2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
22 #include "segment_descriptor.h"
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
46 struct kvm_msr_entry
*guest_msrs
;
47 struct kvm_msr_entry
*host_msrs
;
52 int msr_offset_kernel_gs_base
;
57 u16 fs_sel
, gs_sel
, ldt_sel
;
58 int gs_ldt_reload_needed
;
64 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
66 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
69 static int init_rmode_tss(struct kvm
*kvm
);
71 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
72 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
74 static struct page
*vmx_io_bitmap_a
;
75 static struct page
*vmx_io_bitmap_b
;
77 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
79 static struct vmcs_config
{
83 u32 pin_based_exec_ctrl
;
84 u32 cpu_based_exec_ctrl
;
89 #define VMX_SEGMENT_FIELD(seg) \
90 [VCPU_SREG_##seg] = { \
91 .selector = GUEST_##seg##_SELECTOR, \
92 .base = GUEST_##seg##_BASE, \
93 .limit = GUEST_##seg##_LIMIT, \
94 .ar_bytes = GUEST_##seg##_AR_BYTES, \
97 static struct kvm_vmx_segment_field
{
102 } kvm_vmx_segment_fields
[] = {
103 VMX_SEGMENT_FIELD(CS
),
104 VMX_SEGMENT_FIELD(DS
),
105 VMX_SEGMENT_FIELD(ES
),
106 VMX_SEGMENT_FIELD(FS
),
107 VMX_SEGMENT_FIELD(GS
),
108 VMX_SEGMENT_FIELD(SS
),
109 VMX_SEGMENT_FIELD(TR
),
110 VMX_SEGMENT_FIELD(LDTR
),
114 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
115 * away by decrementing the array size.
117 static const u32 vmx_msr_index
[] = {
119 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
121 MSR_EFER
, MSR_K6_STAR
,
123 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
125 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
129 for (i
= 0; i
< n
; ++i
)
130 wrmsrl(e
[i
].index
, e
[i
].data
);
133 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
137 for (i
= 0; i
< n
; ++i
)
138 rdmsrl(e
[i
].index
, e
[i
].data
);
141 static inline u64
msr_efer_save_restore_bits(struct kvm_msr_entry msr
)
143 return (u64
)msr
.data
& EFER_SAVE_RESTORE_BITS
;
146 static inline int msr_efer_need_save_restore(struct vcpu_vmx
*vmx
)
148 int efer_offset
= vmx
->msr_offset_efer
;
149 return msr_efer_save_restore_bits(vmx
->host_msrs
[efer_offset
]) !=
150 msr_efer_save_restore_bits(vmx
->guest_msrs
[efer_offset
]);
153 static inline int is_page_fault(u32 intr_info
)
155 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
156 INTR_INFO_VALID_MASK
)) ==
157 (INTR_TYPE_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
160 static inline int is_no_device(u32 intr_info
)
162 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
163 INTR_INFO_VALID_MASK
)) ==
164 (INTR_TYPE_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
167 static inline int is_external_interrupt(u32 intr_info
)
169 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
170 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
173 static inline int cpu_has_vmx_tpr_shadow(void)
175 return (vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
);
178 static inline int vm_need_tpr_shadow(struct kvm
*kvm
)
180 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
)));
183 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
187 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
188 if (vmx
->guest_msrs
[i
].index
== msr
)
193 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
197 i
= __find_msr_index(vmx
, msr
);
199 return &vmx
->guest_msrs
[i
];
203 static void vmcs_clear(struct vmcs
*vmcs
)
205 u64 phys_addr
= __pa(vmcs
);
208 asm volatile (ASM_VMX_VMCLEAR_RAX
"; setna %0"
209 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
212 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
216 static void __vcpu_clear(void *arg
)
218 struct vcpu_vmx
*vmx
= arg
;
219 int cpu
= raw_smp_processor_id();
221 if (vmx
->vcpu
.cpu
== cpu
)
222 vmcs_clear(vmx
->vmcs
);
223 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
224 per_cpu(current_vmcs
, cpu
) = NULL
;
225 rdtscll(vmx
->vcpu
.host_tsc
);
228 static void vcpu_clear(struct vcpu_vmx
*vmx
)
230 if (vmx
->vcpu
.cpu
!= raw_smp_processor_id() && vmx
->vcpu
.cpu
!= -1)
231 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
,
238 static unsigned long vmcs_readl(unsigned long field
)
242 asm volatile (ASM_VMX_VMREAD_RDX_RAX
243 : "=a"(value
) : "d"(field
) : "cc");
247 static u16
vmcs_read16(unsigned long field
)
249 return vmcs_readl(field
);
252 static u32
vmcs_read32(unsigned long field
)
254 return vmcs_readl(field
);
257 static u64
vmcs_read64(unsigned long field
)
260 return vmcs_readl(field
);
262 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
266 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
268 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
269 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
273 static void vmcs_writel(unsigned long field
, unsigned long value
)
277 asm volatile (ASM_VMX_VMWRITE_RAX_RDX
"; setna %0"
278 : "=q"(error
) : "a"(value
), "d"(field
) : "cc" );
280 vmwrite_error(field
, value
);
283 static void vmcs_write16(unsigned long field
, u16 value
)
285 vmcs_writel(field
, value
);
288 static void vmcs_write32(unsigned long field
, u32 value
)
290 vmcs_writel(field
, value
);
293 static void vmcs_write64(unsigned long field
, u64 value
)
296 vmcs_writel(field
, value
);
298 vmcs_writel(field
, value
);
300 vmcs_writel(field
+1, value
>> 32);
304 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
306 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
309 static void vmcs_set_bits(unsigned long field
, u32 mask
)
311 vmcs_writel(field
, vmcs_readl(field
) | mask
);
314 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
318 eb
= 1u << PF_VECTOR
;
319 if (!vcpu
->fpu_active
)
320 eb
|= 1u << NM_VECTOR
;
321 if (vcpu
->guest_debug
.enabled
)
323 if (vcpu
->rmode
.active
)
325 vmcs_write32(EXCEPTION_BITMAP
, eb
);
328 static void reload_tss(void)
330 #ifndef CONFIG_X86_64
333 * VT restores TR but not its size. Useless.
335 struct descriptor_table gdt
;
336 struct segment_descriptor
*descs
;
339 descs
= (void *)gdt
.base
;
340 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
345 static void load_transition_efer(struct vcpu_vmx
*vmx
)
348 int efer_offset
= vmx
->msr_offset_efer
;
350 trans_efer
= vmx
->host_msrs
[efer_offset
].data
;
351 trans_efer
&= ~EFER_SAVE_RESTORE_BITS
;
352 trans_efer
|= msr_efer_save_restore_bits(vmx
->guest_msrs
[efer_offset
]);
353 wrmsrl(MSR_EFER
, trans_efer
);
354 vmx
->vcpu
.stat
.efer_reload
++;
357 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
359 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
361 if (vmx
->host_state
.loaded
)
364 vmx
->host_state
.loaded
= 1;
366 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
367 * allow segment selectors with cpl > 0 or ti == 1.
369 vmx
->host_state
.ldt_sel
= read_ldt();
370 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
371 vmx
->host_state
.fs_sel
= read_fs();
372 if (!(vmx
->host_state
.fs_sel
& 7)) {
373 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
374 vmx
->host_state
.fs_reload_needed
= 0;
376 vmcs_write16(HOST_FS_SELECTOR
, 0);
377 vmx
->host_state
.fs_reload_needed
= 1;
379 vmx
->host_state
.gs_sel
= read_gs();
380 if (!(vmx
->host_state
.gs_sel
& 7))
381 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
383 vmcs_write16(HOST_GS_SELECTOR
, 0);
384 vmx
->host_state
.gs_ldt_reload_needed
= 1;
388 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
389 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
391 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
392 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
396 if (is_long_mode(&vmx
->vcpu
)) {
397 save_msrs(vmx
->host_msrs
+
398 vmx
->msr_offset_kernel_gs_base
, 1);
401 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
402 if (msr_efer_need_save_restore(vmx
))
403 load_transition_efer(vmx
);
406 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
410 if (!vmx
->host_state
.loaded
)
413 vmx
->host_state
.loaded
= 0;
414 if (vmx
->host_state
.fs_reload_needed
)
415 load_fs(vmx
->host_state
.fs_sel
);
416 if (vmx
->host_state
.gs_ldt_reload_needed
) {
417 load_ldt(vmx
->host_state
.ldt_sel
);
419 * If we have to reload gs, we must take care to
420 * preserve our gs base.
