266 var->s = (ar >> 4) & 1;
1267 var->dpl = (ar >> 5) & 3;
1268 var->present = (ar >> 7) & 1;
1269 var->avl = (ar >> 12) & 1;
1270 var->l = (ar >> 13) & 1;
1271 var->db = (ar >> 14) & 1;
1272 var->g = (ar >> 15) & 1;
1273 var->unusable = (ar >> 16) & 1;
1276 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1278 u32 ar;
1280 if (var->unusable)
1281 ar = 1 << 16;
1282 else {
1283 ar = var->type & 15;
1284 ar |= (var->s & 1) << 4;
1285 ar |= (var->dpl & 3) << 5;
1286 ar |= (var->present & 1) << 7;
1287 ar |= (var->avl & 1) << 12;
1288 ar |= (var->l & 1) << 13;
1289 ar |= (var->db & 1) << 14;
1290 ar |= (var->g & 1) << 15;
1292 if (ar == 0) /* a 0 value means unusable */
1293 ar = AR_UNUSABLE_MASK;
1295 return ar;
1298 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1299 struct kvm_segment *var, int seg)
1301 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1302 u32 ar;
1304 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1305 vcpu->rmode.tr.selector = var->selector;
1306 vcpu->rmode.tr.base = var->base;
1307 vcpu->rmode.tr.limit = var->limit;
1308 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1309 return;
1311 vmcs_writel(sf->base, var->base);
1312 vmcs_write32(sf->limit, var->limit);
1313 vmcs_write16(sf->selector, var->selector);
1314 if (vcpu->rmode.active && var->s) {
1316 * Hack real-mode segments into vm86 compatibility.
1318 if (var->base == 0xffff0000 && var->selector == 0xf000)
1319 vmcs_writel(sf->base, 0xf0000);
1320 ar = 0xf3;
1321 } else
1322 ar = vmx_segment_access_rights(var);
1323 vmcs_write32(sf->ar_bytes, ar);
1326 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1328 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1330 *db = (ar >> 14) & 1;
1331 *l = (ar >> 13) & 1;
1334 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1336 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1337 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1340 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1342 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1343 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1346 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1348 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1349 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1352 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1354 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1355 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1358 static int init_rmode_tss(struct kvm* kvm)
1360 struct page *p1, *p2, *p3;
1361 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1362 char *page;
1364 p1 = gfn_to_page(kvm, fn++);
1365 p2 = gfn_to_page(kvm, fn++);
1366 p3 = gfn_to_page(kvm, fn);
1368 if (!p1 || !p2 || !p3) {
1369 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1370 return 0;
1373 page = kmap_atomic(p1, KM_USER0);
1374 clear_page(page);
1375 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1376 kunmap_atomic(page, KM_USER0);
1378 page = kmap_atomic(p2, KM_USER0);
1379 clear_page(page);
1380 kunmap_atomic(page, KM_USER0);
1382 page = kmap_atomic(p3, KM_USER0);
1383 clear_page(page);
1384 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1385 kunmap_atomic(page, KM_USER0);
1387 return 1;
1390 static void seg_setup(int seg)
1392 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1394 vmcs_write16(sf->selector, 0);
1395 vmcs_writel(sf->base, 0);
1396 vmcs_write32(sf->limit, 0xffff);
1397 vmcs_write32(sf->ar_bytes, 0x93);
1401 * Sets up the vmcs for emulated real mode.
