1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * Shared functions for accessing and configuring the MAC
36 static s32
e1000_swfw_sync_acquire(struct e1000_hw
*hw
, u16 mask
);
37 static void e1000_swfw_sync_release(struct e1000_hw
*hw
, u16 mask
);
38 static s32
e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 reg_addr
, u16
*data
);
39 static s32
e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 reg_addr
, u16 data
);
40 static s32
e1000_get_software_semaphore(struct e1000_hw
*hw
);
41 static void e1000_release_software_semaphore(struct e1000_hw
*hw
);
43 static u8
e1000_arc_subsystem_valid(struct e1000_hw
*hw
);
44 static s32
e1000_check_downshift(struct e1000_hw
*hw
);
45 static s32
e1000_check_polarity(struct e1000_hw
*hw
, e1000_rev_polarity
*polarity
);
46 static void e1000_clear_hw_cntrs(struct e1000_hw
*hw
);
47 static void e1000_clear_vfta(struct e1000_hw
*hw
);
48 static s32
e1000_commit_shadow_ram(struct e1000_hw
*hw
);
49 static s32
e1000_config_dsp_after_link_change(struct e1000_hw
*hw
,
51 static s32
e1000_config_fc_after_link_up(struct e1000_hw
*hw
);
52 static s32
e1000_detect_gig_phy(struct e1000_hw
*hw
);
53 static s32
e1000_erase_ich8_4k_segment(struct e1000_hw
*hw
, u32 bank
);
54 static s32
e1000_get_auto_rd_done(struct e1000_hw
*hw
);
55 static s32
e1000_get_cable_length(struct e1000_hw
*hw
, u16
*min_length
, u16
*max_length
);
56 static s32
e1000_get_hw_eeprom_semaphore(struct e1000_hw
*hw
);
57 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
);
58 static s32
e1000_get_software_flag(struct e1000_hw
*hw
);
59 static s32
e1000_ich8_cycle_init(struct e1000_hw
*hw
);
60 static s32
e1000_ich8_flash_cycle(struct e1000_hw
*hw
, u32 timeout
);
61 static s32
e1000_id_led_init(struct e1000_hw
*hw
);
62 static s32
e1000_init_lcd_from_nvm_config_region(struct e1000_hw
*hw
, u32 cnf_base_addr
, u32 cnf_size
);
63 static s32
e1000_init_lcd_from_nvm(struct e1000_hw
*hw
);
64 static void e1000_init_rx_addrs(struct e1000_hw
*hw
);
65 static void e1000_initialize_hardware_bits(struct e1000_hw
*hw
);
66 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw
*hw
);
67 static s32
e1000_kumeran_lock_loss_workaround(struct e1000_hw
*hw
);
68 static s32
e1000_mng_enable_host_if(struct e1000_hw
*hw
);
69 static s32
e1000_mng_host_if_write(struct e1000_hw
*hw
, u8
*buffer
, u16 length
, u16 offset
, u8
*sum
);
70 static s32
e1000_mng_write_cmd_header(struct e1000_hw
* hw
, struct e1000_host_mng_command_header
* hdr
);
71 static s32
e1000_mng_write_commit(struct e1000_hw
*hw
);
72 static s32
e1000_phy_ife_get_info(struct e1000_hw
*hw
, struct e1000_phy_info
*phy_info
);
73 static s32
e1000_phy_igp_get_info(struct e1000_hw
*hw
, struct e1000_phy_info
*phy_info
);
74 static s32
e1000_read_eeprom_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
);
75 static s32
e1000_write_eeprom_eewr(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
);
76 static s32
e1000_poll_eerd_eewr_done(struct e1000_hw
*hw
, int eerd
);
77 static s32
e1000_phy_m88_get_info(struct e1000_hw
*hw
, struct e1000_phy_info
*phy_info
);
78 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw
*hw
);
79 static s32
e1000_read_ich8_byte(struct e1000_hw
*hw
, u32 index
, u8
*data
);
80 static s32
e1000_verify_write_ich8_byte(struct e1000_hw
*hw
, u32 index
, u8 byte
);
81 static s32
e1000_write_ich8_byte(struct e1000_hw
*hw
, u32 index
, u8 byte
);
82 static s32
e1000_read_ich8_word(struct e1000_hw
*hw
, u32 index
, u16
*data
);
83 static s32
e1000_read_ich8_data(struct e1000_hw
*hw
, u32 index
, u32 size
, u16
*data
);
84 static s32
e1000_write_ich8_data(struct e1000_hw
*hw
, u32 index
, u32 size
, u16 data
);
85 static s32
e1000_read_eeprom_ich8(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
);
86 static s32
e1000_write_eeprom_ich8(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
);
87 static void e1000_release_software_flag(struct e1000_hw
*hw
);
88 static s32
e1000_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
);
89 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
);
90 static s32
e1000_set_pci_ex_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
);
91 static void e1000_set_pci_express_master_disable(struct e1000_hw
*hw
);
92 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
93 static void e1000_write_reg_io(struct e1000_hw
*hw
, u32 offset
, u32 value
);
94 static s32
e1000_set_phy_type(struct e1000_hw
*hw
);
95 static void e1000_phy_init_script(struct e1000_hw
*hw
);
96 static s32
e1000_setup_copper_link(struct e1000_hw
*hw
);
97 static s32
e1000_setup_fiber_serdes_link(struct e1000_hw
*hw
);
98 static s32
e1000_adjust_serdes_amplitude(struct e1000_hw
*hw
);
99 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
);
100 static s32
e1000_config_mac_to_phy(struct e1000_hw
*hw
);
101 static void e1000_raise_mdi_clk(struct e1000_hw
*hw
, u32
*ctrl
);
102 static void e1000_lower_mdi_clk(struct e1000_hw
*hw
, u32
*ctrl
);
103 static void e1000_shift_out_mdi_bits(struct e1000_hw
*hw
, u32 data
,
105 static u16
e1000_shift_in_mdi_bits(struct e1000_hw
*hw
);
106 static s32
e1000_phy_reset_dsp(struct e1000_hw
*hw
);
107 static s32
e1000_write_eeprom_spi(struct e1000_hw
*hw
, u16 offset
,
108 u16 words
, u16
*data
);
109 static s32
e1000_write_eeprom_microwire(struct e1000_hw
*hw
,
110 u16 offset
, u16 words
,
112 static s32
e1000_spi_eeprom_ready(struct e1000_hw
*hw
);
113 static void e1000_raise_ee_clk(struct e1000_hw
*hw
, u32
*eecd
);
114 static void e1000_lower_ee_clk(struct e1000_hw
*hw
, u32
*eecd
);
115 static void e1000_shift_out_ee_bits(struct e1000_hw
*hw
, u16 data
,
117 static s32
e1000_write_phy_reg_ex(struct e1000_hw
*hw
, u32 reg_addr
,
119 static s32
e1000_read_phy_reg_ex(struct e1000_hw
*hw
,u32 reg_addr
,
121 static u16
e1000_shift_in_ee_bits(struct e1000_hw
*hw
, u16 count
);
122 static s32
e1000_acquire_eeprom(struct e1000_hw
*hw
);
123 static void e1000_release_eeprom(struct e1000_hw
*hw
);
124 static void e1000_standby_eeprom(struct e1000_hw
*hw
);
125 static s32
e1000_set_vco_speed(struct e1000_hw
*hw
);
126 static s32
e1000_polarity_reversal_workaround(struct e1000_hw
*hw
);
127 static s32
e1000_set_phy_mode(struct e1000_hw
*hw
);
128 static s32
e1000_host_if_read_cookie(struct e1000_hw
*hw
, u8
*buffer
);
129 static u8
e1000_calculate_mng_checksum(char *buffer
, u32 length
);
130 static s32
e1000_configure_kmrn_for_10_100(struct e1000_hw
*hw
,
132 static s32
e1000_configure_kmrn_for_1000(struct e1000_hw
*hw
);
134 /* IGP cable length table */
136 u16 e1000_igp_cable_length_table
[IGP01E1000_AGC_LENGTH_TABLE_SIZE
] =
137 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
138 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
139 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
140 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
141 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
142 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
143 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
144 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
147 u16 e1000_igp_2_cable_length_table
[IGP02E1000_AGC_LENGTH_TABLE_SIZE
] =
148 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
149 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
150 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
151 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
152 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
153 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
154 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
155 104, 109, 114, 118, 121, 124};
157 /******************************************************************************
158 * Set the phy type member in the hw struct.
160 * hw - Struct containing variables accessed by shared code
161 *****************************************************************************/
163 e1000_set_phy_type(struct e1000_hw
*hw
)
165 DEBUGFUNC("e1000_set_phy_type");
167 if (hw
->mac_type
== e1000_undefined
)
168 return -E1000_ERR_PHY_TYPE
;
170 switch (hw
->phy_id
) {
171 case M88E1000_E_PHY_ID
:
172 case M88E1000_I_PHY_ID
:
173 case M88E1011_I_PHY_ID
:
174 case M88E1111_I_PHY_ID
:
175 hw
->phy_type
= e1000_phy_m88
;
177 case IGP01E1000_I_PHY_ID
:
178 if (hw
->mac_type
== e1000_82541
||
179 hw
->mac_type
== e1000_82541_rev_2
||
180 hw
->mac_type
== e1000_82547
||
181 hw
->mac_type
== e1000_82547_rev_2
) {
182 hw
->phy_type
= e1000_phy_igp
;
185 case IGP03E1000_E_PHY_ID
:
186 hw
->phy_type
= e1000_phy_igp_3
;
189 case IFE_PLUS_E_PHY_ID
:
191 hw
->phy_type
= e1000_phy_ife
;
193 case GG82563_E_PHY_ID
:
194 if (hw
->mac_type
== e1000_80003es2lan
) {
195 hw
->phy_type
= e1000_phy_gg82563
;
200 /* Should never have loaded on this device */
201 hw
->phy_type
= e1000_phy_undefined
;
202 return -E1000_ERR_PHY_TYPE
;
205 return E1000_SUCCESS
;
208 /******************************************************************************
209 * IGP phy init script - initializes the GbE PHY
211 * hw - Struct containing variables accessed by shared code
212 *****************************************************************************/
214 e1000_phy_init_script(struct e1000_hw
*hw
)
219 DEBUGFUNC("e1000_phy_init_script");
221 if (hw
->phy_init_script
) {
224 /* Save off the current value of register 0x2F5B to be restored at
225 * the end of this routine. */
226 ret_val
= e1000_read_phy_reg(hw
, 0x2F5B, &phy_saved_data
);
228 /* Disabled the PHY transmitter */
229 e1000_write_phy_reg(hw
, 0x2F5B, 0x0003);
233 e1000_write_phy_reg(hw
,0x0000,0x0140);
237 switch (hw
->mac_type
) {
240 e1000_write_phy_reg(hw
, 0x1F95, 0x0001);
242 e1000_write_phy_reg(hw
, 0x1F71, 0xBD21);
244 e1000_write_phy_reg(hw
, 0x1F79, 0x0018);
246 e1000_write_phy_reg(hw
, 0x1F30, 0x1600);
248 e1000_write_phy_reg(hw
, 0x1F31, 0x0014);
250 e1000_write_phy_reg(hw
, 0x1F32, 0x161C);
252 e1000_write_phy_reg(hw
, 0x1F94, 0x0003);
254 e1000_write_phy_reg(hw
, 0x1F96, 0x003F);
256 e1000_write_phy_reg(hw
, 0x2010, 0x0008);
259 case e1000_82541_rev_2
:
260 case e1000_82547_rev_2
:
261 e1000_write_phy_reg(hw
, 0x1F73, 0x0099);
267 e1000_write_phy_reg(hw
, 0x0000, 0x3300);
271 /* Now enable the transmitter */
272 e1000_write_phy_reg(hw
, 0x2F5B, phy_saved_data
);
274 if (hw
->mac_type
== e1000_82547
) {
275 u16 fused
, fine
, coarse
;
277 /* Move to analog registers page */
278 e1000_read_phy_reg(hw
, IGP01E1000_ANALOG_SPARE_FUSE_STATUS
, &fused
);
280 if (!(fused
& IGP01E1000_ANALOG_SPARE_FUSE_ENABLED
)) {
281 e1000_read_phy_reg(hw
, IGP01E1000_ANALOG_FUSE_STATUS
, &fused
);
283 fine
= fused
& IGP01E1000_ANALOG_FUSE_FINE_MASK
;
284 coarse
= fused
& IGP01E1000_ANALOG_FUSE_COARSE_MASK
;
286 if (coarse
> IGP01E1000_ANALOG_FUSE_COARSE_THRESH
) {
287 coarse
-= IGP01E1000_ANALOG_FUSE_COARSE_10
;
288 fine
-= IGP01E1000_ANALOG_FUSE_FINE_1
;
289 } else if (coarse
== IGP01E1000_ANALOG_FUSE_COARSE_THRESH
)
290 fine
-= IGP01E1000_ANALOG_FUSE_FINE_10
;
292 fused
= (fused
& IGP01E1000_ANALOG_FUSE_POLY_MASK
) |
293 (fine
& IGP01E1000_ANALOG_FUSE_FINE_MASK
) |
294 (coarse
& IGP01E1000_ANALOG_FUSE_COARSE_MASK
);
296 e1000_write_phy_reg(hw
, IGP01E1000_ANALOG_FUSE_CONTROL
, fused
);
297 e1000_write_phy_reg(hw
, IGP01E1000_ANALOG_FUSE_BYPASS
,
298 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL
);
304 /******************************************************************************
305 * Set the mac type member in the hw struct.
307 * hw - Struct containing variables accessed by shared code
308 *****************************************************************************/
310 e1000_set_mac_type(struct e1000_hw
*hw
)
312 DEBUGFUNC("e1000_set_mac_type");
314 switch (hw
->device_id
) {
315 case E1000_DEV_ID_82542
:
316 switch (hw
->revision_id
) {
317 case E1000_82542_2_0_REV_ID
:
318 hw
->mac_type
= e1000_82542_rev2_0
;
320 case E1000_82542_2_1_REV_ID
:
321 hw
->mac_type
= e1000_82542_rev2_1
;
324 /* Invalid 82542 revision ID */
325 return -E1000_ERR_MAC_TYPE
;
328 case E1000_DEV_ID_82543GC_FIBER
:
329 case E1000_DEV_ID_82543GC_COPPER
:
330 hw
->mac_type
= e1000_82543
;
332 case E1000_DEV_ID_82544EI_COPPER
:
333 case E1000_DEV_ID_82544EI_FIBER
:
334 case E1000_DEV_ID_82544GC_COPPER
:
335 case E1000_DEV_ID_82544GC_LOM
:
336 hw
->mac_type
= e1000_82544
;
338 case E1000_DEV_ID_82540EM
:
339 case E1000_DEV_ID_82540EM_LOM
:
340 case E1000_DEV_ID_82540EP
:
341 case E1000_DEV_ID_82540EP_LOM
:
342 case E1000_DEV_ID_82540EP_LP
:
343 hw
->mac_type
= e1000_82540
;
345 case E1000_DEV_ID_82545EM_COPPER
:
346 case E1000_DEV_ID_82545EM_FIBER
:
347 hw
->mac_type
= e1000_82545
;
349 case E1000_DEV_ID_82545GM_COPPER
:
350 case E1000_DEV_ID_82545GM_FIBER
:
351 case E1000_DEV_ID_82545GM_SERDES
:
352 hw
->mac_type
= e1000_82545_rev_3
;
354 case E1000_DEV_ID_82546EB_COPPER
:
355 case E1000_DEV_ID_82546EB_FIBER
:
356 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
357 hw
->mac_type
= e1000_82546
;
359 case E1000_DEV_ID_82546GB_COPPER
:
360 case E1000_DEV_ID_82546GB_FIBER
:
361 case E1000_DEV_ID_82546GB_SERDES
:
362 case E1000_DEV_ID_82546GB_PCIE
:
363 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
364 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
365 hw
->mac_type
= e1000_82546_rev_3
;
367 case E1000_DEV_ID_82541EI
:
368 case E1000_DEV_ID_82541EI_MOBILE
:
369 case E1000_DEV_ID_82541ER_LOM
:
370 hw
->mac_type
= e1000_82541
;
372 case E1000_DEV_ID_82541ER
:
373 case E1000_DEV_ID_82541GI
:
374 case E1000_DEV_ID_82541GI_LF
:
375 case E1000_DEV_ID_82541GI_MOBILE
:
376 hw
->mac_type
= e1000_82541_rev_2
;
378 case E1000_DEV_ID_82547EI
:
379 case E1000_DEV_ID_82547EI_MOBILE
:
380 hw
->mac_type
= e1000_82547
;
382 case E1000_DEV_ID_82547GI
:
383 hw
->mac_type
= e1000_82547_rev_2
;
385 case E1000_DEV_ID_82571EB_COPPER
:
386 case E1000_DEV_ID_82571EB_FIBER
:
387 case E1000_DEV_ID_82571EB_SERDES
:
388 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
389 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
390 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
391 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
392 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
393 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
394 hw
->mac_type
= e1000_82571
;
396 case E1000_DEV_ID_82572EI_COPPER
:
397 case E1000_DEV_ID_82572EI_FIBER
:
398 case E1000_DEV_ID_82572EI_SERDES
:
399 case E1000_DEV_ID_82572EI
:
400 hw
->mac_type
= e1000_82572
;
402 case E1000_DEV_ID_82573E
:
403 case E1000_DEV_ID_82573E_IAMT
:
404 case E1000_DEV_ID_82573L
:
405 hw
->mac_type
= e1000_82573
;
407 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT
:
408 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT
:
409 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT
:
410 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT
:
411 hw
->mac_type
= e1000_80003es2lan
;
413 case E1000_DEV_ID_ICH8_IGP_M_AMT
:
414 case E1000_DEV_ID_ICH8_IGP_AMT
:
415 case E1000_DEV_ID_ICH8_IGP_C
:
416 case E1000_DEV_ID_ICH8_IFE
:
417 case E1000_DEV_ID_ICH8_IFE_GT
:
418 case E1000_DEV_ID_ICH8_IFE_G
:
419 case E1000_DEV_ID_ICH8_IGP_M
:
420 hw
->mac_type
= e1000_ich8lan
;
423 /* Should never have loaded on this device */
424 return -E1000_ERR_MAC_TYPE
;
427 switch (hw
->mac_type
) {
429 hw
->swfwhw_semaphore_present
= true;
430 hw
->asf_firmware_present
= true;
432 case e1000_80003es2lan
:
433 hw
->swfw_sync_present
= true;
438 hw
->eeprom_semaphore_present
= true;
442 case e1000_82541_rev_2
:
443 case e1000_82547_rev_2
:
444 hw
->asf_firmware_present
= true;
450 /* The 82543 chip does not count tx_carrier_errors properly in
453 if (hw
->mac_type
== e1000_82543
)
454 hw
->bad_tx_carr_stats_fd
= true;
456 /* capable of receiving management packets to the host */
457 if (hw
->mac_type
>= e1000_82571
)
458 hw
->has_manc2h
= true;
460 /* In rare occasions, ESB2 systems would end up started without
461 * the RX unit being turned on.
463 if (hw
->mac_type
== e1000_80003es2lan
)
464 hw
->rx_needs_kicking
= true;
466 if (hw
->mac_type
> e1000_82544
)
467 hw
->has_smbus
= true;
469 return E1000_SUCCESS
;
472 /*****************************************************************************
473 * Set media type and TBI compatibility.
475 * hw - Struct containing variables accessed by shared code
476 * **************************************************************************/
478 e1000_set_media_type(struct e1000_hw
*hw
)
482 DEBUGFUNC("e1000_set_media_type");
484 if (hw
->mac_type
!= e1000_82543
) {
485 /* tbi_compatibility is only valid on 82543 */
486 hw
->tbi_compatibility_en
= false;
489 switch (hw
->device_id
) {
490 case E1000_DEV_ID_82545GM_SERDES
:
491 case E1000_DEV_ID_82546GB_SERDES
:
492 case E1000_DEV_ID_82571EB_SERDES
:
493 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
494 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
495 case E1000_DEV_ID_82572EI_SERDES
:
496 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT
:
497 hw
->media_type
= e1000_media_type_internal_serdes
;
500 switch (hw
->mac_type
) {
501 case e1000_82542_rev2_0
:
502 case e1000_82542_rev2_1
:
503 hw
->media_type
= e1000_media_type_fiber
;
507 /* The STATUS_TBIMODE bit is reserved or reused for the this
510 hw
->media_type
= e1000_media_type_copper
;
513 status
= E1000_READ_REG(hw
, STATUS
);
514 if (status
& E1000_STATUS_TBIMODE
) {
515 hw
->media_type
= e1000_media_type_fiber
;
516 /* tbi_compatibility not valid on fiber */
517 hw
->tbi_compatibility_en
= false;
519 hw
->media_type
= e1000_media_type_copper
;
526 /******************************************************************************
527 * Reset the transmit and receive units; mask and clear all interrupts.
529 * hw - Struct containing variables accessed by shared code
530 *****************************************************************************/
532 e1000_reset_hw(struct e1000_hw
*hw
)
543 DEBUGFUNC("e1000_reset_hw");
545 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
546 if (hw
->mac_type
== e1000_82542_rev2_0
) {
547 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
548 e1000_pci_clear_mwi(hw
);
551 if (hw
->bus_type
== e1000_bus_type_pci_express
) {
552 /* Prevent the PCI-E bus from sticking if there is no TLP connection
553 * on the last TLP read/write transaction when MAC is reset.
555 if (e1000_disable_pciex_master(hw
) != E1000_SUCCESS
) {
556 DEBUGOUT("PCI-E Master disable polling has failed.\n");
560 /* Clear interrupt mask to stop board from generating interrupts */
561 DEBUGOUT("Masking off all interrupts\n");
562 E1000_WRITE_REG(hw
, IMC
, 0xffffffff);
564 /* Disable the Transmit and Receive units. Then delay to allow
565 * any pending transactions to complete before we hit the MAC with
568 E1000_WRITE_REG(hw
, RCTL
, 0);
569 E1000_WRITE_REG(hw
, TCTL
, E1000_TCTL_PSP
);
570 E1000_WRITE_FLUSH(hw
);
572 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
573 hw
->tbi_compatibility_on
= false;
575 /* Delay to allow any outstanding PCI transactions to complete before
576 * resetting the device
580 ctrl
= E1000_READ_REG(hw
, CTRL
);
582 /* Must reset the PHY before resetting the MAC */
583 if ((hw
->mac_type
== e1000_82541
) || (hw
->mac_type
== e1000_82547
)) {
584 E1000_WRITE_REG(hw
, CTRL
, (ctrl
| E1000_CTRL_PHY_RST
));
588 /* Must acquire the MDIO ownership before MAC reset.
589 * Ownership defaults to firmware after a reset. */
590 if (hw
->mac_type
== e1000_82573
) {
593 extcnf_ctrl
= E1000_READ_REG(hw
, EXTCNF_CTRL
);
594 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
597 E1000_WRITE_REG(hw
, EXTCNF_CTRL
, extcnf_ctrl
);
598 extcnf_ctrl
= E1000_READ_REG(hw
, EXTCNF_CTRL
);
600 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
603 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
610 /* Workaround for ICH8 bit corruption issue in FIFO memory */
611 if (hw
->mac_type
== e1000_ich8lan
) {
612 /* Set Tx and Rx buffer allocation to 8k apiece. */
613 E1000_WRITE_REG(hw
, PBA
, E1000_PBA_8K
);
614 /* Set Packet Buffer Size to 16k. */
615 E1000_WRITE_REG(hw
, PBS
, E1000_PBS_16K
);
618 /* Issue a global reset to the MAC. This will reset the chip's
619 * transmit, receive, DMA, and link units. It will not effect
620 * the current PCI configuration. The global reset bit is self-
621 * clearing, and should clear within a microsecond.
623 DEBUGOUT("Issuing a global reset to MAC\n");
625 switch (hw
->mac_type
) {
631 case e1000_82541_rev_2
:
632 /* These controllers can't ack the 64-bit write when issuing the
633 * reset, so use IO-mapping as a workaround to issue the reset */
634 E1000_WRITE_REG_IO(hw
, CTRL
, (ctrl
| E1000_CTRL_RST
));
636 case e1000_82545_rev_3
:
637 case e1000_82546_rev_3
:
638 /* Reset is performed on a shadow of the control register */
639 E1000_WRITE_REG(hw
, CTRL_DUP
, (ctrl
| E1000_CTRL_RST
));
642 if (!hw
->phy_reset_disable
&&
643 e1000_check_phy_reset_block(hw
) == E1000_SUCCESS
) {
644 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
645 * at the same time to make sure the interface between
646 * MAC and the external PHY is reset.
648 ctrl
|= E1000_CTRL_PHY_RST
;
651 e1000_get_software_flag(hw
);
652 E1000_WRITE_REG(hw
, CTRL
, (ctrl
| E1000_CTRL_RST
));
656 E1000_WRITE_REG(hw
, CTRL
, (ctrl
| E1000_CTRL_RST
));
660 /* After MAC reset, force reload of EEPROM to restore power-on settings to
661 * device. Later controllers reload the EEPROM automatically, so just wait
662 * for reload to complete.
