Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / arch / x86 / mm / fault.c
blobfd7e1798c75a20049a97046db333868eb4bbd6c5
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mman.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/tty.h>
19 #include <linux/vt_kern.h> /* For unblank_screen() */
20 #include <linux/compiler.h>
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
29 #include <asm/system.h>
30 #include <asm/desc.h>
31 #include <asm/segment.h>
32 #include <asm/pgalloc.h>
33 #include <asm/smp.h>
34 #include <asm/tlbflush.h>
35 #include <asm/proto.h>
36 #include <asm-generic/sections.h>
39 * Page fault error code bits
40 * bit 0 == 0 means no page found, 1 means protection fault
41 * bit 1 == 0 means read, 1 means write
42 * bit 2 == 0 means kernel, 1 means user-mode
43 * bit 3 == 1 means use of reserved bit detected
44 * bit 4 == 1 means fault was an instruction fetch
46 #define PF_PROT (1<<0)
47 #define PF_WRITE (1<<1)
48 #define PF_USER (1<<2)
49 #define PF_RSVD (1<<3)
50 #define PF_INSTR (1<<4)
52 static inline int notify_page_fault(struct pt_regs *regs)
54 #ifdef CONFIG_KPROBES
55 int ret = 0;
57 /* kprobe_running() needs smp_processor_id() */
58 #ifdef CONFIG_X86_32
59 if (!user_mode_vm(regs)) {
60 #else
61 if (!user_mode(regs)) {
62 #endif
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
69 return ret;
70 #else
71 return 0;
72 #endif
76 * X86_32
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
80 * X86_64
81 * Sometimes the CPU reports invalid exceptions on prefetch.
82 * Check that here and ignore it.
84 * Opcode checker based on code by Richard Brunner
86 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
87 unsigned long error_code)
89 unsigned char *instr;
90 int scan_more = 1;
91 int prefetch = 0;
92 unsigned char *max_instr;
95 * If it was a exec (instruction fetch) fault on NX page, then
96 * do not ignore the fault:
98 if (error_code & PF_INSTR)
99 return 0;
101 instr = (unsigned char *)convert_ip_to_linear(current, regs);
102 max_instr = instr + 15;
104 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
105 return 0;
107 while (scan_more && instr < max_instr) {
108 unsigned char opcode;
109 unsigned char instr_hi;
110 unsigned char instr_lo;
112 if (probe_kernel_address(instr, opcode))
113 break;
115 instr_hi = opcode & 0xf0;
116 instr_lo = opcode & 0x0f;
117 instr++;
119 switch (instr_hi) {
120 case 0x20:
121 case 0x30:
123 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
124 * In X86_64 long mode, the CPU will signal invalid
125 * opcode if some of these prefixes are present so
126 * X86_64 will never get here anyway
128 scan_more = ((instr_lo & 7) == 0x6);
129 break;
130 #ifdef CONFIG_X86_64
131 case 0x40:
133 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
134 * Need to figure out under what instruction mode the
135 * instruction was issued. Could check the LDT for lm,
136 * but for now it's good enough to assume that long
137 * mode only uses well known segments or kernel.