1403 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1405 u32 host_sysenter_cs;
1406 u32 junk;
1407 unsigned long a;
1408 struct descriptor_table dt;
1409 int i;
1410 int ret = 0;
1411 unsigned long kvm_vmx_return;
1412 u64 msr;
1413 u32 exec_control;
1415 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1416 ret = -ENOMEM;
1417 goto out;
1420 vmx->vcpu.rmode.active = 0;
1422 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1423 set_cr8(&vmx->vcpu, 0);
1424 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1425 if (vmx->vcpu.vcpu_id == 0)
1426 msr |= MSR_IA32_APICBASE_BSP;
1427 kvm_set_apic_base(&vmx->vcpu, msr);
1429 fx_init(&vmx->vcpu);
1432 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1433 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1435 if (vmx->vcpu.vcpu_id == 0) {
1436 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1437 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1438 } else {
1439 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1440 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1442 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1443 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1445 seg_setup(VCPU_SREG_DS);
1446 seg_setup(VCPU_SREG_ES);
1447 seg_setup(VCPU_SREG_FS);
1448 seg_setup(VCPU_SREG_GS);
1449 seg_setup(VCPU_SREG_SS);
1451 vmcs_write16(GUEST_TR_SELECTOR, 0);
1452 vmcs_writel(GUEST_TR_BASE, 0);
1453 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1454 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1456 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1457 vmcs_writel(GUEST_LDTR_BASE, 0);
1458 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1459 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1461 vmcs_write32(GUEST_SYSENTER_CS, 0);
1462 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1463 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1465 vmcs_writel(GUEST_RFLAGS, 0x02);
1466 if (vmx->vcpu.vcpu_id == 0)
1467 vmcs_writel(GUEST_RIP, 0xfff0);
1468 else
1469 vmcs_writel(GUEST_RIP, 0);
1470 vmcs_writel(GUEST_RSP, 0);
1472 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1473 vmcs_writel(GUEST_DR7, 0x400);
1475 vmcs_writel(GUEST_GDTR_BASE, 0);
1476 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1478 vmcs_writel(GUEST_IDTR_BASE, 0);
1479 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1481 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1482 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1483 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1485 /* I/O */
1486 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1487 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1489 guest_write_tsc(0);
1491 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1493 /* Special registers */
1494 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1496 /* Control */
1497 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1498 vmcs_config.pin_based_exec_ctrl);
1500 exec_control = vmcs_config.cpu_based_exec_ctrl;
1501 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1502 exec_control &= ~CPU_BASED_TPR_SHADOW;
1503 #ifdef CONFIG_X86_64
1504 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1505 CPU_BASED_CR8_LOAD_EXITING;
1506 #endif
1508 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1510 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1511 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1512 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1514 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1515 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1516 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1518 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1519 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1520 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1521 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1522 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1523 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1524 #ifdef CONFIG_X86_64
1525 rdmsrl(MSR_FS_BASE, a);
1526 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1527 rdmsrl(MSR_GS_BASE, a);
1528 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1529 #else
1530 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1531 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1532 #endif
1534 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1536 get_idt(&dt);
1537 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1539 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1540 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1541 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1542 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1543 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1545 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1546 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1547 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1548 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1549 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1550 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1552 for (i = 0; i < NR_VMX_MSR; ++i) {
1553 u32 index = vmx_msr_index[i];
1554 u32 data_low, data_high;
1555 u64 data;
1556 int j = vmx->nmsrs;
1558 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1559 continue;
