Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / arch / ppc / mm / init.c
blob1a63711081b5f96443433f61dae2b71321d1b4ed
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/mm.h>
28 #include <linux/stddef.h>
29 #include <linux/init.h>
30 #include <linux/bootmem.h>
31 #include <linux/highmem.h>
32 #include <linux/initrd.h>
33 #include <linux/pagemap.h>
35 #include <asm/pgalloc.h>
36 #include <asm/prom.h>
37 #include <asm/io.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/smp.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
44 #include <asm/tlb.h>
45 #include <asm/bootinfo.h>
47 #include "mem_pieces.h"
48 #include "mmu_decl.h"
50 #if defined(CONFIG_KERNEL_START_BOOL) || defined(CONFIG_LOWMEM_SIZE_BOOL)
51 /* The amount of lowmem must be within 0xF0000000 - KERNELBASE. */
52 #if (CONFIG_LOWMEM_SIZE > (0xF0000000 - KERNELBASE))
53 #error "You must adjust CONFIG_LOWMEM_SIZE or CONFIG_START_KERNEL"
54 #endif
55 #endif
56 #define MAX_LOW_MEM CONFIG_LOWMEM_SIZE
58 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
60 unsigned long total_memory;
61 unsigned long total_lowmem;
63 unsigned long ppc_memstart;
64 unsigned long ppc_memoffset = PAGE_OFFSET;
66 int mem_init_done;
67 int init_bootmem_done;
68 int boot_mapsize;
70 extern char _end[];
71 extern char etext[], _stext[];
72 extern char __init_begin, __init_end;
74 #ifdef CONFIG_HIGHMEM
75 pte_t *kmap_pte;
76 pgprot_t kmap_prot;
78 EXPORT_SYMBOL(kmap_prot);
79 EXPORT_SYMBOL(kmap_pte);
80 #endif
82 void MMU_init(void);
83 void set_phys_avail(unsigned long total_ram);
85 /* XXX should be in current.h -- paulus */
86 extern struct task_struct *current_set[NR_CPUS];
88 char *klimit = _end;
89 struct mem_pieces phys_avail;
92 * this tells the system to map all of ram with the segregs
93 * (i.e. page tables) instead of the bats.
94 * -- Cort
96 int __map_without_bats;
97 int __map_without_ltlbs;
99 /* max amount of RAM to use */
100 unsigned long __max_memory;
101 /* max amount of low RAM to map in */
102 unsigned long __max_low_memory = MAX_LOW_MEM;
104 void show_mem(void)
106 int i,free = 0,total = 0,reserved = 0;
107 int shared = 0, cached = 0;
108 int highmem = 0;
110 printk("Mem-info:\n");
111 show_free_areas();
112 i = max_mapnr;
113 while (i-- > 0) {
114 total++;
115 if (PageHighMem(mem_map+i))
116 highmem++;
117 if (PageReserved(mem_map+i))
118 reserved++;
119 else if (PageSwapCache(mem_map+i))
120 cached++;
121 else if (!page_count(mem_map+i))
122 free++;
123 else
124 shared += page_count(mem_map+i) - 1;
126 printk("%d pages of RAM\n",total);
127 printk("%d pages of HIGHMEM\n", highmem);
128 printk("%d free pages\n",free);
129 printk("%d reserved pages\n",reserved);
130 printk("%d pages shared\n",shared);
131 printk("%d pages swap cached\n",cached);
134 /* Free up now-unused memory */
135 static void free_sec(unsigned long start, unsigned long end, const char *name)
137 unsigned long cnt = 0;
139 while (start < end) {
140 ClearPageReserved(virt_to_page(start));
141 init_page_count(virt_to_page(start));
142 free_page(start);
143 cnt++;
144 start += PAGE_SIZE;
146 if (cnt) {
147 printk(" %ldk %s", cnt << (PAGE_SHIFT - 10), name);
148 totalram_pages += cnt;
152 void free_initmem(void)
154 #define FREESEC(TYPE) \
155 free_sec((unsigned long)(&__ ## TYPE ## _begin), \
156 (unsigned long)(&__ ## TYPE ## _end), \
157 #TYPE);
159 printk ("Freeing unused kernel memory:");
160 FREESEC(init);
161 printk("\n");
162 ppc_md.progress = NULL;
163 #undef FREESEC
166 #ifdef CONFIG_BLK_DEV_INITRD
167 void free_initrd_mem(unsigned long start, unsigned long end)
169 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
171 for (; start < end; start += PAGE_SIZE) {
172 ClearPageReserved(virt_to_page(start));
173 init_page_count(virt_to_page(start));
174 free_page(start);
175 totalram_pages++;
178 #endif
181 * Check for command-line options that affect what MMU_init will do.