664 switch (hw
->mac_type
) {
665 case e1000_82542_rev2_0
:
666 case e1000_82542_rev2_1
:
669 /* Wait for reset to complete */
671 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
672 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
673 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
674 E1000_WRITE_FLUSH(hw
);
675 /* Wait for EEPROM reload */
679 case e1000_82541_rev_2
:
681 case e1000_82547_rev_2
:
682 /* Wait for EEPROM reload */
686 if (!e1000_is_onboard_nvm_eeprom(hw
)) {
688 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
689 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
690 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
691 E1000_WRITE_FLUSH(hw
);
695 /* Auto read done will delay 5ms or poll based on mac type */
696 ret_val
= e1000_get_auto_rd_done(hw
);
702 /* Disable HW ARPs on ASF enabled adapters */
703 if (hw
->mac_type
>= e1000_82540
&& hw
->mac_type
<= e1000_82547_rev_2
) {
704 manc
= E1000_READ_REG(hw
, MANC
);
705 manc
&= ~(E1000_MANC_ARP_EN
);
706 E1000_WRITE_REG(hw
, MANC
, manc
);
709 if ((hw
->mac_type
== e1000_82541
) || (hw
->mac_type
== e1000_82547
)) {
710 e1000_phy_init_script(hw
);
712 /* Configure activity LED after PHY reset */
713 led_ctrl
= E1000_READ_REG(hw
, LEDCTL
);
714 led_ctrl
&= IGP_ACTIVITY_LED_MASK
;
715 led_ctrl
|= (IGP_ACTIVITY_LED_ENABLE
| IGP_LED3_MODE
);
716 E1000_WRITE_REG(hw
, LEDCTL
, led_ctrl
);
719 /* Clear interrupt mask to stop board from generating interrupts */
720 DEBUGOUT("Masking off all interrupts\n");
721 E1000_WRITE_REG(hw
, IMC
, 0xffffffff);
723 /* Clear any pending interrupt events. */
724 icr
= E1000_READ_REG(hw
, ICR
);
726 /* If MWI was previously enabled, reenable it. */
727 if (hw
->mac_type
== e1000_82542_rev2_0
) {
728 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
729 e1000_pci_set_mwi(hw
);
732 if (hw
->mac_type
== e1000_ich8lan
) {
733 u32 kab
= E1000_READ_REG(hw
, KABGTXD
);
734 kab
|= E1000_KABGTXD_BGSQLBIAS
;
735 E1000_WRITE_REG(hw
, KABGTXD
, kab
);
738 return E1000_SUCCESS
;
741 /******************************************************************************
743 * Initialize a number of hardware-dependent bits
745 * hw: Struct containing variables accessed by shared code
747 * This function contains hardware limitation workarounds for PCI-E adapters
749 *****************************************************************************/
751 e1000_initialize_hardware_bits(struct e1000_hw
*hw
)
753 if ((hw
->mac_type
>= e1000_82571
) && (!hw
->initialize_hw_bits_disable
)) {
754 /* Settings common to all PCI-express silicon */
755 u32 reg_ctrl
, reg_ctrl_ext
;
756 u32 reg_tarc0
, reg_tarc1
;
758 u32 reg_txdctl
, reg_txdctl1
;
760 /* link autonegotiation/sync workarounds */
761 reg_tarc0
= E1000_READ_REG(hw
, TARC0
);
762 reg_tarc0
&= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
764 /* Enable not-done TX descriptor counting */
765 reg_txdctl
= E1000_READ_REG(hw
, TXDCTL
);
766 reg_txdctl
|= E1000_TXDCTL_COUNT_DESC
;
767 E1000_WRITE_REG(hw
, TXDCTL
, reg_txdctl
);
768 reg_txdctl1
= E1000_READ_REG(hw
, TXDCTL1
);
769 reg_txdctl1
|= E1000_TXDCTL_COUNT_DESC
;
770 E1000_WRITE_REG(hw
, TXDCTL1
, reg_txdctl1
);
772 switch (hw
->mac_type
) {
775 /* Clear PHY TX compatible mode bits */
776 reg_tarc1
= E1000_READ_REG(hw
, TARC1
);
777 reg_tarc1
&= ~((1 << 30)|(1 << 29));
779 /* link autonegotiation/sync workarounds */
780 reg_tarc0
|= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
782 /* TX ring control fixes */
783 reg_tarc1
|= ((1 << 26)|(1 << 25)|(1 << 24));
785 /* Multiple read bit is reversed polarity */
786 reg_tctl
= E1000_READ_REG(hw
, TCTL
);
787 if (reg_tctl
& E1000_TCTL_MULR
)
788 reg_tarc1
&= ~(1 << 28);
790 reg_tarc1
|= (1 << 28);
792 E1000_WRITE_REG(hw
, TARC1
, reg_tarc1
);
795 reg_ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
796 reg_ctrl_ext
&= ~(1 << 23);
797 reg_ctrl_ext
|= (1 << 22);
799 /* TX byte count fix */
800 reg_ctrl
= E1000_READ_REG(hw
, CTRL
);
801 reg_ctrl
&= ~(1 << 29);
803 E1000_WRITE_REG(hw
, CTRL_EXT
, reg_ctrl_ext
);
804 E1000_WRITE_REG(hw
, CTRL
, reg_ctrl
);
806 case e1000_80003es2lan
:
807 /* improve small packet performace for fiber/serdes */
808 if ((hw
->media_type
== e1000_media_type_fiber
) ||
809 (hw
->media_type
== e1000_media_type_internal_serdes
)) {
810 reg_tarc0
&= ~(1 << 20);
813 /* Multiple read bit is reversed polarity */
814 reg_tctl
= E1000_READ_REG(hw
, TCTL
);
815 reg_tarc1
= E1000_READ_REG(hw
, TARC1
);
816 if (reg_tctl
& E1000_TCTL_MULR
)
817 reg_tarc1
&= ~(1 << 28);
819 reg_tarc1
|= (1 << 28);
821 E1000_WRITE_REG(hw
, TARC1
, reg_tarc1
);
824 /* Reduce concurrent DMA requests to 3 from 4 */
825 if ((hw
->revision_id
< 3) ||
826 ((hw
->device_id
!= E1000_DEV_ID_ICH8_IGP_M_AMT
) &&
827 (hw
->device_id
!= E1000_DEV_ID_ICH8_IGP_M
)))
828 reg_tarc0
|= ((1 << 29)|(1 << 28));
830 reg_ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
831 reg_ctrl_ext
|= (1 << 22);
832 E1000_WRITE_REG(hw
, CTRL_EXT
, reg_ctrl_ext
);
834 /* workaround TX hang with TSO=on */
835 reg_tarc0
|= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
837 /* Multiple read bit is reversed polarity */
838 reg_tctl
= E1000_READ_REG(hw
, TCTL
);
839 reg_tarc1
= E1000_READ_REG(hw
, TARC1
);
840 if (reg_tctl
& E1000_TCTL_MULR
)
841 reg_tarc1
&= ~(1 << 28);
843 reg_tarc1
|= (1 << 28);
845 /* workaround TX hang with TSO=on */
846 reg_tarc1
|= ((1 << 30)|(1 << 26)|(1 << 24));
848 E1000_WRITE_REG(hw
, TARC1
, reg_tarc1
);
854 E1000_WRITE_REG(hw
, TARC0
, reg_tarc0
);
858 /******************************************************************************
859 * Performs basic configuration of the adapter.
861 * hw - Struct containing variables accessed by shared code
863 * Assumes that the controller has previously been reset and is in a
864 * post-reset uninitialized state. Initializes the receive address registers,
865 * multicast table, and VLAN filter table. Calls routines to setup link
866 * configuration and flow control settings. Clears all on-chip counters. Leaves
867 * the transmit and receive units disabled and uninitialized.
868 *****************************************************************************/
870 e1000_init_hw(struct e1000_hw
*hw
)
879 DEBUGFUNC("e1000_init_hw");
881 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
882 if ((hw
->mac_type
== e1000_ich8lan
) &&
883 ((hw
->revision_id
< 3) ||
884 ((hw
->device_id
!= E1000_DEV_ID_ICH8_IGP_M_AMT
) &&
885 (hw
->device_id
!= E1000_DEV_ID_ICH8_IGP_M
)))) {
886 reg_data
= E1000_READ_REG(hw
, STATUS
);
887 reg_data
&= ~0x80000000;
888 E1000_WRITE_REG(hw
, STATUS
, reg_data
);
891 /* Initialize Identification LED */
892 ret_val
= e1000_id_led_init(hw
);
894 DEBUGOUT("Error Initializing Identification LED\n");
898 /* Set the media type and TBI compatibility */
899 e1000_set_media_type(hw
);
901 /* Must be called after e1000_set_media_type because media_type is used */
902 e1000_initialize_hardware_bits(hw
);
904 /* Disabling VLAN filtering. */
905 DEBUGOUT("Initializing the IEEE VLAN\n");
906 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
907 if (hw
->mac_type
!= e1000_ich8lan
) {
908 if (hw
->mac_type
< e1000_82545_rev_3
)
909 E1000_WRITE_REG(hw
, VET
, 0);
910 e1000_clear_vfta(hw
);
913 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
914 if (hw
->mac_type
== e1000_82542_rev2_0
) {
915 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
916 e1000_pci_clear_mwi(hw
);
917 E1000_WRITE_REG(hw
, RCTL
, E1000_RCTL_RST
);
918 E1000_WRITE_FLUSH(hw
);
922 /* Setup the receive address. This involves initializing all of the Receive
923 * Address Registers (RARs 0 - 15).
925 e1000_init_rx_addrs(hw
);
927 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
928 if (hw
->mac_type
== e1000_82542_rev2_0
) {
929 E1000_WRITE_REG(hw
, RCTL
, 0);
930 E1000_WRITE_FLUSH(hw
);
932 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
933 e1000_pci_set_mwi(hw
);
936 /* Zero out the Multicast HASH table */
937 DEBUGOUT("Zeroing the MTA\n");
938 mta_size
= E1000_MC_TBL_SIZE
;
939 if (hw
->mac_type
== e1000_ich8lan
)
940 mta_size
= E1000_MC_TBL_SIZE_ICH8LAN
;
941 for (i
= 0; i
< mta_size
; i
++) {
942 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
943 /* use write flush to prevent Memory Write Block (MWB) from
944 * occuring when accessing our register space */
945 E1000_WRITE_FLUSH(hw
);
948 /* Set the PCI priority bit correctly in the CTRL register. This
949 * determines if the adapter gives priority to receives, or if it
950 * gives equal priority to transmits and receives. Valid only on
951 * 82542 and 82543 silicon.
953 if (hw
->dma_fairness
&& hw
->mac_type
<= e1000_82543
) {
954 ctrl
= E1000_READ_REG(hw
, CTRL
);
955 E1000_WRITE_REG(hw
, CTRL
, ctrl
| E1000_CTRL_PRIOR
);
958 switch (hw
->mac_type
) {
959 case e1000_82545_rev_3
:
960 case e1000_82546_rev_3
:
963 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
964 if (hw
->bus_type
== e1000_bus_type_pcix
&& e1000_pcix_get_mmrbc(hw
) > 2048)
965 e1000_pcix_set_mmrbc(hw
, 2048);
969 /* More time needed for PHY to initialize */
970 if (hw
->mac_type
== e1000_ich8lan
)
973 /* Call a subroutine to configure the link and setup flow control. */
974 ret_val
= e1000_setup_link(hw
);
976 /* Set the transmit descriptor write-back policy */
977 if (hw
->mac_type
> e1000_82544
) {
978 ctrl
= E1000_READ_REG(hw
, TXDCTL
);
979 ctrl
= (ctrl
& ~E1000_TXDCTL_WTHRESH
) | E1000_TXDCTL_FULL_TX_DESC_WB
;
980 E1000_WRITE_REG(hw
, TXDCTL
, ctrl
);
983 if (hw
->mac_type
== e1000_82573
) {
984 e1000_enable_tx_pkt_filtering(hw
);
987 switch (hw
->mac_type
) {
990 case e1000_80003es2lan
:
991 /* Enable retransmit on late collisions */
992 reg_data
= E1000_READ_REG(hw
, TCTL
);
993 reg_data
|= E1000_TCTL_RTLC
;
994 E1000_WRITE_REG(hw
, TCTL
, reg_data
);
996 /* Configure Gigabit Carry Extend Padding */
997 reg_data
= E1000_READ_REG(hw
, TCTL_EXT
);
998 reg_data
&= ~E1000_TCTL_EXT_GCEX_MASK
;
999 reg_data
|= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX
;
1000 E1000_WRITE_REG(hw
, TCTL_EXT
, reg_data
);
1002 /* Configure Transmit Inter-Packet Gap */
1003 reg_data
= E1000_READ_REG(hw
, TIPG
);
1004 reg_data
&= ~E1000_TIPG_IPGT_MASK
;
1005 reg_data
|= DEFAULT_80003ES2LAN_TIPG_IPGT_1000
;
1006 E1000_WRITE_REG(hw
, TIPG
, reg_data
);
1008 reg_data
= E1000_READ_REG_ARRAY(hw
, FFLT
, 0x0001);
1009 reg_data
&= ~0x00100000;
1010 E1000_WRITE_REG_ARRAY(hw
, FFLT
, 0x0001, reg_data
);
1015 ctrl
= E1000_READ_REG(hw
, TXDCTL1
);
1016 ctrl
= (ctrl
& ~E1000_TXDCTL_WTHRESH
) | E1000_TXDCTL_FULL_TX_DESC_WB
;
1017 E1000_WRITE_REG(hw
, TXDCTL1
, ctrl
);
1022 if (hw
->mac_type
== e1000_82573
) {
1023 u32 gcr
= E1000_READ_REG(hw
, GCR
);
1024 gcr
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1025 E1000_WRITE_REG(hw
, GCR
, gcr
);
1028 /* Clear all of the statistics registers (clear on read). It is
1029 * important that we do this after we have tried to establish link
1030 * because the symbol error count will increment wildly if there
1033 e1000_clear_hw_cntrs(hw
);
1035 /* ICH8 No-snoop bits are opposite polarity.
1036 * Set to snoop by default after reset. */
1037 if (hw
->mac_type
== e1000_ich8lan
)
1038 e1000_set_pci_ex_no_snoop(hw
, PCI_EX_82566_SNOOP_ALL
);
1040 if (hw
->device_id
== E1000_DEV_ID_82546GB_QUAD_COPPER
||
1041 hw
->device_id
== E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
) {
1042 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
1043 /* Relaxed ordering must be disabled to avoid a parity
1044 * error crash in a PCI slot. */
1045 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
1046 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
1052 /******************************************************************************
1053 * Adjust SERDES output amplitude based on EEPROM setting.
1055 * hw - Struct containing variables accessed by shared code.
1056 *****************************************************************************/
1058 e1000_adjust_serdes_amplitude(struct e1000_hw
*hw
)
1063 DEBUGFUNC("e1000_adjust_serdes_amplitude");
1065 if (hw
->media_type
!= e1000_media_type_internal_serdes
)
1066 return E1000_SUCCESS
;
1068 switch (hw
->mac_type
) {
1069 case e1000_82545_rev_3
:
1070 case e1000_82546_rev_3
:
1073 return E1000_SUCCESS
;
1076 ret_val
= e1000_read_eeprom(hw
, EEPROM_SERDES_AMPLITUDE
, 1, &eeprom_data
);
1081 if (eeprom_data
!= EEPROM_RESERVED_WORD
) {
1082 /* Adjust SERDES output amplitude only. */
1083 eeprom_data
&= EEPROM_SERDES_AMPLITUDE_MASK
;
1084 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_EXT_CTRL
, eeprom_data
);
1089 return E1000_SUCCESS
;
1092 /******************************************************************************
1093 * Configures flow control and link settings.
1095 * hw - Struct containing variables accessed by shared code
1097 * Determines which flow control settings to use. Calls the apropriate media-
1098 * specific link configuration function. Configures the flow control settings.
1099 * Assuming the adapter has a valid link partner, a valid link should be
1100 * established. Assumes the hardware has previously been reset and the
1101 * transmitter and receiver are not enabled.
1102 *****************************************************************************/
1104 e1000_setup_link(struct e1000_hw
*hw
)
1110 DEBUGFUNC("e1000_setup_link");
1112 /* In the case of the phy reset being blocked, we already have a link.
1113 * We do not have to set it up again. */
1114 if (e1000_check_phy_reset_block(hw
))
1115 return E1000_SUCCESS
;
1117 /* Read and store word 0x0F of the EEPROM. This word contains bits
1118 * that determine the hardware's default PAUSE (flow control) mode,
1119 * a bit that determines whether the HW defaults to enabling or
1120 * disabling auto-negotiation, and the direction of the
1121 * SW defined pins. If there is no SW over-ride of the flow
1122 * control setting, then the variable hw->fc will
1123 * be initialized based on a value in the EEPROM.
1125 if (hw
->fc
== E1000_FC_DEFAULT
) {
1126 switch (hw
->mac_type
) {
1129 hw
->fc
= E1000_FC_FULL
;
1132 ret_val
= e1000_read_eeprom(hw
, EEPROM_INIT_CONTROL2_REG
,
1135 DEBUGOUT("EEPROM Read Error\n");
1136 return -E1000_ERR_EEPROM
;
1138 if ((eeprom_data
& EEPROM_WORD0F_PAUSE_MASK
) == 0)
1139 hw
->fc
= E1000_FC_NONE
;
1140 else if ((eeprom_data
& EEPROM_WORD0F_PAUSE_MASK
) ==
1141 EEPROM_WORD0F_ASM_DIR
)
1142 hw
->fc
= E1000_FC_TX_PAUSE
;
1144 hw
->fc
= E1000_FC_FULL
;
1149 /* We want to save off the original Flow Control configuration just
1150 * in case we get disconnected and then reconnected into a different
1151 * hub or switch with different Flow Control capabilities.
1153 if (hw
->mac_type
== e1000_82542_rev2_0
)
1154 hw
->fc
&= (~E1000_FC_TX_PAUSE
);
1156 if ((hw
->mac_type
< e1000_82543
) && (hw
->report_tx_early
== 1))
1157 hw
->fc
&= (~E1000_FC_RX_PAUSE
);
1159 hw
->original_fc
= hw
->fc
;
1161 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw
->fc
);
1163 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1164 * polarity value for the SW controlled pins, and setup the
1165 * Extended Device Control reg with that info.
1166 * This is needed because one of the SW controlled pins is used for
1167 * signal detection. So this should be done before e1000_setup_pcs_link()
1168 * or e1000_phy_setup() is called.
1170 if (hw
->mac_type
== e1000_82543
) {
1171 ret_val
= e1000_read_eeprom(hw
, EEPROM_INIT_CONTROL2_REG
,
1174 DEBUGOUT("EEPROM Read Error\n");
1175 return -E1000_ERR_EEPROM
;
1177 ctrl_ext
= ((eeprom_data
& EEPROM_WORD0F_SWPDIO_EXT
) <<
1179 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
1182 /* Call the necessary subroutine to configure the link. */
1183 ret_val
= (hw
->media_type
== e1000_media_type_copper
) ?
1184 e1000_setup_copper_link(hw
) :
1185 e1000_setup_fiber_serdes_link(hw
);
1187 /* Initialize the flow control address, type, and PAUSE timer
1188 * registers to their default values. This is done even if flow
1189 * control is disabled, because it does not hurt anything to
1190 * initialize these registers.
1192 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1194 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1195 if (hw
->mac_type
!= e1000_ich8lan
) {
1196 E1000_WRITE_REG(hw
, FCT
, FLOW_CONTROL_TYPE
);
1197 E1000_WRITE_REG(hw
, FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
1198 E1000_WRITE_REG(hw
, FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
1201 E1000_WRITE_REG(hw
, FCTTV
, hw
->fc_pause_time
);
1203 /* Set the flow control receive threshold registers. Normally,
1204 * these registers will be set to a default threshold that may be
1205 * adjusted later by the driver's runtime code. However, if the
1206 * ability to transmit pause frames in not enabled, then these
1207 * registers will be set to 0.
1209 if (!(hw
->fc
& E1000_FC_TX_PAUSE
)) {
1210 E1000_WRITE_REG(hw
, FCRTL
, 0);
1211 E1000_WRITE_REG(hw
, FCRTH
, 0);
1213 /* We need to set up the Receive Threshold high and low water marks
1214 * as well as (optionally) enabling the transmission of XON frames.
1216 if (hw
->fc_send_xon
) {
1217 E1000_WRITE_REG(hw
, FCRTL
, (hw
->fc_low_water
| E1000_FCRTL_XONE
));
1218 E1000_WRITE_REG(hw
, FCRTH
, hw
->fc_high_water
);
1220 E1000_WRITE_REG(hw
, FCRTL
, hw
->fc_low_water
);
1221 E1000_WRITE_REG(hw
, FCRTH
, hw
->fc_high_water
);
1227 /******************************************************************************
1228 * Sets up link for a fiber based or serdes based adapter
1230 * hw - Struct containing variables accessed by shared code
1232 * Manipulates Physical Coding Sublayer functions in order to configure
1233 * link. Assumes the hardware has been previously reset and the transmitter
1234 * and receiver are not enabled.
1235 *****************************************************************************/
1237 e1000_setup_fiber_serdes_link(struct e1000_hw
*hw
)
1246 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1248 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1249 * until explicitly turned off or a power cycle is performed. A read to
1250 * the register does not indicate its status. Therefore, we ensure
1251 * loopback mode is disabled during initialization.
1253 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
)
1254 E1000_WRITE_REG(hw
, SCTL
, E1000_DISABLE_SERDES_LOOPBACK
);
1256 /* On adapters with a MAC newer than 82544, SWDP 1 will be
1257 * set when the optics detect a signal. On older adapters, it will be
1258 * cleared when there is a signal. This applies to fiber media only.
1259 * If we're on serdes media, adjust the output amplitude to value
1260 * set in the EEPROM.
1262 ctrl
= E1000_READ_REG(hw
, CTRL
);
1263 if (hw
->media_type
== e1000_media_type_fiber
)
1264 signal
= (hw
->mac_type
> e1000_82544
) ? E1000_CTRL_SWDPIN1
: 0;
1266 ret_val
= e1000_adjust_serdes_amplitude(hw
);
1270 /* Take the link out of reset */
1271 ctrl
&= ~(E1000_CTRL_LRST
);
1273 /* Adjust VCO speed to improve BER performance */
1274 ret_val
= e1000_set_vco_speed(hw
);
1278 e1000_config_collision_dist(hw
);
1280 /* Check for a software override of the flow control settings, and setup
1281 * the device accordingly. If auto-negotiation is enabled, then software
1282 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1283 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1284 * auto-negotiation is disabled, then software will have to manually
1285 * configure the two flow control enable bits in the CTRL register.
1287 * The possible values of the "fc" parameter are:
1288 * 0: Flow control is completely disabled
1289 * 1: Rx flow control is enabled (we can receive pause frames, but
1290 * not send pause frames).
1291 * 2: Tx flow control is enabled (we can send pause frames but we do
1292 * not support receiving pause frames).
1293 * 3: Both Rx and TX flow control (symmetric) are enabled.
1297 /* Flow control is completely disabled by a software over-ride. */
1298 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
1300 case E1000_FC_RX_PAUSE
:
1301 /* RX Flow control is enabled and TX Flow control is disabled by a
1302 * software over-ride. Since there really isn't a way to advertise
1303 * that we are capable of RX Pause ONLY, we will advertise that we
1304 * support both symmetric and asymmetric RX PAUSE. Later, we will
1305 * disable the adapter's ability to send PAUSE frames.
1307 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
1309 case E1000_FC_TX_PAUSE
:
1310 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1311 * software over-ride.
1313 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
1316 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1317 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
1320 DEBUGOUT("Flow control param set incorrectly\n");
1321 return -E1000_ERR_CONFIG
;
1325 /* Since auto-negotiation is enabled, take the link out of reset (the link
1326 * will be in reset, because we previously reset the chip). This will
1327 * restart auto-negotiation. If auto-neogtiation is successful then the
1328 * link-up status bit will be set and the flow control enable bits (RFCE
1329 * and TFCE) will be set according to their negotiated value.
1331 DEBUGOUT("Auto-negotiation enabled\n");
1333 E1000_WRITE_REG(hw
, TXCW
, txcw
);
1334 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
1335 E1000_WRITE_FLUSH(hw
);
1340 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1341 * indication in the Device Status Register. Time-out if a link isn't
1342 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1343 * less than 500 milliseconds even if the other end is doing it in SW).
1344 * For internal serdes, we just assume a signal is present, then poll.
1346 if (hw
->media_type
== e1000_media_type_internal_serdes
||
1347 (E1000_READ_REG(hw
, CTRL
) & E1000_CTRL_SWDPIN1
) == signal
) {
1348 DEBUGOUT("Looking for Link\n");
1349 for (i
= 0; i
< (LINK_UP_TIMEOUT
/ 10); i
++) {
1351 status
= E1000_READ_REG(hw
, STATUS
);
1352 if (status
& E1000_STATUS_LU
) break;
1354 if (i
== (LINK_UP_TIMEOUT
/ 10)) {
1355 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1356 hw
->autoneg_failed
= 1;
1357 /* AutoNeg failed to achieve a link, so we'll call
1358 * e1000_check_for_link. This routine will force the link up if
1359 * we detect a signal. This will allow us to communicate with
1360 * non-autonegotiating link partners.
1362 ret_val
= e1000_check_for_link(hw
);
1364 DEBUGOUT("Error while checking for link\n");
1367 hw
->autoneg_failed
= 0;
1369 hw
->autoneg_failed
= 0;
1370 DEBUGOUT("Valid Link Found\n");
1373 DEBUGOUT("No Signal Detected\n");
1375 return E1000_SUCCESS
;
1378 /******************************************************************************
1379 * Make sure we have a valid PHY and change PHY mode before link setup.
1381 * hw - Struct containing variables accessed by shared code
1382 ******************************************************************************/
1384 e1000_copper_link_preconfig(struct e1000_hw
*hw
)
1390 DEBUGFUNC("e1000_copper_link_preconfig");
1392 ctrl
= E1000_READ_REG(hw
, CTRL
);
1393 /* With 82543, we need to force speed and duplex on the MAC equal to what
1394 * the PHY speed and duplex configuration is. In addition, we need to
1395 * perform a hardware reset on the PHY to take it out of reset.
1397 if (hw
->mac_type
> e1000_82543
) {
1398 ctrl
|= E1000_CTRL_SLU
;
1399 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1400 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
1402 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
| E1000_CTRL_SLU
);
1403 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
1404 ret_val
= e1000_phy_hw_reset(hw
);
1409 /* Make sure we have a valid PHY */
1410 ret_val
= e1000_detect_gig_phy(hw
);
1412 DEBUGOUT("Error, did not detect valid phy.\n");
1415 DEBUGOUT1("Phy ID = %x \n", hw
->phy_id
);
1417 /* Set PHY to class A mode (if necessary) */
1418 ret_val
= e1000_set_phy_mode(hw
);
1422 if ((hw
->mac_type
== e1000_82545_rev_3
) ||
1423 (hw
->mac_type
== e1000_82546_rev_3
)) {
1424 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1425 phy_data
|= 0x00000008;
1426 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1429 if (hw
->mac_type
<= e1000_82543
||
1430 hw
->mac_type
== e1000_82541
|| hw
->mac_type
== e1000_82547
||
1431 hw
->mac_type
== e1000_82541_rev_2
|| hw
->mac_type
== e1000_82547_rev_2
)
1432 hw
->phy_reset_disable
= false;
1434 return E1000_SUCCESS
;
1438 /********************************************************************
1439 * Copper link setup for e1000_phy_igp series.