1560 if (wrmsr_safe(index, data_low, data_high) < 0)
1561 continue;
1562 data = data_low | ((u64)data_high << 32);
1563 vmx->host_msrs[j].index = index;
1564 vmx->host_msrs[j].reserved = 0;
1565 vmx->host_msrs[j].data = data;
1566 vmx->guest_msrs[j] = vmx->host_msrs[j];
1567 ++vmx->nmsrs;
1570 setup_msrs(vmx);
1572 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1574 /* 22.2.1, 20.8.1 */
1575 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1577 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1579 #ifdef CONFIG_X86_64
1580 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1581 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1582 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1583 page_to_phys(vmx->vcpu.apic->regs_page));
1584 vmcs_write32(TPR_THRESHOLD, 0);
1585 #endif
1587 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1588 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1590 vmx->vcpu.cr0 = 0x60000010;
1591 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1592 vmx_set_cr4(&vmx->vcpu, 0);
1593 #ifdef CONFIG_X86_64
1594 vmx_set_efer(&vmx->vcpu, 0);
1595 #endif
1596 vmx_fpu_activate(&vmx->vcpu);
1597 update_exception_bitmap(&vmx->vcpu);
1599 return 0;
1601 out:
1602 return ret;
1605 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1607 struct vcpu_vmx *vmx = to_vmx(vcpu);
1609 vmx_vcpu_setup(vmx);
1612 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1614 u16 ent[2];
1615 u16 cs;
1616 u16 ip;
1617 unsigned long flags;
1618 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1619 u16 sp = vmcs_readl(GUEST_RSP);
1620 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1622 if (sp > ss_limit || sp < 6 ) {
1623 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1624 __FUNCTION__,
1625 vmcs_readl(GUEST_RSP),
1626 vmcs_readl(GUEST_SS_BASE),
1627 vmcs_read32(GUEST_SS_LIMIT));
1628 return;
1631 if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1632 X86EMUL_CONTINUE) {
1633 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1634 return;
1637 flags = vmcs_readl(GUEST_RFLAGS);
1638 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1639 ip = vmcs_readl(GUEST_RIP);
1642 if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1643 emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1644 emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1645 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1646 return;
1649 vmcs_writel(GUEST_RFLAGS, flags &
1650 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1651 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1652 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1653 vmcs_writel(GUEST_RIP, ent[0]);
1654 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1657 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1659 if (vcpu->rmode.active) {
1660 inject_rmode_irq(vcpu, irq);
1661 return;
1663 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1664 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1667 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1669 int word_index = __ffs(vcpu->irq_summary);
1670 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1671 int irq = word_index * BITS_PER_LONG + bit_index;
1673 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1674 if (!vcpu->irq_pending[word_index])
1675 clear_bit(word_index, &vcpu->irq_summary);
1676 vmx_inject_irq(vcpu, irq);
1680 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1681 struct kvm_run *kvm_run)
1683 u32 cpu_based_vm_exec_control;
1685 vcpu->interrupt_window_open =
1686 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1687 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1689 if (vcpu->interrupt_window_open &&
1690 vcpu->irq_summary &&
1691 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1693 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1695 kvm_do_inject_irq(vcpu);
1697 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1698 if (!vcpu->interrupt_window_open &&
1699 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1701 * Interrupts blocked. Wait for unblock.
1703 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1704 else
1705 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1706 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1709 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1711 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1713 set_debugreg(dbg->bp[0], 0);
1714 set_debugreg(dbg->bp[1], 1);
1715 set_debugreg(dbg->bp[2], 2);
1716 set_debugreg(dbg->bp[3], 3);
1718 if (dbg->singlestep) {
1719 unsigned long flags;
1721 flags = vmcs_readl(GUEST_RFLAGS);
1722 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1723 vmcs_writel(GUEST_RFLAGS, flags);
1727 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1728 int vec, u32 err_code)
1730 if (!vcpu->rmode.active)
1731 return 0;
1734 * Instruction with address size override prefix opcode 0x67
1735 * Cause the #SS fault with 0 error code in VM86 mode.
1737 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1738 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1739 return 1;
1740 return 0;
1743 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1745 u32 intr_info, error_code;
1746 unsigned long cr2, rip;
1747 u32 vect_info;
1748 enum emulation_result er;
1749 int r;