139 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
140 break;
141 #endif
142 case 0x60:
143 /* 0x64 thru 0x67 are valid prefixes in all modes. */
144 scan_more = (instr_lo & 0xC) == 0x4;
145 break;
146 case 0xF0:
147 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
148 scan_more = !instr_lo || (instr_lo>>1) == 1;
149 break;
150 case 0x00:
151 /* Prefetch instruction is 0x0F0D or 0x0F18 */
152 scan_more = 0;
154 if (probe_kernel_address(instr, opcode))
155 break;
156 prefetch = (instr_lo == 0xF) &&
157 (opcode == 0x0D || opcode == 0x18);
158 break;
159 default:
160 scan_more = 0;
161 break;
164 return prefetch;
167 static void force_sig_info_fault(int si_signo, int si_code,
168 unsigned long address, struct task_struct *tsk)
170 siginfo_t info;
172 info.si_signo = si_signo;
173 info.si_errno = 0;
174 info.si_code = si_code;
175 info.si_addr = (void __user *)address;
176 force_sig_info(si_signo, &info, tsk);
179 #ifdef CONFIG_X86_64
180 static int bad_address(void *p)
182 unsigned long dummy;
183 return probe_kernel_address((unsigned long *)p, dummy);
185 #endif
187 static void dump_pagetable(unsigned long address)
189 #ifdef CONFIG_X86_32
190 __typeof__(pte_val(__pte(0))) page;
192 page = read_cr3();
193 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
194 #ifdef CONFIG_X86_PAE
195 printk("*pdpt = %016Lx ", page);
196 if ((page >> PAGE_SHIFT) < max_low_pfn
197 && page & _PAGE_PRESENT) {
198 page &= PAGE_MASK;
199 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
200 & (PTRS_PER_PMD - 1)];
201 printk(KERN_CONT "*pde = %016Lx ", page);
202 page &= ~_PAGE_NX;
204 #else
205 printk("*pde = %08lx ", page);
206 #endif
209 * We must not directly access the pte in the highpte
210 * case if the page table is located in highmem.
211 * And let's rather not kmap-atomic the pte, just in case
212 * it's allocated already.
214 if ((page >> PAGE_SHIFT) < max_low_pfn
215 && (page & _PAGE_PRESENT)
216 && !(page & _PAGE_PSE)) {
217 page &= PAGE_MASK;
218 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
219 & (PTRS_PER_PTE - 1)];
220 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
223 printk("\n");
224 #else /* CONFIG_X86_64 */
225 pgd_t *pgd;
226 pud_t *pud;
227 pmd_t *pmd;
228 pte_t *pte;
230 pgd = (pgd_t *)read_cr3();
232 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
233 pgd += pgd_index(address);
234 if (bad_address(pgd)) goto bad;
235 printk("PGD %lx ", pgd_val(*pgd));
236 if (!pgd_present(*pgd)) goto ret;
238 pud = pud_offset(pgd, address);
239 if (bad_address(pud)) goto bad;
240 printk("PUD %lx ", pud_val(*pud));
241 if (!pud_present(*pud) || pud_large(*pud))
242 goto ret;
244 pmd = pmd_offset(pud, address);
245 if (bad_address(pmd)) goto bad;
246 printk("PMD %lx ", pmd_val(*pmd));
247 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
249 pte = pte_offset_kernel(pmd, address);
250 if (bad_address(pte)) goto bad;
251 printk("PTE %lx", pte_val(*pte));
252 ret:
253 printk("\n");
254 return;
255 bad:
256 printk("BAD\n");
257 #endif
260 #ifdef CONFIG_X86_32
261 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
263 unsigned index = pgd_index(address);
264 pgd_t *pgd_k;
265 pud_t *pud, *pud_k;
266 pmd_t *pmd, *pmd_k;
268 pgd += index;
269 pgd_k = init_mm.pgd + index;
271 if (!pgd_present(*pgd_k))
272 return NULL;
275 * set_pgd(pgd, *pgd_k); here would be useless on PAE
276 * and redundant with the set_pmd() on non-PAE. As would
277 * set_pud.
280 pud = pud_offset(pgd, address);
281 pud_k = pud_offset(pgd_k, address);
282 if (!pud_present(*pud_k))
283 return NULL;
285 pmd = pmd_offset(pud, address);
286 pmd_k = pmd_offset(pud_k, address);
287 if (!pmd_present(*pmd_k))
288 return NULL;
289 if (!pmd_present(*pmd)) {
290 set_pmd(pmd, *pmd_k);
291 arch_flush_lazy_mmu_mode();
292 } else
293 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
294 return pmd_k;
296 #endif
298 #ifdef CONFIG_X86_64
299 static const char errata93_warning[] =
300 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
301 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
302 KERN_ERR "******* Please consider a BIOS update.\n"
303 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
304 #endif
306 /* Workaround for K8 erratum #93 & buggy BIOS.