1441 * hw - Struct containing variables accessed by shared code
1442 *********************************************************************/
1444 e1000_copper_link_igp_setup(struct e1000_hw
*hw
)
1450 DEBUGFUNC("e1000_copper_link_igp_setup");
1452 if (hw
->phy_reset_disable
)
1453 return E1000_SUCCESS
;
1455 ret_val
= e1000_phy_reset(hw
);
1457 DEBUGOUT("Error Resetting the PHY\n");
1461 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1463 if (hw
->mac_type
!= e1000_ich8lan
) {
1464 /* Configure activity LED after PHY reset */
1465 led_ctrl
= E1000_READ_REG(hw
, LEDCTL
);
1466 led_ctrl
&= IGP_ACTIVITY_LED_MASK
;
1467 led_ctrl
|= (IGP_ACTIVITY_LED_ENABLE
| IGP_LED3_MODE
);
1468 E1000_WRITE_REG(hw
, LEDCTL
, led_ctrl
);
1471 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1472 if (hw
->phy_type
== e1000_phy_igp
) {
1473 /* disable lplu d3 during driver init */
1474 ret_val
= e1000_set_d3_lplu_state(hw
, false);
1476 DEBUGOUT("Error Disabling LPLU D3\n");
1481 /* disable lplu d0 during driver init */
1482 ret_val
= e1000_set_d0_lplu_state(hw
, false);
1484 DEBUGOUT("Error Disabling LPLU D0\n");
1487 /* Configure mdi-mdix settings */
1488 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1492 if ((hw
->mac_type
== e1000_82541
) || (hw
->mac_type
== e1000_82547
)) {
1493 hw
->dsp_config_state
= e1000_dsp_config_disabled
;
1494 /* Force MDI for earlier revs of the IGP PHY */
1495 phy_data
&= ~(IGP01E1000_PSCR_AUTO_MDIX
| IGP01E1000_PSCR_FORCE_MDI_MDIX
);
1499 hw
->dsp_config_state
= e1000_dsp_config_enabled
;
1500 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1504 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1507 phy_data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1511 phy_data
|= IGP01E1000_PSCR_AUTO_MDIX
;
1515 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1519 /* set auto-master slave resolution settings */
1521 e1000_ms_type phy_ms_setting
= hw
->master_slave
;
1523 if (hw
->ffe_config_state
== e1000_ffe_config_active
)
1524 hw
->ffe_config_state
= e1000_ffe_config_enabled
;
1526 if (hw
->dsp_config_state
== e1000_dsp_config_activated
)
1527 hw
->dsp_config_state
= e1000_dsp_config_enabled
;
1529 /* when autonegotiation advertisment is only 1000Mbps then we
1530 * should disable SmartSpeed and enable Auto MasterSlave
1531 * resolution as hardware default. */
1532 if (hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
1533 /* Disable SmartSpeed */
1534 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1538 phy_data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1539 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1543 /* Set auto Master/Slave resolution process */
1544 ret_val
= e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_data
);
1547 phy_data
&= ~CR_1000T_MS_ENABLE
;
1548 ret_val
= e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_data
);
1553 ret_val
= e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_data
);
1557 /* load defaults for future use */
1558 hw
->original_master_slave
= (phy_data
& CR_1000T_MS_ENABLE
) ?
1559 ((phy_data
& CR_1000T_MS_VALUE
) ?
1560 e1000_ms_force_master
:
1561 e1000_ms_force_slave
) :
1564 switch (phy_ms_setting
) {
1565 case e1000_ms_force_master
:
1566 phy_data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
1568 case e1000_ms_force_slave
:
1569 phy_data
|= CR_1000T_MS_ENABLE
;
1570 phy_data
&= ~(CR_1000T_MS_VALUE
);
1573 phy_data
&= ~CR_1000T_MS_ENABLE
;
1577 ret_val
= e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_data
);
1582 return E1000_SUCCESS
;
1585 /********************************************************************
1586 * Copper link setup for e1000_phy_gg82563 series.
1588 * hw - Struct containing variables accessed by shared code
1589 *********************************************************************/
1591 e1000_copper_link_ggp_setup(struct e1000_hw
*hw
)
1597 DEBUGFUNC("e1000_copper_link_ggp_setup");
1599 if (!hw
->phy_reset_disable
) {
1601 /* Enable CRS on TX for half-duplex operation. */
1602 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_MAC_SPEC_CTRL
,
1607 phy_data
|= GG82563_MSCR_ASSERT_CRS_ON_TX
;
1608 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1609 phy_data
|= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ
;
1611 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_MAC_SPEC_CTRL
,
1617 * MDI/MDI-X = 0 (default)
1618 * 0 - Auto for all speeds
1621 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1623 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_SPEC_CTRL
, &phy_data
);
1627 phy_data
&= ~GG82563_PSCR_CROSSOVER_MODE_MASK
;
1631 phy_data
|= GG82563_PSCR_CROSSOVER_MODE_MDI
;
1634 phy_data
|= GG82563_PSCR_CROSSOVER_MODE_MDIX
;
1638 phy_data
|= GG82563_PSCR_CROSSOVER_MODE_AUTO
;
1643 * disable_polarity_correction = 0 (default)
1644 * Automatic Correction for Reversed Cable Polarity
1648 phy_data
&= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE
;
1649 if (hw
->disable_polarity_correction
== 1)
1650 phy_data
|= GG82563_PSCR_POLARITY_REVERSAL_DISABLE
;
1651 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_SPEC_CTRL
, phy_data
);
1656 /* SW Reset the PHY so all changes take effect */
1657 ret_val
= e1000_phy_reset(hw
);
1659 DEBUGOUT("Error Resetting the PHY\n");
1662 } /* phy_reset_disable */
1664 if (hw
->mac_type
== e1000_80003es2lan
) {
1665 /* Bypass RX and TX FIFO's */
1666 ret_val
= e1000_write_kmrn_reg(hw
, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL
,
1667 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
|
1668 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS
);
1672 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_SPEC_CTRL_2
, &phy_data
);
1676 phy_data
&= ~GG82563_PSCR2_REVERSE_AUTO_NEG
;
1677 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_SPEC_CTRL_2
, phy_data
);
1682 reg_data
= E1000_READ_REG(hw
, CTRL_EXT
);
1683 reg_data
&= ~(E1000_CTRL_EXT_LINK_MODE_MASK
);
1684 E1000_WRITE_REG(hw
, CTRL_EXT
, reg_data
);
1686 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_PWR_MGMT_CTRL
,
1691 /* Do not init these registers when the HW is in IAMT mode, since the
1692 * firmware will have already initialized them. We only initialize
1693 * them if the HW is not in IAMT mode.
1695 if (!e1000_check_mng_mode(hw
)) {
1696 /* Enable Electrical Idle on the PHY */
1697 phy_data
|= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE
;
1698 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_PWR_MGMT_CTRL
,
1703 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_KMRN_MODE_CTRL
,
1708 phy_data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
1709 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_KMRN_MODE_CTRL
,
1716 /* Workaround: Disable padding in Kumeran interface in the MAC
1717 * and in the PHY to avoid CRC errors.
1719 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_INBAND_CTRL
,
1723 phy_data
|= GG82563_ICR_DIS_PADDING
;
1724 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_INBAND_CTRL
,
1730 return E1000_SUCCESS
;
1733 /********************************************************************
1734 * Copper link setup for e1000_phy_m88 series.
1736 * hw - Struct containing variables accessed by shared code
1737 *********************************************************************/
1739 e1000_copper_link_mgp_setup(struct e1000_hw
*hw
)
1744 DEBUGFUNC("e1000_copper_link_mgp_setup");
1746 if (hw
->phy_reset_disable
)
1747 return E1000_SUCCESS
;
1749 /* Enable CRS on TX. This must be set for half-duplex operation. */
1750 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1754 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1757 * MDI/MDI-X = 0 (default)
1758 * 0 - Auto for all speeds
1761 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1763 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1767 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
1770 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
1773 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
1777 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
1782 * disable_polarity_correction = 0 (default)
1783 * Automatic Correction for Reversed Cable Polarity
1787 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
1788 if (hw
->disable_polarity_correction
== 1)
1789 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
1790 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1794 if (hw
->phy_revision
< M88E1011_I_REV_4
) {
1795 /* Force TX_CLK in the Extended PHY Specific Control Register
1798 ret_val
= e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1802 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1804 if ((hw
->phy_revision
== E1000_REVISION_2
) &&
1805 (hw
->phy_id
== M88E1111_I_PHY_ID
)) {
1806 /* Vidalia Phy, set the downshift counter to 5x */
1807 phy_data
&= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
);
1808 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
1809 ret_val
= e1000_write_phy_reg(hw
,
1810 M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1814 /* Configure Master and Slave downshift values */
1815 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
1816 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
1817 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
1818 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
1819 ret_val
= e1000_write_phy_reg(hw
,
1820 M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1826 /* SW Reset the PHY so all changes take effect */
1827 ret_val
= e1000_phy_reset(hw
);
1829 DEBUGOUT("Error Resetting the PHY\n");
1833 return E1000_SUCCESS
;
1836 /********************************************************************
1837 * Setup auto-negotiation and flow control advertisements,
1838 * and then perform auto-negotiation.
1840 * hw - Struct containing variables accessed by shared code
1841 *********************************************************************/
1843 e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1848 DEBUGFUNC("e1000_copper_link_autoneg");
1850 /* Perform some bounds checking on the hw->autoneg_advertised
1851 * parameter. If this variable is zero, then set it to the default.
1853 hw
->autoneg_advertised
&= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
1855 /* If autoneg_advertised is zero, we assume it was not defaulted
1856 * by the calling code so we set to advertise full capability.
1858 if (hw
->autoneg_advertised
== 0)
1859 hw
->autoneg_advertised
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
1861 /* IFE phy only supports 10/100 */
1862 if (hw
->phy_type
== e1000_phy_ife
)
1863 hw
->autoneg_advertised
&= AUTONEG_ADVERTISE_10_100_ALL
;
1865 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1866 ret_val
= e1000_phy_setup_autoneg(hw
);
1868 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1871 DEBUGOUT("Restarting Auto-Neg\n");
1873 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1874 * the Auto Neg Restart bit in the PHY control register.
1876 ret_val
= e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_data
);
1880 phy_data
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
1881 ret_val
= e1000_write_phy_reg(hw
, PHY_CTRL
, phy_data
);
1885 /* Does the user want to wait for Auto-Neg to complete here, or
1886 * check at a later time (for example, callback routine).
1888 if (hw
->wait_autoneg_complete
) {
1889 ret_val
= e1000_wait_autoneg(hw
);
1891 DEBUGOUT("Error while waiting for autoneg to complete\n");
1896 hw
->get_link_status
= true;
1898 return E1000_SUCCESS
;
1901 /******************************************************************************
1902 * Config the MAC and the PHY after link is up.
1903 * 1) Set up the MAC to the current PHY speed/duplex
1904 * if we are on 82543. If we
1905 * are on newer silicon, we only need to configure
1906 * collision distance in the Transmit Control Register.
1907 * 2) Set up flow control on the MAC to that established with
1909 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1911 * hw - Struct containing variables accessed by shared code
1912 ******************************************************************************/
1914 e1000_copper_link_postconfig(struct e1000_hw
*hw
)
1917 DEBUGFUNC("e1000_copper_link_postconfig");
1919 if (hw
->mac_type
>= e1000_82544
) {
1920 e1000_config_collision_dist(hw
);
1922 ret_val
= e1000_config_mac_to_phy(hw
);
1924 DEBUGOUT("Error configuring MAC to PHY settings\n");
1928 ret_val
= e1000_config_fc_after_link_up(hw
);
1930 DEBUGOUT("Error Configuring Flow Control\n");
1934 /* Config DSP to improve Giga link quality */
1935 if (hw
->phy_type
== e1000_phy_igp
) {
1936 ret_val
= e1000_config_dsp_after_link_change(hw
, true);
1938 DEBUGOUT("Error Configuring DSP after link up\n");
1943 return E1000_SUCCESS
;
1946 /******************************************************************************
1947 * Detects which PHY is present and setup the speed and duplex
1949 * hw - Struct containing variables accessed by shared code
1950 ******************************************************************************/
1952 e1000_setup_copper_link(struct e1000_hw
*hw
)
1959 DEBUGFUNC("e1000_setup_copper_link");
1961 switch (hw
->mac_type
) {
1962 case e1000_80003es2lan
:
1964 /* Set the mac to wait the maximum time between each
1965 * iteration and increase the max iterations when
1966 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1967 ret_val
= e1000_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
1970 ret_val
= e1000_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
1974 ret_val
= e1000_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
1981 /* Check if it is a valid PHY and set PHY mode if necessary. */
1982 ret_val
= e1000_copper_link_preconfig(hw
);
1986 switch (hw
->mac_type
) {
1987 case e1000_80003es2lan
:
1988 /* Kumeran registers are written-only */
1989 reg_data
= E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT
;
1990 reg_data
|= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING
;
1991 ret_val
= e1000_write_kmrn_reg(hw
, E1000_KUMCTRLSTA_OFFSET_INB_CTRL
,
2000 if (hw
->phy_type
== e1000_phy_igp
||
2001 hw
->phy_type
== e1000_phy_igp_3
||
2002 hw
->phy_type
== e1000_phy_igp_2
) {
2003 ret_val
= e1000_copper_link_igp_setup(hw
);
2006 } else if (hw
->phy_type
== e1000_phy_m88
) {
2007 ret_val
= e1000_copper_link_mgp_setup(hw
);
2010 } else if (hw
->phy_type
== e1000_phy_gg82563
) {
2011 ret_val
= e1000_copper_link_ggp_setup(hw
);
2017 /* Setup autoneg and flow control advertisement
2018 * and perform autonegotiation */
2019 ret_val
= e1000_copper_link_autoneg(hw
);
2023 /* PHY will be set to 10H, 10F, 100H,or 100F
2024 * depending on value from forced_speed_duplex. */
2025 DEBUGOUT("Forcing speed and duplex\n");
2026 ret_val
= e1000_phy_force_speed_duplex(hw
);
2028 DEBUGOUT("Error Forcing Speed and Duplex\n");
2033 /* Check link status. Wait up to 100 microseconds for link to become
2036 for (i
= 0; i
< 10; i
++) {
2037 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
2040 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
2044 if (phy_data
& MII_SR_LINK_STATUS
) {
2045 /* Config the MAC and PHY after link is up */
2046 ret_val
= e1000_copper_link_postconfig(hw
);
2050 DEBUGOUT("Valid link established!!!\n");
2051 return E1000_SUCCESS
;
2056 DEBUGOUT("Unable to establish link!!!\n");
2057 return E1000_SUCCESS
;
2060 /******************************************************************************
2061 * Configure the MAC-to-PHY interface for 10/100Mbps
2063 * hw - Struct containing variables accessed by shared code
2064 ******************************************************************************/
2066 e1000_configure_kmrn_for_10_100(struct e1000_hw
*hw
, u16 duplex
)
2068 s32 ret_val
= E1000_SUCCESS
;
2072 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
2074 reg_data
= E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT
;
2075 ret_val
= e1000_write_kmrn_reg(hw
, E1000_KUMCTRLSTA_OFFSET_HD_CTRL
,
2080 /* Configure Transmit Inter-Packet Gap */
2081 tipg
= E1000_READ_REG(hw
, TIPG
);
2082 tipg
&= ~E1000_TIPG_IPGT_MASK
;
2083 tipg
|= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100
;
2084 E1000_WRITE_REG(hw
, TIPG
, tipg
);
2086 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_KMRN_MODE_CTRL
, ®_data
);
2091 if (duplex
== HALF_DUPLEX
)
2092 reg_data
|= GG82563_KMCR_PASS_FALSE_CARRIER
;
2094 reg_data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
2096 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_KMRN_MODE_CTRL
, reg_data
);
2102 e1000_configure_kmrn_for_1000(struct e1000_hw
*hw
)
2104 s32 ret_val
= E1000_SUCCESS
;
2108 DEBUGFUNC("e1000_configure_kmrn_for_1000");
2110 reg_data
= E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT
;
2111 ret_val
= e1000_write_kmrn_reg(hw
, E1000_KUMCTRLSTA_OFFSET_HD_CTRL
,
2116 /* Configure Transmit Inter-Packet Gap */
2117 tipg
= E1000_READ_REG(hw
, TIPG
);
2118 tipg
&= ~E1000_TIPG_IPGT_MASK
;
2119 tipg
|= DEFAULT_80003ES2LAN_TIPG_IPGT_1000
;
2120 E1000_WRITE_REG(hw
, TIPG
, tipg
);
2122 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_KMRN_MODE_CTRL
, ®_data
);
2127 reg_data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
2128 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_KMRN_MODE_CTRL
, reg_data
);
2133 /******************************************************************************
2134 * Configures PHY autoneg and flow control advertisement settings
2136 * hw - Struct containing variables accessed by shared code
2137 ******************************************************************************/
2139 e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
2142 u16 mii_autoneg_adv_reg
;
2143 u16 mii_1000t_ctrl_reg
;
2145 DEBUGFUNC("e1000_phy_setup_autoneg");
2147 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2148 ret_val
= e1000_read_phy_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
2152 if (hw
->phy_type
!= e1000_phy_ife
) {
2153 /* Read the MII 1000Base-T Control Register (Address 9). */
2154 ret_val
= e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &mii_1000t_ctrl_reg
);
2158 mii_1000t_ctrl_reg
=0;
2160 /* Need to parse both autoneg_advertised and fc and set up
2161 * the appropriate PHY registers. First we will parse for
2162 * autoneg_advertised software override. Since we can advertise
2163 * a plethora of combinations, we need to check each bit
2167 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2168 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2169 * the 1000Base-T Control Register (Address 9).
2171 mii_autoneg_adv_reg
&= ~REG4_SPEED_MASK
;
2172 mii_1000t_ctrl_reg
&= ~REG9_SPEED_MASK
;
2174 DEBUGOUT1("autoneg_advertised %x\n", hw
->autoneg_advertised
);
2176 /* Do we want to advertise 10 Mb Half Duplex? */
2177 if (hw
->autoneg_advertised
& ADVERTISE_10_HALF
) {
2178 DEBUGOUT("Advertise 10mb Half duplex\n");
2179 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
2182 /* Do we want to advertise 10 Mb Full Duplex? */
2183 if (hw
->autoneg_advertised
& ADVERTISE_10_FULL
) {
2184 DEBUGOUT("Advertise 10mb Full duplex\n");
2185 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
2188 /* Do we want to advertise 100 Mb Half Duplex? */
2189 if (hw
->autoneg_advertised
& ADVERTISE_100_HALF
) {
2190 DEBUGOUT("Advertise 100mb Half duplex\n");
2191 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
2194 /* Do we want to advertise 100 Mb Full Duplex? */
2195 if (hw
->autoneg_advertised
& ADVERTISE_100_FULL
) {
2196 DEBUGOUT("Advertise 100mb Full duplex\n");
2197 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
2200 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2201 if (hw
->autoneg_advertised
& ADVERTISE_1000_HALF
) {
2202 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2205 /* Do we want to advertise 1000 Mb Full Duplex? */
2206 if (hw
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
2207 DEBUGOUT("Advertise 1000mb Full duplex\n");
2208 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
2209 if (hw
->phy_type
== e1000_phy_ife
) {
2210 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2214 /* Check for a software override of the flow control settings, and
2215 * setup the PHY advertisement registers accordingly. If
2216 * auto-negotiation is enabled, then software will have to set the
2217 * "PAUSE" bits to the correct value in the Auto-Negotiation
2218 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2220 * The possible values of the "fc" parameter are:
2221 * 0: Flow control is completely disabled
2222 * 1: Rx flow control is enabled (we can receive pause frames
2223 * but not send pause frames).
2224 * 2: Tx flow control is enabled (we can send pause frames
2225 * but we do not support receiving pause frames).
2226 * 3: Both Rx and TX flow control (symmetric) are enabled.
2227 * other: No software override. The flow control configuration
2228 * in the EEPROM is used.
2231 case E1000_FC_NONE
: /* 0 */
2232 /* Flow control (RX & TX) is completely disabled by a
2233 * software over-ride.
2235 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
2237 case E1000_FC_RX_PAUSE
: /* 1 */
2238 /* RX Flow control is enabled, and TX Flow control is
2239 * disabled, by a software over-ride.
2241 /* Since there really isn't a way to advertise that we are
2242 * capable of RX Pause ONLY, we will advertise that we
2243 * support both symmetric and asymmetric RX PAUSE. Later
2244 * (in e1000_config_fc_after_link_up) we will disable the
2245 *hw's ability to send PAUSE frames.
2247 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
2249 case E1000_FC_TX_PAUSE
: /* 2 */
2250 /* TX Flow control is enabled, and RX Flow control is
2251 * disabled, by a software over-ride.
2253 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
2254 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
2256 case E1000_FC_FULL
: /* 3 */
2257 /* Flow control (both RX and TX) is enabled by a software
2260 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
2263 DEBUGOUT("Flow control param set incorrectly\n");
2264 return -E1000_ERR_CONFIG
;
2267 ret_val
= e1000_write_phy_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
2271 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
2273 if (hw
->phy_type
!= e1000_phy_ife
) {
2274 ret_val
= e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, mii_1000t_ctrl_reg
);
2279 return E1000_SUCCESS
;
2282 /******************************************************************************
2283 * Force PHY speed and duplex settings to hw->forced_speed_duplex
2285 * hw - Struct containing variables accessed by shared code
2286 ******************************************************************************/
2288 e1000_phy_force_speed_duplex(struct e1000_hw
*hw
)
2297 DEBUGFUNC("e1000_phy_force_speed_duplex");
2299 /* Turn off Flow control if we are forcing speed and duplex. */
2300 hw
->fc
= E1000_FC_NONE
;
2302 DEBUGOUT1("hw->fc = %d\n", hw
->fc
);
2304 /* Read the Device Control Register. */
2305 ctrl
= E1000_READ_REG(hw
, CTRL
);
2307 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2308 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
2309 ctrl
&= ~(DEVICE_SPEED_MASK
);
2311 /* Clear the Auto Speed Detect Enable bit. */
2312 ctrl
&= ~E1000_CTRL_ASDE
;
2314 /* Read the MII Control Register. */
2315 ret_val
= e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_ctrl_reg
);
2319 /* We need to disable autoneg in order to force link and duplex. */
2321 mii_ctrl_reg
&= ~MII_CR_AUTO_NEG_EN
;
2323 /* Are we forcing Full or Half Duplex? */
2324 if (hw
->forced_speed_duplex
== e1000_100_full
||
2325 hw
->forced_speed_duplex
== e1000_10_full
) {
2326 /* We want to force full duplex so we SET the full duplex bits in the
2327 * Device and MII Control Registers.
2329 ctrl
|= E1000_CTRL_FD
;
2330 mii_ctrl_reg
|= MII_CR_FULL_DUPLEX
;
2331 DEBUGOUT("Full Duplex\n");
2333 /* We want to force half duplex so we CLEAR the full duplex bits in
2334 * the Device and MII Control Registers.
2336 ctrl
&= ~E1000_CTRL_FD
;
2337 mii_ctrl_reg
&= ~MII_CR_FULL_DUPLEX
;
2338 DEBUGOUT("Half Duplex\n");
2341 /* Are we forcing 100Mbps??? */
2342 if (hw
->forced_speed_duplex
== e1000_100_full
||
2343 hw
->forced_speed_duplex
== e1000_100_half
) {
2344 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2345 ctrl
|= E1000_CTRL_SPD_100
;
2346 mii_ctrl_reg
|= MII_CR_SPEED_100
;
2347 mii_ctrl_reg
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
2348 DEBUGOUT("Forcing 100mb ");
2350 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2351 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
2352 mii_ctrl_reg
|= MII_CR_SPEED_10
;
2353 mii_ctrl_reg
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
2354 DEBUGOUT("Forcing 10mb ");
2357 e1000_config_collision_dist(hw
);
2359 /* Write the configured values back to the Device Control Reg. */
2360 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
2362 if ((hw
->phy_type
== e1000_phy_m88
) ||
2363 (hw
->phy_type
== e1000_phy_gg82563
)) {
2364 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
2368 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2369 * forced whenever speed are duplex are forced.
2371 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
2372 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
2376 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data
);
2378 /* Need to reset the PHY or these changes will be ignored */
2379 mii_ctrl_reg
|= MII_CR_RESET
;
2381 /* Disable MDI-X support for 10/100 */
2382 } else if (hw
->phy_type
== e1000_phy_ife
) {
2383 ret_val
= e1000_read_phy_reg(hw
, IFE_PHY_MDIX_CONTROL
, &phy_data
);
2387 phy_data
&= ~IFE_PMC_AUTO_MDIX
;
2388 phy_data
&= ~IFE_PMC_FORCE_MDIX
;
2390 ret_val
= e1000_write_phy_reg(hw
, IFE_PHY_MDIX_CONTROL
, phy_data
);
2395 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2396 * forced whenever speed or duplex are forced.
2398 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
2402 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
2403 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
2405 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
2410 /* Write back the modified PHY MII control register. */
2411 ret_val
= e1000_write_phy_reg(hw
, PHY_CTRL
, mii_ctrl_reg
);
2417 /* The wait_autoneg_complete flag may be a little misleading here.
