2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
32 #include <linux/kvm_host.h>
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
40 #define mod_64(x, y) ((x) % (y))
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64
muldiv64(u64 a
, u32 b
, u32 c
)
60 rl
= (u64
)u
.l
.low
* (u64
)b
;
61 rh
= (u64
)u
.l
.high
* (u64
)b
;
63 res
.l
.high
= div64_u64(rh
, c
);
64 res
.l
.low
= div64_u64(((mod_64(rh
, c
) << 32) + (rl
& 0xffffffff)), c
);
68 static void pit_set_gate(struct kvm
*kvm
, int channel
, u32 val
)
70 struct kvm_kpit_channel_state
*c
=
71 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
73 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
79 /* XXX: just disable/enable counting */
85 /* Restart counting on rising edge. */
87 c
->count_load_time
= ktime_get();
94 int pit_get_gate(struct kvm
*kvm
, int channel
)
96 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
98 return kvm
->arch
.vpit
->pit_state
.channels
[channel
].gate
;
101 static int pit_get_count(struct kvm
*kvm
, int channel
)
103 struct kvm_kpit_channel_state
*c
=
104 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
108 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
110 t
= ktime_to_ns(ktime_sub(ktime_get(), c
->count_load_time
));
111 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
118 counter
= (c
->count
- d
) & 0xffff;
121 /* XXX: may be incorrect for odd counts */
122 counter
= c
->count
- (mod_64((2 * d
), c
->count
));
125 counter
= c
->count
- mod_64(d
, c
->count
);
131 static int pit_get_out(struct kvm
*kvm
, int channel
)
133 struct kvm_kpit_channel_state
*c
=
134 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
138 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
140 t
= ktime_to_ns(ktime_sub(ktime_get(), c
->count_load_time
));
141 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
146 out
= (d
>= c
->count
);
149 out
= (d
< c
->count
);
152 out
= ((mod_64(d
, c
->count
) == 0) && (d
!= 0));
155 out
= (mod_64(d
, c
->count
) < ((c
->count
+ 1) >> 1));
159 out
= (d
== c
->count
);
166 static void pit_latch_count(struct kvm
*kvm
, int channel
)
168 struct kvm_kpit_channel_state
*c
=
169 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
171 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
173 if (!c
->count_latched
) {
174 c
->latched_count
= pit_get_count(kvm
, channel
);
175 c
->count_latched
= c
->rw_mode
;
179 static void pit_latch_status(struct kvm
*kvm
, int channel
)
181 struct kvm_kpit_channel_state
*c
=
182 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
184 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
186 if (!c
->status_latched
) {
187 /* TODO: Return NULL COUNT (bit 6). */
188 c
->status
= ((pit_get_out(kvm
, channel
) << 7) |
192 c
->status_latched
= 1;
196 int __pit_timer_fn(struct kvm_kpit_state
*ps
)
198 struct kvm_vcpu
*vcpu0
= ps
->pit
->kvm
->vcpus
[0];
199 struct kvm_kpit_timer
*pt
= &ps
->pit_timer
;
201 atomic_inc(&pt
->pending
);
202 smp_mb__after_atomic_inc();
203 /* FIXME: handle case where the guest is in guest mode */
204 if (vcpu0
&& waitqueue_active(&vcpu0
->wq
)) {
205 vcpu0
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
206 wake_up_interruptible(&vcpu0
