2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
17 #include <asm/proto.h>
27 struct pglist_data
*node_data
[MAX_NUMNODES
] __read_mostly
;
28 EXPORT_SYMBOL(node_data
);
30 bootmem_data_t plat_node_bdata
[MAX_NUMNODES
];
32 struct memnode memnode
;
35 int x86_cpu_to_node_map_init
[NR_CPUS
] = {
36 [0 ... NR_CPUS
-1] = NUMA_NO_NODE
38 void *x86_cpu_to_node_map_early_ptr
;
39 EXPORT_SYMBOL(x86_cpu_to_node_map_early_ptr
);
41 DEFINE_PER_CPU(int, x86_cpu_to_node_map
) = NUMA_NO_NODE
;
42 EXPORT_PER_CPU_SYMBOL(x86_cpu_to_node_map
);
44 s16 apicid_to_node
[MAX_LOCAL_APIC
] __cpuinitdata
= {
45 [0 ... MAX_LOCAL_APIC
-1] = NUMA_NO_NODE
48 cpumask_t node_to_cpumask_map
[MAX_NUMNODES
] __read_mostly
;
49 EXPORT_SYMBOL(node_to_cpumask_map
);
51 int numa_off __initdata
;
52 unsigned long __initdata nodemap_addr
;
53 unsigned long __initdata nodemap_size
;
56 * Given a shift value, try to populate memnodemap[]
59 * 0 if memnodmap[] too small (of shift too small)
60 * -1 if node overlap or lost ram (shift too big)
62 static int __init
populate_memnodemap(const struct bootnode
*nodes
,
63 int numnodes
, int shift
, int *nodeids
)
65 unsigned long addr
, end
;
68 memset(memnodemap
, 0xff, sizeof(s16
)*memnodemapsize
);
69 for (i
= 0; i
< numnodes
; i
++) {
70 addr
= nodes
[i
].start
;
74 if ((end
>> shift
) >= memnodemapsize
)
77 if (memnodemap
[addr
>> shift
] != NUMA_NO_NODE
)
81 memnodemap
[addr
>> shift
] = i
;
83 memnodemap
[addr
>> shift
] = nodeids
[i
];
85 addr
+= (1UL << shift
);
92 static int __init
allocate_cachealigned_memnodemap(void)
96 memnodemap
= memnode
.embedded_map
;
97 if (memnodemapsize
<= ARRAY_SIZE(memnode
.embedded_map
))
101 nodemap_size
= round_up(sizeof(s16
) * memnodemapsize
, L1_CACHE_BYTES
);
102 nodemap_addr
= find_e820_area(addr
, end_pfn
<<PAGE_SHIFT
,
103 nodemap_size
, L1_CACHE_BYTES
);
104 if (nodemap_addr
== -1UL) {
106 "NUMA: Unable to allocate Memory to Node hash map\n");
107 nodemap_addr
= nodemap_size
= 0;
110 memnodemap
= phys_to_virt(nodemap_addr
);
111 reserve_early(nodemap_addr
, nodemap_addr
+ nodemap_size
, "MEMNODEMAP");
113 printk(KERN_DEBUG
"NUMA: Allocated memnodemap from %lx - %lx\n",
114 nodemap_addr
, nodemap_addr
+ nodemap_size
);
119 * The LSB of all start and end addresses in the node map is the value of the
120 * maximum possible shift.