2418 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2419 * But we do want to delay for a period while forcing only so we
2420 * don't generate false No Link messages. So we will wait here
2421 * only if the user has set wait_autoneg_complete to 1, which is
2424 if (hw
->wait_autoneg_complete
) {
2425 /* We will wait for autoneg to complete. */
2426 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2429 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2430 for (i
= PHY_FORCE_TIME
; i
> 0; i
--) {
2431 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2434 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
2438 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
2442 if (mii_status_reg
& MII_SR_LINK_STATUS
) break;
2446 ((hw
->phy_type
== e1000_phy_m88
) ||
2447 (hw
->phy_type
== e1000_phy_gg82563
))) {
2448 /* We didn't get link. Reset the DSP and wait again for link. */
2449 ret_val
= e1000_phy_reset_dsp(hw
);
2451 DEBUGOUT("Error Resetting PHY DSP\n");
2455 /* This loop will early-out if the link condition has been met. */
2456 for (i
= PHY_FORCE_TIME
; i
> 0; i
--) {
2457 if (mii_status_reg
& MII_SR_LINK_STATUS
) break;
2459 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2462 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
2466 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
2472 if (hw
->phy_type
== e1000_phy_m88
) {
2473 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2474 * Extended PHY Specific Control Register to 25MHz clock. This value
2475 * defaults back to a 2.5MHz clock when the PHY is reset.
2477 ret_val
= e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
2481 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
2482 ret_val
= e1000_write_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
2486 /* In addition, because of the s/w reset above, we need to enable CRS on
2487 * TX. This must be set for both full and half duplex operation.
2489 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
2493 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
2494 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
2498 if ((hw
->mac_type
== e1000_82544
|| hw
->mac_type
== e1000_82543
) &&
2499 (!hw
->autoneg
) && (hw
->forced_speed_duplex
== e1000_10_full
||
2500 hw
->forced_speed_duplex
== e1000_10_half
)) {
2501 ret_val
= e1000_polarity_reversal_workaround(hw
);
2505 } else if (hw
->phy_type
== e1000_phy_gg82563
) {
2506 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2507 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2508 * we're not in a forced 10/duplex configuration. */
2509 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_MAC_SPEC_CTRL
, &phy_data
);
2513 phy_data
&= ~GG82563_MSCR_TX_CLK_MASK
;
2514 if ((hw
->forced_speed_duplex
== e1000_10_full
) ||
2515 (hw
->forced_speed_duplex
== e1000_10_half
))
2516 phy_data
|= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ
;
2518 phy_data
|= GG82563_MSCR_TX_CLK_100MBPS_25MHZ
;
2520 /* Also due to the reset, we need to enable CRS on Tx. */
2521 phy_data
|= GG82563_MSCR_ASSERT_CRS_ON_TX
;
2523 ret_val
= e1000_write_phy_reg(hw
, GG82563_PHY_MAC_SPEC_CTRL
, phy_data
);
2527 return E1000_SUCCESS
;
2530 /******************************************************************************
2531 * Sets the collision distance in the Transmit Control register
2533 * hw - Struct containing variables accessed by shared code
2535 * Link should have been established previously. Reads the speed and duplex
2536 * information from the Device Status register.
2537 ******************************************************************************/
2539 e1000_config_collision_dist(struct e1000_hw
*hw
)
2541 u32 tctl
, coll_dist
;
2543 DEBUGFUNC("e1000_config_collision_dist");
2545 if (hw
->mac_type
< e1000_82543
)
2546 coll_dist
= E1000_COLLISION_DISTANCE_82542
;
2548 coll_dist
= E1000_COLLISION_DISTANCE
;
2550 tctl
= E1000_READ_REG(hw
, TCTL
);
2552 tctl
&= ~E1000_TCTL_COLD
;
2553 tctl
|= coll_dist
<< E1000_COLD_SHIFT
;
2555 E1000_WRITE_REG(hw
, TCTL
, tctl
);
2556 E1000_WRITE_FLUSH(hw
);
2559 /******************************************************************************
2560 * Sets MAC speed and duplex settings to reflect the those in the PHY
2562 * hw - Struct containing variables accessed by shared code
2563 * mii_reg - data to write to the MII control register
2565 * The contents of the PHY register containing the needed information need to
2567 ******************************************************************************/
2569 e1000_config_mac_to_phy(struct e1000_hw
*hw
)
2575 DEBUGFUNC("e1000_config_mac_to_phy");
2577 /* 82544 or newer MAC, Auto Speed Detection takes care of
2578 * MAC speed/duplex configuration.*/
2579 if (hw
->mac_type
>= e1000_82544
)
2580 return E1000_SUCCESS
;
2582 /* Read the Device Control Register and set the bits to Force Speed
2585 ctrl
= E1000_READ_REG(hw
, CTRL
);
2586 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
2587 ctrl
&= ~(E1000_CTRL_SPD_SEL
| E1000_CTRL_ILOS
);
2589 /* Set up duplex in the Device Control and Transmit Control
2590 * registers depending on negotiated values.
2592 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
2596 if (phy_data
& M88E1000_PSSR_DPLX
)
2597 ctrl
|= E1000_CTRL_FD
;
2599 ctrl
&= ~E1000_CTRL_FD
;
2601 e1000_config_collision_dist(hw
);
2603 /* Set up speed in the Device Control register depending on
2604 * negotiated values.
2606 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
)
2607 ctrl
|= E1000_CTRL_SPD_1000
;
2608 else if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_100MBS
)
2609 ctrl
|= E1000_CTRL_SPD_100
;
2611 /* Write the configured values back to the Device Control Reg. */
2612 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
2613 return E1000_SUCCESS
;
2616 /******************************************************************************
2617 * Forces the MAC's flow control settings.
2619 * hw - Struct containing variables accessed by shared code
2621 * Sets the TFCE and RFCE bits in the device control register to reflect
2622 * the adapter settings. TFCE and RFCE need to be explicitly set by
2623 * software when a Copper PHY is used because autonegotiation is managed
2624 * by the PHY rather than the MAC. Software must also configure these
2625 * bits when link is forced on a fiber connection.
2626 *****************************************************************************/
2628 e1000_force_mac_fc(struct e1000_hw
*hw
)
2632 DEBUGFUNC("e1000_force_mac_fc");
2634 /* Get the current configuration of the Device Control Register */
2635 ctrl
= E1000_READ_REG(hw
, CTRL
);
2637 /* Because we didn't get link via the internal auto-negotiation
2638 * mechanism (we either forced link or we got link via PHY
2639 * auto-neg), we have to manually enable/disable transmit an
2640 * receive flow control.
2642 * The "Case" statement below enables/disable flow control
2643 * according to the "hw->fc" parameter.
2645 * The possible values of the "fc" parameter are:
2646 * 0: Flow control is completely disabled
2647 * 1: Rx flow control is enabled (we can receive pause
2648 * frames but not send pause frames).
2649 * 2: Tx flow control is enabled (we can send pause frames
2650 * frames but we do not receive pause frames).
2651 * 3: Both Rx and TX flow control (symmetric) is enabled.
2652 * other: No other values should be possible at this point.
2657 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
2659 case E1000_FC_RX_PAUSE
:
2660 ctrl
&= (~E1000_CTRL_TFCE
);
2661 ctrl
|= E1000_CTRL_RFCE
;
2663 case E1000_FC_TX_PAUSE
:
2664 ctrl
&= (~E1000_CTRL_RFCE
);
2665 ctrl
|= E1000_CTRL_TFCE
;
2668 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
2671 DEBUGOUT("Flow control param set incorrectly\n");
2672 return -E1000_ERR_CONFIG
;
2675 /* Disable TX Flow Control for 82542 (rev 2.0) */
2676 if (hw
->mac_type
== e1000_82542_rev2_0
)
2677 ctrl
&= (~E1000_CTRL_TFCE
);
2679 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
2680 return E1000_SUCCESS
;
2683 /******************************************************************************
2684 * Configures flow control settings after link is established
2686 * hw - Struct containing variables accessed by shared code
2688 * Should be called immediately after a valid link has been established.
2689 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2690 * and autonegotiation is enabled, the MAC flow control settings will be set
2691 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2692 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2693 *****************************************************************************/
2695 e1000_config_fc_after_link_up(struct e1000_hw
*hw
)
2699 u16 mii_nway_adv_reg
;
2700 u16 mii_nway_lp_ability_reg
;
2704 DEBUGFUNC("e1000_config_fc_after_link_up");
2706 /* Check for the case where we have fiber media and auto-neg failed
2707 * so we had to force link. In this case, we need to force the
2708 * configuration of the MAC to match the "fc" parameter.
2710 if (((hw
->media_type
== e1000_media_type_fiber
) && (hw
->autoneg_failed
)) ||
2711 ((hw
->media_type
== e1000_media_type_internal_serdes
) &&
2712 (hw
->autoneg_failed
)) ||
2713 ((hw
->media_type
== e1000_media_type_copper
) && (!hw
->autoneg
))) {
2714 ret_val
= e1000_force_mac_fc(hw
);
2716 DEBUGOUT("Error forcing flow control settings\n");
2721 /* Check for the case where we have copper media and auto-neg is
2722 * enabled. In this case, we need to check and see if Auto-Neg
2723 * has completed, and if so, how the PHY and link partner has
2724 * flow control configured.
2726 if ((hw
->media_type
== e1000_media_type_copper
) && hw
->autoneg
) {
2727 /* Read the MII Status Register and check to see if AutoNeg
2728 * has completed. We read this twice because this reg has
2729 * some "sticky" (latched) bits.
2731 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
2734 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
2738 if (mii_status_reg
& MII_SR_AUTONEG_COMPLETE
) {
2739 /* The AutoNeg process has completed, so we now need to
2740 * read both the Auto Negotiation Advertisement Register
2741 * (Address 4) and the Auto_Negotiation Base Page Ability
2742 * Register (Address 5) to determine how flow control was
2745 ret_val
= e1000_read_phy_reg(hw
, PHY_AUTONEG_ADV
,
2749 ret_val
= e1000_read_phy_reg(hw
, PHY_LP_ABILITY
,
2750 &mii_nway_lp_ability_reg
);
2754 /* Two bits in the Auto Negotiation Advertisement Register
2755 * (Address 4) and two bits in the Auto Negotiation Base
2756 * Page Ability Register (Address 5) determine flow control
2757 * for both the PHY and the link partner. The following
2758 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2759 * 1999, describes these PAUSE resolution bits and how flow
2760 * control is determined based upon these settings.
2761 * NOTE: DC = Don't Care
2763 * LOCAL DEVICE | LINK PARTNER
2764 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2765 *-------|---------|-------|---------|--------------------
2766 * 0 | 0 | DC | DC | E1000_FC_NONE
2767 * 0 | 1 | 0 | DC | E1000_FC_NONE
2768 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2769 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2770 * 1 | 0 | 0 | DC | E1000_FC_NONE
2771 * 1 | DC | 1 | DC | E1000_FC_FULL
2772 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2773 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2776 /* Are both PAUSE bits set to 1? If so, this implies
2777 * Symmetric Flow Control is enabled at both ends. The
2778 * ASM_DIR bits are irrelevant per the spec.
2780 * For Symmetric Flow Control:
2782 * LOCAL DEVICE | LINK PARTNER
2783 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2784 *-------|---------|-------|---------|--------------------
2785 * 1 | DC | 1 | DC | E1000_FC_FULL
2788 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
2789 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
2790 /* Now we need to check if the user selected RX ONLY
2791 * of pause frames. In this case, we had to advertise
2792 * FULL flow control because we could not advertise RX
2793 * ONLY. Hence, we must now check to see if we need to
2794 * turn OFF the TRANSMISSION of PAUSE frames.
2796 if (hw
->original_fc
== E1000_FC_FULL
) {
2797 hw
->fc
= E1000_FC_FULL
;
2798 DEBUGOUT("Flow Control = FULL.\n");
2800 hw
->fc
= E1000_FC_RX_PAUSE
;
2801 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2804 /* For receiving PAUSE frames ONLY.
2806 * LOCAL DEVICE | LINK PARTNER
2807 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2808 *-------|---------|-------|---------|--------------------
2809 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2812 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
2813 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
2814 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
2815 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
2816 hw
->fc
= E1000_FC_TX_PAUSE
;
2817 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2819 /* For transmitting PAUSE frames ONLY.
2821 * LOCAL DEVICE | LINK PARTNER
2822 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2823 *-------|---------|-------|---------|--------------------
2824 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2827 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
2828 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
2829 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
2830 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
2831 hw
->fc
= E1000_FC_RX_PAUSE
;
2832 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2834 /* Per the IEEE spec, at this point flow control should be
2835 * disabled. However, we want to consider that we could
2836 * be connected to a legacy switch that doesn't advertise
2837 * desired flow control, but can be forced on the link
2838 * partner. So if we advertised no flow control, that is
2839 * what we will resolve to. If we advertised some kind of
2840 * receive capability (Rx Pause Only or Full Flow Control)
2841 * and the link partner advertised none, we will configure
2842 * ourselves to enable Rx Flow Control only. We can do
2843 * this safely for two reasons: If the link partner really
2844 * didn't want flow control enabled, and we enable Rx, no
2845 * harm done since we won't be receiving any PAUSE frames
2846 * anyway. If the intent on the link partner was to have
2847 * flow control enabled, then by us enabling RX only, we
2848 * can at least receive pause frames and process them.
2849 * This is a good idea because in most cases, since we are
2850 * predominantly a server NIC, more times than not we will
2851 * be asked to delay transmission of packets than asking
2852 * our link partner to pause transmission of frames.
2854 else if ((hw
->original_fc
== E1000_FC_NONE
||
2855 hw
->original_fc
== E1000_FC_TX_PAUSE
) ||
2856 hw
->fc_strict_ieee
) {
2857 hw
->fc
= E1000_FC_NONE
;
2858 DEBUGOUT("Flow Control = NONE.\n");
2860 hw
->fc
= E1000_FC_RX_PAUSE
;
2861 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2864 /* Now we need to do one last check... If we auto-
2865 * negotiated to HALF DUPLEX, flow control should not be
2866 * enabled per IEEE 802.3 spec.
2868 ret_val
= e1000_get_speed_and_duplex(hw
, &speed
, &duplex
);
2870 DEBUGOUT("Error getting link speed and duplex\n");
2874 if (duplex
== HALF_DUPLEX
)
2875 hw
->fc
= E1000_FC_NONE
;
2877 /* Now we call a subroutine to actually force the MAC
2878 * controller to use the correct flow control settings.
2880 ret_val
= e1000_force_mac_fc(hw
);
2882 DEBUGOUT("Error forcing flow control settings\n");
2886 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
2889 return E1000_SUCCESS
;
2892 /******************************************************************************
2893 * Checks to see if the link status of the hardware has changed.
2895 * hw - Struct containing variables accessed by shared code
2897 * Called by any function that needs to check the link status of the adapter.
2898 *****************************************************************************/
2900 e1000_check_for_link(struct e1000_hw
*hw
)
2911 DEBUGFUNC("e1000_check_for_link");
2913 ctrl
= E1000_READ_REG(hw
, CTRL
);
2914 status
= E1000_READ_REG(hw
, STATUS
);
2916 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2917 * set when the optics detect a signal. On older adapters, it will be
2918 * cleared when there is a signal. This applies to fiber media only.
2920 if ((hw
->media_type
== e1000_media_type_fiber
) ||
2921 (hw
->media_type
== e1000_media_type_internal_serdes
)) {
2922 rxcw
= E1000_READ_REG(hw
, RXCW
);
2924 if (hw
->media_type
== e1000_media_type_fiber
) {
2925 signal
= (hw
->mac_type
> e1000_82544
) ? E1000_CTRL_SWDPIN1
: 0;
2926 if (status
& E1000_STATUS_LU
)
2927 hw
->get_link_status
= false;
2931 /* If we have a copper PHY then we only want to go out to the PHY
2932 * registers to see if Auto-Neg has completed and/or if our link
2933 * status has changed. The get_link_status flag will be set if we
2934 * receive a Link Status Change interrupt or we have Rx Sequence
2937 if ((hw
->media_type
== e1000_media_type_copper
) && hw
->get_link_status
) {
2938 /* First we want to see if the MII Status Register reports
2939 * link. If so, then we want to get the current speed/duplex
2941 * Read the register twice since the link bit is sticky.
2943 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
2946 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
2950 if (phy_data
& MII_SR_LINK_STATUS
) {
2951 hw
->get_link_status
= false;
2952 /* Check if there was DownShift, must be checked immediately after
2954 e1000_check_downshift(hw
);
2956 /* If we are on 82544 or 82543 silicon and speed/duplex
2957 * are forced to 10H or 10F, then we will implement the polarity
2958 * reversal workaround. We disable interrupts first, and upon
2959 * returning, place the devices interrupt state to its previous
2960 * value except for the link status change interrupt which will
2961 * happen due to the execution of this workaround.
2964 if ((hw
->mac_type
== e1000_82544
|| hw
->mac_type
== e1000_82543
) &&
2966 (hw
->forced_speed_duplex
== e1000_10_full
||
2967 hw
->forced_speed_duplex
== e1000_10_half
)) {
2968 E1000_WRITE_REG(hw
, IMC
, 0xffffffff);
2969 ret_val
= e1000_polarity_reversal_workaround(hw
);
2970 icr
= E1000_READ_REG(hw
, ICR
);
2971 E1000_WRITE_REG(hw
, ICS
, (icr
& ~E1000_ICS_LSC
));
2972 E1000_WRITE_REG(hw
, IMS
, IMS_ENABLE_MASK
);
2976 /* No link detected */
2977 e1000_config_dsp_after_link_change(hw
, false);
2981 /* If we are forcing speed/duplex, then we simply return since
2982 * we have already determined whether we have link or not.
2984 if (!hw
->autoneg
) return -E1000_ERR_CONFIG
;
2986 /* optimize the dsp settings for the igp phy */
2987 e1000_config_dsp_after_link_change(hw
, true);
2989 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2990 * have Si on board that is 82544 or newer, Auto
2991 * Speed Detection takes care of MAC speed/duplex
2992 * configuration. So we only need to configure Collision
2993 * Distance in the MAC. Otherwise, we need to force
2994 * speed/duplex on the MAC to the current PHY speed/duplex
2997 if (hw
->mac_type
>= e1000_82544
)
2998 e1000_config_collision_dist(hw
);
3000 ret_val
= e1000_config_mac_to_phy(hw
);
3002 DEBUGOUT("Error configuring MAC to PHY settings\n");
3007 /* Configure Flow Control now that Auto-Neg has completed. First, we
3008 * need to restore the desired flow control settings because we may
3009 * have had to re-autoneg with a different link partner.
3011 ret_val
= e1000_config_fc_after_link_up(hw
);
3013 DEBUGOUT("Error configuring flow control\n");
3017 /* At this point we know that we are on copper and we have
3018 * auto-negotiated link. These are conditions for checking the link
3019 * partner capability register. We use the link speed to determine if
3020 * TBI compatibility needs to be turned on or off. If the link is not
3021 * at gigabit speed, then TBI compatibility is not needed. If we are
3022 * at gigabit speed, we turn on TBI compatibility.
3024 if (hw
->tbi_compatibility_en
) {
3026 ret_val
= e1000_get_speed_and_duplex(hw
, &speed
, &duplex
);
3028 DEBUGOUT("Error getting link speed and duplex\n");
3031 if (speed
!= SPEED_1000
) {
3032 /* If link speed is not set to gigabit speed, we do not need
3033 * to enable TBI compatibility.
3035 if (hw
->tbi_compatibility_on
) {
3036 /* If we previously were in the mode, turn it off. */
3037 rctl
= E1000_READ_REG(hw
, RCTL
);
3038 rctl
&= ~E1000_RCTL_SBP
;
3039 E1000_WRITE_REG(hw
, RCTL
, rctl
);
3040 hw
->tbi_compatibility_on
= false;
3043 /* If TBI compatibility is was previously off, turn it on. For
3044 * compatibility with a TBI link partner, we will store bad
3045 * packets. Some frames have an additional byte on the end and
3046 * will look like CRC errors to to the hardware.
3048 if (!hw
->tbi_compatibility_on
) {
3049 hw
->tbi_compatibility_on
= true;
3050 rctl
= E1000_READ_REG(hw
, RCTL
);
3051 rctl
|= E1000_RCTL_SBP
;
3052 E1000_WRITE_REG(hw
, RCTL
, rctl
);
3057 /* If we don't have link (auto-negotiation failed or link partner cannot
3058 * auto-negotiate), the cable is plugged in (we have signal), and our
3059 * link partner is not trying to auto-negotiate with us (we are receiving
3060 * idles or data), we need to force link up. We also need to give
3061 * auto-negotiation time to complete, in case the cable was just plugged
3062 * in. The autoneg_failed flag does this.
3064 else if ((((hw
->media_type
== e1000_media_type_fiber
) &&
3065 ((ctrl
& E1000_CTRL_SWDPIN1
) == signal
)) ||
3066 (hw
->media_type
== e1000_media_type_internal_serdes
)) &&
3067 (!(status
& E1000_STATUS_LU
)) &&
3068 (!(rxcw
& E1000_RXCW_C
))) {
3069 if (hw
->autoneg_failed
== 0) {
3070 hw
->autoneg_failed
= 1;
3073 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
3075 /* Disable auto-negotiation in the TXCW register */
3076 E1000_WRITE_REG(hw
, TXCW
, (hw
->txcw
& ~E1000_TXCW_ANE
));
3078 /* Force link-up and also force full-duplex. */
3079 ctrl
= E1000_READ_REG(hw
, CTRL
);
3080 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
3081 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
3083 /* Configure Flow Control after forcing link up. */
3084 ret_val
= e1000_config_fc_after_link_up(hw
);
3086 DEBUGOUT("Error configuring flow control\n");
3090 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3091 * auto-negotiation in the TXCW register and disable forced link in the
3092 * Device Control register in an attempt to auto-negotiate with our link
3095 else if (((hw
->media_type
== e1000_media_type_fiber
) ||
3096 (hw
->media_type
== e1000_media_type_internal_serdes
)) &&
3097 (ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
3098 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
3099 E1000_WRITE_REG(hw
, TXCW
, hw
->txcw
);
3100 E1000_WRITE_REG(hw
, CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
3102 hw
->serdes_link_down
= false;
3104 /* If we force link for non-auto-negotiation switch, check link status
3105 * based on MAC synchronization for internal serdes media type.
3107 else if ((hw
->media_type
== e1000_media_type_internal_serdes
) &&
3108 !(E1000_TXCW_ANE
& E1000_READ_REG(hw
, TXCW
))) {
3109 /* SYNCH bit and IV bit are sticky. */
3111 if (E1000_RXCW_SYNCH
& E1000_READ_REG(hw
, RXCW
)) {
3112 if (!(rxcw
& E1000_RXCW_IV
)) {
3113 hw
->serdes_link_down
= false;
3114 DEBUGOUT("SERDES: Link is up.\n");
3117 hw
->serdes_link_down
= true;
3118 DEBUGOUT("SERDES: Link is down.\n");
3121 if ((hw
->media_type
== e1000_media_type_internal_serdes
) &&
3122 (E1000_TXCW_ANE
& E1000_READ_REG(hw
, TXCW
))) {
3123 hw
->serdes_link_down
= !(E1000_STATUS_LU
& E1000_READ_REG(hw
, STATUS
));
3125 return E1000_SUCCESS
;
3128 /******************************************************************************
3129 * Detects the current speed and duplex settings of the hardware.
3131 * hw - Struct containing variables accessed by shared code
3132 * speed - Speed of the connection
3133 * duplex - Duplex setting of the connection
3134 *****************************************************************************/
3136 e1000_get_speed_and_duplex(struct e1000_hw
*hw
,
3144 DEBUGFUNC("e1000_get_speed_and_duplex");
3146 if (hw
->mac_type
>= e1000_82543
) {
3147 status
= E1000_READ_REG(hw
, STATUS
);
3148 if (status
& E1000_STATUS_SPEED_1000
) {
3149 *speed
= SPEED_1000
;
3150 DEBUGOUT("1000 Mbs, ");
3151 } else if (status
& E1000_STATUS_SPEED_100
) {
3153 DEBUGOUT("100 Mbs, ");
3156 DEBUGOUT("10 Mbs, ");
3159 if (status
& E1000_STATUS_FD
) {
3160 *duplex
= FULL_DUPLEX
;
3161 DEBUGOUT("Full Duplex\n");
3163 *duplex
= HALF_DUPLEX
;
3164 DEBUGOUT(" Half Duplex\n");
3167 DEBUGOUT("1000 Mbs, Full Duplex\n");
3168 *speed
= SPEED_1000
;
3169 *duplex
= FULL_DUPLEX
;
3172 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3173 * if it is operating at half duplex. Here we set the duplex settings to
3174 * match the duplex in the link partner's capabilities.
3176 if (hw
->phy_type
== e1000_phy_igp
&& hw
->speed_downgraded
) {
3177 ret_val
= e1000_read_phy_reg(hw
, PHY_AUTONEG_EXP
, &phy_data
);
3181 if (!(phy_data
& NWAY_ER_LP_NWAY_CAPS
))
3182 *duplex
= HALF_DUPLEX
;
3184 ret_val
= e1000_read_phy_reg(hw
, PHY_LP_ABILITY
, &phy_data
);
3187 if ((*speed
== SPEED_100
&& !(phy_data
& NWAY_LPAR_100TX_FD_CAPS
)) ||
3188 (*speed
== SPEED_10
&& !(phy_data
& NWAY_LPAR_10T_FD_CAPS
)))
3189 *duplex
= HALF_DUPLEX
;
3193 if ((hw
->mac_type
== e1000_80003es2lan
) &&
3194 (hw
->media_type
== e1000_media_type_copper
)) {
3195 if (*speed
== SPEED_1000
)
3196 ret_val
= e1000_configure_kmrn_for_1000(hw
);
3198 ret_val
= e1000_configure_kmrn_for_10_100(hw
, *duplex
);
3203 if ((hw
->phy_type
== e1000_phy_igp_3
) && (*speed
== SPEED_1000
)) {
3204 ret_val
= e1000_kumeran_lock_loss_workaround(hw
);
3209 return E1000_SUCCESS
;
3212 /******************************************************************************
3213 * Blocks until autoneg completes or times out (~4.5 seconds)
3215 * hw - Struct containing variables accessed by shared code
3216 ******************************************************************************/
3218 e1000_wait_autoneg(struct e1000_hw
*hw
)
3224 DEBUGFUNC("e1000_wait_autoneg");
3225 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3227 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3228 for (i
= PHY_AUTO_NEG_TIME
; i
> 0; i
--) {
3229 /* Read the MII Status Register and wait for Auto-Neg
3230 * Complete bit to be set.