183 void MMU_setup(void)
185 /* Check for nobats option (used in mapin_ram). */
186 if (strstr(cmd_line, "nobats")) {
187 __map_without_bats = 1;
190 if (strstr(cmd_line, "noltlbs")) {
191 __map_without_ltlbs = 1;
194 /* Look for mem= option on command line */
195 if (strstr(cmd_line, "mem=")) {
196 char *p, *q;
197 unsigned long maxmem = 0;
199 for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
200 q = p + 4;
201 if (p > cmd_line && p[-1] != ' ')
202 continue;
203 maxmem = simple_strtoul(q, &q, 0);
204 if (*q == 'k' || *q == 'K') {
205 maxmem <<= 10;
206 ++q;
207 } else if (*q == 'm' || *q == 'M') {
208 maxmem <<= 20;
209 ++q;
212 __max_memory = maxmem;
217 * MMU_init sets up the basic memory mappings for the kernel,
218 * including both RAM and possibly some I/O regions,
219 * and sets up the page tables and the MMU hardware ready to go.
221 void __init MMU_init(void)
223 if (ppc_md.progress)
224 ppc_md.progress("MMU:enter", 0x111);
226 /* parse args from command line */
227 MMU_setup();
230 * Figure out how much memory we have, how much
231 * is lowmem, and how much is highmem. If we were
232 * passed the total memory size from the bootloader,
233 * just use it.
235 if (boot_mem_size)
236 total_memory = boot_mem_size;
237 else
238 total_memory = ppc_md.find_end_of_memory();
240 if (__max_memory && total_memory > __max_memory)
241 total_memory = __max_memory;
242 total_lowmem = total_memory;
243 if (total_lowmem > __max_low_memory) {
244 total_lowmem = __max_low_memory;
245 #ifndef CONFIG_HIGHMEM
246 total_memory = total_lowmem;
247 #endif /* CONFIG_HIGHMEM */
249 set_phys_avail(total_lowmem);
251 /* Initialize the MMU hardware */
252 if (ppc_md.progress)
253 ppc_md.progress("MMU:hw init", 0x300);
254 MMU_init_hw();
256 /* Map in all of RAM starting at KERNELBASE */
257 if (ppc_md.progress)
258 ppc_md.progress("MMU:mapin", 0x301);
259 mapin_ram();
261 #ifdef CONFIG_HIGHMEM
262 ioremap_base = PKMAP_BASE;
263 #else
264 ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */
265 #endif /* CONFIG_HIGHMEM */
266 ioremap_bot = ioremap_base;
268 /* Map in I/O resources */
269 if (ppc_md.progress)
270 ppc_md.progress("MMU:setio", 0x302);
271 if (ppc_md.setup_io_mappings)
272 ppc_md.setup_io_mappings();
274 /* Initialize the context management stuff */
275 mmu_context_init();
277 if (ppc_md.progress)
278 ppc_md.progress("MMU:exit", 0x211);
280 #ifdef CONFIG_BOOTX_TEXT
281 /* By default, we are no longer mapped */
282 boot_text_mapped = 0;
283 /* Must be done last, or ppc_md.progress will die. */
284 map_boot_text();
285 #endif
288 /* This is only called until mem_init is done. */
289 void __init *early_get_page(void)
291 void *p;
293 if (init_bootmem_done) {
294 p = alloc_bootmem_pages(PAGE_SIZE);
295 } else {
296 p = mem_pieces_find(PAGE_SIZE, PAGE_SIZE);
298 return p;
302 * Initialize the bootmem system and give it all the memory we
303 * have available.
305 void __init do_init_bootmem(void)
307 unsigned long start, size;
308 int i;
311 * Find an area to use for the bootmem bitmap.
312 * We look for the first area which is at least
313 * 128kB in length (128kB is enough for a bitmap
314 * for 4GB of memory, using 4kB pages), plus 1 page
315 * (in case the address isn't page-aligned).