->wq
);
209 pt
->timer
.expires
= ktime_add_ns(pt
->timer
.expires
, pt
->period
);
210 pt
->scheduled
= ktime_to_ns(pt
->timer
.expires
);
212 return (pt
->period
== 0 ? 0 : 1);
215 int pit_has_pending_timer(struct kvm_vcpu
*vcpu
)
217 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
219 if (pit
&& vcpu
->vcpu_id
== 0 && pit
->pit_state
.inject_pending
)
220 return atomic_read(&pit
->pit_state
.pit_timer
.pending
);
225 static enum hrtimer_restart
pit_timer_fn(struct hrtimer
*data
)
227 struct kvm_kpit_state
*ps
;
228 int restart_timer
= 0;
230 ps
= container_of(data
, struct kvm_kpit_state
, pit_timer
.timer
);
232 restart_timer
= __pit_timer_fn(ps
);
235 return HRTIMER_RESTART
;
237 return HRTIMER_NORESTART
;
240 static void destroy_pit_timer(struct kvm_kpit_timer
*pt
)
242 pr_debug("pit: execute del timer!\n");
243 hrtimer_cancel(&pt
->timer
);
246 static void create_pit_timer(struct kvm_kpit_timer
*pt
, u32 val
, int is_period
)
250 interval
= muldiv64(val
, NSEC_PER_SEC
, KVM_PIT_FREQ
);
252 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval
);
254 /* TODO The new value only affected after the retriggered */
255 hrtimer_cancel(&pt
->timer
);
256 pt
->period
= (is_period
== 0) ? 0 : interval
;
257 pt
->timer
.function
= pit_timer_fn
;
258 atomic_set(&pt
->pending
, 0);
260 hrtimer_start(&pt
->timer
, ktime_add_ns(ktime_get(), interval
),
264 static void pit_load_count(struct kvm
*kvm
, int channel
, u32 val
)
266 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
268 WARN_ON(!mutex_is_locked(&ps
->lock
));
270 pr_debug("pit: load_count val is %d, channel is %d\n", val
, channel
);
273 * Though spec said the state of 8254 is undefined after power-up,
274 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
276 * So here setting initialize rate for it, and not a specific number
281 ps
->channels
[channel
].count_load_time
= ktime_get();
282 ps
->channels
[channel
].count
= val
;
287 /* Two types of timer
288 * mode 1 is one shot, mode 2 is period, otherwise del timer */
289 switch (ps
->channels
[0].mode
) {
291 /* FIXME: enhance mode 4 precision */
293 create_pit_timer(&ps
->pit_timer
, val
, 0);
296 create_pit_timer(&ps
->pit_timer
, val
, 1);
299 destroy_pit_timer(&ps
->pit_timer
);
303 void kvm_pit_load_count(struct kvm
*kvm
, int channel
, u32 val
)
305 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
306 pit_load_count(kvm
, channel
, val
);
307 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
310 static void pit_ioport_write(struct kvm_io_device
*this,
311 gpa_t addr
, int len
, const void *data
)
313 struct kvm_pit
*pit
= (struct kvm_pit
*)this->private;
314 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
315 struct kvm
*kvm
= pit
->kvm
;
317 struct kvm_kpit_channel_state
*s
;
318 u32 val
= *(u32
*) data
;
321 addr
&= KVM_PIT_CHANNEL_MASK
;
323 mutex_lock(&pit_state
->lock
);
326 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
327 (unsigned int)addr
, len
, val
);
332 /* Read-Back Command. */
333 for (channel
= 0; channel
< 3; channel
++) {
334 s
= &pit_state
->channels
[channel
];
335 if (val
& (2 << channel
)) {
337 pit_latch_count(kvm
, channel
);
339 pit_latch_status(kvm
, channel
);