3232 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
3235 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
3238 if (phy_data
& MII_SR_AUTONEG_COMPLETE
) {
3239 return E1000_SUCCESS
;
3243 return E1000_SUCCESS
;
3246 /******************************************************************************
3247 * Raises the Management Data Clock
3249 * hw - Struct containing variables accessed by shared code
3250 * ctrl - Device control register's current value
3251 ******************************************************************************/
3253 e1000_raise_mdi_clk(struct e1000_hw
*hw
,
3256 /* Raise the clock input to the Management Data Clock (by setting the MDC
3257 * bit), and then delay 10 microseconds.
3259 E1000_WRITE_REG(hw
, CTRL
, (*ctrl
| E1000_CTRL_MDC
));
3260 E1000_WRITE_FLUSH(hw
);
3264 /******************************************************************************
3265 * Lowers the Management Data Clock
3267 * hw - Struct containing variables accessed by shared code
3268 * ctrl - Device control register's current value
3269 ******************************************************************************/
3271 e1000_lower_mdi_clk(struct e1000_hw
*hw
,
3274 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3275 * bit), and then delay 10 microseconds.
3277 E1000_WRITE_REG(hw
, CTRL
, (*ctrl
& ~E1000_CTRL_MDC
));
3278 E1000_WRITE_FLUSH(hw
);
3282 /******************************************************************************
3283 * Shifts data bits out to the PHY
3285 * hw - Struct containing variables accessed by shared code
3286 * data - Data to send out to the PHY
3287 * count - Number of bits to shift out
3289 * Bits are shifted out in MSB to LSB order.
3290 ******************************************************************************/
3292 e1000_shift_out_mdi_bits(struct e1000_hw
*hw
,
3299 /* We need to shift "count" number of bits out to the PHY. So, the value
3300 * in the "data" parameter will be shifted out to the PHY one bit at a
3301 * time. In order to do this, "data" must be broken down into bits.
3304 mask
<<= (count
- 1);
3306 ctrl
= E1000_READ_REG(hw
, CTRL
);
3308 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3309 ctrl
|= (E1000_CTRL_MDIO_DIR
| E1000_CTRL_MDC_DIR
);
3312 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3313 * then raising and lowering the Management Data Clock. A "0" is
3314 * shifted out to the PHY by setting the MDIO bit to "0" and then
3315 * raising and lowering the clock.
3318 ctrl
|= E1000_CTRL_MDIO
;
3320 ctrl
&= ~E1000_CTRL_MDIO
;
3322 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
3323 E1000_WRITE_FLUSH(hw
);
3327 e1000_raise_mdi_clk(hw
, &ctrl
);
3328 e1000_lower_mdi_clk(hw
, &ctrl
);
3334 /******************************************************************************
3335 * Shifts data bits in from the PHY
3337 * hw - Struct containing variables accessed by shared code
3339 * Bits are shifted in in MSB to LSB order.
3340 ******************************************************************************/
3342 e1000_shift_in_mdi_bits(struct e1000_hw
*hw
)
3348 /* In order to read a register from the PHY, we need to shift in a total
3349 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3350 * to avoid contention on the MDIO pin when a read operation is performed.
3351 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3352 * by raising the input to the Management Data Clock (setting the MDC bit),
3353 * and then reading the value of the MDIO bit.
3355 ctrl
= E1000_READ_REG(hw
, CTRL
);
3357 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3358 ctrl
&= ~E1000_CTRL_MDIO_DIR
;
3359 ctrl
&= ~E1000_CTRL_MDIO
;
3361 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
3362 E1000_WRITE_FLUSH(hw
);
3364 /* Raise and Lower the clock before reading in the data. This accounts for
3365 * the turnaround bits. The first clock occurred when we clocked out the
3366 * last bit of the Register Address.
3368 e1000_raise_mdi_clk(hw
, &ctrl
);
3369 e1000_lower_mdi_clk(hw
, &ctrl
);
3371 for (data
= 0, i
= 0; i
< 16; i
++) {
3373 e1000_raise_mdi_clk(hw
, &ctrl
);
3374 ctrl
= E1000_READ_REG(hw
, CTRL
);
3375 /* Check to see if we shifted in a "1". */
3376 if (ctrl
& E1000_CTRL_MDIO
)
3378 e1000_lower_mdi_clk(hw
, &ctrl
);
3381 e1000_raise_mdi_clk(hw
, &ctrl
);
3382 e1000_lower_mdi_clk(hw
, &ctrl
);
3388 e1000_swfw_sync_acquire(struct e1000_hw
*hw
, u16 mask
)
3392 u32 fwmask
= mask
<< 16;
3395 DEBUGFUNC("e1000_swfw_sync_acquire");
3397 if (hw
->swfwhw_semaphore_present
)
3398 return e1000_get_software_flag(hw
);
3400 if (!hw
->swfw_sync_present
)
3401 return e1000_get_hw_eeprom_semaphore(hw
);
3404 if (e1000_get_hw_eeprom_semaphore(hw
))
3405 return -E1000_ERR_SWFW_SYNC
;
3407 swfw_sync
= E1000_READ_REG(hw
, SW_FW_SYNC
);
3408 if (!(swfw_sync
& (fwmask
| swmask
))) {
3412 /* firmware currently using resource (fwmask) */
3413 /* or other software thread currently using resource (swmask) */
3414 e1000_put_hw_eeprom_semaphore(hw
);
3420 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3421 return -E1000_ERR_SWFW_SYNC
;
3424 swfw_sync
|= swmask
;
3425 E1000_WRITE_REG(hw
, SW_FW_SYNC
, swfw_sync
);
3427 e1000_put_hw_eeprom_semaphore(hw
);
3428 return E1000_SUCCESS
;
3432 e1000_swfw_sync_release(struct e1000_hw
*hw
, u16 mask
)
3437 DEBUGFUNC("e1000_swfw_sync_release");
3439 if (hw
->swfwhw_semaphore_present
) {
3440 e1000_release_software_flag(hw
);
3444 if (!hw
->swfw_sync_present
) {
3445 e1000_put_hw_eeprom_semaphore(hw
);
3449 /* if (e1000_get_hw_eeprom_semaphore(hw))
3450 * return -E1000_ERR_SWFW_SYNC; */
3451 while (e1000_get_hw_eeprom_semaphore(hw
) != E1000_SUCCESS
);
3454 swfw_sync
= E1000_READ_REG(hw
, SW_FW_SYNC
);
3455 swfw_sync
&= ~swmask
;
3456 E1000_WRITE_REG(hw
, SW_FW_SYNC
, swfw_sync
);
3458 e1000_put_hw_eeprom_semaphore(hw
);
3461 /*****************************************************************************
3462 * Reads the value from a PHY register, if the value is on a specific non zero
3463 * page, sets the page first.
3464 * hw - Struct containing variables accessed by shared code
3465 * reg_addr - address of the PHY register to read
3466 ******************************************************************************/
3468 e1000_read_phy_reg(struct e1000_hw
*hw
,
3475 DEBUGFUNC("e1000_read_phy_reg");
3477 if ((hw
->mac_type
== e1000_80003es2lan
) &&
3478 (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)) {
3479 swfw
= E1000_SWFW_PHY1_SM
;
3481 swfw
= E1000_SWFW_PHY0_SM
;
3483 if (e1000_swfw_sync_acquire(hw
, swfw
))
3484 return -E1000_ERR_SWFW_SYNC
;
3486 if ((hw
->phy_type
== e1000_phy_igp
||
3487 hw
->phy_type
== e1000_phy_igp_3
||
3488 hw
->phy_type
== e1000_phy_igp_2
) &&
3489 (reg_addr
> MAX_PHY_MULTI_PAGE_REG
)) {
3490 ret_val
= e1000_write_phy_reg_ex(hw
, IGP01E1000_PHY_PAGE_SELECT
,
3493 e1000_swfw_sync_release(hw
, swfw
);
3496 } else if (hw
->phy_type
== e1000_phy_gg82563
) {
3497 if (((reg_addr
& MAX_PHY_REG_ADDRESS
) > MAX_PHY_MULTI_PAGE_REG
) ||
3498 (hw
->mac_type
== e1000_80003es2lan
)) {
3499 /* Select Configuration Page */
3500 if ((reg_addr
& MAX_PHY_REG_ADDRESS
) < GG82563_MIN_ALT_REG
) {
3501 ret_val
= e1000_write_phy_reg_ex(hw
, GG82563_PHY_PAGE_SELECT
,
3502 (u16
)((u16
)reg_addr
>> GG82563_PAGE_SHIFT
));
3504 /* Use Alternative Page Select register to access
3505 * registers 30 and 31
3507 ret_val
= e1000_write_phy_reg_ex(hw
,
3508 GG82563_PHY_PAGE_SELECT_ALT
,
3509 (u16
)((u16
)reg_addr
>> GG82563_PAGE_SHIFT
));
3513 e1000_swfw_sync_release(hw
, swfw
);
3519 ret_val
= e1000_read_phy_reg_ex(hw
, MAX_PHY_REG_ADDRESS
& reg_addr
,
3522 e1000_swfw_sync_release(hw
, swfw
);
3527 e1000_read_phy_reg_ex(struct e1000_hw
*hw
, u32 reg_addr
,
3532 const u32 phy_addr
= 1;
3534 DEBUGFUNC("e1000_read_phy_reg_ex");
3536 if (reg_addr
> MAX_PHY_REG_ADDRESS
) {
3537 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr
);
3538 return -E1000_ERR_PARAM
;
3541 if (hw
->mac_type
> e1000_82543
) {
3542 /* Set up Op-code, Phy Address, and register address in the MDI
3543 * Control register. The MAC will take care of interfacing with the
3544 * PHY to retrieve the desired data.
3546 mdic
= ((reg_addr
<< E1000_MDIC_REG_SHIFT
) |
3547 (phy_addr
<< E1000_MDIC_PHY_SHIFT
) |
3548 (E1000_MDIC_OP_READ
));
3550 E1000_WRITE_REG(hw
, MDIC
, mdic
);
3552 /* Poll the ready bit to see if the MDI read completed */
3553 for (i
= 0; i
< 64; i
++) {
3555 mdic
= E1000_READ_REG(hw
, MDIC
);
3556 if (mdic
& E1000_MDIC_READY
) break;
3558 if (!(mdic
& E1000_MDIC_READY
)) {
3559 DEBUGOUT("MDI Read did not complete\n");
3560 return -E1000_ERR_PHY
;
3562 if (mdic
& E1000_MDIC_ERROR
) {
3563 DEBUGOUT("MDI Error\n");
3564 return -E1000_ERR_PHY
;
3566 *phy_data
= (u16
) mdic
;
3568 /* We must first send a preamble through the MDIO pin to signal the
3569 * beginning of an MII instruction. This is done by sending 32
3570 * consecutive "1" bits.
3572 e1000_shift_out_mdi_bits(hw
, PHY_PREAMBLE
, PHY_PREAMBLE_SIZE
);
3574 /* Now combine the next few fields that are required for a read
3575 * operation. We use this method instead of calling the
3576 * e1000_shift_out_mdi_bits routine five different times. The format of
3577 * a MII read instruction consists of a shift out of 14 bits and is
3578 * defined as follows:
3579 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3580 * followed by a shift in of 18 bits. This first two bits shifted in
3581 * are TurnAround bits used to avoid contention on the MDIO pin when a
3582 * READ operation is performed. These two bits are thrown away
3583 * followed by a shift in of 16 bits which contains the desired data.
3585 mdic
= ((reg_addr
) | (phy_addr
<< 5) |
3586 (PHY_OP_READ
<< 10) | (PHY_SOF
<< 12));
3588 e1000_shift_out_mdi_bits(hw
, mdic
, 14);
3590 /* Now that we've shifted out the read command to the MII, we need to
3591 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3594 *phy_data
= e1000_shift_in_mdi_bits(hw
);
3596 return E1000_SUCCESS
;
3599 /******************************************************************************
3600 * Writes a value to a PHY register
3602 * hw - Struct containing variables accessed by shared code
3603 * reg_addr - address of the PHY register to write
3604 * data - data to write to the PHY
3605 ******************************************************************************/
3607 e1000_write_phy_reg(struct e1000_hw
*hw
, u32 reg_addr
,
3613 DEBUGFUNC("e1000_write_phy_reg");
3615 if ((hw
->mac_type
== e1000_80003es2lan
) &&
3616 (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)) {
3617 swfw
= E1000_SWFW_PHY1_SM
;
3619 swfw
= E1000_SWFW_PHY0_SM
;
3621 if (e1000_swfw_sync_acquire(hw
, swfw
))
3622 return -E1000_ERR_SWFW_SYNC
;
3624 if ((hw
->phy_type
== e1000_phy_igp
||
3625 hw
->phy_type
== e1000_phy_igp_3
||
3626 hw
->phy_type
== e1000_phy_igp_2
) &&
3627 (reg_addr
> MAX_PHY_MULTI_PAGE_REG
)) {
3628 ret_val
= e1000_write_phy_reg_ex(hw
, IGP01E1000_PHY_PAGE_SELECT
,
3631 e1000_swfw_sync_release(hw
, swfw
);
3634 } else if (hw
->phy_type
== e1000_phy_gg82563
) {
3635 if (((reg_addr
& MAX_PHY_REG_ADDRESS
) > MAX_PHY_MULTI_PAGE_REG
) ||
3636 (hw
->mac_type
== e1000_80003es2lan
)) {
3637 /* Select Configuration Page */
3638 if ((reg_addr
& MAX_PHY_REG_ADDRESS
) < GG82563_MIN_ALT_REG
) {
3639 ret_val
= e1000_write_phy_reg_ex(hw
, GG82563_PHY_PAGE_SELECT
,
3640 (u16
)((u16
)reg_addr
>> GG82563_PAGE_SHIFT
));
3642 /* Use Alternative Page Select register to access
3643 * registers 30 and 31
3645 ret_val
= e1000_write_phy_reg_ex(hw
,
3646 GG82563_PHY_PAGE_SELECT_ALT
,
3647 (u16
)((u16
)reg_addr
>> GG82563_PAGE_SHIFT
));
3651 e1000_swfw_sync_release(hw
, swfw
);
3657 ret_val
= e1000_write_phy_reg_ex(hw
, MAX_PHY_REG_ADDRESS
& reg_addr
,
3660 e1000_swfw_sync_release(hw
, swfw
);
3665 e1000_write_phy_reg_ex(struct e1000_hw
*hw
, u32 reg_addr
,
3670 const u32 phy_addr
= 1;
3672 DEBUGFUNC("e1000_write_phy_reg_ex");
3674 if (reg_addr
> MAX_PHY_REG_ADDRESS
) {
3675 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr
);
3676 return -E1000_ERR_PARAM
;
3679 if (hw
->mac_type
> e1000_82543
) {
3680 /* Set up Op-code, Phy Address, register address, and data intended
3681 * for the PHY register in the MDI Control register. The MAC will take
3682 * care of interfacing with the PHY to send the desired data.
3684 mdic
= (((u32
) phy_data
) |
3685 (reg_addr
<< E1000_MDIC_REG_SHIFT
) |
3686 (phy_addr
<< E1000_MDIC_PHY_SHIFT
) |
3687 (E1000_MDIC_OP_WRITE
));
3689 E1000_WRITE_REG(hw
, MDIC
, mdic
);
3691 /* Poll the ready bit to see if the MDI read completed */
3692 for (i
= 0; i
< 641; i
++) {
3694 mdic
= E1000_READ_REG(hw
, MDIC
);
3695 if (mdic
& E1000_MDIC_READY
) break;
3697 if (!(mdic
& E1000_MDIC_READY
)) {
3698 DEBUGOUT("MDI Write did not complete\n");
3699 return -E1000_ERR_PHY
;
3702 /* We'll need to use the SW defined pins to shift the write command
3703 * out to the PHY. We first send a preamble to the PHY to signal the
3704 * beginning of the MII instruction. This is done by sending 32
3705 * consecutive "1" bits.
3707 e1000_shift_out_mdi_bits(hw
, PHY_PREAMBLE
, PHY_PREAMBLE_SIZE
);
3709 /* Now combine the remaining required fields that will indicate a
3710 * write operation. We use this method instead of calling the
3711 * e1000_shift_out_mdi_bits routine for each field in the command. The
3712 * format of a MII write instruction is as follows:
3713 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3715 mdic
= ((PHY_TURNAROUND
) | (reg_addr
<< 2) | (phy_addr
<< 7) |
3716 (PHY_OP_WRITE
<< 12) | (PHY_SOF
<< 14));
3718 mdic
|= (u32
) phy_data
;
3720 e1000_shift_out_mdi_bits(hw
, mdic
, 32);
3723 return E1000_SUCCESS
;
3727 e1000_read_kmrn_reg(struct e1000_hw
*hw
,
3733 DEBUGFUNC("e1000_read_kmrn_reg");
3735 if ((hw
->mac_type
== e1000_80003es2lan
) &&
3736 (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)) {
3737 swfw
= E1000_SWFW_PHY1_SM
;
3739 swfw
= E1000_SWFW_PHY0_SM
;
3741 if (e1000_swfw_sync_acquire(hw
, swfw
))
3742 return -E1000_ERR_SWFW_SYNC
;
3744 /* Write register address */
3745 reg_val
= ((reg_addr
<< E1000_KUMCTRLSTA_OFFSET_SHIFT
) &
3746 E1000_KUMCTRLSTA_OFFSET
) |
3747 E1000_KUMCTRLSTA_REN
;
3748 E1000_WRITE_REG(hw
, KUMCTRLSTA
, reg_val
);
3751 /* Read the data returned */
3752 reg_val
= E1000_READ_REG(hw
, KUMCTRLSTA
);
3753 *data
= (u16
)reg_val
;
3755 e1000_swfw_sync_release(hw
, swfw
);
3756 return E1000_SUCCESS
;
3760 e1000_write_kmrn_reg(struct e1000_hw
*hw
,
3766 DEBUGFUNC("e1000_write_kmrn_reg");
3768 if ((hw
->mac_type
== e1000_80003es2lan
) &&
3769 (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)) {
3770 swfw
= E1000_SWFW_PHY1_SM
;
3772 swfw
= E1000_SWFW_PHY0_SM
;
3774 if (e1000_swfw_sync_acquire(hw
, swfw
))
3775 return -E1000_ERR_SWFW_SYNC
;
3777 reg_val
= ((reg_addr
<< E1000_KUMCTRLSTA_OFFSET_SHIFT
) &
3778 E1000_KUMCTRLSTA_OFFSET
) | data
;
3779 E1000_WRITE_REG(hw
, KUMCTRLSTA
, reg_val
);
3782 e1000_swfw_sync_release(hw
, swfw
);
3783 return E1000_SUCCESS
;
3786 /******************************************************************************
3787 * Returns the PHY to the power-on reset state
3789 * hw - Struct containing variables accessed by shared code
3790 ******************************************************************************/
3792 e1000_phy_hw_reset(struct e1000_hw
*hw
)
3799 DEBUGFUNC("e1000_phy_hw_reset");
3801 /* In the case of the phy reset being blocked, it's not an error, we
3802 * simply return success without performing the reset. */
3803 ret_val
= e1000_check_phy_reset_block(hw
);
3805 return E1000_SUCCESS
;
3807 DEBUGOUT("Resetting Phy...\n");
3809 if (hw
->mac_type
> e1000_82543
) {
3810 if ((hw
->mac_type
== e1000_80003es2lan
) &&
3811 (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)) {
3812 swfw
= E1000_SWFW_PHY1_SM
;
3814 swfw
= E1000_SWFW_PHY0_SM
;
3816 if (e1000_swfw_sync_acquire(hw
, swfw
)) {
3817 DEBUGOUT("Unable to acquire swfw sync\n");
3818 return -E1000_ERR_SWFW_SYNC
;
3820 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3821 * bit. Then, take it out of reset.
3822 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
3823 * and deassert. For e1000_82571 hardware and later, we instead delay
3824 * for 50us between and 10ms after the deassertion.
3826 ctrl
= E1000_READ_REG(hw
, CTRL
);
3827 E1000_WRITE_REG(hw
, CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
3828 E1000_WRITE_FLUSH(hw
);
3830 if (hw
->mac_type
< e1000_82571
)
3835 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
3836 E1000_WRITE_FLUSH(hw
);
3838 if (hw
->mac_type
>= e1000_82571
)
3841 e1000_swfw_sync_release(hw
, swfw
);
3843 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3844 * bit to put the PHY into reset. Then, take it out of reset.
3846 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
3847 ctrl_ext
|= E1000_CTRL_EXT_SDP4_DIR
;
3848 ctrl_ext
&= ~E1000_CTRL_EXT_SDP4_DATA
;
3849 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
3850 E1000_WRITE_FLUSH(hw
);
3852 ctrl_ext
|= E1000_CTRL_EXT_SDP4_DATA
;
3853 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
3854 E1000_WRITE_FLUSH(hw
);
3858 if ((hw
->mac_type
== e1000_82541
) || (hw
->mac_type
== e1000_82547
)) {
3859 /* Configure activity LED after PHY reset */
3860 led_ctrl
= E1000_READ_REG(hw
, LEDCTL
);
3861 led_ctrl
&= IGP_ACTIVITY_LED_MASK
;
3862 led_ctrl
|= (IGP_ACTIVITY_LED_ENABLE
| IGP_LED3_MODE
);
3863 E1000_WRITE_REG(hw
, LEDCTL
, led_ctrl
);
3866 /* Wait for FW to finish PHY configuration. */
3867 ret_val
= e1000_get_phy_cfg_done(hw
);
3868 if (ret_val
!= E1000_SUCCESS
)
3870 e1000_release_software_semaphore(hw
);
3872 if ((hw
->mac_type
== e1000_ich8lan
) && (hw
->phy_type
== e1000_phy_igp_3
))
3873 ret_val
= e1000_init_lcd_from_nvm(hw
);
3878 /******************************************************************************
3881 * hw - Struct containing variables accessed by shared code
3883 * Sets bit 15 of the MII Control register
3884 ******************************************************************************/
3886 e1000_phy_reset(struct e1000_hw
*hw
)
3891 DEBUGFUNC("e1000_phy_reset");
3893 /* In the case of the phy reset being blocked, it's not an error, we
3894 * simply return success without performing the reset. */
3895 ret_val
= e1000_check_phy_reset_block(hw
);
3897 return E1000_SUCCESS
;
3899 switch (hw
->phy_type
) {
3901 case e1000_phy_igp_2
:
3902 case e1000_phy_igp_3
:
3904 ret_val
= e1000_phy_hw_reset(hw
);
3909 ret_val
= e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_data
);
3913 phy_data
|= MII_CR_RESET
;
3914 ret_val
= e1000_write_phy_reg(hw
, PHY_CTRL
, phy_data
);
3922 if (hw
->phy_type
== e1000_phy_igp
|| hw
->phy_type
== e1000_phy_igp_2
)
3923 e1000_phy_init_script(hw
);
3925 return E1000_SUCCESS
;
3928 /******************************************************************************
3929 * Work-around for 82566 power-down: on D3 entry-
3930 * 1) disable gigabit link
3931 * 2) write VR power-down enable
3933 * if successful continue, else issue LCD reset and repeat
3935 * hw - struct containing variables accessed by shared code
3936 ******************************************************************************/
3938 e1000_phy_powerdown_workaround(struct e1000_hw
*hw
)
3944 DEBUGFUNC("e1000_phy_powerdown_workaround");
3946 if (hw
->phy_type
!= e1000_phy_igp_3
)
3951 reg
= E1000_READ_REG(hw
, PHY_CTRL
);
3952 E1000_WRITE_REG(hw
, PHY_CTRL
, reg
| E1000_PHY_CTRL_GBE_DISABLE
|
3953 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3955 /* Write VR power-down enable - bits 9:8 should be 10b */
3956 e1000_read_phy_reg(hw
, IGP3_VR_CTRL
, &phy_data
);
3957 phy_data
|= (1 << 9);
3958 phy_data
&= ~(1 << 8);
3959 e1000_write_phy_reg(hw
, IGP3_VR_CTRL
, phy_data
);
3961 /* Read it back and test */
3962 e1000_read_phy_reg(hw
, IGP3_VR_CTRL
, &phy_data
);
3963 if (((phy_data
& IGP3_VR_CTRL_MODE_MASK
) == IGP3_VR_CTRL_MODE_SHUT
) || retry
)
3966 /* Issue PHY reset and repeat at most one more time */
3967 reg
= E1000_READ_REG(hw
, CTRL
);
3968 E1000_WRITE_REG(hw
, CTRL
, reg
| E1000_CTRL_PHY_RST
);
3976 /******************************************************************************
3977 * Work-around for 82566 Kumeran PCS lock loss:
3978 * On link status change (i.e. PCI reset, speed change) and link is up and
3980 * 0) if workaround is optionally disabled do nothing
3981 * 1) wait 1ms for Kumeran link to come up
3982 * 2) check Kumeran Diagnostic register PCS lock loss bit
3983 * 3) if not set the link is locked (all is good), otherwise...
3985 * 5) repeat up to 10 times
3986 * Note: this is only called for IGP3 copper when speed is 1gb.
3988 * hw - struct containing variables accessed by shared code
3989 ******************************************************************************/
3991 e1000_kumeran_lock_loss_workaround(struct e1000_hw
*hw
)
3998 if (hw
->kmrn_lock_loss_workaround_disabled
)
3999 return E1000_SUCCESS
;
4001 /* Make sure link is up before proceeding. If not just return.