317 start = 0;
318 size = 0;
319 for (i = 0; i < phys_avail.n_regions; ++i) {
320 unsigned long a = phys_avail.regions[i].address;
321 unsigned long s = phys_avail.regions[i].size;
322 if (s <= size)
323 continue;
324 start = a;
325 size = s;
326 if (s >= 33 * PAGE_SIZE)
327 break;
329 start = PAGE_ALIGN(start);
331 min_low_pfn = start >> PAGE_SHIFT;
332 max_low_pfn = (PPC_MEMSTART + total_lowmem) >> PAGE_SHIFT;
333 max_pfn = (PPC_MEMSTART + total_memory) >> PAGE_SHIFT;
334 boot_mapsize = init_bootmem_node(&contig_page_data, min_low_pfn,
335 PPC_MEMSTART >> PAGE_SHIFT,
336 max_low_pfn);
338 /* remove the bootmem bitmap from the available memory */
339 mem_pieces_remove(&phys_avail, start, boot_mapsize, 1);
341 /* add everything in phys_avail into the bootmem map */
342 for (i = 0; i < phys_avail.n_regions; ++i)
343 free_bootmem(phys_avail.regions[i].address,
344 phys_avail.regions[i].size);
346 init_bootmem_done = 1;
350 * paging_init() sets up the page tables - in fact we've already done this.
352 void __init paging_init(void)
354 unsigned long start_pfn, end_pfn;
355 unsigned long max_zone_pfns[MAX_NR_ZONES];
356 #ifdef CONFIG_HIGHMEM
357 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
358 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
359 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
360 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
361 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
362 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
363 kmap_prot = PAGE_KERNEL;
364 #endif /* CONFIG_HIGHMEM */
365 /* All pages are DMA-able so we put them all in the DMA zone. */
366 start_pfn = __pa(PAGE_OFFSET) >> PAGE_SHIFT;
367 end_pfn = start_pfn + (total_memory >> PAGE_SHIFT);
368 add_active_range(0, start_pfn, end_pfn);
370 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
371 #ifdef CONFIG_HIGHMEM
372 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
373 max_zone_pfns[ZONE_HIGHMEM] = total_memory >> PAGE_SHIFT;
374 #else
375 max_zone_pfns[ZONE_DMA] = total_memory >> PAGE_SHIFT;
376 #endif /* CONFIG_HIGHMEM */
377 free_area_init_nodes(max_zone_pfns);
380 void __init mem_init(void)
382 unsigned long addr;
383 int codepages = 0;
384 int datapages = 0;
385 int initpages = 0;
386 #ifdef CONFIG_HIGHMEM
387 unsigned long highmem_mapnr;
389 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
390 #endif /* CONFIG_HIGHMEM */
391 max_mapnr = total_memory >> PAGE_SHIFT;
393 high_memory = (void *) __va(PPC_MEMSTART + total_lowmem);
394 num_physpages = max_mapnr; /* RAM is assumed contiguous */
396 totalram_pages += free_all_bootmem();
398 #ifdef CONFIG_BLK_DEV_INITRD
399 /* if we are booted from BootX with an initial ramdisk,
400 make sure the ramdisk pages aren't reserved. */
401 if (initrd_start) {
402 for (addr = initrd_start; addr < initrd_end; addr += PAGE_SIZE)
403 ClearPageReserved(virt_to_page(addr));
405 #endif /* CONFIG_BLK_DEV_INITRD */
407 for (addr = PAGE_OFFSET; addr < (unsigned long)high_memory;
408 addr += PAGE_SIZE) {
409 if (!PageReserved(virt_to_page(addr)))
410 continue;
411 if (addr < (ulong) etext)
412 codepages++;
413 else if (addr >= (unsigned long)&__init_begin
414 && addr < (unsigned long)&__init_end)
415 initpages++;
416 else if (addr < (ulong) klimit)
417 datapages++;
420 #ifdef CONFIG_HIGHMEM
422 unsigned long pfn;
424 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
425 struct page *page = mem_map + pfn;
427 ClearPageReserved(page);
428 init_page_count(page);
429 __free_page(page);
430 totalhigh_pages++;
432 totalram_pages += totalhigh_pages;
434 #endif /* CONFIG_HIGHMEM */
436 printk("Memory: %luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
437 (unsigned long)nr_free_pages()<< (PAGE_SHIFT-10),
438 codepages<< (PAGE_SHIFT-10), datapages<< (PAGE_SHIFT-10),
439 initpages<< (PAGE_SHIFT-10),
440 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)));
442 mem_init_done = 1;
446 * Set phys_avail to the amount of physical memory,
447 * less the kernel text/data/bss.