122 static int __init
extract_lsb_from_nodes(const struct bootnode
*nodes
,
125 int i
, nodes_used
= 0;
126 unsigned long start
, end
;
127 unsigned long bitfield
= 0, memtop
= 0;
129 for (i
= 0; i
< numnodes
; i
++) {
130 start
= nodes
[i
].start
;
142 i
= find_first_bit(&bitfield
, sizeof(unsigned long)*8);
143 memnodemapsize
= (memtop
>> i
)+1;
147 int __init
compute_hash_shift(struct bootnode
*nodes
, int numnodes
,
152 shift
= extract_lsb_from_nodes(nodes
, numnodes
);
153 if (allocate_cachealigned_memnodemap())
155 printk(KERN_DEBUG
"NUMA: Using %d for the hash shift.\n",
158 if (populate_memnodemap(nodes
, numnodes
, shift
, nodeids
) != 1) {
159 printk(KERN_INFO
"Your memory is not aligned you need to "
160 "rebuild your kernel with a bigger NODEMAPSIZE "
161 "shift=%d\n", shift
);
167 int early_pfn_to_nid(unsigned long pfn
)
169 return phys_to_nid(pfn
<< PAGE_SHIFT
);
172 static void * __init
early_node_mem(int nodeid
, unsigned long start
,
173 unsigned long end
, unsigned long size
,
176 unsigned long mem
= find_e820_area(start
, end
, size
, align
);
182 ptr
= __alloc_bootmem_nopanic(size
, align
, __pa(MAX_DMA_ADDRESS
));
184 printk(KERN_ERR
"Cannot find %lu bytes in node %d\n",
191 /* Initialize bootmem allocator for a node */
192 void __init
setup_node_bootmem(int nodeid
, unsigned long start
,
195 unsigned long start_pfn
, end_pfn
, bootmap_pages
, bootmap_size
;
196 unsigned long bootmap_start
, nodedata_phys
;
198 const int pgdat_size
= round_up(sizeof(pg_data_t
), PAGE_SIZE
);
201 start
= round_up(start
, ZONE_ALIGN
);
203 printk(KERN_INFO
"Bootmem setup node %d %016lx-%016lx\n", nodeid
,
206 start_pfn
= start
>> PAGE_SHIFT
;
207 end_pfn
= end
>> PAGE_SHIFT
;
209 node_data
[nodeid
] = early_node_mem(nodeid
, start
, end
, pgdat_size
,
211 if (node_data
[nodeid
] == NULL
)
213 nodedata_phys
= __pa(node_data
[nodeid
]);
214 printk(KERN_INFO
" NODE_DATA [%016lx - %016lx]\n", nodedata_phys
,
215 nodedata_phys
+ pgdat_size
- 1);
217 memset(NODE_DATA(nodeid
), 0, sizeof(pg_data_t
));
218 NODE_DATA(nodeid
)->bdata
= &plat_node_bdata
[nodeid
];
219 NODE_DATA(nodeid
)->node_start_pfn
= start_pfn
;
220 NODE_DATA(nodeid
)->node_spanned_pages
= end_pfn
- start_pfn
;
223 * Find a place for the bootmem map
224 * nodedata_phys could be on other nodes by alloc_bootmem,
225 * so need to sure bootmap_start not to be small, otherwise
226 * early_node_mem will get that with find_e820_area instead
227 * of alloc_bootmem, that could clash with reserved range
229 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
230 nid
= phys_to_nid(nodedata_phys
);
232 bootmap_start
= round_up(nodedata_phys
+ pgdat_size
, PAGE_SIZE
);
234 bootmap_start
= round_up(start
, PAGE_SIZE
);
236 * SMP_CAHCE_BYTES could be enough, but init_bootmem_node like
237 * to use that to align to PAGE_SIZE
239 bootmap
= early_node_mem(nodeid
, bootmap_start
, end
,
240 bootmap_pages
<<PAGE_SHIFT
, PAGE_SIZE
);
241 if (bootmap
== NULL
) {
242 if (nodedata_phys
< start
|| nodedata_phys
>= end
)
243 free_bootmem(nodedata_phys
, pgdat_size
);
244 node_data
[nodeid
] = NULL
;
247 bootmap_start
= __pa(bootmap
);
249 bootmap_size
= init_bootmem_node(NODE_DATA(nodeid
),
250 bootmap_start
>> PAGE_SHIFT
,
253 printk(KERN_INFO
" bootmap [%016lx - %016lx] pages %lx\n",