307 BIOS SMM functions are required to use a specific workaround
308 to avoid corruption of the 64bit RIP register on C stepping K8.
309 A lot of BIOS that didn't get tested properly miss this.
310 The OS sees this as a page fault with the upper 32bits of RIP cleared.
311 Try to work around it here.
312 Note we only handle faults in kernel here.
313 Does nothing for X86_32
315 static int is_errata93(struct pt_regs *regs, unsigned long address)
317 #ifdef CONFIG_X86_64
318 static int warned;
319 if (address != regs->ip)
320 return 0;
321 if ((address >> 32) != 0)
322 return 0;
323 address |= 0xffffffffUL << 32;
324 if ((address >= (u64)_stext && address <= (u64)_etext) ||
325 (address >= MODULES_VADDR && address <= MODULES_END)) {
326 if (!warned) {
327 printk(errata93_warning);
328 warned = 1;
330 regs->ip = address;
331 return 1;
333 #endif
334 return 0;
338 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
339 * addresses >4GB. We catch this in the page fault handler because these
340 * addresses are not reachable. Just detect this case and return. Any code
341 * segment in LDT is compatibility mode.
343 static int is_errata100(struct pt_regs *regs, unsigned long address)
345 #ifdef CONFIG_X86_64
346 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
347 (address >> 32))
348 return 1;
349 #endif
350 return 0;
353 void do_invalid_op(struct pt_regs *, unsigned long);
355 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
357 #ifdef CONFIG_X86_F00F_BUG
358 unsigned long nr;
360 * Pentium F0 0F C7 C8 bug workaround.
362 if (boot_cpu_data.f00f_bug) {
363 nr = (address - idt_descr.address) >> 3;
365 if (nr == 6) {
366 do_invalid_op(regs, 0);
367 return 1;
370 #endif
371 return 0;
374 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
375 unsigned long address)
377 #ifdef CONFIG_X86_32
378 if (!oops_may_print())
379 return;
380 #endif
382 #ifdef CONFIG_X86_PAE
383 if (error_code & PF_INSTR) {
384 unsigned int level;
385 pte_t *pte = lookup_address(address, &level);
387 if (pte && pte_present(*pte) && !pte_exec(*pte))
388 printk(KERN_CRIT "kernel tried to execute "
389 "NX-protected page - exploit attempt? "
390 "(uid: %d)\n", current->uid);
392 #endif
394 printk(KERN_ALERT "BUG: unable to handle kernel ");
395 if (address < PAGE_SIZE)
396 printk(KERN_CONT "NULL pointer dereference");
397 else
398 printk(KERN_CONT "paging request");
399 #ifdef CONFIG_X86_32
400 printk(KERN_CONT " at %08lx\n", address);
401 #else
402 printk(KERN_CONT " at %016lx\n", address);
403 #endif
404 printk(KERN_ALERT "IP:");
405 printk_address(regs->ip, 1);
406 dump_pagetable(address);
409 #ifdef CONFIG_X86_64
410 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
411 unsigned long error_code)
413 unsigned long flags = oops_begin();
414 struct task_struct *tsk;
416 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
417 current->comm, address);
418 dump_pagetable(address);
419 tsk = current;
420 tsk->thread.cr2 = address;
421 tsk->thread.trap_no = 14;
422 tsk->thread.error_code = error_code;
423 if (__die("Bad pagetable", regs, error_code))
424 regs = NULL;
425 oops_end(flags, regs, SIGKILL);
427 #endif
429 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
431 if ((error_code & PF_WRITE) && !pte_write(*pte))
432 return 0;
433 if ((error_code & PF_INSTR) && !pte_exec(*pte))
434 return 0;
436 return 1;
440 * Handle a spurious fault caused by a stale TLB entry. This allows
441 * us to lazily refresh the TLB when increasing the permissions of a
442 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
443 * expensive since that implies doing a full cross-processor TLB
444 * flush, even if no stale TLB entries exist on other processors.