449 void __init
450 set_phys_avail(unsigned long total_memory)
452 unsigned long kstart, ksize;
455 * Initially, available physical memory is equivalent to all
456 * physical memory.
459 phys_avail.regions[0].address = PPC_MEMSTART;
460 phys_avail.regions[0].size = total_memory;
461 phys_avail.n_regions = 1;
464 * Map out the kernel text/data/bss from the available physical
465 * memory.
468 kstart = __pa(_stext); /* should be 0 */
469 ksize = PAGE_ALIGN(klimit - _stext);
471 mem_pieces_remove(&phys_avail, kstart, ksize, 0);
472 mem_pieces_remove(&phys_avail, 0, 0x4000, 0);
474 #if defined(CONFIG_BLK_DEV_INITRD)
475 /* Remove the init RAM disk from the available memory. */
476 if (initrd_start) {
477 mem_pieces_remove(&phys_avail, __pa(initrd_start),
478 initrd_end - initrd_start, 1);
480 #endif /* CONFIG_BLK_DEV_INITRD */
483 /* Mark some memory as reserved by removing it from phys_avail. */
484 void __init reserve_phys_mem(unsigned long start, unsigned long size)
486 mem_pieces_remove(&phys_avail, start, size, 1);
490 * This is called when a page has been modified by the kernel.
491 * It just marks the page as not i-cache clean. We do the i-cache
492 * flush later when the page is given to a user process, if necessary.
494 void flush_dcache_page(struct page *page)
496 clear_bit(PG_arch_1, &page->flags);
499 void flush_dcache_icache_page(struct page *page)
501 #ifdef CONFIG_BOOKE
502 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
503 __flush_dcache_icache(start);
504 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
505 #elif defined(CONFIG_8xx)
506 /* On 8xx there is no need to kmap since highmem is not supported */
507 __flush_dcache_icache(page_address(page));
508 #else
509 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
510 #endif
513 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
515 clear_page(page);
516 clear_bit(PG_arch_1, &pg->flags);
519 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
520 struct page *pg)
522 copy_page(vto, vfrom);
523 clear_bit(PG_arch_1, &pg->flags);
526 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
527 unsigned long addr, int len)
529 unsigned long maddr;
531 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
532 flush_icache_range(maddr, maddr + len);
533 kunmap(page);
537 * This is called at the end of handling a user page fault, when the
538 * fault has been handled by updating a PTE in the linux page tables.
539 * We use it to preload an HPTE into the hash table corresponding to
540 * the updated linux PTE.
542 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
543 pte_t pte)
545 /* handle i-cache coherency */
546 unsigned long pfn = pte_pfn(pte);
548 if (pfn_valid(pfn)) {
549 struct page *page = pfn_to_page(pfn);
550 #ifdef CONFIG_8xx
551 /* On 8xx, the TLB handlers work in 2 stages:
552 * First, a zeroed entry is loaded by TLBMiss handler,
553 * which causes the TLBError handler to be triggered.
554 * That means the zeroed TLB has to be invalidated
555 * whenever a page miss occurs.
557 _tlbie(address, 0 /* 8xx doesn't care about PID */);
558 #endif
559 if (!PageReserved(page)
560 && !test_bit(PG_arch_1, &page->flags)) {
561 if (vma->vm_mm == current->active_mm)
562 __flush_dcache_icache((void *) address);
563 else
564 flush_dcache_icache_page(page);
565 set_bit(PG_arch_1, &page->flags);
569 #ifdef CONFIG_PPC_STD_MMU
570 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
571 if (Hash != 0 && pte_young(pte)) {
572 struct mm_struct *mm;
573 pmd_t *pmd;
575 mm = (address < TASK_SIZE)? vma->vm_mm: &init_mm;
576 pmd = pmd_offset(pgd_offset(mm, address), address);
577 if (!pmd_none(*pmd))
578 add_hash_page(mm->context.id, address, pmd_val(*pmd));
580 #endif
584 * This is called by /dev/mem to know if a given address has to
585 * be mapped non-cacheable or not
587 int page_is_ram(unsigned long pfn)
589 return pfn < max_pfn;
592 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
593 unsigned long size, pgprot_t vma_prot)
595 if (ppc_md.phys_mem_access_prot)
596 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
598 if (!page_is_ram(pfn))
599 vma_prot = __pgprot(pgprot_val(vma_prot)
600 | _PAGE_GUARDED | _PAGE_NO_CACHE);
601 return vma_prot;
603 EXPORT_SYMBOL(phys_mem_access_prot);