4002 * Attempting this while link is negotiating fouled up link
4004 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
4005 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
4007 if (phy_data
& MII_SR_LINK_STATUS
) {
4008 for (cnt
= 0; cnt
< 10; cnt
++) {
4009 /* read once to clear */
4010 ret_val
= e1000_read_phy_reg(hw
, IGP3_KMRN_DIAG
, &phy_data
);
4013 /* and again to get new status */
4014 ret_val
= e1000_read_phy_reg(hw
, IGP3_KMRN_DIAG
, &phy_data
);
4018 /* check for PCS lock */
4019 if (!(phy_data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
4020 return E1000_SUCCESS
;
4022 /* Issue PHY reset */
4023 e1000_phy_hw_reset(hw
);
4026 /* Disable GigE link negotiation */
4027 reg
= E1000_READ_REG(hw
, PHY_CTRL
);
4028 E1000_WRITE_REG(hw
, PHY_CTRL
, reg
| E1000_PHY_CTRL_GBE_DISABLE
|
4029 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
4031 /* unable to acquire PCS lock */
4032 return E1000_ERR_PHY
;
4035 return E1000_SUCCESS
;
4038 /******************************************************************************
4039 * Probes the expected PHY address for known PHY IDs
4041 * hw - Struct containing variables accessed by shared code
4042 ******************************************************************************/
4044 e1000_detect_gig_phy(struct e1000_hw
*hw
)
4046 s32 phy_init_status
, ret_val
;
4047 u16 phy_id_high
, phy_id_low
;
4050 DEBUGFUNC("e1000_detect_gig_phy");
4052 if (hw
->phy_id
!= 0)
4053 return E1000_SUCCESS
;
4055 /* The 82571 firmware may still be configuring the PHY. In this
4056 * case, we cannot access the PHY until the configuration is done. So
4057 * we explicitly set the PHY values. */
4058 if (hw
->mac_type
== e1000_82571
||
4059 hw
->mac_type
== e1000_82572
) {
4060 hw
->phy_id
= IGP01E1000_I_PHY_ID
;
4061 hw
->phy_type
= e1000_phy_igp_2
;
4062 return E1000_SUCCESS
;
4065 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
4066 * around that forces PHY page 0 to be set or the reads fail. The rest of
4067 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
4068 * So for ESB-2 we need to have this set so our reads won't fail. If the
4069 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
4070 * this out as well. */
4071 if (hw
->mac_type
== e1000_80003es2lan
)
4072 hw
->phy_type
= e1000_phy_gg82563
;
4074 /* Read the PHY ID Registers to identify which PHY is onboard. */
4075 ret_val
= e1000_read_phy_reg(hw
, PHY_ID1
, &phy_id_high
);
4079 hw
->phy_id
= (u32
) (phy_id_high
<< 16);
4081 ret_val
= e1000_read_phy_reg(hw
, PHY_ID2
, &phy_id_low
);
4085 hw
->phy_id
|= (u32
) (phy_id_low
& PHY_REVISION_MASK
);
4086 hw
->phy_revision
= (u32
) phy_id_low
& ~PHY_REVISION_MASK
;
4088 switch (hw
->mac_type
) {
4090 if (hw
->phy_id
== M88E1000_E_PHY_ID
) match
= true;
4093 if (hw
->phy_id
== M88E1000_I_PHY_ID
) match
= true;
4097 case e1000_82545_rev_3
:
4099 case e1000_82546_rev_3
:
4100 if (hw
->phy_id
== M88E1011_I_PHY_ID
) match
= true;
4103 case e1000_82541_rev_2
:
4105 case e1000_82547_rev_2
:
4106 if (hw
->phy_id
== IGP01E1000_I_PHY_ID
) match
= true;
4109 if (hw
->phy_id
== M88E1111_I_PHY_ID
) match
= true;
4111 case e1000_80003es2lan
:
4112 if (hw
->phy_id
== GG82563_E_PHY_ID
) match
= true;
4115 if (hw
->phy_id
== IGP03E1000_E_PHY_ID
) match
= true;
4116 if (hw
->phy_id
== IFE_E_PHY_ID
) match
= true;
4117 if (hw
->phy_id
== IFE_PLUS_E_PHY_ID
) match
= true;
4118 if (hw
->phy_id
== IFE_C_E_PHY_ID
) match
= true;
4121 DEBUGOUT1("Invalid MAC type %d\n", hw
->mac_type
);
4122 return -E1000_ERR_CONFIG
;
4124 phy_init_status
= e1000_set_phy_type(hw
);
4126 if ((match
) && (phy_init_status
== E1000_SUCCESS
)) {
4127 DEBUGOUT1("PHY ID 0x%X detected\n", hw
->phy_id
);
4128 return E1000_SUCCESS
;
4130 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw
->phy_id
);
4131 return -E1000_ERR_PHY
;
4134 /******************************************************************************
4135 * Resets the PHY's DSP
4137 * hw - Struct containing variables accessed by shared code
4138 ******************************************************************************/
4140 e1000_phy_reset_dsp(struct e1000_hw
*hw
)
4143 DEBUGFUNC("e1000_phy_reset_dsp");
4146 if (hw
->phy_type
!= e1000_phy_gg82563
) {
4147 ret_val
= e1000_write_phy_reg(hw
, 29, 0x001d);
4150 ret_val
= e1000_write_phy_reg(hw
, 30, 0x00c1);
4152 ret_val
= e1000_write_phy_reg(hw
, 30, 0x0000);
4154 ret_val
= E1000_SUCCESS
;
4160 /******************************************************************************
4161 * Get PHY information from various PHY registers for igp PHY only.
4163 * hw - Struct containing variables accessed by shared code
4164 * phy_info - PHY information structure
4165 ******************************************************************************/
4167 e1000_phy_igp_get_info(struct e1000_hw
*hw
,
4168 struct e1000_phy_info
*phy_info
)
4171 u16 phy_data
, min_length
, max_length
, average
;
4172 e1000_rev_polarity polarity
;
4174 DEBUGFUNC("e1000_phy_igp_get_info");
4176 /* The downshift status is checked only once, after link is established,
4177 * and it stored in the hw->speed_downgraded parameter. */
4178 phy_info
->downshift
= (e1000_downshift
)hw
->speed_downgraded
;
4180 /* IGP01E1000 does not need to support it. */
4181 phy_info
->extended_10bt_distance
= e1000_10bt_ext_dist_enable_normal
;
4183 /* IGP01E1000 always correct polarity reversal */
4184 phy_info
->polarity_correction
= e1000_polarity_reversal_enabled
;
4186 /* Check polarity status */
4187 ret_val
= e1000_check_polarity(hw
, &polarity
);
4191 phy_info
->cable_polarity
= polarity
;
4193 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &phy_data
);
4197 phy_info
->mdix_mode
= (e1000_auto_x_mode
)((phy_data
& IGP01E1000_PSSR_MDIX
) >>
4198 IGP01E1000_PSSR_MDIX_SHIFT
);
4200 if ((phy_data
& IGP01E1000_PSSR_SPEED_MASK
) ==
4201 IGP01E1000_PSSR_SPEED_1000MBPS
) {
4202 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4203 ret_val
= e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
4207 phy_info
->local_rx
= ((phy_data
& SR_1000T_LOCAL_RX_STATUS
) >>
4208 SR_1000T_LOCAL_RX_STATUS_SHIFT
) ?
4209 e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
4210 phy_info
->remote_rx
= ((phy_data
& SR_1000T_REMOTE_RX_STATUS
) >>
4211 SR_1000T_REMOTE_RX_STATUS_SHIFT
) ?
4212 e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
4214 /* Get cable length */
4215 ret_val
= e1000_get_cable_length(hw
, &min_length
, &max_length
);
4219 /* Translate to old method */
4220 average
= (max_length
+ min_length
) / 2;
4222 if (average
<= e1000_igp_cable_length_50
)
4223 phy_info
->cable_length
= e1000_cable_length_50
;
4224 else if (average
<= e1000_igp_cable_length_80
)
4225 phy_info
->cable_length
= e1000_cable_length_50_80
;
4226 else if (average
<= e1000_igp_cable_length_110
)
4227 phy_info
->cable_length
= e1000_cable_length_80_110
;
4228 else if (average
<= e1000_igp_cable_length_140
)
4229 phy_info
->cable_length
= e1000_cable_length_110_140
;
4231 phy_info
->cable_length
= e1000_cable_length_140
;
4234 return E1000_SUCCESS
;
4237 /******************************************************************************
4238 * Get PHY information from various PHY registers for ife PHY only.
4240 * hw - Struct containing variables accessed by shared code
4241 * phy_info - PHY information structure
4242 ******************************************************************************/
4244 e1000_phy_ife_get_info(struct e1000_hw
*hw
,
4245 struct e1000_phy_info
*phy_info
)
4249 e1000_rev_polarity polarity
;
4251 DEBUGFUNC("e1000_phy_ife_get_info");
4253 phy_info
->downshift
= (e1000_downshift
)hw
->speed_downgraded
;
4254 phy_info
->extended_10bt_distance
= e1000_10bt_ext_dist_enable_normal
;
4256 ret_val
= e1000_read_phy_reg(hw
, IFE_PHY_SPECIAL_CONTROL
, &phy_data
);
4259 phy_info
->polarity_correction
=
4260 ((phy_data
& IFE_PSC_AUTO_POLARITY_DISABLE
) >>
4261 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT
) ?
4262 e1000_polarity_reversal_disabled
: e1000_polarity_reversal_enabled
;
4264 if (phy_info
->polarity_correction
== e1000_polarity_reversal_enabled
) {
4265 ret_val
= e1000_check_polarity(hw
, &polarity
);
4269 /* Polarity is forced. */
4270 polarity
= ((phy_data
& IFE_PSC_FORCE_POLARITY
) >>
4271 IFE_PSC_FORCE_POLARITY_SHIFT
) ?
4272 e1000_rev_polarity_reversed
: e1000_rev_polarity_normal
;
4274 phy_info
->cable_polarity
= polarity
;
4276 ret_val
= e1000_read_phy_reg(hw
, IFE_PHY_MDIX_CONTROL
, &phy_data
);
4280 phy_info
->mdix_mode
= (e1000_auto_x_mode
)
4281 ((phy_data
& (IFE_PMC_AUTO_MDIX
| IFE_PMC_FORCE_MDIX
)) >>
4282 IFE_PMC_MDIX_MODE_SHIFT
);
4284 return E1000_SUCCESS
;
4287 /******************************************************************************
4288 * Get PHY information from various PHY registers fot m88 PHY only.
4290 * hw - Struct containing variables accessed by shared code
4291 * phy_info - PHY information structure
4292 ******************************************************************************/
4294 e1000_phy_m88_get_info(struct e1000_hw
*hw
,
4295 struct e1000_phy_info
*phy_info
)
4299 e1000_rev_polarity polarity
;
4301 DEBUGFUNC("e1000_phy_m88_get_info");
4303 /* The downshift status is checked only once, after link is established,
4304 * and it stored in the hw->speed_downgraded parameter. */
4305 phy_info
->downshift
= (e1000_downshift
)hw
->speed_downgraded
;
4307 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
4311 phy_info
->extended_10bt_distance
=
4312 ((phy_data
& M88E1000_PSCR_10BT_EXT_DIST_ENABLE
) >>
4313 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT
) ?
4314 e1000_10bt_ext_dist_enable_lower
: e1000_10bt_ext_dist_enable_normal
;
4316 phy_info
->polarity_correction
=
4317 ((phy_data
& M88E1000_PSCR_POLARITY_REVERSAL
) >>
4318 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT
) ?
4319 e1000_polarity_reversal_disabled
: e1000_polarity_reversal_enabled
;
4321 /* Check polarity status */
4322 ret_val
= e1000_check_polarity(hw
, &polarity
);
4325 phy_info
->cable_polarity
= polarity
;
4327 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
4331 phy_info
->mdix_mode
= (e1000_auto_x_mode
)((phy_data
& M88E1000_PSSR_MDIX
) >>
4332 M88E1000_PSSR_MDIX_SHIFT
);
4334 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
4335 /* Cable Length Estimation and Local/Remote Receiver Information
4336 * are only valid at 1000 Mbps.
4338 if (hw
->phy_type
!= e1000_phy_gg82563
) {
4339 phy_info
->cable_length
= (e1000_cable_length
)((phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
4340 M88E1000_PSSR_CABLE_LENGTH_SHIFT
);
4342 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_DSP_DISTANCE
,
4347 phy_info
->cable_length
= (e1000_cable_length
)(phy_data
& GG82563_DSPD_CABLE_LENGTH
);
4350 ret_val
= e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
4354 phy_info
->local_rx
= ((phy_data
& SR_1000T_LOCAL_RX_STATUS
) >>
4355 SR_1000T_LOCAL_RX_STATUS_SHIFT
) ?
4356 e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
4357 phy_info
->remote_rx
= ((phy_data
& SR_1000T_REMOTE_RX_STATUS
) >>
4358 SR_1000T_REMOTE_RX_STATUS_SHIFT
) ?
4359 e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
4363 return E1000_SUCCESS
;
4366 /******************************************************************************
4367 * Get PHY information from various PHY registers
4369 * hw - Struct containing variables accessed by shared code
4370 * phy_info - PHY information structure
4371 ******************************************************************************/
4373 e1000_phy_get_info(struct e1000_hw
*hw
,
4374 struct e1000_phy_info
*phy_info
)
4379 DEBUGFUNC("e1000_phy_get_info");
4381 phy_info
->cable_length
= e1000_cable_length_undefined
;
4382 phy_info
->extended_10bt_distance
= e1000_10bt_ext_dist_enable_undefined
;
4383 phy_info
->cable_polarity
= e1000_rev_polarity_undefined
;
4384 phy_info
->downshift
= e1000_downshift_undefined
;
4385 phy_info
->polarity_correction
= e1000_polarity_reversal_undefined
;
4386 phy_info
->mdix_mode
= e1000_auto_x_mode_undefined
;
4387 phy_info
->local_rx
= e1000_1000t_rx_status_undefined
;
4388 phy_info
->remote_rx
= e1000_1000t_rx_status_undefined
;
4390 if (hw
->media_type
!= e1000_media_type_copper
) {
4391 DEBUGOUT("PHY info is only valid for copper media\n");
4392 return -E1000_ERR_CONFIG
;
4395 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
4399 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &phy_data
);
4403 if ((phy_data
& MII_SR_LINK_STATUS
) != MII_SR_LINK_STATUS
) {
4404 DEBUGOUT("PHY info is only valid if link is up\n");
4405 return -E1000_ERR_CONFIG
;
4408 if (hw
->phy_type
== e1000_phy_igp
||
4409 hw
->phy_type
== e1000_phy_igp_3
||
4410 hw
->phy_type
== e1000_phy_igp_2
)
4411 return e1000_phy_igp_get_info(hw
, phy_info
);
4412 else if (hw
->phy_type
== e1000_phy_ife
)
4413 return e1000_phy_ife_get_info(hw
, phy_info
);
4415 return e1000_phy_m88_get_info(hw
, phy_info
);
4419 e1000_validate_mdi_setting(struct e1000_hw
*hw
)
4421 DEBUGFUNC("e1000_validate_mdi_settings");
4423 if (!hw
->autoneg
&& (hw
->mdix
== 0 || hw
->mdix
== 3)) {
4424 DEBUGOUT("Invalid MDI setting detected\n");
4426 return -E1000_ERR_CONFIG
;
4428 return E1000_SUCCESS
;
4432 /******************************************************************************
4433 * Sets up eeprom variables in the hw struct. Must be called after mac_type
4434 * is configured. Additionally, if this is ICH8, the flash controller GbE
4435 * registers must be mapped, or this will crash.
4437 * hw - Struct containing variables accessed by shared code
4438 *****************************************************************************/
4440 e1000_init_eeprom_params(struct e1000_hw
*hw
)
4442 struct e1000_eeprom_info
*eeprom
= &hw
->eeprom
;
4443 u32 eecd
= E1000_READ_REG(hw
, EECD
);
4444 s32 ret_val
= E1000_SUCCESS
;
4447 DEBUGFUNC("e1000_init_eeprom_params");
4449 switch (hw
->mac_type
) {
4450 case e1000_82542_rev2_0
:
4451 case e1000_82542_rev2_1
:
4454 eeprom
->type
= e1000_eeprom_microwire
;
4455 eeprom
->word_size
= 64;
4456 eeprom
->opcode_bits
= 3;
4457 eeprom
->address_bits
= 6;
4458 eeprom
->delay_usec
= 50;
4459 eeprom
->use_eerd
= false;
4460 eeprom
->use_eewr
= false;
4464 case e1000_82545_rev_3
:
4466 case e1000_82546_rev_3
:
4467 eeprom
->type
= e1000_eeprom_microwire
;
4468 eeprom
->opcode_bits
= 3;
4469 eeprom
->delay_usec
= 50;
4470 if (eecd
& E1000_EECD_SIZE
) {
4471 eeprom
->word_size
= 256;
4472 eeprom
->address_bits
= 8;
4474 eeprom
->word_size
= 64;
4475 eeprom
->address_bits
= 6;
4477 eeprom
->use_eerd
= false;
4478 eeprom
->use_eewr
= false;
4481 case e1000_82541_rev_2
:
4483 case e1000_82547_rev_2
:
4484 if (eecd
& E1000_EECD_TYPE
) {
4485 eeprom
->type
= e1000_eeprom_spi
;
4486 eeprom
->opcode_bits
= 8;
4487 eeprom
->delay_usec
= 1;
4488 if (eecd
& E1000_EECD_ADDR_BITS
) {
4489 eeprom
->page_size
= 32;
4490 eeprom
->address_bits
= 16;
4492 eeprom
->page_size
= 8;
4493 eeprom
->address_bits
= 8;
4496 eeprom
->type
= e1000_eeprom_microwire
;
4497 eeprom
->opcode_bits
= 3;
4498 eeprom
->delay_usec
= 50;
4499 if (eecd
& E1000_EECD_ADDR_BITS
) {
4500 eeprom
->word_size
= 256;
4501 eeprom
->address_bits
= 8;
4503 eeprom
->word_size
= 64;
4504 eeprom
->address_bits
= 6;
4507 eeprom
->use_eerd
= false;
4508 eeprom
->use_eewr
= false;
4512 eeprom
->type
= e1000_eeprom_spi
;
4513 eeprom
->opcode_bits
= 8;
4514 eeprom
->delay_usec
= 1;
4515 if (eecd
& E1000_EECD_ADDR_BITS
) {
4516 eeprom
->page_size
= 32;
4517 eeprom
->address_bits
= 16;
4519 eeprom
->page_size
= 8;
4520 eeprom
->address_bits
= 8;
4522 eeprom
->use_eerd
= false;
4523 eeprom
->use_eewr
= false;
4526 eeprom
->type
= e1000_eeprom_spi
;
4527 eeprom
->opcode_bits
= 8;
4528 eeprom
->delay_usec
= 1;
4529 if (eecd
& E1000_EECD_ADDR_BITS
) {
4530 eeprom
->page_size
= 32;
4531 eeprom
->address_bits
= 16;
4533 eeprom
->page_size
= 8;
4534 eeprom
->address_bits
= 8;
4536 eeprom
->use_eerd
= true;
4537 eeprom
->use_eewr
= true;
4538 if (!e1000_is_onboard_nvm_eeprom(hw
)) {
4539 eeprom
->type
= e1000_eeprom_flash
;
4540 eeprom
->word_size
= 2048;
4542 /* Ensure that the Autonomous FLASH update bit is cleared due to
4543 * Flash update issue on parts which use a FLASH for NVM. */
4544 eecd
&= ~E1000_EECD_AUPDEN
;
4545 E1000_WRITE_REG(hw
, EECD
, eecd
);
4548 case e1000_80003es2lan
:
4549 eeprom
->type
= e1000_eeprom_spi
;
4550 eeprom
->opcode_bits
= 8;
4551 eeprom
->delay_usec
= 1;
4552 if (eecd
& E1000_EECD_ADDR_BITS
) {
4553 eeprom
->page_size
= 32;
4554 eeprom
->address_bits
= 16;
4556 eeprom
->page_size
= 8;
4557 eeprom
->address_bits
= 8;
4559 eeprom
->use_eerd
= true;
4560 eeprom
->use_eewr
= false;
4565 u32 flash_size
= E1000_READ_ICH_FLASH_REG(hw
, ICH_FLASH_GFPREG
);
4567 eeprom
->type
= e1000_eeprom_ich8
;
4568 eeprom
->use_eerd
= false;
4569 eeprom
->use_eewr
= false;
4570 eeprom
->word_size
= E1000_SHADOW_RAM_WORDS
;
4572 /* Zero the shadow RAM structure. But don't load it from NVM
4573 * so as to save time for driver init */
4574 if (hw
->eeprom_shadow_ram
!= NULL
) {
4575 for (i
= 0; i
< E1000_SHADOW_RAM_WORDS
; i
++) {
4576 hw
->eeprom_shadow_ram
[i
].modified
= false;
4577 hw
->eeprom_shadow_ram
[i
].eeprom_word
= 0xFFFF;
4581 hw
->flash_base_addr
= (flash_size
& ICH_GFPREG_BASE_MASK
) *
4582 ICH_FLASH_SECTOR_SIZE
;
4584 hw
->flash_bank_size
= ((flash_size
>> 16) & ICH_GFPREG_BASE_MASK
) + 1;
4585 hw
->flash_bank_size
-= (flash_size
& ICH_GFPREG_BASE_MASK
);
4587 hw
->flash_bank_size
*= ICH_FLASH_SECTOR_SIZE
;
4589 hw
->flash_bank_size
/= 2 * sizeof(u16
);
4597 if (eeprom
->type
== e1000_eeprom_spi
) {
4598 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4599 * 32KB (incremented by powers of 2).
4601 if (hw
->mac_type
<= e1000_82547_rev_2
) {
4602 /* Set to default value for initial eeprom read. */
4603 eeprom
->word_size
= 64;
4604 ret_val
= e1000_read_eeprom(hw
, EEPROM_CFG
, 1, &eeprom_size
);
4607 eeprom_size
= (eeprom_size
& EEPROM_SIZE_MASK
) >> EEPROM_SIZE_SHIFT
;
4608 /* 256B eeprom size was not supported in earlier hardware, so we
4609 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4610 * is never the result used in the shifting logic below. */
4614 eeprom_size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
4615 E1000_EECD_SIZE_EX_SHIFT
);
4618 eeprom
->word_size
= 1 << (eeprom_size
+ EEPROM_WORD_SIZE_SHIFT
);
4623 /******************************************************************************
4624 * Raises the EEPROM's clock input.
4626 * hw - Struct containing variables accessed by shared code
4627 * eecd - EECD's current value
4628 *****************************************************************************/
4630 e1000_raise_ee_clk(struct e1000_hw
*hw
,
4633 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4634 * wait <delay> microseconds.
4636 *eecd
= *eecd
| E1000_EECD_SK
;
4637 E1000_WRITE_REG(hw
, EECD
, *eecd
);
4638 E1000_WRITE_FLUSH(hw
);
4639 udelay(hw
->eeprom
.delay_usec
);
4642 /******************************************************************************
4643 * Lowers the EEPROM's clock input.
4645 * hw - Struct containing variables accessed by shared code
4646 * eecd - EECD's current value
4647 *****************************************************************************/
4649 e1000_lower_ee_clk(struct e1000_hw
*hw
,
4652 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4653 * wait 50 microseconds.
4655 *eecd
= *eecd
& ~E1000_EECD_SK
;
4656 E1000_WRITE_REG(hw
, EECD
, *eecd
);
4657 E1000_WRITE_FLUSH(hw
);
4658 udelay(hw
->eeprom
.delay_usec
);
4661 /******************************************************************************
4662 * Shift data bits out to the EEPROM.
4664 * hw - Struct containing variables accessed by shared code
4665 * data - data to send to the EEPROM
4666 * count - number of bits to shift out
4667 *****************************************************************************/
4669 e1000_shift_out_ee_bits(struct e1000_hw
*hw
,
4673 struct e1000_eeprom_info
*eeprom
= &hw
->eeprom
;
4677 /* We need to shift "count" bits out to the EEPROM. So, value in the
4678 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4679 * In order to do this, "data" must be broken down into bits.
4681 mask
= 0x01 << (count
- 1);
4682 eecd
= E1000_READ_REG(hw
, EECD
);
4683 if (eeprom
->type
== e1000_eeprom_microwire
) {
4684 eecd
&= ~E1000_EECD_DO
;
4685 } else if (eeprom
->type
== e1000_eeprom_spi
) {
4686 eecd
|= E1000_EECD_DO
;
4689 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4690 * and then raising and then lowering the clock (the SK bit controls
4691 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4692 * by setting "DI" to "0" and then raising and then lowering the clock.
4694 eecd
&= ~E1000_EECD_DI
;
4697 eecd
|= E1000_EECD_DI
;
4699 E1000_WRITE_REG(hw
, EECD
, eecd
);
4700 E1000_WRITE_FLUSH(hw
);
4702 udelay(eeprom
->delay_usec
);
4704 e1000_raise_ee_clk(hw
, &eecd
);
4705 e1000_lower_ee_clk(hw
, &eecd
);
4711 /* We leave the "DI" bit set to "0" when we leave this routine. */
4712 eecd
&= ~E1000_EECD_DI
;
4713 E1000_WRITE_REG(hw
, EECD
, eecd
);
4716 /******************************************************************************
4717 * Shift data bits in from the EEPROM
4719 * hw - Struct containing variables accessed by shared code
4720 *****************************************************************************/
4722 e1000_shift_in_ee_bits(struct e1000_hw
*hw
,
4729 /* In order to read a register from the EEPROM, we need to shift 'count'
4730 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4731 * input to the EEPROM (setting the SK bit), and then reading the value of
4732 * the "DO" bit. During this "shifting in" process the "DI" bit should
4736 eecd
= E1000_READ_REG(hw
, EECD
);
4738 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
4741 for (i
= 0; i
< count
; i
++) {
4743 e1000_raise_ee_clk(hw
, &eecd
);
4745 eecd
= E1000_READ_REG(hw
, EECD
);
4747 eecd
&= ~(E1000_EECD_DI
);
4748 if (eecd
& E1000_EECD_DO
)
4751 e1000_lower_ee_clk(hw
, &eecd
);
4757 /******************************************************************************
4758 * Prepares EEPROM for access
4760 * hw - Struct containing variables accessed by shared code
4762 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4763 * function should be called before issuing a command to the EEPROM.