445 * There are no security implications to leaving a stale TLB when
446 * increasing the permissions on a page.
448 static int spurious_fault(unsigned long address,
449 unsigned long error_code)
451 pgd_t *pgd;
452 pud_t *pud;
453 pmd_t *pmd;
454 pte_t *pte;
456 /* Reserved-bit violation or user access to kernel space? */
457 if (error_code & (PF_USER | PF_RSVD))
458 return 0;
460 pgd = init_mm.pgd + pgd_index(address);
461 if (!pgd_present(*pgd))
462 return 0;
464 pud = pud_offset(pgd, address);
465 if (!pud_present(*pud))
466 return 0;
468 if (pud_large(*pud))
469 return spurious_fault_check(error_code, (pte_t *) pud);
471 pmd = pmd_offset(pud, address);
472 if (!pmd_present(*pmd))
473 return 0;
475 if (pmd_large(*pmd))
476 return spurious_fault_check(error_code, (pte_t *) pmd);
478 pte = pte_offset_kernel(pmd, address);
479 if (!pte_present(*pte))
480 return 0;
482 return spurious_fault_check(error_code, pte);
486 * X86_32
487 * Handle a fault on the vmalloc or module mapping area
489 * X86_64
490 * Handle a fault on the vmalloc area
492 * This assumes no large pages in there.
494 static int vmalloc_fault(unsigned long address)
496 #ifdef CONFIG_X86_32
497 unsigned long pgd_paddr;
498 pmd_t *pmd_k;
499 pte_t *pte_k;
501 * Synchronize this task's top level page-table
502 * with the 'reference' page table.
504 * Do _not_ use "current" here. We might be inside
505 * an interrupt in the middle of a task switch..
507 pgd_paddr = read_cr3();
508 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
509 if (!pmd_k)
510 return -1;
511 pte_k = pte_offset_kernel(pmd_k, address);
512 if (!pte_present(*pte_k))
513 return -1;
514 return 0;
515 #else
516 pgd_t *pgd, *pgd_ref;
517 pud_t *pud, *pud_ref;
518 pmd_t *pmd, *pmd_ref;
519 pte_t *pte, *pte_ref;
521 /* Make sure we are in vmalloc area */
522 if (!(address >= VMALLOC_START && address < VMALLOC_END))
523 return -1;
525 /* Copy kernel mappings over when needed. This can also
526 happen within a race in page table update. In the later
527 case just flush. */
529 pgd = pgd_offset(current->mm ?: &init_mm, address);
530 pgd_ref = pgd_offset_k(address);
531 if (pgd_none(*pgd_ref))
532 return -1;
533 if (pgd_none(*pgd))
534 set_pgd(pgd, *pgd_ref);
535 else
536 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
538 /* Below here mismatches are bugs because these lower tables
539 are shared */
541 pud = pud_offset(pgd, address);
542 pud_ref = pud_offset(pgd_ref, address);
543 if (pud_none(*pud_ref))
544 return -1;
545 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
546 BUG();
547 pmd = pmd_offset(pud, address);
548 pmd_ref = pmd_offset(pud_ref, address);
549 if (pmd_none(*pmd_ref))
550 return -1;
551 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
552 BUG();
553 pte_ref = pte_offset_kernel(pmd_ref, address);
554 if (!pte_present(*pte_ref))
555 return -1;
556 pte = pte_offset_kernel(pmd, address);
557 /* Don't use pte_page here, because the mappings can point
558 outside mem_map, and the NUMA hash lookup cannot handle
559 that. */
560 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
561 BUG();
562 return 0;
563 #endif
566 int show_unhandled_signals = 1;
569 * This routine handles page faults. It determines the address,
570 * and the problem, and then passes it off to one of the appropriate
571 * routines.
