Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / arch / ia64 / mm / tlb.c
blob8caf42471f0d1e72d3b2adc007a9d8e8dcc76bf0
1 /*
2 * TLB support routines.
4 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
8 * Modified RID allocation for SMP
9 * Goutham Rao <goutham.rao@intel.com>
10 * IPI based ptc implementation and A-step IPI implementation.
11 * Rohit Seth <rohit.seth@intel.com>
12 * Ken Chen <kenneth.w.chen@intel.com>
13 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
14 * Copyright (C) 2007 Intel Corp
15 * Fenghua Yu <fenghua.yu@intel.com>
16 * Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/mm.h>
24 #include <linux/bootmem.h>
26 #include <asm/delay.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pal.h>
30 #include <asm/tlbflush.h>
31 #include <asm/dma.h>
32 #include <asm/processor.h>
33 #include <asm/sal.h>
34 #include <asm/tlb.h>
36 static struct {
37 unsigned long mask; /* mask of supported purge page-sizes */
38 unsigned long max_bits; /* log2 of largest supported purge page-size */
39 } purge;
41 struct ia64_ctx ia64_ctx = {
42 .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
43 .next = 1,
44 .max_ctx = ~0U
47 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
48 DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/
49 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
51 struct ia64_tr_entry __per_cpu_idtrs[NR_CPUS][2][IA64_TR_ALLOC_MAX];
54 * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
55 * Called after cpu_init() has setup ia64_ctx.max_ctx based on
56 * maximum RID that is supported by boot CPU.
58 void __init
59 mmu_context_init (void)
61 ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
62 ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
66 * Acquire the ia64_ctx.lock before calling this function!
68 void
69 wrap_mmu_context (struct mm_struct *mm)
71 int i, cpu;
72 unsigned long flush_bit;
74 for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
75 flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
76 ia64_ctx.bitmap[i] ^= flush_bit;
79 /* use offset at 300 to skip daemons */
80 ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
81 ia64_ctx.max_ctx, 300);
82 ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
83 ia64_ctx.max_ctx, ia64_ctx.next);
86 * can't call flush_tlb_all() here because of race condition
87 * with O(1) scheduler [EF]
89 cpu = get_cpu(); /* prevent preemption/migration */
90 for_each_online_cpu(i)
91 if (i != cpu)
92 per_cpu(ia64_need_tlb_flush, i) = 1;
93 put_cpu();
94 local_flush_tlb_all();
98 * Implement "spinaphores" ... like counting semaphores, but they
99 * spin instead of sleeping. If there are ever any other users for
100 * this primitive it can be moved up to a spinaphore.h header.
102 struct spinaphore {
103 atomic_t cur;
106 static inline void spinaphore_init(struct spinaphore *ss, int val)
108 atomic_set(&ss->cur, val);
111 static inline void down_spin(struct spinaphore *ss)
113 while (unlikely(!atomic_add_unless(&ss->cur, -1, 0)))
114 while (atomic_read(&ss->cur) == 0)
115 cpu_relax();
118 static inline void up_spin(struct spinaphore *ss)
120 atomic_add(1, &ss->cur);
123 static struct spinaphore ptcg_sem;
124 static u16 nptcg = 1;
125 static int need_ptcg_sem = 1;
126 static int toolatetochangeptcgsem = 0;
129 * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
130 * purges which is reported from either PAL or SAL PALO.
132 * We don't have sanity checking for nptcg value. It's the user's responsibility
133 * for valid nptcg value on the platform. Otherwise, kernel may hang in some
134 * cases.
136 static int __init
137 set_nptcg(char *str)
139 int value = 0;
141 get_option(&str, &value);
142 setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
144 return 1;
147 __setup("nptcg=", set_nptcg);
150 * Maximum number of simultaneous ptc.g purges in the system can
151 * be defined by PAL_VM_SUMMARY (in which case we should take
152 * the smallest value for any cpu in the system) or by the PAL
153 * override table (in which case we should ignore the value from
154 * PAL_VM_SUMMARY).
156 * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
157 * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
158 * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
160 * Complicating the logic here is the fact that num_possible_cpus()
161 * isn't fully setup until we start bringing cpus online.