4764 *****************************************************************************/
4766 e1000_acquire_eeprom(struct e1000_hw
*hw
)
4768 struct e1000_eeprom_info
*eeprom
= &hw
->eeprom
;
4771 DEBUGFUNC("e1000_acquire_eeprom");
4773 if (e1000_swfw_sync_acquire(hw
, E1000_SWFW_EEP_SM
))
4774 return -E1000_ERR_SWFW_SYNC
;
4775 eecd
= E1000_READ_REG(hw
, EECD
);
4777 if (hw
->mac_type
!= e1000_82573
) {
4778 /* Request EEPROM Access */
4779 if (hw
->mac_type
> e1000_82544
) {
4780 eecd
|= E1000_EECD_REQ
;
4781 E1000_WRITE_REG(hw
, EECD
, eecd
);
4782 eecd
= E1000_READ_REG(hw
, EECD
);
4783 while ((!(eecd
& E1000_EECD_GNT
)) &&
4784 (i
< E1000_EEPROM_GRANT_ATTEMPTS
)) {
4787 eecd
= E1000_READ_REG(hw
, EECD
);
4789 if (!(eecd
& E1000_EECD_GNT
)) {
4790 eecd
&= ~E1000_EECD_REQ
;
4791 E1000_WRITE_REG(hw
, EECD
, eecd
);
4792 DEBUGOUT("Could not acquire EEPROM grant\n");
4793 e1000_swfw_sync_release(hw
, E1000_SWFW_EEP_SM
);
4794 return -E1000_ERR_EEPROM
;
4799 /* Setup EEPROM for Read/Write */
4801 if (eeprom
->type
== e1000_eeprom_microwire
) {
4802 /* Clear SK and DI */
4803 eecd
&= ~(E1000_EECD_DI
| E1000_EECD_SK
);
4804 E1000_WRITE_REG(hw
, EECD
, eecd
);
4807 eecd
|= E1000_EECD_CS
;
4808 E1000_WRITE_REG(hw
, EECD
, eecd
);
4809 } else if (eeprom
->type
== e1000_eeprom_spi
) {
4810 /* Clear SK and CS */
4811 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
4812 E1000_WRITE_REG(hw
, EECD
, eecd
);
4816 return E1000_SUCCESS
;
4819 /******************************************************************************
4820 * Returns EEPROM to a "standby" state
4822 * hw - Struct containing variables accessed by shared code
4823 *****************************************************************************/
4825 e1000_standby_eeprom(struct e1000_hw
*hw
)
4827 struct e1000_eeprom_info
*eeprom
= &hw
->eeprom
;
4830 eecd
= E1000_READ_REG(hw
, EECD
);
4832 if (eeprom
->type
== e1000_eeprom_microwire
) {
4833 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
4834 E1000_WRITE_REG(hw
, EECD
, eecd
);
4835 E1000_WRITE_FLUSH(hw
);
4836 udelay(eeprom
->delay_usec
);
4839 eecd
|= E1000_EECD_SK
;
4840 E1000_WRITE_REG(hw
, EECD
, eecd
);
4841 E1000_WRITE_FLUSH(hw
);
4842 udelay(eeprom
->delay_usec
);
4845 eecd
|= E1000_EECD_CS
;
4846 E1000_WRITE_REG(hw
, EECD
, eecd
);
4847 E1000_WRITE_FLUSH(hw
);
4848 udelay(eeprom
->delay_usec
);
4851 eecd
&= ~E1000_EECD_SK
;
4852 E1000_WRITE_REG(hw
, EECD
, eecd
);
4853 E1000_WRITE_FLUSH(hw
);
4854 udelay(eeprom
->delay_usec
);
4855 } else if (eeprom
->type
== e1000_eeprom_spi
) {
4856 /* Toggle CS to flush commands */
4857 eecd
|= E1000_EECD_CS
;
4858 E1000_WRITE_REG(hw
, EECD
, eecd
);
4859 E1000_WRITE_FLUSH(hw
);
4860 udelay(eeprom
->delay_usec
);
4861 eecd
&= ~E1000_EECD_CS
;
4862 E1000_WRITE_REG(hw
, EECD
, eecd
);
4863 E1000_WRITE_FLUSH(hw
);
4864 udelay(eeprom
->delay_usec
);
4868 /******************************************************************************
4869 * Terminates a command by inverting the EEPROM's chip select pin
4871 * hw - Struct containing variables accessed by shared code
4872 *****************************************************************************/
4874 e1000_release_eeprom(struct e1000_hw
*hw
)
4878 DEBUGFUNC("e1000_release_eeprom");
4880 eecd
= E1000_READ_REG(hw
, EECD
);
4882 if (hw
->eeprom
.type
== e1000_eeprom_spi
) {
4883 eecd
|= E1000_EECD_CS
; /* Pull CS high */
4884 eecd
&= ~E1000_EECD_SK
; /* Lower SCK */
4886 E1000_WRITE_REG(hw
, EECD
, eecd
);
4888 udelay(hw
->eeprom
.delay_usec
);
4889 } else if (hw
->eeprom
.type
== e1000_eeprom_microwire
) {
4890 /* cleanup eeprom */
4892 /* CS on Microwire is active-high */
4893 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_DI
);
4895 E1000_WRITE_REG(hw
, EECD
, eecd
);
4897 /* Rising edge of clock */
4898 eecd
|= E1000_EECD_SK
;
4899 E1000_WRITE_REG(hw
, EECD
, eecd
);
4900 E1000_WRITE_FLUSH(hw
);
4901 udelay(hw
->eeprom
.delay_usec
);
4903 /* Falling edge of clock */
4904 eecd
&= ~E1000_EECD_SK
;
4905 E1000_WRITE_REG(hw
, EECD
, eecd
);
4906 E1000_WRITE_FLUSH(hw
);
4907 udelay(hw
->eeprom
.delay_usec
);
4910 /* Stop requesting EEPROM access */
4911 if (hw
->mac_type
> e1000_82544
) {
4912 eecd
&= ~E1000_EECD_REQ
;
4913 E1000_WRITE_REG(hw
, EECD
, eecd
);
4916 e1000_swfw_sync_release(hw
, E1000_SWFW_EEP_SM
);
4919 /******************************************************************************
4920 * Reads a 16 bit word from the EEPROM.
4922 * hw - Struct containing variables accessed by shared code
4923 *****************************************************************************/
4925 e1000_spi_eeprom_ready(struct e1000_hw
*hw
)
4927 u16 retry_count
= 0;
4930 DEBUGFUNC("e1000_spi_eeprom_ready");
4932 /* Read "Status Register" repeatedly until the LSB is cleared. The
4933 * EEPROM will signal that the command has been completed by clearing
4934 * bit 0 of the internal status register. If it's not cleared within
4935 * 5 milliseconds, then error out.
4939 e1000_shift_out_ee_bits(hw
, EEPROM_RDSR_OPCODE_SPI
,
4940 hw
->eeprom
.opcode_bits
);
4941 spi_stat_reg
= (u8
)e1000_shift_in_ee_bits(hw
, 8);
4942 if (!(spi_stat_reg
& EEPROM_STATUS_RDY_SPI
))
4948 e1000_standby_eeprom(hw
);
4949 } while (retry_count
< EEPROM_MAX_RETRY_SPI
);
4951 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4952 * only 0-5mSec on 5V devices)
4954 if (retry_count
>= EEPROM_MAX_RETRY_SPI
) {
4955 DEBUGOUT("SPI EEPROM Status error\n");
4956 return -E1000_ERR_EEPROM
;
4959 return E1000_SUCCESS
;
4962 /******************************************************************************
4963 * Reads a 16 bit word from the EEPROM.
4965 * hw - Struct containing variables accessed by shared code
4966 * offset - offset of word in the EEPROM to read
4967 * data - word read from the EEPROM
4968 * words - number of words to read
4969 *****************************************************************************/
4971 e1000_read_eeprom(struct e1000_hw
*hw
,
4976 struct e1000_eeprom_info
*eeprom
= &hw
->eeprom
;
4979 DEBUGFUNC("e1000_read_eeprom");
4981 /* If eeprom is not yet detected, do so now */
4982 if (eeprom
->word_size
== 0)
4983 e1000_init_eeprom_params(hw
);
4985 /* A check for invalid values: offset too large, too many words, and not
4988 if ((offset
>= eeprom
->word_size
) || (words
> eeprom
->word_size
- offset
) ||
4990 DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset
, eeprom
->word_size
);
4991 return -E1000_ERR_EEPROM
;
4994 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4995 * directly. In this case, we need to acquire the EEPROM so that
4996 * FW or other port software does not interrupt.
4998 if (e1000_is_onboard_nvm_eeprom(hw
) && !hw
->eeprom
.use_eerd
) {
4999 /* Prepare the EEPROM for bit-bang reading */
5000 if (e1000_acquire_eeprom(hw
) != E1000_SUCCESS
)
5001 return -E1000_ERR_EEPROM
;
5004 /* Eerd register EEPROM access requires no eeprom aquire/release */
5005 if (eeprom
->use_eerd
)
5006 return e1000_read_eeprom_eerd(hw
, offset
, words
, data
);
5008 /* ICH EEPROM access is done via the ICH flash controller */
5009 if (eeprom
->type
== e1000_eeprom_ich8
)
5010 return e1000_read_eeprom_ich8(hw
, offset
, words
, data
);
5012 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
5013 * acquired the EEPROM at this point, so any returns should relase it */
5014 if (eeprom
->type
== e1000_eeprom_spi
) {
5016 u8 read_opcode
= EEPROM_READ_OPCODE_SPI
;
5018 if (e1000_spi_eeprom_ready(hw
)) {
5019 e1000_release_eeprom(hw
);
5020 return -E1000_ERR_EEPROM
;
5023 e1000_standby_eeprom(hw
);
5025 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5026 if ((eeprom
->address_bits
== 8) && (offset
>= 128))
5027 read_opcode
|= EEPROM_A8_OPCODE_SPI
;
5029 /* Send the READ command (opcode + addr) */
5030 e1000_shift_out_ee_bits(hw
, read_opcode
, eeprom
->opcode_bits
);
5031 e1000_shift_out_ee_bits(hw
, (u16
)(offset
*2), eeprom
->address_bits
);
5033 /* Read the data. The address of the eeprom internally increments with
5034 * each byte (spi) being read, saving on the overhead of eeprom setup
5035 * and tear-down. The address counter will roll over if reading beyond
5036 * the size of the eeprom, thus allowing the entire memory to be read
5037 * starting from any offset. */
5038 for (i
= 0; i
< words
; i
++) {
5039 word_in
= e1000_shift_in_ee_bits(hw
, 16);
5040 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
5042 } else if (eeprom
->type
== e1000_eeprom_microwire
) {
5043 for (i
= 0; i
< words
; i
++) {
5044 /* Send the READ command (opcode + addr) */
5045 e1000_shift_out_ee_bits(hw
, EEPROM_READ_OPCODE_MICROWIRE
,
5046 eeprom
->opcode_bits
);
5047 e1000_shift_out_ee_bits(hw
, (u16
)(offset
+ i
),
5048 eeprom
->address_bits
);
5050 /* Read the data. For microwire, each word requires the overhead
5051 * of eeprom setup and tear-down. */
5052 data
[i
] = e1000_shift_in_ee_bits(hw
, 16);
5053 e1000_standby_eeprom(hw
);
5057 /* End this read operation */
5058 e1000_release_eeprom(hw
);
5060 return E1000_SUCCESS
;
5063 /******************************************************************************
5064 * Reads a 16 bit word from the EEPROM using the EERD register.
5066 * hw - Struct containing variables accessed by shared code
5067 * offset - offset of word in the EEPROM to read
5068 * data - word read from the EEPROM
5069 * words - number of words to read
5070 *****************************************************************************/
5072 e1000_read_eeprom_eerd(struct e1000_hw
*hw
,
5080 for (i
= 0; i
< words
; i
++) {
5081 eerd
= ((offset
+i
) << E1000_EEPROM_RW_ADDR_SHIFT
) +
5082 E1000_EEPROM_RW_REG_START
;
5084 E1000_WRITE_REG(hw
, EERD
, eerd
);
5085 error
= e1000_poll_eerd_eewr_done(hw
, E1000_EEPROM_POLL_READ
);
5090 data
[i
] = (E1000_READ_REG(hw
, EERD
) >> E1000_EEPROM_RW_REG_DATA
);
5097 /******************************************************************************
5098 * Writes a 16 bit word from the EEPROM using the EEWR register.
5100 * hw - Struct containing variables accessed by shared code
5101 * offset - offset of word in the EEPROM to read
5102 * data - word read from the EEPROM
5103 * words - number of words to read
5104 *****************************************************************************/
5106 e1000_write_eeprom_eewr(struct e1000_hw
*hw
,
5111 u32 register_value
= 0;
5115 if (e1000_swfw_sync_acquire(hw
, E1000_SWFW_EEP_SM
))
5116 return -E1000_ERR_SWFW_SYNC
;
5118 for (i
= 0; i
< words
; i
++) {
5119 register_value
= (data
[i
] << E1000_EEPROM_RW_REG_DATA
) |
5120 ((offset
+i
) << E1000_EEPROM_RW_ADDR_SHIFT
) |
5121 E1000_EEPROM_RW_REG_START
;
5123 error
= e1000_poll_eerd_eewr_done(hw
, E1000_EEPROM_POLL_WRITE
);
5128 E1000_WRITE_REG(hw
, EEWR
, register_value
);
5130 error
= e1000_poll_eerd_eewr_done(hw
, E1000_EEPROM_POLL_WRITE
);
5137 e1000_swfw_sync_release(hw
, E1000_SWFW_EEP_SM
);
5141 /******************************************************************************
5142 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5144 * hw - Struct containing variables accessed by shared code
5145 *****************************************************************************/
5147 e1000_poll_eerd_eewr_done(struct e1000_hw
*hw
, int eerd
)
5149 u32 attempts
= 100000;
5151 s32 done
= E1000_ERR_EEPROM
;
5153 for (i
= 0; i
< attempts
; i
++) {
5154 if (eerd
== E1000_EEPROM_POLL_READ
)
5155 reg
= E1000_READ_REG(hw
, EERD
);
5157 reg
= E1000_READ_REG(hw
, EEWR
);
5159 if (reg
& E1000_EEPROM_RW_REG_DONE
) {
5160 done
= E1000_SUCCESS
;
5169 /***************************************************************************
5170 * Description: Determines if the onboard NVM is FLASH or EEPROM.
5172 * hw - Struct containing variables accessed by shared code
5173 ****************************************************************************/
5175 e1000_is_onboard_nvm_eeprom(struct e1000_hw
*hw
)
5179 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5181 if (hw
->mac_type
== e1000_ich8lan
)
5184 if (hw
->mac_type
== e1000_82573
) {
5185 eecd
= E1000_READ_REG(hw
, EECD
);
5187 /* Isolate bits 15 & 16 */
5188 eecd
= ((eecd
>> 15) & 0x03);
5190 /* If both bits are set, device is Flash type */
5198 /******************************************************************************
5199 * Verifies that the EEPROM has a valid checksum
5201 * hw - Struct containing variables accessed by shared code
5203 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5204 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5206 *****************************************************************************/
5208 e1000_validate_eeprom_checksum(struct e1000_hw
*hw
)
5213 DEBUGFUNC("e1000_validate_eeprom_checksum");
5215 if ((hw
->mac_type
== e1000_82573
) && !e1000_is_onboard_nvm_eeprom(hw
)) {
5216 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5217 * 10h-12h. Checksum may need to be fixed. */
5218 e1000_read_eeprom(hw
, 0x10, 1, &eeprom_data
);
5219 if ((eeprom_data
& 0x10) == 0) {
5220 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5221 * has already been fixed. If the checksum is still wrong and this
5222 * bit is a 1, we need to return bad checksum. Otherwise, we need
5223 * to set this bit to a 1 and update the checksum. */
5224 e1000_read_eeprom(hw
, 0x23, 1, &eeprom_data
);
5225 if ((eeprom_data
& 0x8000) == 0) {
5226 eeprom_data
|= 0x8000;
5227 e1000_write_eeprom(hw
, 0x23, 1, &eeprom_data
);
5228 e1000_update_eeprom_checksum(hw
);
5233 if (hw
->mac_type
== e1000_ich8lan
) {
5234 /* Drivers must allocate the shadow ram structure for the
5235 * EEPROM checksum to be updated. Otherwise, this bit as well
5236 * as the checksum must both be set correctly for this
5237 * validation to pass.
5239 e1000_read_eeprom(hw
, 0x19, 1, &eeprom_data
);
5240 if ((eeprom_data
& 0x40) == 0) {
5241 eeprom_data
|= 0x40;
5242 e1000_write_eeprom(hw
, 0x19, 1, &eeprom_data
);
5243 e1000_update_eeprom_checksum(hw
);
5247 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
5248 if (e1000_read_eeprom(hw
, i
, 1, &eeprom_data
) < 0) {
5249 DEBUGOUT("EEPROM Read Error\n");
5250 return -E1000_ERR_EEPROM
;
5252 checksum
+= eeprom_data
;
5255 if (checksum
== (u16
) EEPROM_SUM
)
5256 return E1000_SUCCESS
;
5258 DEBUGOUT("EEPROM Checksum Invalid\n");
5259 return -E1000_ERR_EEPROM
;
5263 /******************************************************************************
5264 * Calculates the EEPROM checksum and writes it to the EEPROM
5266 * hw - Struct containing variables accessed by shared code
5268 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5269 * Writes the difference to word offset 63 of the EEPROM.
5270 *****************************************************************************/
5272 e1000_update_eeprom_checksum(struct e1000_hw
*hw
)
5278 DEBUGFUNC("e1000_update_eeprom_checksum");
5280 for (i
= 0; i
< EEPROM_CHECKSUM_REG
; i
++) {
5281 if (e1000_read_eeprom(hw
, i
, 1, &eeprom_data
) < 0) {
5282 DEBUGOUT("EEPROM Read Error\n");
5283 return -E1000_ERR_EEPROM
;
5285 checksum
+= eeprom_data
;
5287 checksum
= (u16
) EEPROM_SUM
- checksum
;
5288 if (e1000_write_eeprom(hw
, EEPROM_CHECKSUM_REG
, 1, &checksum
) < 0) {
5289 DEBUGOUT("EEPROM Write Error\n");
5290 return -E1000_ERR_EEPROM
;
5291 } else if (hw
->eeprom
.type
== e1000_eeprom_flash
) {
5292 e1000_commit_shadow_ram(hw
);
5293 } else if (hw
->eeprom
.type
== e1000_eeprom_ich8
) {
5294 e1000_commit_shadow_ram(hw
);
5295 /* Reload the EEPROM, or else modifications will not appear
5296 * until after next adapter reset. */
5297 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
5298 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
5299 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
5302 return E1000_SUCCESS
;
5305 /******************************************************************************
5306 * Parent function for writing words to the different EEPROM types.
5308 * hw - Struct containing variables accessed by shared code
5309 * offset - offset within the EEPROM to be written to
5310 * words - number of words to write
5311 * data - 16 bit word to be written to the EEPROM
5313 * If e1000_update_eeprom_checksum is not called after this function, the
5314 * EEPROM will most likely contain an invalid checksum.
5315 *****************************************************************************/
5317 e1000_write_eeprom(struct e1000_hw
*hw
,
5322 struct e1000_eeprom_info
*eeprom
= &hw
->eeprom
;
5325 DEBUGFUNC("e1000_write_eeprom");
5327 /* If eeprom is not yet detected, do so now */
5328 if (eeprom
->word_size
== 0)
5329 e1000_init_eeprom_params(hw
);
5331 /* A check for invalid values: offset too large, too many words, and not
5334 if ((offset
>= eeprom
->word_size
) || (words
> eeprom
->word_size
- offset
) ||
5336 DEBUGOUT("\"words\" parameter out of bounds\n");
5337 return -E1000_ERR_EEPROM
;
5340 /* 82573 writes only through eewr */
5341 if (eeprom
->use_eewr
)
5342 return e1000_write_eeprom_eewr(hw
, offset
, words
, data
);
5344 if (eeprom
->type
== e1000_eeprom_ich8
)
5345 return e1000_write_eeprom_ich8(hw
, offset
, words
, data
);
5347 /* Prepare the EEPROM for writing */
5348 if (e1000_acquire_eeprom(hw
) != E1000_SUCCESS
)
5349 return -E1000_ERR_EEPROM
;
5351 if (eeprom
->type
== e1000_eeprom_microwire
) {
5352 status
= e1000_write_eeprom_microwire(hw
, offset
, words
, data
);
5354 status
= e1000_write_eeprom_spi(hw
, offset
, words
, data
);
5358 /* Done with writing */
5359 e1000_release_eeprom(hw
);
5364 /******************************************************************************
5365 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5367 * hw - Struct containing variables accessed by shared code
5368 * offset - offset within the EEPROM to be written to
5369 * words - number of words to write
5370 * data - pointer to array of 8 bit words to be written to the EEPROM
5372 *****************************************************************************/
5374 e1000_write_eeprom_spi(struct e1000_hw
*hw
,
5379 struct e1000_eeprom_info
*eeprom
= &hw
->eeprom
;
5382 DEBUGFUNC("e1000_write_eeprom_spi");
5384 while (widx
< words
) {
5385 u8 write_opcode
= EEPROM_WRITE_OPCODE_SPI
;
5387 if (e1000_spi_eeprom_ready(hw
)) return -E1000_ERR_EEPROM
;
5389 e1000_standby_eeprom(hw
);
5391 /* Send the WRITE ENABLE command (8 bit opcode ) */
5392 e1000_shift_out_ee_bits(hw
, EEPROM_WREN_OPCODE_SPI
,
5393 eeprom
->opcode_bits
);
5395 e1000_standby_eeprom(hw
);
5397 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5398 if ((eeprom
->address_bits
== 8) && (offset
>= 128))
5399 write_opcode
|= EEPROM_A8_OPCODE_SPI
;
5401 /* Send the Write command (8-bit opcode + addr) */
5402 e1000_shift_out_ee_bits(hw
, write_opcode
, eeprom
->opcode_bits
);
5404 e1000_shift_out_ee_bits(hw
, (u16
)((offset
+ widx
)*2),
5405 eeprom
->address_bits
);
5409 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5410 while (widx
< words
) {
5411 u16 word_out
= data
[widx
];
5412 word_out
= (word_out
>> 8) | (word_out
<< 8);
5413 e1000_shift_out_ee_bits(hw
, word_out
, 16);
5416 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5417 * operation, while the smaller eeproms are capable of an 8-byte
5418 * PAGE WRITE operation. Break the inner loop to pass new address
5420 if ((((offset
+ widx
)*2) % eeprom
->page_size
) == 0) {
5421 e1000_standby_eeprom(hw
);
5427 return E1000_SUCCESS
;
5430 /******************************************************************************
5431 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5433 * hw - Struct containing variables accessed by shared code
5434 * offset - offset within the EEPROM to be written to
5435 * words - number of words to write
5436 * data - pointer to array of 16 bit words to be written to the EEPROM
5438 *****************************************************************************/
5440 e1000_write_eeprom_microwire(struct e1000_hw
*hw
,
5445 struct e1000_eeprom_info
*eeprom
= &hw
->eeprom
;
5447 u16 words_written
= 0;
5450 DEBUGFUNC("e1000_write_eeprom_microwire");
5452 /* Send the write enable command to the EEPROM (3-bit opcode plus
5453 * 6/8-bit dummy address beginning with 11). It's less work to include
5454 * the 11 of the dummy address as part of the opcode than it is to shift
5455 * it over the correct number of bits for the address. This puts the
5456 * EEPROM into write/erase mode.
5458 e1000_shift_out_ee_bits(hw
, EEPROM_EWEN_OPCODE_MICROWIRE
,
5459 (u16
)(eeprom
->opcode_bits
+ 2));
5461 e1000_shift_out_ee_bits(hw
, 0, (u16
)(eeprom
->address_bits
- 2));
5463 /* Prepare the EEPROM */
5464 e1000_standby_eeprom(hw
);
5466 while (words_written
< words
) {
5467 /* Send the Write command (3-bit opcode + addr) */
5468 e1000_shift_out_ee_bits(hw
, EEPROM_WRITE_OPCODE_MICROWIRE
,
5469 eeprom
->opcode_bits
);
5471 e1000_shift_out_ee_bits(hw
, (u16
)(offset
+ words_written
),
5472 eeprom
->address_bits
);
5475 e1000_shift_out_ee_bits(hw
, data
[words_written
], 16);
5477 /* Toggle the CS line. This in effect tells the EEPROM to execute
5478 * the previous command.
5480 e1000_standby_eeprom(hw
);
5482 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5483 * signal that the command has been completed by raising the DO signal.
5484 * If DO does not go high in 10 milliseconds, then error out.
5486 for (i
= 0; i
< 200; i
++) {
5487 eecd
= E1000_READ_REG(hw
, EECD
);
5488 if (eecd
& E1000_EECD_DO
) break;
5492 DEBUGOUT("EEPROM Write did not complete\n");
5493 return -E1000_ERR_EEPROM
;
5496 /* Recover from write */
5497 e1000_standby_eeprom(hw
);
5502 /* Send the write disable command to the EEPROM (3-bit opcode plus
5503 * 6/8-bit dummy address beginning with 10). It's less work to include
5504 * the 10 of the dummy address as part of the opcode than it is to shift
5505 * it over the correct number of bits for the address. This takes the
5506 * EEPROM out of write/erase mode.