573 #ifdef CONFIG_X86_64
574 asmlinkage
575 #endif
576 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
578 struct task_struct *tsk;
579 struct mm_struct *mm;
580 struct vm_area_struct *vma;
581 unsigned long address;
582 int write, si_code;
583 int fault;
584 #ifdef CONFIG_X86_64
585 unsigned long flags;
586 #endif
589 * We can fault from pretty much anywhere, with unknown IRQ state.
591 trace_hardirqs_fixup();
593 tsk = current;
594 mm = tsk->mm;
595 prefetchw(&mm->mmap_sem);
597 /* get the address */
598 address = read_cr2();
600 si_code = SEGV_MAPERR;
602 if (notify_page_fault(regs))
603 return;
606 * We fault-in kernel-space virtual memory on-demand. The
607 * 'reference' page table is init_mm.pgd.
609 * NOTE! We MUST NOT take any locks for this case. We may
610 * be in an interrupt or a critical region, and should
611 * only copy the information from the master page table,
612 * nothing more.
614 * This verifies that the fault happens in kernel space
615 * (error_code & 4) == 0, and that the fault was not a
616 * protection error (error_code & 9) == 0.
618 #ifdef CONFIG_X86_32
619 if (unlikely(address >= TASK_SIZE)) {
620 #else
621 if (unlikely(address >= TASK_SIZE64)) {
622 #endif
623 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
624 vmalloc_fault(address) >= 0)
625 return;
627 /* Can handle a stale RO->RW TLB */
628 if (spurious_fault(address, error_code))
629 return;
632 * Don't take the mm semaphore here. If we fixup a prefetch
633 * fault we could otherwise deadlock.
635 goto bad_area_nosemaphore;
639 #ifdef CONFIG_X86_32
640 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
641 fault has been handled. */
642 if (regs->flags & (X86_EFLAGS_IF | X86_VM_MASK))
643 local_irq_enable();
646 * If we're in an interrupt, have no user context or are running in an
647 * atomic region then we must not take the fault.
649 if (in_atomic() || !mm)
650 goto bad_area_nosemaphore;
651 #else /* CONFIG_X86_64 */
652 if (likely(regs->flags & X86_EFLAGS_IF))
653 local_irq_enable();
655 if (unlikely(error_code & PF_RSVD))
656 pgtable_bad(address, regs, error_code);
659 * If we're in an interrupt, have no user context or are running in an
660 * atomic region then we must not take the fault.
662 if (unlikely(in_atomic() || !mm))
663 goto bad_area_nosemaphore;
666 * User-mode registers count as a user access even for any
667 * potential system fault or CPU buglet.
669 if (user_mode_vm(regs))
670 error_code |= PF_USER;
671 again:
672 #endif
673 /* When running in the kernel we expect faults to occur only to
674 * addresses in user space. All other faults represent errors in the
675 * kernel and should generate an OOPS. Unfortunately, in the case of an
676 * erroneous fault occurring in a code path which already holds mmap_sem
677 * we will deadlock attempting to validate the fault against the
678 * address space. Luckily the kernel only validly references user
679 * space from well defined areas of code, which are listed in the
680 * exceptions table.
682 * As the vast majority of faults will be valid we will only perform
683 * the source reference check when there is a possibility of a deadlock.
684 * Attempt to lock the address space, if we cannot we then validate the
685 * source. If this is invalid we can skip the address space check,
686 * thus avoiding the deadlock.
688 if (!down_read_trylock(&mm->mmap_sem)) {
689 if ((error_code & PF_USER) == 0 &&
690 !search_exception_tables(regs->ip))
691 goto bad_area_nosemaphore;
692 down_read(&mm->mmap_sem);
695 vma = find_vma(mm, address);
696 if (!vma)
697 goto bad_area;
698 if (vma->vm_start <= address)
699 goto good_area;
700 if (!(vma->vm_flags & VM_GROWSDOWN))
701 goto bad_area;
702 if (error_code & PF_USER) {
704 * Accessing the stack below %sp is always a bug.