1751 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1752 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1754 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1755 !is_page_fault(intr_info)) {
1756 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1757 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1760 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1761 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1762 set_bit(irq, vcpu->irq_pending);
1763 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1766 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1767 return 1; /* already handled by vmx_vcpu_run() */
1769 if (is_no_device(intr_info)) {
1770 vmx_fpu_activate(vcpu);
1771 return 1;
1774 error_code = 0;
1775 rip = vmcs_readl(GUEST_RIP);
1776 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1777 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1778 if (is_page_fault(intr_info)) {
1779 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1781 mutex_lock(&vcpu->kvm->lock);
1782 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1783 if (r < 0) {
1784 mutex_unlock(&vcpu->kvm->lock);
1785 return r;
1787 if (!r) {
1788 mutex_unlock(&vcpu->kvm->lock);
1789 return 1;
1792 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1793 mutex_unlock(&vcpu->kvm->lock);
1795 switch (er) {
1796 case EMULATE_DONE:
1797 return 1;
1798 case EMULATE_DO_MMIO:
1799 ++vcpu->stat.mmio_exits;
1800 return 0;
1801 case EMULATE_FAIL:
1802 kvm_report_emulation_failure(vcpu, "pagetable");
1803 break;
1804 default:
1805 BUG();
1809 if (vcpu->rmode.active &&
1810 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1811 error_code)) {
1812 if (vcpu->halt_request) {
1813 vcpu->halt_request = 0;
1814 return kvm_emulate_halt(vcpu);
1816 return 1;
1819 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1820 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1821 return 0;
1823 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1824 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1825 kvm_run->ex.error_code = error_code;
1826 return 0;
1829 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1830 struct kvm_run *kvm_run)
1832 ++vcpu->stat.irq_exits;
1833 return 1;
1836 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1838 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1839 return 0;
1842 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1844 unsigned long exit_qualification;
1845 int size, down, in, string, rep;
1846 unsigned port;
1848 ++vcpu->stat.io_exits;
1849 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1850 string = (exit_qualification & 16) != 0;
1852 if (string) {
1853 if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1854 return 0;
1855 return 1;
1858 size = (exit_qualification & 7) + 1;
1859 in = (exit_qualification & 8) != 0;
1860 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1861 rep = (exit_qualification & 32) != 0;
1862 port = exit_qualification >> 16;
1864 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1867 static void
1868 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1871 * Patch in the VMCALL instruction:
1873 hypercall[0] = 0x0f;
1874 hypercall[1] = 0x01;
1875 hypercall[2] = 0xc1;
1876 hypercall[3] = 0xc3;
1879 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1881 unsigned long exit_qualification;
1882 int cr;
1883 int reg;
1885 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1886 cr = exit_qualification & 15;
1887 reg = (exit_qualification >> 8) & 15;
1888 switch ((exit_qualification >> 4) & 3) {
1889 case 0: /* mov to cr */
1890 switch (cr) {
1891 case 0:
1892 vcpu_load_rsp_rip(vcpu);
1893 set_cr0(vcpu, vcpu->regs[reg]);
1894 skip_emulated_instruction(vcpu);
1895 return 1;
1896 case 3:
1897 vcpu_load_rsp_rip(vcpu);
1898 set_cr3(vcpu, vcpu->regs[reg]);
1899 skip_emulated_instruction(vcpu);
1900 return 1;
1901 case 4:
1902 vcpu_load_rsp_rip(vcpu);
1903 set_cr4(vcpu, vcpu->regs[reg]);
1904 skip_emulated_instruction(vcpu);
1905 return 1;
1906 case 8:
1907 vcpu_load_rsp_rip(vcpu);
1908 set_cr8(vcpu, vcpu->regs[reg]);
1909 skip_emulated_instruction(vcpu);
1910 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1911 return 0;
1913 break;
1914 case 2: /* clts */
1915 vcpu_load_rsp_rip(vcpu);
1916 vmx_fpu_deactivate(vcpu);
1917 vcpu->cr0 &= ~X86_CR0_TS;
1918 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1919 vmx_fpu_activate(vcpu);
1920 skip_emulated_instruction(vcpu);
1921 return 1;
1922 case 1: /*mov from cr*/
1923 switch (cr) {
1924 case 3:
1925 vcpu_load_rsp_rip(vcpu);
1926 vcpu->regs[reg] = vcpu->cr3;
1927 vcpu_put_rsp_rip(vcpu);
1928 skip_emulated_instruction(vcpu);
1929 return 1;
1930 case 8:
1931 vcpu_load_rsp_rip(vcpu);
1932 vcpu->regs[reg] = get_cr8(vcpu);
1933 vcpu_put_rsp_rip(vcpu);
1934 skip_emulated_instruction(vcpu);
1935 return 1;
1937 break;
1938 case 3: /* lmsw */
1939 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1941 skip_emulated_instruction(vcpu);
1942 return 1;
1943 default:
1944 break;
1946 kvm_run->exit_reason = 0;
1947 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1948 (int)(exit_qualification >> 4) & 3, cr);
1949 return 0;
1952 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1954 unsigned long exit_qualification;
1955 unsigned long val;
1956 int dr, reg;
1959 * FIXME: this code assumes the host is debugging the guest.
1960 * need to deal with guest debugging itself too.