422 local_irq_save(flags
);
423 load_gs(vmx
->host_state
.gs_sel
);
425 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
427 local_irq_restore(flags
);
430 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
431 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
432 if (msr_efer_need_save_restore(vmx
))
433 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
437 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
438 * vcpu mutex is already taken.
440 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
442 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
443 u64 phys_addr
= __pa(vmx
->vmcs
);
446 if (vcpu
->cpu
!= cpu
) {
448 kvm_migrate_apic_timer(vcpu
);
451 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
454 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
455 asm volatile (ASM_VMX_VMPTRLD_RAX
"; setna %0"
456 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
459 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
460 vmx
->vmcs
, phys_addr
);
463 if (vcpu
->cpu
!= cpu
) {
464 struct descriptor_table dt
;
465 unsigned long sysenter_esp
;
469 * Linux uses per-cpu TSS and GDT, so set these when switching
472 vmcs_writel(HOST_TR_BASE
, read_tr_base()); /* 22.2.4 */
474 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
476 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
477 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
480 * Make sure the time stamp counter is monotonous.
483 delta
= vcpu
->host_tsc
- tsc_this
;
484 vmcs_write64(TSC_OFFSET
, vmcs_read64(TSC_OFFSET
) + delta
);
488 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
490 vmx_load_host_state(to_vmx(vcpu
));
491 kvm_put_guest_fpu(vcpu
);
494 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
496 if (vcpu
->fpu_active
)
498 vcpu
->fpu_active
= 1;
499 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
500 if (vcpu
->cr0
& X86_CR0_TS
)
501 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
502 update_exception_bitmap(vcpu
);
505 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
507 if (!vcpu
->fpu_active
)
509 vcpu
->fpu_active
= 0;
510 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
511 update_exception_bitmap(vcpu
);
514 static void vmx_vcpu_decache(struct kvm_vcpu
*vcpu
)
516 vcpu_clear(to_vmx(vcpu
));
519 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
521 return vmcs_readl(GUEST_RFLAGS
);
524 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
526 if (vcpu
->rmode
.active
)
527 rflags
|= IOPL_MASK
| X86_EFLAGS_VM
;
528 vmcs_writel(GUEST_RFLAGS
, rflags
);
531 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
534 u32 interruptibility
;
536 rip
= vmcs_readl(GUEST_RIP
);
537 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
538 vmcs_writel(GUEST_RIP
, rip
);
541 * We emulated an instruction, so temporary interrupt blocking
542 * should be removed, if set.
544 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
545 if (interruptibility
& 3)
546 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
547 interruptibility
& ~3);
548 vcpu
->interrupt_window_open
= 1;
551 static void vmx_inject_gp(struct kvm_vcpu
*vcpu
, unsigned error_code
)
553 printk(KERN_DEBUG
"inject_general_protection: rip 0x%lx\n",
554 vmcs_readl(GUEST_RIP
));
555 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
556 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
558 INTR_TYPE_EXCEPTION
|
559 INTR_INFO_DELIEVER_CODE_MASK
|
560 INTR_INFO_VALID_MASK
);
564 * Swap MSR entry in host/guest MSR entry array.
567 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
569 struct kvm_msr_entry tmp
;
571 tmp
= vmx
->guest_msrs
[to
];
572 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
573 vmx
->guest_msrs
[from
] = tmp
;
574 tmp
= vmx
->host_msrs
[to
];
575 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
576 vmx
->host_msrs
[from
] = tmp
;
581 * Set up the vmcs to automatically save and restore system
582 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
583 * mode, as fiddling with msrs is very expensive.
585 static void setup_msrs(struct vcpu_vmx
*vmx
)
591 if (is_long_mode(&vmx
->vcpu
)) {
594 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
596 move_msr_up(vmx
, index
, save_nmsrs
++);
597 index
= __find_msr_index(vmx
, MSR_LSTAR
);
599 move_msr_up(vmx
, index
, save_nmsrs
++);
600 index
= __find_msr_index(vmx
, MSR_CSTAR
);
602 move_msr_up(vmx
, index
, save_nmsrs
++);
603 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
605 move_msr_up(vmx
, index
, save_nmsrs
++);
607 * MSR_K6_STAR is only needed on long mode guests, and only
608 * if efer.sce is enabled.
610 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
611 if ((index
>= 0) && (vmx
->vcpu
.shadow_efer
& EFER_SCE
))
612 move_msr_up(vmx
, index
, save_nmsrs
++);
615 vmx
->save_nmsrs
= save_nmsrs
;
618 vmx
->msr_offset_kernel_gs_base
=
619 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
621 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
625 * reads and returns guest's timestamp counter "register"
626 * guest_tsc = host_tsc + tsc_offset -- 21.3
628 static u64
guest_read_tsc(void)
630 u64 host_tsc
, tsc_offset
;
633 tsc_offset
= vmcs_read64(TSC_OFFSET
);
634 return host_tsc
+ tsc_offset
;
638 * writes 'guest_tsc' into guest's timestamp counter "register"
639 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
641 static void guest_write_tsc(u64 guest_tsc
)
646 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
650 * Reads an msr value (of 'msr_index') into 'pdata'.
651 * Returns 0 on success, non-0 otherwise.
652 * Assumes vcpu_load() was already called.
654 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
657 struct kvm_msr_entry
*msr
;
660 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
667 data
= vmcs_readl(GUEST_FS_BASE
);
670 data
= vmcs_readl(GUEST_GS_BASE
);
673 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
675 case MSR_IA32_TIME_STAMP_COUNTER
:
676 data
= guest_read_tsc();
678 case MSR_IA32_SYSENTER_CS
:
679 data
= vmcs_read32(GUEST_SYSENTER_CS
);
681 case MSR_IA32_SYSENTER_EIP
:
682 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
684 case MSR_IA32_SYSENTER_ESP
:
685 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
688 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
693 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
701 * Writes msr value into into the appropriate "register".
702 * Returns 0 on success, non-0 otherwise.
703 * Assumes vcpu_load() was already called.
705 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
707 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
708 struct kvm_msr_entry
*msr
;
714 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
715 if (vmx
->host_state
.loaded
)
716 load_transition_efer(vmx
);
719 vmcs_writel(GUEST_FS_BASE
, data
);
722 vmcs_writel(GUEST_GS_BASE
, data
);
725 case MSR_IA32_SYSENTER_CS
:
726 vmcs_write32(GUEST_SYSENTER_CS
, data
);
728 case MSR_IA32_SYSENTER_EIP
:
729 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
731 case MSR_IA32_SYSENTER_ESP
:
732 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
734 case MSR_IA32_TIME_STAMP_COUNTER
:
735 guest_write_tsc(data
);
738 msr
= find_msr_entry(vmx
, msr_index
);
741 if (vmx
->host_state
.loaded
)
742 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
745 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
752 * Sync the rsp and rip registers into the vcpu structure. This allows
753 * registers to be accessed by indexing vcpu->regs.