343 /* Select Counter <channel>. */
344 s
= &pit_state
->channels
[channel
];
345 access
= (val
>> 4) & KVM_PIT_CHANNEL_MASK
;
347 pit_latch_count(kvm
, channel
);
350 s
->read_state
= access
;
351 s
->write_state
= access
;
352 s
->mode
= (val
>> 1) & 7;
360 s
= &pit_state
->channels
[addr
];
361 switch (s
->write_state
) {
364 pit_load_count(kvm
, addr
, val
);
367 pit_load_count(kvm
, addr
, val
<< 8);
370 s
->write_latch
= val
;
371 s
->write_state
= RW_STATE_WORD1
;
374 pit_load_count(kvm
, addr
, s
->write_latch
| (val
<< 8));
375 s
->write_state
= RW_STATE_WORD0
;
380 mutex_unlock(&pit_state
->lock
);
383 static void pit_ioport_read(struct kvm_io_device
*this,
384 gpa_t addr
, int len
, void *data
)
386 struct kvm_pit
*pit
= (struct kvm_pit
*)this->private;
387 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
388 struct kvm
*kvm
= pit
->kvm
;
390 struct kvm_kpit_channel_state
*s
;
392 addr
&= KVM_PIT_CHANNEL_MASK
;
393 s
= &pit_state
->channels
[addr
];
395 mutex_lock(&pit_state
->lock
);
397 if (s
->status_latched
) {
398 s
->status_latched
= 0;
400 } else if (s
->count_latched
) {
401 switch (s
->count_latched
) {
404 ret
= s
->latched_count
& 0xff;
405 s
->count_latched
= 0;
408 ret
= s
->latched_count
>> 8;
409 s
->count_latched
= 0;
412 ret
= s
->latched_count
& 0xff;
413 s
->count_latched
= RW_STATE_MSB
;
417 switch (s
->read_state
) {
420 count
= pit_get_count(kvm
, addr
);
424 count
= pit_get_count(kvm
, addr
);
425 ret
= (count
>> 8) & 0xff;
428 count
= pit_get_count(kvm
, addr
);
430 s
->read_state
= RW_STATE_WORD1
;
433 count
= pit_get_count(kvm
, addr
);
434 ret
= (count
>> 8) & 0xff;
435 s
->read_state
= RW_STATE_WORD0
;
440 if (len
> sizeof(ret
))
442 memcpy(data
, (char *)&ret
, len
);
444 mutex_unlock(&pit_state
->lock
);
447 static int pit_in_range(struct kvm_io_device
*this, gpa_t addr
)
449 return ((addr
>= KVM_PIT_BASE_ADDRESS
) &&
450 (addr
< KVM_PIT_BASE_ADDRESS
+ KVM_PIT_MEM_LENGTH
));
453 static void speaker_ioport_write(struct kvm_io_device
*this,
454 gpa_t addr
, int len
, const void *data
)
456 struct kvm_pit
*pit
= (struct kvm_pit
*)this->private;
457 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
458 struct kvm
*kvm
= pit
->kvm
;
459 u32 val
= *(u32
*) data
;
461 mutex_lock(&pit_state
->lock
);
462 pit_state
->speaker_data_on
= (val
>> 1) & 1;
463 pit_set_gate(kvm
, 2, val
& 1);
464 mutex_unlock(&pit_state
->lock
);
467 static void speaker_ioport_read(struct kvm_io_device
*this,
468 gpa_t addr
, int len
, void *data
)
470 struct kvm_pit
*pit
= (struct kvm_pit
*)this->private;
471 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
472 struct kvm
*kvm
= pit
->kvm
;
473 unsigned int refresh_clock
;
476 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
477 refresh_clock
= ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
479 mutex_lock(&pit_state
->lock
);
480 ret
= ((pit_state
->speaker_data_on
<< 1) | pit_get_gate(kvm
, 2) |
481 (pit_get_out(kvm
, 2) << 5) | (refresh_clock
<< 4));
482 if (len
> sizeof(ret
))
484 memcpy(data
, (char *)&ret
, len
);
485 mutex_unlock(&pit_state
->lock
);
488 static int speaker_in_range(struct kvm_io_device
*this, gpa_t addr
)
490 return (addr
== KVM_SPEAKER_BASE_ADDRESS