163 void
164 setup_ptcg_sem(int max_purges, int nptcg_from)
166 static int kp_override;
167 static int palo_override;
168 static int firstcpu = 1;
170 if (toolatetochangeptcgsem) {
171 if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
172 BUG_ON(1 < nptcg);
173 else
174 BUG_ON(max_purges < nptcg);
175 return;
178 if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
179 kp_override = 1;
180 nptcg = max_purges;
181 goto resetsema;
183 if (kp_override) {
184 need_ptcg_sem = num_possible_cpus() > nptcg;
185 return;
188 if (nptcg_from == NPTCG_FROM_PALO) {
189 palo_override = 1;
191 /* In PALO max_purges == 0 really means it! */
192 if (max_purges == 0)
193 panic("Whoa! Platform does not support global TLB purges.\n");
194 nptcg = max_purges;
195 if (nptcg == PALO_MAX_TLB_PURGES) {
196 need_ptcg_sem = 0;
197 return;
199 goto resetsema;
201 if (palo_override) {
202 if (nptcg != PALO_MAX_TLB_PURGES)
203 need_ptcg_sem = (num_possible_cpus() > nptcg);
204 return;
207 /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
208 if (max_purges == 0) max_purges = 1;
210 if (firstcpu) {
211 nptcg = max_purges;
212 firstcpu = 0;
214 if (max_purges < nptcg)
215 nptcg = max_purges;
216 if (nptcg == PAL_MAX_PURGES) {
217 need_ptcg_sem = 0;
218 return;
219 } else
220 need_ptcg_sem = (num_possible_cpus() > nptcg);
222 resetsema:
223 spinaphore_init(&ptcg_sem, max_purges);
226 void
227 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
228 unsigned long end, unsigned long nbits)
230 struct mm_struct *active_mm = current->active_mm;
232 toolatetochangeptcgsem = 1;
234 if (mm != active_mm) {
235 /* Restore region IDs for mm */
236 if (mm && active_mm) {
237 activate_context(mm);
238 } else {
239 flush_tlb_all();
240 return;
244 if (need_ptcg_sem)
245 down_spin(&ptcg_sem);
247 do {
249 * Flush ALAT entries also.
251 ia64_ptcga(start, (nbits << 2));
252 ia64_srlz_i();
253 start += (1UL << nbits);
254 } while (start < end);
256 if (need_ptcg_sem)
257 up_spin(&ptcg_sem);
259 if (mm != active_mm) {
260 activate_context(active_mm);
264 void
265 local_flush_tlb_all (void)
267 unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
269 addr = local_cpu_data->ptce_base;
270 count0 = local_cpu_data->ptce_count[0];
271 count1 = local_cpu_data->ptce_count[1];
272 stride0 = local_cpu_data->ptce_stride[0];
273 stride1 = local_cpu_data->ptce_stride[1];
275 local_irq_save(flags);
276 for (i = 0; i < count0; ++i) {
277 for (j = 0; j < count1; ++j) {
278 ia64_ptce(addr);
279 addr += stride1;
281 addr += stride0;
283 local_irq_restore(flags);
284 ia64_srlz_i(); /* srlz.i implies srlz.d */
287 void
288 flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
289 unsigned long end)
291 struct mm_struct *mm = vma->vm_mm;
292 unsigned long size = end - start;
293 unsigned long nbits;
295 #ifndef CONFIG_SMP
296 if (mm != current->active_mm) {
297 mm->context = 0;
298 return;
300 #endif
302 nbits = ia64_fls(size + 0xfff);
303 while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
304 (nbits < purge.max_bits))
305 ++nbits;
306 if (nbits > purge.max_bits)
307 nbits = purge.max_bits;
308 start &= ~((1UL << nbits) - 1);
310 preempt_disable();
311 #ifdef CONFIG_SMP
312 if (mm != current->active_mm || cpus_weight(mm->cpu_vm_mask) != 1) {
313 platform_global_tlb_purge(mm, start, end, nbits);
314 preempt_enable();
315 return;
317 #endif
318 do {
319 ia64_ptcl(start, (nbits<<2));
320 start += (1UL << nbits);
321 } while (start < end);
322 preempt_enable();
323 ia64_srlz_i(); /* srlz.i implies srlz.d */
325 EXPORT_SYMBOL(flush_tlb_range);
327 void __devinit
328 ia64_tlb_init (void)
330 ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
331 unsigned long tr_pgbits;
332 long status;
333 pal_vm_info_1_u_t vm_info_1;
334 pal_vm_info_2_u_t vm_info_2;
335 int cpu = smp_processor_id();
337 if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
338 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
339 "defaulting to architected purge page-sizes.\n", status);
340 purge.mask = 0x115557000UL;
342 purge.max_bits = ia64_fls(purge.mask);
344 ia64_get_ptce(&ptce_info);
345 local_cpu_data->ptce_base = ptce_info.base;
346 local_cpu_data->ptce_count[0] = ptce_info.count[0];
347 local_cpu_data->ptce_count[1] = ptce_info.count[1];
348 local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
349 local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
351 local_flush_tlb_all(); /* nuke left overs from bootstrapping... */
352 status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
354 if (status) {
355 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
356 per_cpu(ia64_tr_num, cpu) = 8;
357 return;
359 per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
360 if (per_cpu(ia64_tr_num, cpu) >
361 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
362 per_cpu(ia64_tr_num, cpu) =
363 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
364 if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
365 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
366 printk(KERN_DEBUG "TR register number exceeds IA64_TR_ALLOC_MAX!"