755 static void vcpu_load_rsp_rip(struct kvm_vcpu
*vcpu
)
757 vcpu
->regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
758 vcpu
->rip
= vmcs_readl(GUEST_RIP
);
762 * Syncs rsp and rip back into the vmcs. Should be called after possible
765 static void vcpu_put_rsp_rip(struct kvm_vcpu
*vcpu
)
767 vmcs_writel(GUEST_RSP
, vcpu
->regs
[VCPU_REGS_RSP
]);
768 vmcs_writel(GUEST_RIP
, vcpu
->rip
);
771 static int set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_debug_guest
*dbg
)
773 unsigned long dr7
= 0x400;
776 old_singlestep
= vcpu
->guest_debug
.singlestep
;
778 vcpu
->guest_debug
.enabled
= dbg
->enabled
;
779 if (vcpu
->guest_debug
.enabled
) {
782 dr7
|= 0x200; /* exact */
783 for (i
= 0; i
< 4; ++i
) {
784 if (!dbg
->breakpoints
[i
].enabled
)
786 vcpu
->guest_debug
.bp
[i
] = dbg
->breakpoints
[i
].address
;
787 dr7
|= 2 << (i
*2); /* global enable */
788 dr7
|= 0 << (i
*4+16); /* execution breakpoint */
791 vcpu
->guest_debug
.singlestep
= dbg
->singlestep
;
793 vcpu
->guest_debug
.singlestep
= 0;
795 if (old_singlestep
&& !vcpu
->guest_debug
.singlestep
) {
798 flags
= vmcs_readl(GUEST_RFLAGS
);
799 flags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
800 vmcs_writel(GUEST_RFLAGS
, flags
);
803 update_exception_bitmap(vcpu
);
804 vmcs_writel(GUEST_DR7
, dr7
);
809 static int vmx_get_irq(struct kvm_vcpu
*vcpu
)
813 idtv_info_field
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
814 if (idtv_info_field
& INTR_INFO_VALID_MASK
) {
815 if (is_external_interrupt(idtv_info_field
))
816 return idtv_info_field
& VECTORING_INFO_VECTOR_MASK
;
818 printk("pending exception: not handled yet\n");
823 static __init
int cpu_has_kvm_support(void)
825 unsigned long ecx
= cpuid_ecx(1);
826 return test_bit(5, &ecx
); /* CPUID.1:ECX.VMX[bit 5] -> VT */
829 static __init
int vmx_disabled_by_bios(void)
833 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
834 return (msr
& (MSR_IA32_FEATURE_CONTROL_LOCKED
|
835 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
836 == MSR_IA32_FEATURE_CONTROL_LOCKED
;
837 /* locked but not enabled */
840 static void hardware_enable(void *garbage
)
842 int cpu
= raw_smp_processor_id();
843 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
846 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
847 if ((old
& (MSR_IA32_FEATURE_CONTROL_LOCKED
|
848 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
849 != (MSR_IA32_FEATURE_CONTROL_LOCKED
|
850 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
851 /* enable and lock */
852 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
853 MSR_IA32_FEATURE_CONTROL_LOCKED
|
854 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
);
855 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
856 asm volatile (ASM_VMX_VMXON_RAX
: : "a"(&phys_addr
), "m"(phys_addr
)
860 static void hardware_disable(void *garbage
)
862 asm volatile (ASM_VMX_VMXOFF
: : : "cc");
865 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
866 u32 msr
, u32
* result
)
868 u32 vmx_msr_low
, vmx_msr_high
;
869 u32 ctl
= ctl_min
| ctl_opt
;
871 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
873 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
874 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
876 /* Ensure minimum (required) set of control bits are supported. */
884 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
886 u32 vmx_msr_low
, vmx_msr_high
;
888 u32 _pin_based_exec_control
= 0;
889 u32 _cpu_based_exec_control
= 0;
890 u32 _vmexit_control
= 0;
891 u32 _vmentry_control
= 0;
893 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
895 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
896 &_pin_based_exec_control
) < 0)
899 min
= CPU_BASED_HLT_EXITING
|
901 CPU_BASED_CR8_LOAD_EXITING
|
902 CPU_BASED_CR8_STORE_EXITING
|
904 CPU_BASED_USE_IO_BITMAPS
|
905 CPU_BASED_MOV_DR_EXITING
|
906 CPU_BASED_USE_TSC_OFFSETING
;
908 opt
= CPU_BASED_TPR_SHADOW
;
912 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
913 &_cpu_based_exec_control
) < 0)
916 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
917 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
918 ~CPU_BASED_CR8_STORE_EXITING
;
923 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
926 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
927 &_vmexit_control
) < 0)
931 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
932 &_vmentry_control
) < 0)
935 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
937 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
938 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
942 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
943 if (vmx_msr_high
& (1u<<16))
947 /* Require Write-Back (WB) memory type for VMCS accesses. */
948 if (((vmx_msr_high
>> 18) & 15) != 6)
951 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
952 vmcs_conf
->order
= get_order(vmcs_config
.size
);
953 vmcs_conf
->revision_id
= vmx_msr_low
;
955 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
956 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
957 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
958 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
963 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
965 int node
= cpu_to_node(cpu
);
969 pages
= alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
972 vmcs
= page_address(pages
);
973 memset(vmcs
, 0, vmcs_config
.size
);
974 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
978 static struct vmcs
*alloc_vmcs(void)
980 return alloc_vmcs_cpu(raw_smp_processor_id());
983 static void free_vmcs(struct vmcs
*vmcs
)
985 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
988 static void free_kvm_area(void)
992 for_each_online_cpu(cpu
)
993 free_vmcs(per_cpu(vmxarea
, cpu
));
996 static __init
int alloc_kvm_area(void)
1000 for_each_online_cpu(cpu
) {
1003 vmcs
= alloc_vmcs_cpu(cpu
);
1009 per_cpu(vmxarea
, cpu
) = vmcs
;
1014 static __init
int hardware_setup(void)
1016 if (setup_vmcs_config(&vmcs_config
) < 0)
1018 return alloc_kvm_area();
1021 static __exit
void hardware_unsetup(void)
1026 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1028 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1030 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1031 vmcs_write16(sf
->selector
, save
->selector
);
1032 vmcs_writel(sf
->base
, save
->base
);
1033 vmcs_write32(sf
->limit
, save
->limit
);
1034 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1036 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1038 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1042 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1044 unsigned long flags
;
1046 vcpu
->rmode
.active
= 0;
1048 vmcs_writel(GUEST_TR_BASE
, vcpu
->rmode
.tr
.base
);
1049 vmcs_write32(GUEST_TR_LIMIT
, vcpu
->rmode
.tr
.limit
);
1050 vmcs_write32(GUEST_TR_AR_BYTES
, vcpu
->rmode
.tr
.ar
);
1052 flags
= vmcs_readl(GUEST_RFLAGS
);
1053 flags
&= ~(IOPL_MASK
| X86_EFLAGS_VM
);
1054 flags
|= (vcpu
->rmode
.save_iopl
<< IOPL_SHIFT
);
1055 vmcs_writel(GUEST_RFLAGS
, flags
);
1057 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1058 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1060 update_exception_bitmap(vcpu
);
1062 fix_pmode_dataseg(VCPU_SREG_ES
, &vcpu
->rmode
.es
);
1063 fix_pmode_dataseg(VCPU_SREG_DS
, &vcpu
->rmode
.ds
);
1064 fix_pmode_dataseg(VCPU_SREG_GS
, &vcpu
->rmode
.gs
);
1065 fix_pmode_dataseg(VCPU_SREG_FS
, &vcpu
->rmode
.fs
);
1067 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1068 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1070 vmcs_write16(GUEST_CS_SELECTOR
,
1071 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1072 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1075 static gva_t
rmode_tss_base(struct kvm
* kvm
)
1077 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+ kvm
->memslots
[0].npages
- 3;
1078 return base_gfn
<< PAGE_SHIFT
;
1081 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1083 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1085 save
->selector
= vmcs_read16(sf
->selector
);
1086 save
->base
= vmcs_readl(sf
->base
);
1087 save
->limit
= vmcs_read32(sf
->limit
);