705 * The large cushion allows instructions like enter
706 * and pusha to work. ("enter $65535,$31" pushes
707 * 32 pointers and then decrements %sp by 65535.)
709 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
710 goto bad_area;
712 if (expand_stack(vma, address))
713 goto bad_area;
715 * Ok, we have a good vm_area for this memory access, so
716 * we can handle it..
718 good_area:
719 si_code = SEGV_ACCERR;
720 write = 0;
721 switch (error_code & (PF_PROT|PF_WRITE)) {
722 default: /* 3: write, present */
723 /* fall through */
724 case PF_WRITE: /* write, not present */
725 if (!(vma->vm_flags & VM_WRITE))
726 goto bad_area;
727 write++;
728 break;
729 case PF_PROT: /* read, present */
730 goto bad_area;
731 case 0: /* read, not present */
732 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
733 goto bad_area;
736 #ifdef CONFIG_X86_32
737 survive:
738 #endif
740 * If for any reason at all we couldn't handle the fault,
741 * make sure we exit gracefully rather than endlessly redo
742 * the fault.
744 fault = handle_mm_fault(mm, vma, address, write);
745 if (unlikely(fault & VM_FAULT_ERROR)) {
746 if (fault & VM_FAULT_OOM)
747 goto out_of_memory;
748 else if (fault & VM_FAULT_SIGBUS)
749 goto do_sigbus;
750 BUG();
752 if (fault & VM_FAULT_MAJOR)
753 tsk->maj_flt++;
754 else
755 tsk->min_flt++;
757 #ifdef CONFIG_X86_32
759 * Did it hit the DOS screen memory VA from vm86 mode?
761 if (v8086_mode(regs)) {
762 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
763 if (bit < 32)
764 tsk->thread.screen_bitmap |= 1 << bit;
766 #endif
767 up_read(&mm->mmap_sem);
768 return;
771 * Something tried to access memory that isn't in our memory map..
772 * Fix it, but check if it's kernel or user first..
774 bad_area:
775 up_read(&mm->mmap_sem);
777 bad_area_nosemaphore:
778 /* User mode accesses just cause a SIGSEGV */
779 if (error_code & PF_USER) {
781 * It's possible to have interrupts off here.
783 local_irq_enable();
786 * Valid to do another page fault here because this one came
787 * from user space.
789 if (is_prefetch(regs, address, error_code))
790 return;
792 if (is_errata100(regs, address))
793 return;
795 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
796 printk_ratelimit()) {
797 printk(
798 #ifdef CONFIG_X86_32
799 "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
800 #else
801 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
802 #endif
803 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
804 tsk->comm, task_pid_nr(tsk), address, regs->ip,
805 regs->sp, error_code);
806 print_vma_addr(" in ", regs->ip);
807 printk("\n");
810 tsk->thread.cr2 = address;
811 /* Kernel addresses are always protection faults */
812 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
813 tsk->thread.trap_no = 14;
814 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
815 return;
818 if (is_f00f_bug(regs, address))
819 return;
821 no_context:
822 /* Are we prepared to handle this kernel fault? */
823 if (fixup_exception(regs))
824 return;
827 * X86_32
828 * Valid to do another page fault here, because if this fault
829 * had been triggered by is_prefetch fixup_exception would have
830 * handled it.
832 * X86_64
833 * Hall of shame of CPU/BIOS bugs.
835 if (is_prefetch(regs, address, error_code))
836 return;
838 if (is_errata93(regs, address))
839 return;
842 * Oops. The kernel tried to access some bad page. We'll have to
843 * terminate things with extreme prejudice.