367 "IA64_TR_ALLOC_MAX should be extended\n");
372 * is_tr_overlap
374 * Check overlap with inserted TRs.
376 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
378 u64 tr_log_size;
379 u64 tr_end;
380 u64 va_rr = ia64_get_rr(va);
381 u64 va_rid = RR_TO_RID(va_rr);
382 u64 va_end = va + (1<<log_size) - 1;
384 if (va_rid != RR_TO_RID(p->rr))
385 return 0;
386 tr_log_size = (p->itir & 0xff) >> 2;
387 tr_end = p->ifa + (1<<tr_log_size) - 1;
389 if (va > tr_end || p->ifa > va_end)
390 return 0;
391 return 1;
396 * ia64_insert_tr in virtual mode. Allocate a TR slot
398 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
400 * va : virtual address.
401 * pte : pte entries inserted.
402 * log_size: range to be covered.
404 * Return value: <0 : error No.
406 * >=0 : slot number allocated for TR.
407 * Must be called with preemption disabled.
409 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
411 int i, r;
412 unsigned long psr;
413 struct ia64_tr_entry *p;
414 int cpu = smp_processor_id();
416 r = -EINVAL;
417 /*Check overlap with existing TR entries*/
418 if (target_mask & 0x1) {
419 p = &__per_cpu_idtrs[cpu][0][0];
420 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
421 i++, p++) {
422 if (p->pte & 0x1)
423 if (is_tr_overlap(p, va, log_size)) {
424 printk(KERN_DEBUG "Overlapped Entry"
425 "Inserted for TR Reigster!!\n");
426 goto out;
430 if (target_mask & 0x2) {
431 p = &__per_cpu_idtrs[cpu][1][0];
432 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
433 i++, p++) {
434 if (p->pte & 0x1)
435 if (is_tr_overlap(p, va, log_size)) {
436 printk(KERN_DEBUG "Overlapped Entry"
437 "Inserted for TR Reigster!!\n");
438 goto out;
443 for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
444 switch (target_mask & 0x3) {
445 case 1:
446 if (!(__per_cpu_idtrs[cpu][0][i].pte & 0x1))
447 goto found;
448 continue;
449 case 2:
450 if (!(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
451 goto found;
452 continue;
453 case 3:
454 if (!(__per_cpu_idtrs[cpu][0][i].pte & 0x1) &&
455 !(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
456 goto found;
457 continue;
458 default:
459 r = -EINVAL;
460 goto out;
463 found:
464 if (i >= per_cpu(ia64_tr_num, cpu))
465 return -EBUSY;
467 /*Record tr info for mca hander use!*/
468 if (i > per_cpu(ia64_tr_used, cpu))
469 per_cpu(ia64_tr_used, cpu) = i;
471 psr = ia64_clear_ic();
472 if (target_mask & 0x1) {
473 ia64_itr(0x1, i, va, pte, log_size);
474 ia64_srlz_i();
475 p = &__per_cpu_idtrs[cpu][0][i];
476 p->ifa = va;
477 p->pte = pte;
478 p->itir = log_size << 2;
479 p->rr = ia64_get_rr(va);
481 if (target_mask & 0x2) {
482 ia64_itr(0x2, i, va, pte, log_size);
483 ia64_srlz_i();
484 p = &__per_cpu_idtrs[cpu][1][i];
485 p->ifa = va;
486 p->pte = pte;
487 p->itir = log_size << 2;
488 p->rr = ia64_get_rr(va);
490 ia64_set_psr(psr);
491 r = i;
492 out:
493 return r;
495 EXPORT_SYMBOL_GPL(ia64_itr_entry);
498 * ia64_purge_tr
500 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
501 * slot: slot number to be freed.
503 * Must be called with preemption disabled.
505 void ia64_ptr_entry(u64 target_mask, int slot)
507 int cpu = smp_processor_id();
508 int i;
509 struct ia64_tr_entry *p;
511 if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
512 return;
514 if (target_mask & 0x1) {
515 p = &__per_cpu_idtrs[cpu][0][slot];
516 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
517 p->pte = 0;
518 ia64_ptr(0x1, p->ifa, p->itir>>2);
519 ia64_srlz_i();
523 if (target_mask & 0x2) {
524 p = &__per_cpu_idtrs[cpu][1][slot];
525 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
526 p->pte = 0;
527 ia64_ptr(0x2, p->ifa, p->itir>>2);
528 ia64_srlz_i();
532 for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
533 if ((__per_cpu_idtrs[cpu][0][i].pte & 0x1) ||
534 (__per_cpu_idtrs[cpu][1][i].pte & 0x1))
535 break;
537 per_cpu(ia64_tr_used, cpu) = i;
539 EXPORT_SYMBOL_GPL(ia64_ptr_entry);