1088 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1089 vmcs_write16(sf
->selector
, vmcs_readl(sf
->base
) >> 4);
1090 vmcs_write32(sf
->limit
, 0xffff);
1091 vmcs_write32(sf
->ar_bytes
, 0xf3);
1094 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1096 unsigned long flags
;
1098 vcpu
->rmode
.active
= 1;
1100 vcpu
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1101 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1103 vcpu
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1104 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1106 vcpu
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1107 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1109 flags
= vmcs_readl(GUEST_RFLAGS
);
1110 vcpu
->rmode
.save_iopl
= (flags
& IOPL_MASK
) >> IOPL_SHIFT
;
1112 flags
|= IOPL_MASK
| X86_EFLAGS_VM
;
1114 vmcs_writel(GUEST_RFLAGS
, flags
);
1115 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1116 update_exception_bitmap(vcpu
);
1118 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1119 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1120 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1122 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1123 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1124 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1125 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1126 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1128 fix_rmode_seg(VCPU_SREG_ES
, &vcpu
->rmode
.es
);
1129 fix_rmode_seg(VCPU_SREG_DS
, &vcpu
->rmode
.ds
);
1130 fix_rmode_seg(VCPU_SREG_GS
, &vcpu
->rmode
.gs
);
1131 fix_rmode_seg(VCPU_SREG_FS
, &vcpu
->rmode
.fs
);
1133 kvm_mmu_reset_context(vcpu
);
1134 init_rmode_tss(vcpu
->kvm
);
1137 #ifdef CONFIG_X86_64
1139 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1143 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1144 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1145 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1147 vmcs_write32(GUEST_TR_AR_BYTES
,
1148 (guest_tr_ar
& ~AR_TYPE_MASK
)
1149 | AR_TYPE_BUSY_64_TSS
);
1152 vcpu
->shadow_efer
|= EFER_LMA
;
1154 find_msr_entry(to_vmx(vcpu
), MSR_EFER
)->data
|= EFER_LMA
| EFER_LME
;
1155 vmcs_write32(VM_ENTRY_CONTROLS
,
1156 vmcs_read32(VM_ENTRY_CONTROLS
)
1157 | VM_ENTRY_IA32E_MODE
);
1160 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1162 vcpu
->shadow_efer
&= ~EFER_LMA
;
1164 vmcs_write32(VM_ENTRY_CONTROLS
,
1165 vmcs_read32(VM_ENTRY_CONTROLS
)
1166 & ~VM_ENTRY_IA32E_MODE
);
1171 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1173 vcpu
->cr4
&= KVM_GUEST_CR4_MASK
;
1174 vcpu
->cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1177 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1179 vmx_fpu_deactivate(vcpu
);
1181 if (vcpu
->rmode
.active
&& (cr0
& X86_CR0_PE
))
1184 if (!vcpu
->rmode
.active
&& !(cr0
& X86_CR0_PE
))
1187 #ifdef CONFIG_X86_64
1188 if (vcpu
->shadow_efer
& EFER_LME
) {
1189 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1191 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1196 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1197 vmcs_writel(GUEST_CR0
,
1198 (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
);
1201 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1202 vmx_fpu_activate(vcpu
);
1205 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1207 vmcs_writel(GUEST_CR3
, cr3
);
1208 if (vcpu
->cr0
& X86_CR0_PE
)
1209 vmx_fpu_deactivate(vcpu
);
1212 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1214 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1215 vmcs_writel(GUEST_CR4
, cr4
| (vcpu
->rmode
.active
?
1216 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
));
1220 #ifdef CONFIG_X86_64
1222 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1224 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1225 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1227 vcpu
->shadow_efer
= efer
;
1228 if (efer
& EFER_LMA
) {
1229 vmcs_write32(VM_ENTRY_CONTROLS
,
1230 vmcs_read32(VM_ENTRY_CONTROLS
) |
1231 VM_ENTRY_IA32E_MODE
);
1235 vmcs_write32(VM_ENTRY_CONTROLS
,
1236 vmcs_read32(VM_ENTRY_CONTROLS
) &
1237 ~VM_ENTRY_IA32E_MODE
);
1239 msr
->data
= efer
& ~EFER_LME
;
1246 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1248 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1250 return vmcs_readl(sf
->base
);
1253 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1254 struct kvm_segment
*var
, int seg
)
1256 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1259 var
->base
= vmcs_readl(sf
->base
);
1260 var
->limit
= vmcs_read32(sf
->limit
);
1261 var
->selector
= vmcs_read16(sf
->selector
);
1262 ar
= vmcs_read32(sf
->ar_bytes
);
1263 if (ar
& AR_UNUSABLE_MASK
)
1265 var
->type
= ar
& 15;
1266 var
->s
= (ar
>> 4) & 1;
1267 var
->dpl
= (ar
>> 5) & 3;
1268 var
->present
= (ar
>> 7) & 1;
1269 var
->avl
= (ar
>> 12) & 1;
1270 var
->l
= (ar
>> 13) & 1;
1271 var
->db
= (ar
>> 14) & 1;
1272 var
->g
= (ar
>> 15) & 1;
1273 var
->unusable
= (ar
>> 16) & 1;
1276 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1283 ar
= var
->type
& 15;
1284 ar
|= (var
->s
& 1) << 4;
1285 ar
|= (var
->dpl
& 3) << 5;
1286 ar
|= (var
->present
& 1) << 7;
1287 ar
|= (var
->avl
& 1) << 12;
1288 ar
|= (var
->l
& 1) << 13;
1289 ar
|= (var
->db
& 1) << 14;
1290 ar
|= (var
->g
& 1) << 15;
1292 if (ar
== 0) /* a 0 value means unusable */
1293 ar
= AR_UNUSABLE_MASK
;
1298 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1299 struct kvm_segment
*var
, int seg
)
1301 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1304 if (vcpu
->rmode
.active
&& seg
== VCPU_SREG_TR
) {
1305 vcpu
->rmode
.tr
.selector
= var
->selector
;
1306 vcpu
->rmode
.tr
.base
= var
->base
;
1307 vcpu
->rmode
.tr
.limit
= var
->limit
;
1308 vcpu
->rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1311 vmcs_writel(sf
->base
, var
->base
);
1312 vmcs_write32(sf
->limit
, var
->limit
);
1313 vmcs_write16(sf
->selector
, var
->selector
);
1314 if (vcpu
->rmode
.active
&& var
->s
) {
1316 * Hack real-mode segments into vm86 compatibility.
1318 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1319 vmcs_writel(sf
->base
, 0xf0000);
1322 ar
= vmx_segment_access_rights(var
);
1323 vmcs_write32(sf
->ar_bytes
, ar
);
1326 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1328 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1330 *db
= (ar
>> 14) & 1;
1331 *l
= (ar
>> 13) & 1;
1334 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1336 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1337 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1340 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1342 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1343 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1346 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1348 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1349 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1352 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1354 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1355 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1358 static int init_rmode_tss(struct kvm
* kvm
)
1360 struct page
*p1
, *p2
, *p3
;
1361 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
1364 p1
= gfn_to_page(kvm
, fn
++);
1365 p2
= gfn_to_page(kvm
, fn
++);
1366 p3
= gfn_to_page(kvm
, fn
);
1368 if (!p1
|| !p2
|| !p3
) {
1369 kvm_printf(kvm
,"%s: gfn_to_page failed\n", __FUNCTION__
);
1373 page
= kmap_atomic(p1
, KM_USER0
);
1375 *(u16
*)(page
+ 0x66) = TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
1376 kunmap_atomic(page
, KM_USER0
);
1378 page
= kmap_atomic(p2
, KM_USER0
);
1380 kunmap_atomic(page
, KM_USER0
);
1382 page
= kmap_atomic(p3
, KM_USER0
);
1384 *(page
+ RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1) = ~0;
1385 kunmap_atomic(page
, KM_USER0
);
1390 static void seg_setup(int seg
)
1392 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1394 vmcs_write16(sf
->selector
, 0);
1395 vmcs_writel(sf
->base
, 0);
1396 vmcs_write32(sf
->limit
, 0xffff);
1397 vmcs_write32(sf
->ar_bytes
, 0x93);
1401 * Sets up the vmcs for emulated real mode.