845 #ifdef CONFIG_X86_32
846 bust_spinlocks(1);
847 #else
848 flags = oops_begin();
849 #endif
851 show_fault_oops(regs, error_code, address);
853 tsk->thread.cr2 = address;
854 tsk->thread.trap_no = 14;
855 tsk->thread.error_code = error_code;
857 #ifdef CONFIG_X86_32
858 die("Oops", regs, error_code);
859 bust_spinlocks(0);
860 do_exit(SIGKILL);
861 #else
862 if (__die("Oops", regs, error_code))
863 regs = NULL;
864 /* Executive summary in case the body of the oops scrolled away */
865 printk(KERN_EMERG "CR2: %016lx\n", address);
866 oops_end(flags, regs, SIGKILL);
867 #endif
870 * We ran out of memory, or some other thing happened to us that made
871 * us unable to handle the page fault gracefully.
873 out_of_memory:
874 up_read(&mm->mmap_sem);
875 if (is_global_init(tsk)) {
876 yield();
877 #ifdef CONFIG_X86_32
878 down_read(&mm->mmap_sem);
879 goto survive;
880 #else
881 goto again;
882 #endif
885 printk("VM: killing process %s\n", tsk->comm);
886 if (error_code & PF_USER)
887 do_group_exit(SIGKILL);
888 goto no_context;
890 do_sigbus:
891 up_read(&mm->mmap_sem);
893 /* Kernel mode? Handle exceptions or die */
894 if (!(error_code & PF_USER))
895 goto no_context;
896 #ifdef CONFIG_X86_32
897 /* User space => ok to do another page fault */
898 if (is_prefetch(regs, address, error_code))
899 return;
900 #endif
901 tsk->thread.cr2 = address;
902 tsk->thread.error_code = error_code;
903 tsk->thread.trap_no = 14;
904 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
907 DEFINE_SPINLOCK(pgd_lock);
908 LIST_HEAD(pgd_list);
910 void vmalloc_sync_all(void)
912 #ifdef CONFIG_X86_32
914 * Note that races in the updates of insync and start aren't
915 * problematic: insync can only get set bits added, and updates to
916 * start are only improving performance (without affecting correctness
917 * if undone).
919 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
920 static unsigned long start = TASK_SIZE;
921 unsigned long address;
923 if (SHARED_KERNEL_PMD)
924 return;
926 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
927 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
928 if (!test_bit(pgd_index(address), insync)) {
929 unsigned long flags;
930 struct page *page;
932 spin_lock_irqsave(&pgd_lock, flags);
933 list_for_each_entry(page, &pgd_list, lru) {
934 if (!vmalloc_sync_one(page_address(page),
935 address))
936 break;
938 spin_unlock_irqrestore(&pgd_lock, flags);
939 if (!page)
940 set_bit(pgd_index(address), insync);
942 if (address == start && test_bit(pgd_index(address), insync))
943 start = address + PGDIR_SIZE;
945 #else /* CONFIG_X86_64 */
947 * Note that races in the updates of insync and start aren't
948 * problematic: insync can only get set bits added, and updates to
949 * start are only improving performance (without affecting correctness
950 * if undone).
952 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
953 static unsigned long start = VMALLOC_START & PGDIR_MASK;
954 unsigned long address;
956 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
957 if (!test_bit(pgd_index(address), insync)) {
958 const pgd_t *pgd_ref = pgd_offset_k(address);
959 unsigned long flags;
960 struct page *page;
962 if (pgd_none(*pgd_ref))
963 continue;
964 spin_lock_irqsave(&pgd_lock, flags);
965 list_for_each_entry(page, &pgd_list, lru) {
966 pgd_t *pgd;
967 pgd = (pgd_t *)page_address(page) + pgd_index(address);
968 if (pgd_none(*pgd))
969 set_pgd(pgd, *pgd_ref);
970 else
971 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
973 spin_unlock_irqrestore(&pgd_lock, flags);
974 set_bit(pgd_index(address), insync);
976 if (address == start)
977 start = address + PGDIR_SIZE;
979 #endif