254 bootmap_start
, bootmap_start
+ bootmap_size
- 1,
257 free_bootmem_with_active_regions(nodeid
, end
);
260 * convert early reserve to bootmem reserve earlier
261 * otherwise early_node_mem could use early reserved mem
264 early_res_to_bootmem(start
, end
);
267 * in some case early_node_mem could use alloc_bootmem
268 * to get range on other node, don't reserve that again
271 printk(KERN_INFO
" NODE_DATA(%d) on node %d\n", nodeid
, nid
);
273 reserve_bootmem_node(NODE_DATA(nodeid
), nodedata_phys
,
274 pgdat_size
, BOOTMEM_DEFAULT
);
275 nid
= phys_to_nid(bootmap_start
);
277 printk(KERN_INFO
" bootmap(%d) on node %d\n", nodeid
, nid
);
279 reserve_bootmem_node(NODE_DATA(nodeid
), bootmap_start
,
280 bootmap_pages
<<PAGE_SHIFT
, BOOTMEM_DEFAULT
);
282 #ifdef CONFIG_ACPI_NUMA
283 srat_reserve_add_area(nodeid
);
285 node_set_online(nodeid
);
289 * There are unfortunately some poorly designed mainboards around that
290 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
291 * mapping. To avoid this fill in the mapping for all possible CPUs,
292 * as the number of CPUs is not known yet. We round robin the existing
295 void __init
numa_init_array(void)
299 rr
= first_node(node_online_map
);
300 for (i
= 0; i
< NR_CPUS
; i
++) {
301 if (early_cpu_to_node(i
) != NUMA_NO_NODE
)
303 numa_set_node(i
, rr
);
304 rr
= next_node(rr
, node_online_map
);
305 if (rr
== MAX_NUMNODES
)
306 rr
= first_node(node_online_map
);
310 #ifdef CONFIG_NUMA_EMU
312 char *cmdline __initdata
;
315 * Setups up nid to range from addr to addr + size. If the end
316 * boundary is greater than max_addr, then max_addr is used instead.
317 * The return value is 0 if there is additional memory left for
318 * allocation past addr and -1 otherwise. addr is adjusted to be at
319 * the end of the node.
321 static int __init
setup_node_range(int nid
, struct bootnode
*nodes
, u64
*addr
,
322 u64 size
, u64 max_addr
)
326 nodes
[nid
].start
= *addr
;
328 if (*addr
>= max_addr
) {
332 nodes
[nid
].end
= *addr
;
333 node_set(nid
, node_possible_map
);
334 printk(KERN_INFO
"Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid
,
335 nodes
[nid
].start
, nodes
[nid
].end
,
336 (nodes
[nid
].end
- nodes
[nid
].start
) >> 20);
341 * Splits num_nodes nodes up equally starting at node_start. The return value
342 * is the number of nodes split up and addr is adjusted to be at the end of the
343 * last node allocated.
345 static int __init
split_nodes_equally(struct bootnode
*nodes
, u64
*addr
,
346 u64 max_addr
, int node_start
,
355 if (num_nodes
> MAX_NUMNODES
)
356 num_nodes
= MAX_NUMNODES
;
357 size
= (max_addr
- *addr
- e820_hole_size(*addr
, max_addr
)) /
360 * Calculate the number of big nodes that can be allocated as a result
361 * of consolidating the leftovers.
363 big
= ((size
& ~FAKE_NODE_MIN_HASH_MASK
) * num_nodes
) /
366 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
367 size
&= FAKE_NODE_MIN_HASH_MASK
;
369 printk(KERN_ERR
"Not enough memory for each node. "
370 "NUMA emulation disabled.\n");
374 for (i
= node_start
; i
< num_nodes
+ node_start
; i
++) {
375 u64 end
= *addr
+ size
;
378 end
+= FAKE_NODE_MIN_SIZE
;
380 * The final node can have the remaining system RAM. Other
381 * nodes receive roughly the same amount of available pages.