1962 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1963 dr = exit_qualification & 7;
1964 reg = (exit_qualification >> 8) & 15;
1965 vcpu_load_rsp_rip(vcpu);
1966 if (exit_qualification & 16) {
1967 /* mov from dr */
1968 switch (dr) {
1969 case 6:
1970 val = 0xffff0ff0;
1971 break;
1972 case 7:
1973 val = 0x400;
1974 break;
1975 default:
1976 val = 0;
1978 vcpu->regs[reg] = val;
1979 } else {
1980 /* mov to dr */
1982 vcpu_put_rsp_rip(vcpu);
1983 skip_emulated_instruction(vcpu);
1984 return 1;
1987 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1989 kvm_emulate_cpuid(vcpu);
1990 return 1;
1993 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1995 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1996 u64 data;
1998 if (vmx_get_msr(vcpu, ecx, &data)) {
1999 vmx_inject_gp(vcpu, 0);
2000 return 1;
2003 /* FIXME: handling of bits 32:63 of rax, rdx */
2004 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2005 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2006 skip_emulated_instruction(vcpu);
2007 return 1;
2010 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2012 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2013 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2014 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2016 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2017 vmx_inject_gp(vcpu, 0);
2018 return 1;
2021 skip_emulated_instruction(vcpu);
2022 return 1;
2025 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2026 struct kvm_run *kvm_run)
2028 return 1;
2031 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2032 struct kvm_run *kvm_run)
2034 u32 cpu_based_vm_exec_control;
2036 /* clear pending irq */
2037 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2038 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2039 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2041 * If the user space waits to inject interrupts, exit as soon as
2042 * possible
2044 if (kvm_run->request_interrupt_window &&
2045 !vcpu->irq_summary) {
2046 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2047 ++vcpu->stat.irq_window_exits;
2048 return 0;
2050 return 1;
2053 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2055 skip_emulated_instruction(vcpu);
2056 return kvm_emulate_halt(vcpu);
2059 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2061 skip_emulated_instruction(vcpu);
2062 return kvm_hypercall(vcpu, kvm_run);
2066 * The exit handlers return 1 if the exit was handled fully and guest execution
2067 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2068 * to be done to userspace and return 0.
2070 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2071 struct kvm_run *kvm_run) = {
2072 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2073 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2074 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2075 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2076 [EXIT_REASON_CR_ACCESS] = handle_cr,
2077 [EXIT_REASON_DR_ACCESS] = handle_dr,
2078 [EXIT_REASON_CPUID] = handle_cpuid,
2079 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2080 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2081 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2082 [EXIT_REASON_HLT] = handle_halt,
2083 [EXIT_REASON_VMCALL] = handle_vmcall,
2084 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold
2087 static const int kvm_vmx_max_exit_handlers =
2088 ARRAY_SIZE(kvm_vmx_exit_handlers);
2091 * The guest has exited. See if we can fix it or if we need userspace
2092 * assistance.
2094 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2096 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2097 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2098 struct vcpu_vmx *vmx = to_vmx(vcpu);
2100 if (unlikely(vmx->fail)) {
2101 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2102 kvm_run->fail_entry.hardware_entry_failure_reason
2103 = vmcs_read32(VM_INSTRUCTION_ERROR);
2104 return 0;
2107 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2108 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2109 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2110 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2111 if (exit_reason < kvm_vmx_max_exit_handlers
2112 && kvm_vmx_exit_handlers[exit_reason])
2113 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2114 else {