1403 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
1405 u32 host_sysenter_cs
;
1408 struct descriptor_table dt
;
1411 unsigned long kvm_vmx_return
;
1415 if (!init_rmode_tss(vmx
->vcpu
.kvm
)) {
1420 vmx
->vcpu
.rmode
.active
= 0;
1422 vmx
->vcpu
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
1423 set_cr8(&vmx
->vcpu
, 0);
1424 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
1425 if (vmx
->vcpu
.vcpu_id
== 0)
1426 msr
|= MSR_IA32_APICBASE_BSP
;
1427 kvm_set_apic_base(&vmx
->vcpu
, msr
);
1429 fx_init(&vmx
->vcpu
);
1432 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1433 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1435 if (vmx
->vcpu
.vcpu_id
== 0) {
1436 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
1437 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
1439 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.sipi_vector
<< 8);
1440 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.sipi_vector
<< 12);
1442 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1443 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1445 seg_setup(VCPU_SREG_DS
);
1446 seg_setup(VCPU_SREG_ES
);
1447 seg_setup(VCPU_SREG_FS
);
1448 seg_setup(VCPU_SREG_GS
);
1449 seg_setup(VCPU_SREG_SS
);
1451 vmcs_write16(GUEST_TR_SELECTOR
, 0);
1452 vmcs_writel(GUEST_TR_BASE
, 0);
1453 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
1454 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1456 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
1457 vmcs_writel(GUEST_LDTR_BASE
, 0);
1458 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
1459 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
1461 vmcs_write32(GUEST_SYSENTER_CS
, 0);
1462 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
1463 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
1465 vmcs_writel(GUEST_RFLAGS
, 0x02);
1466 if (vmx
->vcpu
.vcpu_id
== 0)
1467 vmcs_writel(GUEST_RIP
, 0xfff0);
1469 vmcs_writel(GUEST_RIP
, 0);
1470 vmcs_writel(GUEST_RSP
, 0);
1472 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1473 vmcs_writel(GUEST_DR7
, 0x400);
1475 vmcs_writel(GUEST_GDTR_BASE
, 0);
1476 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
1478 vmcs_writel(GUEST_IDTR_BASE
, 0);
1479 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
1481 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
1482 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
1483 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
1486 vmcs_write64(IO_BITMAP_A
, page_to_phys(vmx_io_bitmap_a
));
1487 vmcs_write64(IO_BITMAP_B
, page_to_phys(vmx_io_bitmap_b
));
1491 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
1493 /* Special registers */
1494 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
1497 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
1498 vmcs_config
.pin_based_exec_ctrl
);
1500 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
1501 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
1502 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1503 #ifdef CONFIG_X86_64
1504 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
1505 CPU_BASED_CR8_LOAD_EXITING
;
1508 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
1510 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
1511 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
1512 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
1514 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
1515 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
1516 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1518 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
1519 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1520 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1521 vmcs_write16(HOST_FS_SELECTOR
, read_fs()); /* 22.2.4 */
1522 vmcs_write16(HOST_GS_SELECTOR
, read_gs()); /* 22.2.4 */
1523 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1524 #ifdef CONFIG_X86_64
1525 rdmsrl(MSR_FS_BASE
, a
);
1526 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
1527 rdmsrl(MSR_GS_BASE
, a
);
1528 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
1530 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
1531 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
1534 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
1537 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
1539 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
1540 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
1541 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
1542 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
1543 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
1545 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
1546 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
1547 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
1548 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
1549 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
1550 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
1552 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
1553 u32 index
= vmx_msr_index
[i
];
1554 u32 data_low
, data_high
;
1558 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
1560 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
1562 data
= data_low
| ((u64
)data_high
<< 32);
1563 vmx
->host_msrs
[j
].index
= index
;
1564 vmx
->host_msrs
[j
].reserved
= 0;
1565 vmx
->host_msrs
[j
].data
= data
;
1566 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
1572 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
1574 /* 22.2.1, 20.8.1 */
1575 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
1577 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
1579 #ifdef CONFIG_X86_64
1580 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
1581 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
1582 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
1583 page_to_phys(vmx
->vcpu
.apic
->regs_page
));
1584 vmcs_write32(TPR_THRESHOLD
, 0);
1587 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
1588 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
1590 vmx
->vcpu
.cr0
= 0x60000010;
1591 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.cr0
); // enter rmode
1592 vmx_set_cr4(&vmx
->vcpu
, 0);
1593 #ifdef CONFIG_X86_64
1594 vmx_set_efer(&vmx
->vcpu
, 0);
1596 vmx_fpu_activate(&vmx
->vcpu
);
1597 update_exception_bitmap(&vmx
->vcpu
);
1605 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
1607 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1609 vmx_vcpu_setup(vmx
);
1612 static void inject_rmode_irq(struct kvm_vcpu
*vcpu
, int irq
)
1617 unsigned long flags
;
1618 unsigned long ss_base
= vmcs_readl(GUEST_SS_BASE
);
1619 u16 sp
= vmcs_readl(GUEST_RSP
);
1620 u32 ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
1622 if (sp
> ss_limit
|| sp
< 6 ) {
1623 vcpu_printf(vcpu
, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1625 vmcs_readl(GUEST_RSP
),
1626 vmcs_readl(GUEST_SS_BASE
),
1627 vmcs_read32(GUEST_SS_LIMIT
));
1631 if (emulator_read_std(irq
* sizeof(ent
), &ent
, sizeof(ent
), vcpu
) !=
1633 vcpu_printf(vcpu
, "%s: read guest err\n", __FUNCTION__
);
1637 flags
= vmcs_readl(GUEST_RFLAGS
);
1638 cs
= vmcs_readl(GUEST_CS_BASE
) >> 4;
1639 ip
= vmcs_readl(GUEST_RIP
);
1642 if (emulator_write_emulated(ss_base
+ sp
- 2, &flags
, 2, vcpu
) != X86EMUL_CONTINUE
||
1643 emulator_write_emulated(ss_base
+ sp
- 4, &cs
, 2, vcpu
) != X86EMUL_CONTINUE
||
1644 emulator_write_emulated(ss_base
+ sp
- 6, &ip
, 2, vcpu
) != X86EMUL_CONTINUE
) {
1645 vcpu_printf(vcpu
, "%s: write guest err\n", __FUNCTION__
);
1649 vmcs_writel(GUEST_RFLAGS
, flags
&
1650 ~( X86_EFLAGS_IF
| X86_EFLAGS_AC
| X86_EFLAGS_TF
));
1651 vmcs_write16(GUEST_CS_SELECTOR
, ent
[1]) ;
1652 vmcs_writel(GUEST_CS_BASE
, ent
[1] << 4);
1653 vmcs_writel(GUEST_RIP
, ent
[0]);
1654 vmcs_writel(GUEST_RSP
, (vmcs_readl(GUEST_RSP
) & ~0xffff) | (sp
- 6));
1657 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
, int irq
)
1659 if (vcpu
->rmode
.active
) {
1660 inject_rmode_irq(vcpu
, irq
);
1663 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
1664 irq
| INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1667 static void kvm_do_inject_irq(struct kvm_vcpu
*vcpu
)
1669 int word_index
= __ffs(vcpu
->irq_summary
);
1670 int bit_index
= __ffs(vcpu
->irq_pending
[word_index
]);
1671 int irq
= word_index
* BITS_PER_LONG
+ bit_index
;
1673 clear_bit(bit_index
, &vcpu
->irq_pending
[word_index
]);
1674 if (!vcpu
->irq_pending
[word_index
])
1675 clear_bit(word_index
, &vcpu
->irq_summary
);
1676 vmx_inject_irq(vcpu
, irq
);
1680 static void do_interrupt_requests(struct kvm_vcpu
*vcpu
,
1681 struct kvm_run
*kvm_run
)
1683 u32 cpu_based_vm_exec_control
;
1685 vcpu
->interrupt_window_open
=
1686 ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
1687 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0);
1689 if (vcpu
->interrupt_window_open
&&
1690 vcpu
->irq_summary
&&
1691 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
) & INTR_INFO_VALID_MASK
))
1693 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1695 kvm_do_inject_irq(vcpu
);
1697 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
1698 if (!vcpu
->interrupt_window_open
&&
1699 (vcpu
->irq_summary
|| kvm_run
->request_interrupt_window
))
1701 * Interrupts blocked. Wait for unblock.
1703 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
1705 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
1706 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
1709 static void kvm_guest_debug_pre(struct kvm_vcpu
*vcpu
)
1711 struct kvm_guest_debug
*dbg
= &vcpu
->guest_debug
;
1713 set_debugreg(dbg
->bp
[0], 0);
1714 set_debugreg(dbg
->bp
[1], 1);
1715 set_debugreg(dbg
->bp
[2], 2);
1716 set_debugreg(dbg
->bp
[3], 3);
1718 if (dbg
->singlestep
) {
1719 unsigned long flags
;
1721 flags
= vmcs_readl(GUEST_RFLAGS
);
1722 flags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1723 vmcs_writel(GUEST_RFLAGS
, flags
);
1727 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
1728 int vec
, u32 err_code
)
1730 if (!vcpu
->rmode
.active
)
1734 * Instruction with address size override prefix opcode 0x67
1735 * Cause the #SS fault with 0 error code in VM86 mode.