383 if (i
== num_nodes
+ node_start
- 1)
386 while (end
- *addr
- e820_hole_size(*addr
, end
) <
388 end
+= FAKE_NODE_MIN_SIZE
;
389 if (end
> max_addr
) {
394 if (setup_node_range(i
, nodes
, addr
, end
- *addr
, max_addr
) < 0)
397 return i
- node_start
+ 1;
401 * Splits the remaining system RAM into chunks of size. The remaining memory is
402 * always assigned to a final node and can be asymmetric. Returns the number of
405 static int __init
split_nodes_by_size(struct bootnode
*nodes
, u64
*addr
,
406 u64 max_addr
, int node_start
, u64 size
)
409 size
= (size
<< 20) & FAKE_NODE_MIN_HASH_MASK
;
410 while (!setup_node_range(i
++, nodes
, addr
, size
, max_addr
))
412 return i
- node_start
;
416 * Sets up the system RAM area from start_pfn to end_pfn according to the
417 * numa=fake command-line option.
419 static struct bootnode nodes
[MAX_NUMNODES
] __initdata
;
421 static int __init
numa_emulation(unsigned long start_pfn
, unsigned long end_pfn
)
423 u64 size
, addr
= start_pfn
<< PAGE_SHIFT
;
424 u64 max_addr
= end_pfn
<< PAGE_SHIFT
;
425 int num_nodes
= 0, num
= 0, coeff_flag
, coeff
= -1, i
;
427 memset(&nodes
, 0, sizeof(nodes
));
429 * If the numa=fake command-line is just a single number N, split the
430 * system RAM into N fake nodes.
432 if (!strchr(cmdline
, '*') && !strchr(cmdline
, ',')) {
433 long n
= simple_strtol(cmdline
, NULL
, 0);
435 num_nodes
= split_nodes_equally(nodes
, &addr
, max_addr
, 0, n
);
441 /* Parse the command line. */
442 for (coeff_flag
= 0; ; cmdline
++) {
443 if (*cmdline
&& isdigit(*cmdline
)) {
444 num
= num
* 10 + *cmdline
- '0';
447 if (*cmdline
== '*') {
452 if (!*cmdline
|| *cmdline
== ',') {
456 * Round down to the nearest FAKE_NODE_MIN_SIZE.
457 * Command-line coefficients are in megabytes.
459 size
= ((u64
)num
<< 20) & FAKE_NODE_MIN_HASH_MASK
;
461 for (i
= 0; i
< coeff
; i
++, num_nodes
++)
462 if (setup_node_range(num_nodes
, nodes
,
463 &addr
, size
, max_addr
) < 0)
475 /* Fill remainder of system RAM, if appropriate. */
476 if (addr
< max_addr
) {
477 if (coeff_flag
&& coeff
< 0) {
478 /* Split remaining nodes into num-sized chunks */
479 num_nodes
+= split_nodes_by_size(nodes
, &addr
, max_addr
,
483 switch (*(cmdline
- 1)) {
485 /* Split remaining nodes into coeff chunks */
488 num_nodes
+= split_nodes_equally(nodes
, &addr
, max_addr
,
492 /* Do not allocate remaining system RAM */
495 /* Give one final node */
496 setup_node_range(num_nodes
, nodes
, &addr
,
497 max_addr
- addr
, max_addr
);
502 memnode_shift
= compute_hash_shift(nodes
, num_nodes
, NULL
);
503 if (memnode_shift
< 0) {
505 printk(KERN_ERR
"No NUMA hash function found. NUMA emulation "
511 * We need to vacate all active ranges that may have been registered by
512 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
513 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
515 remove_all_active_ranges();
516 #ifdef CONFIG_ACPI_NUMA
519 for_each_node_mask(i
, node_possible_map
) {
520 e820_register_active_regions(i
, nodes
[i
].start
>> PAGE_SHIFT
,
521 nodes
[i
].end
>> PAGE_SHIFT
);
522 setup_node_bootmem(i
, nodes
[i
].start
, nodes
[i
].end
);
524 acpi_fake_nodes(nodes
, num_nodes
);
528 #endif /* CONFIG_NUMA_EMU */
530 void __init
numa_initmem_init(unsigned long start_pfn
, unsigned long end_pfn
)
534 nodes_clear(node_possible_map
);
535 nodes_clear(node_online_map