2115 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2116 kvm_run->hw.hardware_exit_reason = exit_reason;
2118 return 0;
2121 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2125 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2127 int max_irr, tpr;
2129 if (!vm_need_tpr_shadow(vcpu->kvm))
2130 return;
2132 if (!kvm_lapic_enabled(vcpu) ||
2133 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2134 vmcs_write32(TPR_THRESHOLD, 0);
2135 return;
2138 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2139 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2142 static void enable_irq_window(struct kvm_vcpu *vcpu)
2144 u32 cpu_based_vm_exec_control;
2146 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2147 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2148 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2151 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2153 u32 idtv_info_field, intr_info_field;
2154 int has_ext_irq, interrupt_window_open;
2155 int vector;
2157 kvm_inject_pending_timer_irqs(vcpu);
2158 update_tpr_threshold(vcpu);
2160 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2161 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2162 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2163 if (intr_info_field & INTR_INFO_VALID_MASK) {
2164 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2165 /* TODO: fault when IDT_Vectoring */
2166 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2168 if (has_ext_irq)
2169 enable_irq_window(vcpu);
2170 return;
2172 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2173 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2174 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2175 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2177 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2178 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2180 if (unlikely(has_ext_irq))
2181 enable_irq_window(vcpu);
2182 return;
2184 if (!has_ext_irq)
2185 return;
2186 interrupt_window_open =
2187 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2188 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2189 if (interrupt_window_open) {
2190 vector = kvm_cpu_get_interrupt(vcpu);
2191 vmx_inject_irq(vcpu, vector);
2192 kvm_timer_intr_post(vcpu, vector);
2193 } else
2194 enable_irq_window(vcpu);
2197 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2199 struct vcpu_vmx *vmx = to_vmx(vcpu);
2200 u32 intr_info;
2203 * Loading guest fpu may have cleared host cr0.ts
2205 vmcs_writel(HOST_CR0, read_cr0());
2207 asm (
2208 /* Store host registers */
2209 #ifdef CONFIG_X86_64
2210 "push %%rax; push %%rbx; push %%rdx;"
2211 "push %%rsi; push %%rdi; push %%rbp;"
2212 "push %%r8; push %%r9; push %%r10; push %%r11;"
2213 "push %%r12; push %%r13; push %%r14; push %%r15;"
2214 "push %%rcx \n\t"
2215 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2216 #else
2217 "pusha; push %%ecx \n\t"
2218 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2219 #endif
2220 /* Check if vmlaunch of vmresume is needed */
2221 "cmp $0, %1 \n\t"
2222 /* Load guest registers. Don't clobber flags. */
2223 #ifdef CONFIG_X86_64
2224 "mov %c[cr2](%3), %%rax \n\t"
2225 "mov %%rax, %%cr2 \n\t"
2226 "mov %c[rax](%3), %%rax \n\t"
2227 "mov %c[rbx](%3), %%rbx \n\t"
2228 "mov %c[rdx](%3), %%rdx \n\t"
2229 "mov %c[rsi](%3), %%rsi \n\t"
2230 "mov %c[rdi](%3), %%rdi \n\t"
2231 "mov %c[rbp](%3), %%rbp \n\t"
2232 "mov %c[r8](%3), %%r8 \n\t"
2233 "mov %c[r9](%3), %%r9 \n\t"
2234 "mov %c[r10](%3), %%r10 \n\t"
2235 "mov %c[r11](%3), %%r11 \n\t"
2236 "mov %c[r12](%3), %%r12 \n\t"
2237 "mov %c[r13](%3), %%r13 \n\t"
2238 "mov %c[r14](%3), %%r14 \n\t"
2239 "mov %c[r15](%3), %%r15 \n\t"
2240 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2241 #else
2242 "mov %c[cr2](%3), %%eax \n\t"
2243 "mov %%eax, %%cr2 \n\t"
2244 "mov %c[rax](%3), %%eax \n\t"
2245 "mov %c[rbx](%3), %%ebx \n\t"
2246 "mov %c[rdx](%3), %%edx \n\t"
2247 "mov %c[rsi](%3), %%esi \n\t"
2248 "mov %c[rdi](%3), %%edi \n\t"
2249 "mov %c[rbp](%3), %%ebp \n\t"
2250 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2251 #endif
2252 /* Enter guest mode */
2253 "jne .Llaunched \n\t"
2254 ASM_VMX_VMLAUNCH "\n\t"
2255 "jmp .Lkvm_vmx_return \n\t"
2256 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2257 ".Lkvm_vmx_return: "