1737 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
1738 if (emulate_instruction(vcpu
, NULL
, 0, 0) == EMULATE_DONE
)
1743 static int handle_exception(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1745 u32 intr_info
, error_code
;
1746 unsigned long cr2
, rip
;
1748 enum emulation_result er
;
1751 vect_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
1752 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
1754 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
1755 !is_page_fault(intr_info
)) {
1756 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
1757 "intr info 0x%x\n", __FUNCTION__
, vect_info
, intr_info
);
1760 if (!irqchip_in_kernel(vcpu
->kvm
) && is_external_interrupt(vect_info
)) {
1761 int irq
= vect_info
& VECTORING_INFO_VECTOR_MASK
;
1762 set_bit(irq
, vcpu
->irq_pending
);
1763 set_bit(irq
/ BITS_PER_LONG
, &vcpu
->irq_summary
);
1766 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == 0x200) /* nmi */
1767 return 1; /* already handled by vmx_vcpu_run() */
1769 if (is_no_device(intr_info
)) {
1770 vmx_fpu_activate(vcpu
);
1775 rip
= vmcs_readl(GUEST_RIP
);
1776 if (intr_info
& INTR_INFO_DELIEVER_CODE_MASK
)
1777 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
1778 if (is_page_fault(intr_info
)) {
1779 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
1781 mutex_lock(&vcpu
->kvm
->lock
);
1782 r
= kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
1784 mutex_unlock(&vcpu
->kvm
->lock
);
1788 mutex_unlock(&vcpu
->kvm
->lock
);
1792 er
= emulate_instruction(vcpu
, kvm_run
, cr2
, error_code
);
1793 mutex_unlock(&vcpu
->kvm
->lock
);
1798 case EMULATE_DO_MMIO
:
1799 ++vcpu
->stat
.mmio_exits
;
1802 kvm_report_emulation_failure(vcpu
, "pagetable");
1809 if (vcpu
->rmode
.active
&&
1810 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
1812 if (vcpu
->halt_request
) {
1813 vcpu
->halt_request
= 0;
1814 return kvm_emulate_halt(vcpu
);
1819 if ((intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
)) == (INTR_TYPE_EXCEPTION
| 1)) {
1820 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1823 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
1824 kvm_run
->ex
.exception
= intr_info
& INTR_INFO_VECTOR_MASK
;
1825 kvm_run
->ex
.error_code
= error_code
;
1829 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
,
1830 struct kvm_run
*kvm_run
)
1832 ++vcpu
->stat
.irq_exits
;
1836 static int handle_triple_fault(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1838 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1842 static int handle_io(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1844 unsigned long exit_qualification
;
1845 int size
, down
, in
, string
, rep
;
1848 ++vcpu
->stat
.io_exits
;
1849 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
1850 string
= (exit_qualification
& 16) != 0;
1853 if (emulate_instruction(vcpu
, kvm_run
, 0, 0) == EMULATE_DO_MMIO
)
1858 size
= (exit_qualification
& 7) + 1;
1859 in
= (exit_qualification
& 8) != 0;
1860 down
= (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_DF
) != 0;
1861 rep
= (exit_qualification
& 32) != 0;
1862 port
= exit_qualification
>> 16;
1864 return kvm_emulate_pio(vcpu
, kvm_run
, in
, size
, port
);
1868 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
1871 * Patch in the VMCALL instruction:
1873 hypercall
[0] = 0x0f;
1874 hypercall
[1] = 0x01;
1875 hypercall
[2] = 0xc1;
1876 hypercall
[3] = 0xc3;
1879 static int handle_cr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1881 unsigned long exit_qualification
;
1885 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
1886 cr
= exit_qualification
& 15;
1887 reg
= (exit_qualification
>> 8) & 15;
1888 switch ((exit_qualification
>> 4) & 3) {
1889 case 0: /* mov to cr */
1892 vcpu_load_rsp_rip(vcpu
);
1893 set_cr0(vcpu
, vcpu
->regs
[reg
]);
1894 skip_emulated_instruction(vcpu
);
1897 vcpu_load_rsp_rip(vcpu
);
1898 set_cr3(vcpu
, vcpu
->regs
[reg
]);
1899 skip_emulated_instruction(vcpu
);
1902 vcpu_load_rsp_rip(vcpu
);
1903 set_cr4(vcpu
, vcpu
->regs
[reg
]);
1904 skip_emulated_instruction(vcpu
);
1907 vcpu_load_rsp_rip(vcpu
);
1908 set_cr8(vcpu
, vcpu
->regs
[reg
]);
1909 skip_emulated_instruction(vcpu
);
1910 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
1915 vcpu_load_rsp_rip(vcpu
);
1916 vmx_fpu_deactivate(vcpu
);
1917 vcpu
->cr0
&= ~X86_CR0_TS
;
1918 vmcs_writel(CR0_READ_SHADOW
, vcpu
->cr0
);
1919 vmx_fpu_activate(vcpu
);
1920 skip_emulated_instruction(vcpu
);
1922 case 1: /*mov from cr*/
1925 vcpu_load_rsp_rip(vcpu
);
1926 vcpu
->regs
[reg
] = vcpu
->cr3
;
1927 vcpu_put_rsp_rip(vcpu
);
1928 skip_emulated_instruction(vcpu
);
1931 vcpu_load_rsp_rip(vcpu
);
1932 vcpu
->regs
[reg
] = get_cr8(vcpu
);
1933 vcpu_put_rsp_rip(vcpu
);
1934 skip_emulated_instruction(vcpu
);
1939 lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
1941 skip_emulated_instruction(vcpu
);
1946 kvm_run
->exit_reason
= 0;
1947 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
1948 (int)(exit_qualification
>> 4) & 3, cr
);
1952 static int handle_dr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1954 unsigned long exit_qualification
;
1959 * FIXME: this code assumes the host is debugging the guest.
1960 * need to deal with guest debugging itself too.
1962 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
1963 dr
= exit_qualification
& 7;
1964 reg
= (exit_qualification
>> 8) & 15;
1965 vcpu_load_rsp_rip(vcpu
);
1966 if (exit_qualification
& 16) {
1978 vcpu
->regs
[reg
] = val
;
1982 vcpu_put_rsp_rip(vcpu
);
1983 skip_emulated_instruction(vcpu
);
1987 static int handle_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1989 kvm_emulate_cpuid(vcpu
);
1993 static int handle_rdmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1995 u32 ecx
= vcpu
->regs
[VCPU_REGS_RCX
];
1998 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
1999 vmx_inject_gp(vcpu
, 0);
2003 /* FIXME: handling of bits 32:63 of rax, rdx */
2004 vcpu
->regs
[VCPU_REGS_RAX
] = data
& -1u;
2005 vcpu
->regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
2006 skip_emulated_instruction(vcpu
);
2010 static int handle_wrmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2012 u32 ecx
= vcpu
->regs
[VCPU_REGS_RCX
];
2013 u64 data
= (vcpu
->regs
[VCPU_REGS_RAX
] & -1u)
2014 | ((u64
)(vcpu
->regs
[VCPU_REGS_RDX
] & -1u) << 32);
2016 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
2017 vmx_inject_gp(vcpu
, 0);
2021 skip_emulated_instruction(vcpu
);
2025 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
,
2026 struct kvm_run
*kvm_run
)
2031 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
,
2032 struct kvm_run
*kvm_run
)
2034 u32 cpu_based_vm_exec_control
;
2036 /* clear pending irq */
2037 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2038 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
2039 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2041 * If the user space waits to inject interrupts, exit as soon as
2044 if (kvm_run
->request_interrupt_window
&&
2045 !vcpu
->irq_summary
) {
2046 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2047 ++vcpu
->stat
.irq_window_exits
;
2053 static int handle_halt(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2055 skip_emulated_instruction(vcpu
);
2056 return kvm_emulate_halt(vcpu
);
2059 static int handle_vmcall(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2061 skip_emulated_instruction(vcpu
);
2062 return kvm_hypercall(vcpu
, kvm_run
);
2066 * The exit handlers return 1 if the exit was handled fully and guest execution
2067 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2068 * to be done to userspace and return 0.