);
493 void kvm_pit_reset(struct kvm_pit
*pit
)
496 struct kvm_kpit_channel_state
*c
;
498 mutex_lock(&pit
->pit_state
.lock
);
499 for (i
= 0; i
< 3; i
++) {
500 c
= &pit
->pit_state
.channels
[i
];
503 pit_load_count(pit
->kvm
, i
, 0);
505 mutex_unlock(&pit
->pit_state
.lock
);
507 atomic_set(&pit
->pit_state
.pit_timer
.pending
, 0);
508 pit
->pit_state
.inject_pending
= 1;
511 struct kvm_pit
*kvm_create_pit(struct kvm
*kvm
)
514 struct kvm_kpit_state
*pit_state
;
516 pit
= kzalloc(sizeof(struct kvm_pit
), GFP_KERNEL
);
520 mutex_init(&pit
->pit_state
.lock
);
521 mutex_lock(&pit
->pit_state
.lock
);
523 /* Initialize PIO device */
524 pit
->dev
.read
= pit_ioport_read
;
525 pit
->dev
.write
= pit_ioport_write
;
526 pit
->dev
.in_range
= pit_in_range
;
527 pit
->dev
.private = pit
;
528 kvm_io_bus_register_dev(&kvm
->pio_bus
, &pit
->dev
);
530 pit
->speaker_dev
.read
= speaker_ioport_read
;
531 pit
->speaker_dev
.write
= speaker_ioport_write
;
532 pit
->speaker_dev
.in_range
= speaker_in_range
;
533 pit
->speaker_dev
.private = pit
;
534 kvm_io_bus_register_dev(&kvm
->pio_bus
, &pit
->speaker_dev
);
536 kvm
->arch
.vpit
= pit
;
539 pit_state
= &pit
->pit_state
;
540 pit_state
->pit
= pit
;
541 hrtimer_init(&pit_state
->pit_timer
.timer
,
542 CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
543 mutex_unlock(&pit
->pit_state
.lock
);
550 void kvm_free_pit(struct kvm
*kvm
)
552 struct hrtimer
*timer
;
554 if (kvm
->arch
.vpit
) {
555 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
556 timer
= &kvm
->arch
.vpit
->pit_state
.pit_timer
.timer
;
557 hrtimer_cancel(timer
);
558 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
559 kfree(kvm
->arch
.vpit
);
563 void __inject_pit_timer_intr(struct kvm
*kvm
)
565 mutex_lock(&kvm
->lock
);
566 kvm_ioapic_set_irq(kvm
->arch
.vioapic
, 0, 1);
567 kvm_ioapic_set_irq(kvm
->arch
.vioapic
, 0, 0);
568 kvm_pic_set_irq(pic_irqchip(kvm
), 0, 1);
569 kvm_pic_set_irq(pic_irqchip(kvm
), 0, 0);
570 mutex_unlock(&kvm
->lock
);
573 void kvm_inject_pit_timer_irqs(struct kvm_vcpu
*vcpu
)
575 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
576 struct kvm
*kvm
= vcpu
->kvm
;
577 struct kvm_kpit_state
*ps
;
580 ps
= &pit
->pit_state
;
582 /* Try to inject pending interrupts when:
584 * 2. Last interrupt was accepted or waited for too long time*/
585 if (atomic_read(&ps
->pit_timer
.pending
) &&
586 (ps
->inject_pending
||
587 (jiffies
- ps
->last_injected_time
588 >= KVM_MAX_PIT_INTR_INTERVAL
))) {
589 ps
->inject_pending
= 0;
590 __inject_pit_timer_intr(kvm
);
591 ps
->last_injected_time
= jiffies
;
596 void kvm_pit_timer_intr_post(struct kvm_vcpu
*vcpu
, int vec
)
598 struct kvm_arch
*arch
= &vcpu
->kvm
->arch
;
599 struct kvm_kpit_state
*ps
;
601 if (vcpu
&& arch
->vpit
) {
602 ps
= &arch
->vpit
->pit_state
;
603 if (atomic_read(&ps
->pit_timer
.pending
) &&
604 (((arch
->vpic
->pics
[0].imr
& 1) == 0 &&
605 arch
->vpic
->pics
[0].irq_base
== vec
) ||
606 (arch
->vioapic
->redirtbl
[0].fields
.vector
== vec
&&
607 arch
->vioapic
->redirtbl
[0].fields
.mask
!= 1))) {
608 ps
->inject_pending
= 1;
609 atomic_dec(&ps
->pit_timer
.pending
);
610 ps
->channels
[0].count_load_time
= ktime_get();