2258 /* Save guest registers, load host registers, keep flags */
2259 #ifdef CONFIG_X86_64
2260 "xchg %3, (%%rsp) \n\t"
2261 "mov %%rax, %c[rax](%3) \n\t"
2262 "mov %%rbx, %c[rbx](%3) \n\t"
2263 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2264 "mov %%rdx, %c[rdx](%3) \n\t"
2265 "mov %%rsi, %c[rsi](%3) \n\t"
2266 "mov %%rdi, %c[rdi](%3) \n\t"
2267 "mov %%rbp, %c[rbp](%3) \n\t"
2268 "mov %%r8, %c[r8](%3) \n\t"
2269 "mov %%r9, %c[r9](%3) \n\t"
2270 "mov %%r10, %c[r10](%3) \n\t"
2271 "mov %%r11, %c[r11](%3) \n\t"
2272 "mov %%r12, %c[r12](%3) \n\t"
2273 "mov %%r13, %c[r13](%3) \n\t"
2274 "mov %%r14, %c[r14](%3) \n\t"
2275 "mov %%r15, %c[r15](%3) \n\t"
2276 "mov %%cr2, %%rax \n\t"
2277 "mov %%rax, %c[cr2](%3) \n\t"
2278 "mov (%%rsp), %3 \n\t"
2280 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2281 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2282 "pop %%rbp; pop %%rdi; pop %%rsi;"
2283 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2284 #else
2285 "xchg %3, (%%esp) \n\t"
2286 "mov %%eax, %c[rax](%3) \n\t"
2287 "mov %%ebx, %c[rbx](%3) \n\t"
2288 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2289 "mov %%edx, %c[rdx](%3) \n\t"
2290 "mov %%esi, %c[rsi](%3) \n\t"
2291 "mov %%edi, %c[rdi](%3) \n\t"
2292 "mov %%ebp, %c[rbp](%3) \n\t"
2293 "mov %%cr2, %%eax \n\t"
2294 "mov %%eax, %c[cr2](%3) \n\t"
2295 "mov (%%esp), %3 \n\t"
2297 "pop %%ecx; popa \n\t"
2298 #endif
2299 "setbe %0 \n\t"
2300 : "=q" (vmx->fail)
2301 : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2302 "c"(vcpu),
2303 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2304 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2305 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2306 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2307 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2308 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2309 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2310 #ifdef CONFIG_X86_64
2311 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2312 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2313 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2314 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2315 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2316 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2317 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2318 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2319 #endif
2320 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2321 : "cc", "memory" );
2323 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2325 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2326 vmx->launched = 1;
2328 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2330 /* We need to handle NMIs before interrupts are enabled */
2331 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2332 asm("int $2");
2335 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2336 unsigned long addr,
2337 u32 err_code)
2339 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2341 ++vcpu->stat.pf_guest;
2343 if (is_page_fault(vect_info)) {
2344 printk(KERN_DEBUG "inject_page_fault: "
2345 "double fault 0x%lx @ 0x%lx\n",
2346 addr, vmcs_readl(GUEST_RIP));
2347 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2348 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2349 DF_VECTOR |
2350 INTR_TYPE_EXCEPTION |
2351 INTR_INFO_DELIEVER_CODE_MASK |
2352 INTR_INFO_VALID_MASK);
2353 return;
2355 vcpu->cr2 = addr;
2356 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2357 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2358 PF_VECTOR |
2359 INTR_TYPE_EXCEPTION |
2360 INTR_INFO_DELIEVER_CODE_MASK |
2361 INTR_INFO_VALID_MASK);
2365 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2367 struct vcpu_vmx *vmx = to_vmx(vcpu);
2369 if (vmx->vmcs) {
2370 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2371 free_vmcs(vmx->vmcs);
2372 vmx->vmcs = NULL;
2376 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2378 struct vcpu_vmx *vmx = to_vmx(vcpu);
2380 vmx_free_vmcs(vcpu);
2381 kfree(vmx->host_msrs);
2382 kfree(vmx->guest_msrs);
2383 kvm_vcpu_uninit(vcpu);
2384 kmem_cache_free(kvm_vcpu_cache, vmx);
2387 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2389 int err;
2390 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2391 int cpu;