2070 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
,
2071 struct kvm_run
*kvm_run
) = {
2072 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
2073 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
2074 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
2075 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
2076 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
2077 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
2078 [EXIT_REASON_CPUID
] = handle_cpuid
,
2079 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
2080 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
2081 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
2082 [EXIT_REASON_HLT
] = handle_halt
,
2083 [EXIT_REASON_VMCALL
] = handle_vmcall
,
2084 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
2087 static const int kvm_vmx_max_exit_handlers
=
2088 ARRAY_SIZE(kvm_vmx_exit_handlers
);
2091 * The guest has exited. See if we can fix it or if we need userspace
2094 static int kvm_handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
2096 u32 vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
2097 u32 exit_reason
= vmcs_read32(VM_EXIT_REASON
);
2098 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2100 if (unlikely(vmx
->fail
)) {
2101 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2102 kvm_run
->fail_entry
.hardware_entry_failure_reason
2103 = vmcs_read32(VM_INSTRUCTION_ERROR
);
2107 if ( (vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
2108 exit_reason
!= EXIT_REASON_EXCEPTION_NMI
)
2109 printk(KERN_WARNING
"%s: unexpected, valid vectoring info and "
2110 "exit reason is 0x%x\n", __FUNCTION__
, exit_reason
);
2111 if (exit_reason
< kvm_vmx_max_exit_handlers
2112 && kvm_vmx_exit_handlers
[exit_reason
])
2113 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
, kvm_run
);
2115 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2116 kvm_run
->hw
.hardware_exit_reason
= exit_reason
;
2121 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
2125 static void update_tpr_threshold(struct kvm_vcpu
*vcpu
)
2129 if (!vm_need_tpr_shadow(vcpu
->kvm
))
2132 if (!kvm_lapic_enabled(vcpu
) ||
2133 ((max_irr
= kvm_lapic_find_highest_irr(vcpu
)) == -1)) {
2134 vmcs_write32(TPR_THRESHOLD
, 0);
2138 tpr
= (kvm_lapic_get_cr8(vcpu
) & 0x0f) << 4;
2139 vmcs_write32(TPR_THRESHOLD
, (max_irr
> tpr
) ? tpr
>> 4 : max_irr
>> 4);
2142 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2144 u32 cpu_based_vm_exec_control
;
2146 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2147 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2148 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2151 static void vmx_intr_assist(struct kvm_vcpu
*vcpu
)
2153 u32 idtv_info_field
, intr_info_field
;
2154 int has_ext_irq
, interrupt_window_open
;
2157 kvm_inject_pending_timer_irqs(vcpu
);
2158 update_tpr_threshold(vcpu
);
2160 has_ext_irq
= kvm_cpu_has_interrupt(vcpu
);
2161 intr_info_field
= vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
);
2162 idtv_info_field
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
2163 if (intr_info_field
& INTR_INFO_VALID_MASK
) {
2164 if (idtv_info_field
& INTR_INFO_VALID_MASK
) {
2165 /* TODO: fault when IDT_Vectoring */
2166 printk(KERN_ERR
"Fault when IDT_Vectoring\n");
2169 enable_irq_window(vcpu
);
2172 if (unlikely(idtv_info_field
& INTR_INFO_VALID_MASK
)) {
2173 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, idtv_info_field
);
2174 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2175 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
2177 if (unlikely(idtv_info_field
& INTR_INFO_DELIEVER_CODE_MASK
))
2178 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
2179 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
2180 if (unlikely(has_ext_irq
))
2181 enable_irq_window(vcpu
);
2186 interrupt_window_open
=
2187 ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2188 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0);
2189 if (interrupt_window_open
) {
2190 vector
= kvm_cpu_get_interrupt(vcpu
);
2191 vmx_inject_irq(vcpu
, vector
);
2192 kvm_timer_intr_post(vcpu
, vector
);
2194 enable_irq_window(vcpu
);
2197 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2199 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2203 * Loading guest fpu may have cleared host cr0.ts
2205 vmcs_writel(HOST_CR0
, read_cr0());
2208 /* Store host registers */
2209 #ifdef CONFIG_X86_64
2210 "push %%rax; push %%rbx; push %%rdx;"
2211 "push %%rsi; push %%rdi; push %%rbp;"
2212 "push %%r8; push %%r9; push %%r10; push %%r11;"
2213 "push %%r12; push %%r13; push %%r14; push %%r15;"
2215 ASM_VMX_VMWRITE_RSP_RDX
"\n\t"
2217 "pusha; push %%ecx \n\t"
2218 ASM_VMX_VMWRITE_RSP_RDX
"\n\t"
2220 /* Check if vmlaunch of vmresume is needed */
2222 /* Load guest registers. Don't clobber flags. */
2223 #ifdef CONFIG_X86_64
2224 "mov %c[cr2](%3), %%rax \n\t"
2225 "mov %%rax, %%cr2 \n\t"
2226 "mov %c[rax](%3), %%rax \n\t"
2227 "mov %c[rbx](%3), %%rbx \n\t"
2228 "mov %c[rdx](%3), %%rdx \n\t"
2229 "mov %c[rsi](%3), %%rsi \n\t"
2230 "mov %c[rdi](%3), %%rdi \n\t"
2231 "mov %c[rbp](%3), %%rbp \n\t"
2232 "mov %c[r8](%3), %%r8 \n\t"
2233 "mov %c[r9](%3), %%r9 \n\t"
2234 "mov %c[r10](%3), %%r10 \n\t"
2235 "mov %c[r11](%3), %%r11 \n\t"
2236 "mov %c[r12](%3), %%r12 \n\t"
2237 "mov %c[r13](%3), %%r13 \n\t"
2238 "mov %c[r14](%3), %%r14 \n\t"
2239 "mov %c[r15](%3), %%r15 \n\t"
2240 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2242 "mov %c[cr2](%3), %%eax \n\t"
2243 "mov %%eax, %%cr2 \n\t"
2244 "mov %c[rax](%3), %%eax \n\t"
2245 "mov %c[rbx](%3), %%ebx \n\t"
2246 "mov %c[rdx](%3), %%edx \n\t"
2247 "mov %c[rsi](%3), %%esi \n\t"
2248 "mov %c[rdi](%3), %%edi \n\t"
2249 "mov %c[rbp](%3), %%ebp \n\t"
2250 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2252 /* Enter guest mode */
2253 "jne .Llaunched \n\t"
2254 ASM_VMX_VMLAUNCH
"\n\t"
2255 "jmp .Lkvm_vmx_return \n\t"
2256 ".Llaunched: " ASM_VMX_VMRESUME
"\n\t"
2257 ".Lkvm_vmx_return: "
2258 /* Save guest registers, load host registers, keep flags */
2259 #ifdef CONFIG_X86_64
2260 "xchg %3, (%%rsp) \n\t"
2261 "mov %%rax, %c[rax](%3) \n\t"
2262 "mov %%rbx, %c[rbx](%3) \n\t"
2263 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2264 "mov %%rdx, %c[rdx](%3) \n\t"
2265 "mov %%rsi, %c[rsi](%3) \n\t"
2266 "mov %%rdi, %c[rdi](%3) \n\t"
2267 "mov %%rbp, %c[rbp](%3) \n\t"
2268 "mov %%r8, %c[r8](%3) \n\t"
2269 "mov %%r9, %c[r9](%3) \n\t"
2270 "mov %%r10, %c[r10](%3) \n\t"
2271 "mov %%r11, %c[r11](%3) \n\t"
2272 "mov %%r12, %c[r12](%3) \n\t"
2273 "mov %%r13, %c[r13](%3) \n\t"
2274 "mov %%r14, %c[r14](%3) \n\t"
2275 "mov %%r15, %c[r15](%3) \n\t"
2276 "mov %%cr2, %%rax \n\t"
2277 "mov %%rax, %c[cr2](%3) \n\t"
2278 "mov (%%rsp), %3 \n\t"
2280 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2281 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2282 "pop %%rbp; pop %%rdi; pop %%rsi;"
2283 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2285 "xchg %3, (%%esp) \n\t"
2286 "mov %%eax, %c[rax](%3) \n\t"
2287 "mov %%ebx, %c[rbx](%3) \n\t"