);
537 #ifdef CONFIG_NUMA_EMU
538 if (cmdline
&& !numa_emulation(start_pfn
, end_pfn
))
540 nodes_clear(node_possible_map
);
541 nodes_clear(node_online_map
);
544 #ifdef CONFIG_ACPI_NUMA
545 if (!numa_off
&& !acpi_scan_nodes(start_pfn
<< PAGE_SHIFT
,
546 end_pfn
<< PAGE_SHIFT
))
548 nodes_clear(node_possible_map
);
549 nodes_clear(node_online_map
);
552 #ifdef CONFIG_K8_NUMA
553 if (!numa_off
&& !k8_scan_nodes(start_pfn
<<PAGE_SHIFT
,
554 end_pfn
<<PAGE_SHIFT
))
556 nodes_clear(node_possible_map
);
557 nodes_clear(node_online_map
);
559 printk(KERN_INFO
"%s\n",
560 numa_off
? "NUMA turned off" : "No NUMA configuration found");
562 printk(KERN_INFO
"Faking a node at %016lx-%016lx\n",
563 start_pfn
<< PAGE_SHIFT
,
564 end_pfn
<< PAGE_SHIFT
);
565 /* setup dummy node covering all memory */
567 memnodemap
= memnode
.embedded_map
;
570 node_set(0, node_possible_map
);
571 for (i
= 0; i
< NR_CPUS
; i
++)
573 /* cpumask_of_cpu() may not be available during early startup */
574 memset(&node_to_cpumask_map
[0], 0, sizeof(node_to_cpumask_map
[0]));
575 cpu_set(0, node_to_cpumask_map
[0]);
576 e820_register_active_regions(0, start_pfn
, end_pfn
);
577 setup_node_bootmem(0, start_pfn
<< PAGE_SHIFT
, end_pfn
<< PAGE_SHIFT
);
580 __cpuinit
void numa_add_cpu(int cpu
)
583 (unsigned long *)&node_to_cpumask_map
[early_cpu_to_node(cpu
)]);
586 void __cpuinit
numa_set_node(int cpu
, int node
)
588 int *cpu_to_node_map
= x86_cpu_to_node_map_early_ptr
;
591 cpu_to_node_map
[cpu
] = node
;
592 else if(per_cpu_offset(cpu
))
593 per_cpu(x86_cpu_to_node_map
, cpu
) = node
;
595 Dprintk(KERN_INFO
"Setting node for non-present cpu %d\n", cpu
);
598 unsigned long __init
numa_free_all_bootmem(void)
600 unsigned long pages
= 0;
603 for_each_online_node(i
)
604 pages
+= free_all_bootmem_node(NODE_DATA(i
));
609 void __init
paging_init(void)
611 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
613 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
614 max_zone_pfns
[ZONE_DMA
] = MAX_DMA_PFN
;
615 max_zone_pfns
[ZONE_DMA32
] = MAX_DMA32_PFN
;
616 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
618 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
621 free_area_init_nodes(max_zone_pfns
);
624 static __init
int numa_setup(char *opt
)
628 if (!strncmp(opt
, "off", 3))
630 #ifdef CONFIG_NUMA_EMU
631 if (!strncmp(opt
, "fake=", 5))
634 #ifdef CONFIG_ACPI_NUMA
635 if (!strncmp(opt
, "noacpi", 6))
637 if (!strncmp(opt
, "hotadd=", 7))
638 hotadd_percent
= simple_strtoul(opt
+7, NULL
, 10);
642 early_param("numa", numa_setup
);
645 * Setup early cpu_to_node.
647 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
648 * and apicid_to_node[] tables have valid entries for a CPU.
649 * This means we skip cpu_to_node[] initialisation for NUMA
650 * emulation and faking node case (when running a kernel compiled
651 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
652 * is already initialized in a round robin manner at numa_init_array,
653 * prior to this call, and this initialization is good enough
654 * for the fake NUMA cases.
656 void __init
init_cpu_to_node(void)
660 for (i
= 0; i
< NR_CPUS
; i
++) {
662 u16 apicid
= x86_cpu_to_apicid_init
[i
];
664 if (apicid
== BAD_APICID
)
666 node
= apicid_to_node
[apicid
];
667 if (node
== NUMA_NO_NODE
)
669 if (!node_online(node
))
671 numa_set_node(i
, node
);