2393 if (!vmx)
2394 return ERR_PTR(-ENOMEM);
2396 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2397 if (err)
2398 goto free_vcpu;
2400 if (irqchip_in_kernel(kvm)) {
2401 err = kvm_create_lapic(&vmx->vcpu);
2402 if (err < 0)
2403 goto free_vcpu;
2406 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2407 if (!vmx->guest_msrs) {
2408 err = -ENOMEM;
2409 goto uninit_vcpu;
2412 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2413 if (!vmx->host_msrs)
2414 goto free_guest_msrs;
2416 vmx->vmcs = alloc_vmcs();
2417 if (!vmx->vmcs)
2418 goto free_msrs;
2420 vmcs_clear(vmx->vmcs);
2422 cpu = get_cpu();
2423 vmx_vcpu_load(&vmx->vcpu, cpu);
2424 err = vmx_vcpu_setup(vmx);
2425 vmx_vcpu_put(&vmx->vcpu);
2426 put_cpu();
2427 if (err)
2428 goto free_vmcs;
2430 return &vmx->vcpu;
2432 free_vmcs:
2433 free_vmcs(vmx->vmcs);
2434 free_msrs:
2435 kfree(vmx->host_msrs);
2436 free_guest_msrs:
2437 kfree(vmx->guest_msrs);
2438 uninit_vcpu:
2439 kvm_vcpu_uninit(&vmx->vcpu);
2440 free_vcpu:
2441 kmem_cache_free(kvm_vcpu_cache, vmx);
2442 return ERR_PTR(err);
2445 static void __init vmx_check_processor_compat(void *rtn)
2447 struct vmcs_config vmcs_conf;
2449 *(int *)rtn = 0;
2450 if (setup_vmcs_config(&vmcs_conf) < 0)
2451 *(int *)rtn = -EIO;
2452 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2453 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2454 smp_processor_id());
2455 *(int *)rtn = -EIO;
2459 static struct kvm_x86_ops vmx_x86_ops = {
2460 .cpu_has_kvm_support = cpu_has_kvm_support,
2461 .disabled_by_bios = vmx_disabled_by_bios,
2462 .hardware_setup = hardware_setup,
2463 .hardware_unsetup = hardware_unsetup,
2464 .check_processor_compatibility = vmx_check_processor_compat,
2465 .hardware_enable = hardware_enable,
2466 .hardware_disable = hardware_disable,
2468 .vcpu_create = vmx_create_vcpu,
2469 .vcpu_free = vmx_free_vcpu,
2470 .vcpu_reset = vmx_vcpu_reset,
2472 .prepare_guest_switch = vmx_save_host_state,
2473 .vcpu_load = vmx_vcpu_load,
2474 .vcpu_put = vmx_vcpu_put,
2475 .vcpu_decache = vmx_vcpu_decache,
2477 .set_guest_debug = set_guest_debug,
2478 .guest_debug_pre = kvm_guest_debug_pre,
2479 .get_msr = vmx_get_msr,
2480 .set_msr = vmx_set_msr,
2481 .get_segment_base = vmx_get_segment_base,
2482 .get_segment = vmx_get_segment,
2483 .set_segment = vmx_set_segment,
2484 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2485 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2486 .set_cr0 = vmx_set_cr0,
2487 .set_cr3 = vmx_set_cr3,
2488 .set_cr4 = vmx_set_cr4,
2489 #ifdef CONFIG_X86_64
2490 .set_efer = vmx_set_efer,
2491 #endif
2492 .get_idt = vmx_get_idt,
2493 .set_idt = vmx_set_idt,
2494 .get_gdt = vmx_get_gdt,
2495 .set_gdt = vmx_set_gdt,
2496 .cache_regs = vcpu_load_rsp_rip,
2497 .decache_regs = vcpu_put_rsp_rip,
2498 .get_rflags = vmx_get_rflags,
2499 .set_rflags = vmx_set_rflags,
2501 .tlb_flush = vmx_flush_tlb,
2502 .inject_page_fault = vmx_inject_page_fault,
2504 .inject_gp = vmx_inject_gp,
2506 .run = vmx_vcpu_run,
2507 .handle_exit = kvm_handle_exit,
2508 .skip_emulated_instruction = skip_emulated_instruction,
2509 .patch_hypercall = vmx_patch_hypercall,
2510 .get_irq = vmx_get_irq,
2511 .set_irq = vmx_inject_irq,
2512 .inject_pending_irq = vmx_intr_assist,
2513 .inject_pending_vectors = do_interrupt_requests,
2516 static int __init vmx_init(void)
2518 void *iova;
2519 int r;
2521 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2522 if (!vmx_io_bitmap_a)
2523 return -ENOMEM;
2525 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2526 if (!vmx_io_bitmap_b) {
2527 r = -ENOMEM;
2528 goto out;
2532 * Allow direct access to the PC debug port (it is often used for I/O
2533 * delays, but the vmexits simply slow things down).
2535 iova = kmap(vmx_io_bitmap_a);
2536 memset(iova, 0xff, PAGE_SIZE);
2537 clear_bit(0x80, iova);
2538 kunmap(vmx_io_bitmap_a);
2540 iova = kmap(vmx_io_bitmap_b);
2541 memset(iova, 0xff, PAGE_SIZE);
2542 kunmap(vmx_io_bitmap_b);
2544 r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2545 if (r)
2546 goto out1;
2548 return 0;
2550 out1:
2551 __free_page(vmx_io_bitmap_b);
2552 out:
2553 __free_page(vmx_io_bitmap_a);
2554 return r;
2557 static void __exit vmx_exit(void)
2559 __free_page(vmx_io_bitmap_b);
2560 __free_page(vmx_io_bitmap_a);
2562 kvm_exit_x86();
2565 module_init(vmx_init)
2566 module_exit(vmx_exit)