2288 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2289 "mov %%edx, %c[rdx](%3) \n\t"
2290 "mov %%esi, %c[rsi](%3) \n\t"
2291 "mov %%edi, %c[rdi](%3) \n\t"
2292 "mov %%ebp, %c[rbp](%3) \n\t"
2293 "mov %%cr2, %%eax \n\t"
2294 "mov %%eax, %c[cr2](%3) \n\t"
2295 "mov (%%esp), %3 \n\t"
2297 "pop %%ecx; popa \n\t"
2301 : "r"(vmx
->launched
), "d"((unsigned long)HOST_RSP
),
2303 [rax
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RAX
])),
2304 [rbx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RBX
])),
2305 [rcx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RCX
])),
2306 [rdx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RDX
])),
2307 [rsi
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RSI
])),
2308 [rdi
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RDI
])),
2309 [rbp
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RBP
])),
2310 #ifdef CONFIG_X86_64
2311 [r8
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R8
])),
2312 [r9
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R9
])),
2313 [r10
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R10
])),
2314 [r11
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R11
])),
2315 [r12
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R12
])),
2316 [r13
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R13
])),
2317 [r14
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R14
])),
2318 [r15
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R15
])),
2320 [cr2
]"i"(offsetof(struct kvm_vcpu
, cr2
))
2323 vcpu
->interrupt_window_open
= (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0;
2325 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
2328 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2330 /* We need to handle NMIs before interrupts are enabled */
2331 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == 0x200) /* nmi */
2335 static void vmx_inject_page_fault(struct kvm_vcpu
*vcpu
,
2339 u32 vect_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
2341 ++vcpu
->stat
.pf_guest
;
2343 if (is_page_fault(vect_info
)) {
2344 printk(KERN_DEBUG
"inject_page_fault: "
2345 "double fault 0x%lx @ 0x%lx\n",
2346 addr
, vmcs_readl(GUEST_RIP
));
2347 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, 0);
2348 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2350 INTR_TYPE_EXCEPTION
|
2351 INTR_INFO_DELIEVER_CODE_MASK
|
2352 INTR_INFO_VALID_MASK
);
2356 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, err_code
);
2357 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2359 INTR_TYPE_EXCEPTION
|
2360 INTR_INFO_DELIEVER_CODE_MASK
|
2361 INTR_INFO_VALID_MASK
);
2365 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
2367 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2370 on_each_cpu(__vcpu_clear
, vmx
, 0, 1);
2371 free_vmcs(vmx
->vmcs
);
2376 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
2378 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2380 vmx_free_vmcs(vcpu
);
2381 kfree(vmx
->host_msrs
);
2382 kfree(vmx
->guest_msrs
);
2383 kvm_vcpu_uninit(vcpu
);
2384 kmem_cache_free(kvm_vcpu_cache
, vmx
);
2387 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
2390 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
2394 return ERR_PTR(-ENOMEM
);
2396 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
2400 if (irqchip_in_kernel(kvm
)) {
2401 err
= kvm_create_lapic(&vmx
->vcpu
);
2406 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2407 if (!vmx
->guest_msrs
) {
2412 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2413 if (!vmx
->host_msrs
)
2414 goto free_guest_msrs
;
2416 vmx
->vmcs
= alloc_vmcs();
2420 vmcs_clear(vmx
->vmcs
);
2423 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
2424 err
= vmx_vcpu_setup(vmx
);
2425 vmx_vcpu_put(&vmx
->vcpu
);
2433 free_vmcs(vmx
->vmcs
);
2435 kfree(vmx
->host_msrs
);
2437 kfree(vmx
->guest_msrs
);
2439 kvm_vcpu_uninit(&vmx
->vcpu
);
2441 kmem_cache_free(kvm_vcpu_cache
, vmx
);
2442 return ERR_PTR(err
);
2445 static void __init
vmx_check_processor_compat(void *rtn
)
2447 struct vmcs_config vmcs_conf
;
2450 if (setup_vmcs_config(&vmcs_conf
) < 0)
2452 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
2453 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
2454 smp_processor_id());
2459 static struct kvm_x86_ops vmx_x86_ops
= {
2460 .cpu_has_kvm_support
= cpu_has_kvm_support
,
2461 .disabled_by_bios
= vmx_disabled_by_bios
,
2462 .hardware_setup
= hardware_setup
,
2463 .hardware_unsetup
= hardware_unsetup
,
2464 .check_processor_compatibility
= vmx_check_processor_compat
,
2465 .hardware_enable
= hardware_enable
,
2466 .hardware_disable
= hardware_disable
,
2468 .vcpu_create
= vmx_create_vcpu
,
2469 .vcpu_free
= vmx_free_vcpu
,
2470 .vcpu_reset
= vmx_vcpu_reset
,
2472 .prepare_guest_switch
= vmx_save_host_state
,
2473 .vcpu_load
= vmx_vcpu_load
,
2474 .vcpu_put
= vmx_vcpu_put
,
2475 .vcpu_decache
= vmx_vcpu_decache
,
2477 .set_guest_debug
= set_guest_debug
,
2478 .guest_debug_pre
= kvm_guest_debug_pre
,
2479 .get_msr
= vmx_get_msr
,
2480 .set_msr
= vmx_set_msr
,
2481 .get_segment_base
= vmx_get_segment_base
,
2482 .get_segment
= vmx_get_segment
,
2483 .set_segment
= vmx_set_segment
,
2484 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
2485 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
2486 .set_cr0
= vmx_set_cr0
,
2487 .set_cr3
= vmx_set_cr3
,
2488 .set_cr4
= vmx_set_cr4
,
2489 #ifdef CONFIG_X86_64
2490 .set_efer
= vmx_set_efer
,
2492 .get_idt
= vmx_get_idt
,
2493 .set_idt
= vmx_set_idt
,
2494 .get_gdt
= vmx_get_gdt
,
2495 .set_gdt
= vmx_set_gdt
,
2496 .cache_regs
= vcpu_load_rsp_rip
,
2497 .decache_regs
= vcpu_put_rsp_rip
,
2498 .get_rflags
= vmx_get_rflags
,
2499 .set_rflags
= vmx_set_rflags
,
2501 .tlb_flush
= vmx_flush_tlb
,
2502 .inject_page_fault
= vmx_inject_page_fault
,
2504 .inject_gp
= vmx_inject_gp
,
2506 .run
= vmx_vcpu_run
,
2507 .handle_exit
= kvm_handle_exit
,
2508 .skip_emulated_instruction
= skip_emulated_instruction
,
2509 .patch_hypercall
= vmx_patch_hypercall
,
2510 .get_irq
= vmx_get_irq
,
2511 .set_irq
= vmx_inject_irq
,
2512 .inject_pending_irq
= vmx_intr_assist
,
2513 .inject_pending_vectors
= do_interrupt_requests
,
2516 static int __init
vmx_init(void)
2521 vmx_io_bitmap_a
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
2522 if (!vmx_io_bitmap_a
)
2525 vmx_io_bitmap_b
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
2526 if (!vmx_io_bitmap_b
) {
2532 * Allow direct access to the PC debug port (it is often used for I/O
2533 * delays, but the vmexits simply slow things down).
2535 iova
= kmap(vmx_io_bitmap_a
);
2536 memset(iova
, 0xff, PAGE_SIZE
);
2537 clear_bit(0x80, iova
);
2538 kunmap(vmx_io_bitmap_a
);
2540 iova
= kmap(vmx_io_bitmap_b
);
2541 memset(iova
, 0xff, PAGE_SIZE
);
2542 kunmap(vmx_io_bitmap_b
);
2544 r
= kvm_init_x86(&vmx_x86_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
2551 __free_page(vmx_io_bitmap_b
);
2553 __free_page(vmx_io_bitmap_a
);
2557 static void __exit
vmx_exit(void)
2559 __free_page(vmx_io_bitmap_b
);
2560 __free_page(vmx_io_bitmap_a
);
2565 module_init(vmx_init
)
2566 module_exit(vmx_exit
)