5508 e1000_shift_out_ee_bits(hw
, EEPROM_EWDS_OPCODE_MICROWIRE
,
5509 (u16
)(eeprom
->opcode_bits
+ 2));
5511 e1000_shift_out_ee_bits(hw
, 0, (u16
)(eeprom
->address_bits
- 2));
5513 return E1000_SUCCESS
;
5516 /******************************************************************************
5517 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5518 * in the eeprom cache and the non modified values in the currently active bank
5521 * hw - Struct containing variables accessed by shared code
5522 * offset - offset of word in the EEPROM to read
5523 * data - word read from the EEPROM
5524 * words - number of words to read
5525 *****************************************************************************/
5527 e1000_commit_shadow_ram(struct e1000_hw
*hw
)
5529 u32 attempts
= 100000;
5533 s32 error
= E1000_SUCCESS
;
5534 u32 old_bank_offset
= 0;
5535 u32 new_bank_offset
= 0;
5538 bool sector_write_failed
= false;
5540 if (hw
->mac_type
== e1000_82573
) {
5541 /* The flop register will be used to determine if flash type is STM */
5542 flop
= E1000_READ_REG(hw
, FLOP
);
5543 for (i
=0; i
< attempts
; i
++) {
5544 eecd
= E1000_READ_REG(hw
, EECD
);
5545 if ((eecd
& E1000_EECD_FLUPD
) == 0) {
5551 if (i
== attempts
) {
5552 return -E1000_ERR_EEPROM
;
5555 /* If STM opcode located in bits 15:8 of flop, reset firmware */
5556 if ((flop
& 0xFF00) == E1000_STM_OPCODE
) {
5557 E1000_WRITE_REG(hw
, HICR
, E1000_HICR_FW_RESET
);
5560 /* Perform the flash update */
5561 E1000_WRITE_REG(hw
, EECD
, eecd
| E1000_EECD_FLUPD
);
5563 for (i
=0; i
< attempts
; i
++) {
5564 eecd
= E1000_READ_REG(hw
, EECD
);
5565 if ((eecd
& E1000_EECD_FLUPD
) == 0) {
5571 if (i
== attempts
) {
5572 return -E1000_ERR_EEPROM
;
5576 if (hw
->mac_type
== e1000_ich8lan
&& hw
->eeprom_shadow_ram
!= NULL
) {
5577 /* We're writing to the opposite bank so if we're on bank 1,
5578 * write to bank 0 etc. We also need to erase the segment that
5579 * is going to be written */
5580 if (!(E1000_READ_REG(hw
, EECD
) & E1000_EECD_SEC1VAL
)) {
5581 new_bank_offset
= hw
->flash_bank_size
* 2;
5582 old_bank_offset
= 0;
5583 e1000_erase_ich8_4k_segment(hw
, 1);
5585 old_bank_offset
= hw
->flash_bank_size
* 2;
5586 new_bank_offset
= 0;
5587 e1000_erase_ich8_4k_segment(hw
, 0);
5590 sector_write_failed
= false;
5591 /* Loop for every byte in the shadow RAM,
5592 * which is in units of words. */
5593 for (i
= 0; i
< E1000_SHADOW_RAM_WORDS
; i
++) {
5594 /* Determine whether to write the value stored
5595 * in the other NVM bank or a modified value stored
5596 * in the shadow RAM */
5597 if (hw
->eeprom_shadow_ram
[i
].modified
) {
5598 low_byte
= (u8
)hw
->eeprom_shadow_ram
[i
].eeprom_word
;
5600 error
= e1000_verify_write_ich8_byte(hw
,
5601 (i
<< 1) + new_bank_offset
, low_byte
);
5603 if (error
!= E1000_SUCCESS
)
5604 sector_write_failed
= true;
5607 (u8
)(hw
->eeprom_shadow_ram
[i
].eeprom_word
>> 8);
5611 e1000_read_ich8_byte(hw
, (i
<< 1) + old_bank_offset
,
5614 error
= e1000_verify_write_ich8_byte(hw
,
5615 (i
<< 1) + new_bank_offset
, low_byte
);
5617 if (error
!= E1000_SUCCESS
)
5618 sector_write_failed
= true;
5620 e1000_read_ich8_byte(hw
, (i
<< 1) + old_bank_offset
+ 1,
5626 /* If the write of the low byte was successful, go ahead and
5627 * write the high byte while checking to make sure that if it
5628 * is the signature byte, then it is handled properly */
5629 if (!sector_write_failed
) {
5630 /* If the word is 0x13, then make sure the signature bits
5631 * (15:14) are 11b until the commit has completed.
5632 * This will allow us to write 10b which indicates the
5633 * signature is valid. We want to do this after the write
5634 * has completed so that we don't mark the segment valid
5635 * while the write is still in progress */
5636 if (i
== E1000_ICH_NVM_SIG_WORD
)
5637 high_byte
= E1000_ICH_NVM_SIG_MASK
| high_byte
;
5639 error
= e1000_verify_write_ich8_byte(hw
,
5640 (i
<< 1) + new_bank_offset
+ 1, high_byte
);
5641 if (error
!= E1000_SUCCESS
)
5642 sector_write_failed
= true;
5645 /* If the write failed then break from the loop and
5646 * return an error */
5651 /* Don't bother writing the segment valid bits if sector
5652 * programming failed. */
5653 if (!sector_write_failed
) {
5654 /* Finally validate the new segment by setting bit 15:14
5655 * to 10b in word 0x13 , this can be done without an
5656 * erase as well since these bits are 11 to start with
5657 * and we need to change bit 14 to 0b */
5658 e1000_read_ich8_byte(hw
,
5659 E1000_ICH_NVM_SIG_WORD
* 2 + 1 + new_bank_offset
,
5662 error
= e1000_verify_write_ich8_byte(hw
,
5663 E1000_ICH_NVM_SIG_WORD
* 2 + 1 + new_bank_offset
, high_byte
);
5664 /* And invalidate the previously valid segment by setting
5665 * its signature word (0x13) high_byte to 0b. This can be
5666 * done without an erase because flash erase sets all bits
5667 * to 1's. We can write 1's to 0's without an erase */
5668 if (error
== E1000_SUCCESS
) {
5669 error
= e1000_verify_write_ich8_byte(hw
,
5670 E1000_ICH_NVM_SIG_WORD
* 2 + 1 + old_bank_offset
, 0);
5673 /* Clear the now not used entry in the cache */
5674 for (i
= 0; i
< E1000_SHADOW_RAM_WORDS
; i
++) {
5675 hw
->eeprom_shadow_ram
[i
].modified
= false;
5676 hw
->eeprom_shadow_ram
[i
].eeprom_word
= 0xFFFF;
5684 /******************************************************************************
5685 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5686 * second function of dual function devices
5688 * hw - Struct containing variables accessed by shared code
5689 *****************************************************************************/
5691 e1000_read_mac_addr(struct e1000_hw
* hw
)
5696 DEBUGFUNC("e1000_read_mac_addr");
5698 for (i
= 0; i
< NODE_ADDRESS_SIZE
; i
+= 2) {
5700 if (e1000_read_eeprom(hw
, offset
, 1, &eeprom_data
) < 0) {
5701 DEBUGOUT("EEPROM Read Error\n");
5702 return -E1000_ERR_EEPROM
;
5704 hw
->perm_mac_addr
[i
] = (u8
) (eeprom_data
& 0x00FF);
5705 hw
->perm_mac_addr
[i
+1] = (u8
) (eeprom_data
>> 8);
5708 switch (hw
->mac_type
) {
5712 case e1000_82546_rev_3
:
5714 case e1000_80003es2lan
:
5715 if (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)
5716 hw
->perm_mac_addr
[5] ^= 0x01;
5720 for (i
= 0; i
< NODE_ADDRESS_SIZE
; i
++)
5721 hw
->mac_addr
[i
] = hw
->perm_mac_addr
[i
];
5722 return E1000_SUCCESS
;
5725 /******************************************************************************
5726 * Initializes receive address filters.
5728 * hw - Struct containing variables accessed by shared code
5730 * Places the MAC address in receive address register 0 and clears the rest
5731 * of the receive addresss registers. Clears the multicast table. Assumes
5732 * the receiver is in reset when the routine is called.
5733 *****************************************************************************/
5735 e1000_init_rx_addrs(struct e1000_hw
*hw
)
5740 DEBUGFUNC("e1000_init_rx_addrs");
5742 /* Setup the receive address. */
5743 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5745 e1000_rar_set(hw
, hw
->mac_addr
, 0);
5747 rar_num
= E1000_RAR_ENTRIES
;
5749 /* Reserve a spot for the Locally Administered Address to work around
5750 * an 82571 issue in which a reset on one port will reload the MAC on
5751 * the other port. */
5752 if ((hw
->mac_type
== e1000_82571
) && (hw
->laa_is_present
))
5754 if (hw
->mac_type
== e1000_ich8lan
)
5755 rar_num
= E1000_RAR_ENTRIES_ICH8LAN
;
5757 /* Zero out the other 15 receive addresses. */
5758 DEBUGOUT("Clearing RAR[1-15]\n");
5759 for (i
= 1; i
< rar_num
; i
++) {
5760 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
5761 E1000_WRITE_FLUSH(hw
);
5762 E1000_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
5763 E1000_WRITE_FLUSH(hw
);
5767 /******************************************************************************
5768 * Hashes an address to determine its location in the multicast table
5770 * hw - Struct containing variables accessed by shared code
5771 * mc_addr - the multicast address to hash
5772 *****************************************************************************/
5774 e1000_hash_mc_addr(struct e1000_hw
*hw
,
5779 /* The portion of the address that is used for the hash table is
5780 * determined by the mc_filter_type setting.
5782 switch (hw
->mc_filter_type
) {
5783 /* [0] [1] [2] [3] [4] [5]
5788 if (hw
->mac_type
== e1000_ich8lan
) {
5789 /* [47:38] i.e. 0x158 for above example address */
5790 hash_value
= ((mc_addr
[4] >> 6) | (((u16
) mc_addr
[5]) << 2));
5792 /* [47:36] i.e. 0x563 for above example address */
5793 hash_value
= ((mc_addr
[4] >> 4) | (((u16
) mc_addr
[5]) << 4));
5797 if (hw
->mac_type
== e1000_ich8lan
) {
5798 /* [46:37] i.e. 0x2B1 for above example address */
5799 hash_value
= ((mc_addr
[4] >> 5) | (((u16
) mc_addr
[5]) << 3));
5801 /* [46:35] i.e. 0xAC6 for above example address */
5802 hash_value
= ((mc_addr
[4] >> 3) | (((u16
) mc_addr
[5]) << 5));
5806 if (hw
->mac_type
== e1000_ich8lan
) {
5807 /*[45:36] i.e. 0x163 for above example address */
5808 hash_value
= ((mc_addr
[4] >> 4) | (((u16
) mc_addr
[5]) << 4));
5810 /* [45:34] i.e. 0x5D8 for above example address */
5811 hash_value
= ((mc_addr
[4] >> 2) | (((u16
) mc_addr
[5]) << 6));
5815 if (hw
->mac_type
== e1000_ich8lan
) {
5816 /* [43:34] i.e. 0x18D for above example address */
5817 hash_value
= ((mc_addr
[4] >> 2) | (((u16
) mc_addr
[5]) << 6));
5819 /* [43:32] i.e. 0x634 for above example address */
5820 hash_value
= ((mc_addr
[4]) | (((u16
) mc_addr
[5]) << 8));
5825 hash_value
&= 0xFFF;
5826 if (hw
->mac_type
== e1000_ich8lan
)
5827 hash_value
&= 0x3FF;
5832 /******************************************************************************
5833 * Sets the bit in the multicast table corresponding to the hash value.
5835 * hw - Struct containing variables accessed by shared code
5836 * hash_value - Multicast address hash value
5837 *****************************************************************************/
5839 e1000_mta_set(struct e1000_hw
*hw
,
5842 u32 hash_bit
, hash_reg
;
5846 /* The MTA is a register array of 128 32-bit registers.
5847 * It is treated like an array of 4096 bits. We want to set
5848 * bit BitArray[hash_value]. So we figure out what register
5849 * the bit is in, read it, OR in the new bit, then write
5850 * back the new value. The register is determined by the
5851 * upper 7 bits of the hash value and the bit within that
5852 * register are determined by the lower 5 bits of the value.
5854 hash_reg
= (hash_value
>> 5) & 0x7F;
5855 if (hw
->mac_type
== e1000_ich8lan
)
5858 hash_bit
= hash_value
& 0x1F;
5860 mta
= E1000_READ_REG_ARRAY(hw
, MTA
, hash_reg
);
5862 mta
|= (1 << hash_bit
);
5864 /* If we are on an 82544 and we are trying to write an odd offset
5865 * in the MTA, save off the previous entry before writing and
5866 * restore the old value after writing.
5868 if ((hw
->mac_type
== e1000_82544
) && ((hash_reg
& 0x1) == 1)) {
5869 temp
= E1000_READ_REG_ARRAY(hw
, MTA
, (hash_reg
- 1));
5870 E1000_WRITE_REG_ARRAY(hw
, MTA
, hash_reg
, mta
);
5871 E1000_WRITE_FLUSH(hw
);
5872 E1000_WRITE_REG_ARRAY(hw
, MTA
, (hash_reg
- 1), temp
);
5873 E1000_WRITE_FLUSH(hw
);
5875 E1000_WRITE_REG_ARRAY(hw
, MTA
, hash_reg
, mta
);
5876 E1000_WRITE_FLUSH(hw
);
5880 /******************************************************************************
5881 * Puts an ethernet address into a receive address register.
5883 * hw - Struct containing variables accessed by shared code
5884 * addr - Address to put into receive address register
5885 * index - Receive address register to write
5886 *****************************************************************************/
5888 e1000_rar_set(struct e1000_hw
*hw
,
5892 u32 rar_low
, rar_high
;
5894 /* HW expects these in little endian so we reverse the byte order
5895 * from network order (big endian) to little endian
5897 rar_low
= ((u32
) addr
[0] |
5898 ((u32
) addr
[1] << 8) |
5899 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
5900 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
5902 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5906 * If there are any Rx frames queued up or otherwise present in the HW
5907 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5908 * hang. To work around this issue, we have to disable receives and
5909 * flush out all Rx frames before we enable RSS. To do so, we modify we
5910 * redirect all Rx traffic to manageability and then reset the HW.
5911 * This flushes away Rx frames, and (since the redirections to
5912 * manageability persists across resets) keeps new ones from coming in
5913 * while we work. Then, we clear the Address Valid AV bit for all MAC
5914 * addresses and undo the re-direction to manageability.
5915 * Now, frames are coming in again, but the MAC won't accept them, so
5916 * far so good. We now proceed to initialize RSS (if necessary) and
5917 * configure the Rx unit. Last, we re-enable the AV bits and continue
5920 switch (hw
->mac_type
) {
5923 case e1000_80003es2lan
:
5924 if (hw
->leave_av_bit_off
)
5927 /* Indicate to hardware the Address is Valid. */
5928 rar_high
|= E1000_RAH_AV
;
5932 E1000_WRITE_REG_ARRAY(hw
, RA
, (index
<< 1), rar_low
);
5933 E1000_WRITE_FLUSH(hw
);
5934 E1000_WRITE_REG_ARRAY(hw
, RA
, ((index
<< 1) + 1), rar_high
);
5935 E1000_WRITE_FLUSH(hw
);
5938 /******************************************************************************
5939 * Writes a value to the specified offset in the VLAN filter table.
5941 * hw - Struct containing variables accessed by shared code
5942 * offset - Offset in VLAN filer table to write
5943 * value - Value to write into VLAN filter table
5944 *****************************************************************************/
5946 e1000_write_vfta(struct e1000_hw
*hw
,
5952 if (hw
->mac_type
== e1000_ich8lan
)
5955 if ((hw
->mac_type
== e1000_82544
) && ((offset
& 0x1) == 1)) {
5956 temp
= E1000_READ_REG_ARRAY(hw
, VFTA
, (offset
- 1));
5957 E1000_WRITE_REG_ARRAY(hw
, VFTA
, offset
, value
);
5958 E1000_WRITE_FLUSH(hw
);
5959 E1000_WRITE_REG_ARRAY(hw
, VFTA
, (offset
- 1), temp
);
5960 E1000_WRITE_FLUSH(hw
);
5962 E1000_WRITE_REG_ARRAY(hw
, VFTA
, offset
, value
);
5963 E1000_WRITE_FLUSH(hw
);
5967 /******************************************************************************
5968 * Clears the VLAN filer table
5970 * hw - Struct containing variables accessed by shared code
5971 *****************************************************************************/
5973 e1000_clear_vfta(struct e1000_hw
*hw
)
5977 u32 vfta_offset
= 0;
5978 u32 vfta_bit_in_reg
= 0;
5980 if (hw
->mac_type
== e1000_ich8lan
)
5983 if (hw
->mac_type
== e1000_82573
) {
5984 if (hw
->mng_cookie
.vlan_id
!= 0) {
5985 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5986 * ID. The following operations determine which 32b entry
5987 * (i.e. offset) into the array we want to set the VLAN ID
5988 * (i.e. bit) of the manageability unit. */
5989 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
5990 E1000_VFTA_ENTRY_SHIFT
) &
5991 E1000_VFTA_ENTRY_MASK
;
5992 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
5993 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
5996 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
5997 /* If the offset we want to clear is the same offset of the
5998 * manageability VLAN ID, then clear all bits except that of the
5999 * manageability unit */
6000 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
6001 E1000_WRITE_REG_ARRAY(hw
, VFTA
, offset
, vfta_value
);
6002 E1000_WRITE_FLUSH(hw
);
6007 e1000_id_led_init(struct e1000_hw
* hw
)
6010 const u32 ledctl_mask
= 0x000000FF;
6011 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
6012 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
6013 u16 eeprom_data
, i
, temp
;
6014 const u16 led_mask
= 0x0F;
6016 DEBUGFUNC("e1000_id_led_init");
6018 if (hw
->mac_type
< e1000_82540
) {
6020 return E1000_SUCCESS
;
6023 ledctl
= E1000_READ_REG(hw
, LEDCTL
);
6024 hw
->ledctl_default
= ledctl
;
6025 hw
->ledctl_mode1
= hw
->ledctl_default
;
6026 hw
->ledctl_mode2
= hw
->ledctl_default
;
6028 if (e1000_read_eeprom(hw
, EEPROM_ID_LED_SETTINGS
, 1, &eeprom_data
) < 0) {
6029 DEBUGOUT("EEPROM Read Error\n");
6030 return -E1000_ERR_EEPROM
;
6033 if ((hw
->mac_type
== e1000_82573
) &&
6034 (eeprom_data
== ID_LED_RESERVED_82573
))
6035 eeprom_data
= ID_LED_DEFAULT_82573
;
6036 else if ((eeprom_data
== ID_LED_RESERVED_0000
) ||
6037 (eeprom_data
== ID_LED_RESERVED_FFFF
)) {
6038 if (hw
->mac_type
== e1000_ich8lan
)
6039 eeprom_data
= ID_LED_DEFAULT_ICH8LAN
;
6041 eeprom_data
= ID_LED_DEFAULT
;
6044 for (i
= 0; i
< 4; i
++) {
6045 temp
= (eeprom_data
>> (i
<< 2)) & led_mask
;
6047 case ID_LED_ON1_DEF2
:
6048 case ID_LED_ON1_ON2
:
6049 case ID_LED_ON1_OFF2
:
6050 hw
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
6051 hw
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
6053 case ID_LED_OFF1_DEF2
:
6054 case ID_LED_OFF1_ON2
:
6055 case ID_LED_OFF1_OFF2
:
6056 hw
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
6057 hw
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
6064 case ID_LED_DEF1_ON2
:
6065 case ID_LED_ON1_ON2
:
6066 case ID_LED_OFF1_ON2
:
6067 hw
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
6068 hw
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
6070 case ID_LED_DEF1_OFF2
:
6071 case ID_LED_ON1_OFF2
:
6072 case ID_LED_OFF1_OFF2
:
6073 hw
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
6074 hw
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
6081 return E1000_SUCCESS
;
6084 /******************************************************************************
6085 * Prepares SW controlable LED for use and saves the current state of the LED.
6087 * hw - Struct containing variables accessed by shared code
6088 *****************************************************************************/
6090 e1000_setup_led(struct e1000_hw
*hw
)
6093 s32 ret_val
= E1000_SUCCESS
;
6095 DEBUGFUNC("e1000_setup_led");
6097 switch (hw
->mac_type
) {
6098 case e1000_82542_rev2_0
:
6099 case e1000_82542_rev2_1
:
6102 /* No setup necessary */
6106 case e1000_82541_rev_2
:
6107 case e1000_82547_rev_2
:
6108 /* Turn off PHY Smart Power Down (if enabled) */
6109 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_GMII_FIFO
,
6110 &hw
->phy_spd_default
);
6113 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_GMII_FIFO
,
6114 (u16
)(hw
->phy_spd_default
&
6115 ~IGP01E1000_GMII_SPD
));
6120 if (hw
->media_type
== e1000_media_type_fiber
) {
6121 ledctl
= E1000_READ_REG(hw
, LEDCTL
);
6122 /* Save current LEDCTL settings */
6123 hw
->ledctl_default
= ledctl
;
6125 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
|
6126 E1000_LEDCTL_LED0_BLINK
|
6127 E1000_LEDCTL_LED0_MODE_MASK
);
6128 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
6129 E1000_LEDCTL_LED0_MODE_SHIFT
);
6130 E1000_WRITE_REG(hw
, LEDCTL
, ledctl
);
6131 } else if (hw
->media_type
== e1000_media_type_copper
)
6132 E1000_WRITE_REG(hw
, LEDCTL
, hw
->ledctl_mode1
);
6136 return E1000_SUCCESS
;
6140 /******************************************************************************
6141 * Used on 82571 and later Si that has LED blink bits.
6142 * Callers must use their own timer and should have already called
6143 * e1000_id_led_init()
6144 * Call e1000_cleanup led() to stop blinking
6146 * hw - Struct containing variables accessed by shared code
6147 *****************************************************************************/
6149 e1000_blink_led_start(struct e1000_hw
*hw
)
6152 u32 ledctl_blink
= 0;
6154 DEBUGFUNC("e1000_id_led_blink_on");
6156 if (hw
->mac_type
< e1000_82571
) {
6158 return E1000_SUCCESS
;
6160 if (hw
->media_type
== e1000_media_type_fiber
) {
6161 /* always blink LED0 for PCI-E fiber */
6162 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
6163 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
6165 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6166 ledctl_blink
= hw
->ledctl_mode2
;
6167 for (i
=0; i
< 4; i
++)
6168 if (((hw
->ledctl_mode2
>> (i
* 8)) & 0xFF) ==
6169 E1000_LEDCTL_MODE_LED_ON
)
6170 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<< (i
* 8));
6173 E1000_WRITE_REG(hw
, LEDCTL
, ledctl_blink
);
6175 return E1000_SUCCESS
;
6178 /******************************************************************************
6179 * Restores the saved state of the SW controlable LED.
6181 * hw - Struct containing variables accessed by shared code
6182 *****************************************************************************/
6184 e1000_cleanup_led(struct e1000_hw
*hw
)
6186 s32 ret_val
= E1000_SUCCESS
;
6188 DEBUGFUNC("e1000_cleanup_led");
6190 switch (hw
->mac_type
) {
6191 case e1000_82542_rev2_0
:
6192 case e1000_82542_rev2_1
:
6195 /* No cleanup necessary */
6199 case e1000_82541_rev_2
:
6200 case e1000_82547_rev_2
:
6201 /* Turn on PHY Smart Power Down (if previously enabled) */
6202 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_GMII_FIFO
,
6203 hw
->phy_spd_default
);
6208 if (hw
->phy_type
== e1000_phy_ife
) {
6209 e1000_write_phy_reg(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
6212 /* Restore LEDCTL settings */
6213 E1000_WRITE_REG(hw
, LEDCTL
, hw
->ledctl_default
);
6217 return E1000_SUCCESS
;
6220 /******************************************************************************
6221 * Turns on the software controllable LED
6223 * hw - Struct containing variables accessed by shared code
6224 *****************************************************************************/
6226 e1000_led_on(struct e1000_hw
*hw
)
6228 u32 ctrl
= E1000_READ_REG(hw
, CTRL
);
6230 DEBUGFUNC("e1000_led_on");
6232 switch (hw
->mac_type
) {
6233 case e1000_82542_rev2_0
:
6234 case e1000_82542_rev2_1
:
6236 /* Set SW Defineable Pin 0 to turn on the LED */
6237 ctrl
|= E1000_CTRL_SWDPIN0
;
6238 ctrl
|= E1000_CTRL_SWDPIO0
;
6241 if (hw
->media_type
== e1000_media_type_fiber
) {
6242 /* Set SW Defineable Pin 0 to turn on the LED */
6243 ctrl
|= E1000_CTRL_SWDPIN0
;
6244 ctrl
|= E1000_CTRL_SWDPIO0
;
6246 /* Clear SW Defineable Pin 0 to turn on the LED */
6247 ctrl
&= ~E1000_CTRL_SWDPIN0
;
6248 ctrl
|= E1000_CTRL_SWDPIO0
;
6252 if (hw
->media_type
== e1000_media_type_fiber
) {
6253 /* Clear SW Defineable Pin 0 to turn on the LED */
6254 ctrl
&= ~E1000_CTRL_SWDPIN0
;
6255 ctrl
|= E1000_CTRL_SWDPIO0
;
6256 } else if (hw
->phy_type
== e1000_phy_ife
) {
6257 e1000_write_phy_reg(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
6258 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
6259 } else if (hw
->media_type
== e1000_media_type_copper
) {
6260 E1000_WRITE_REG(hw
, LEDCTL
, hw
->ledctl_mode2
);
6261 return E1000_SUCCESS
;
6266 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
6268 return E1000_SUCCESS
;
6271 /******************************************************************************
6272 * Turns off the software controllable LED
6274 * hw - Struct containing variables accessed by shared code
6275 *****************************************************************************/
6277 e1000_led_off(struct e1000_hw
*hw
)
6279 u32 ctrl
= E1000_READ_REG(hw
, CTRL
);
6281 DEBUGFUNC("e1000_led_off");
6283 switch (hw
->mac_type
) {
6284 case e1000_82542_rev2_0
:
6285 case e1000_82542_rev2_1
:
6287 /* Clear SW Defineable Pin 0 to turn off the LED */
6288 ctrl
&= ~E1000_CTRL_SWDPIN0
;
6289 ctrl
|= E1000_CTRL_SWDPIO0
;
6292 if (hw
->media_type
== e1000_media_type_fiber
) {
6293 /* Clear SW Defineable Pin 0 to turn off the LED */
6294 ctrl
&= ~E1000_CTRL_SWDPIN0
;
6295 ctrl
|= E1000_CTRL_SWDPIO0
;
6297 /* Set SW Defineable Pin 0 to turn off the LED */
6298 ctrl
|= E1000_CTRL_SWDPIN0
;
6299 ctrl
|= E1000_CTRL_SWDPIO0
;
6303 if (hw
->media_type
== e1000_media_type_fiber
) {
6304 /* Set SW Defineable Pin 0 to turn off the LED */
6305 ctrl
|= E1000_CTRL_SWDPIN0
;
6306 ctrl
|= E1000_CTRL_SWDPIO0
;
6307 } else if (hw
->phy_type
== e1000_phy_ife
) {
6308 e1000_write_phy_reg(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
6309 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
6310 } else if (hw
->media_type
== e1000_media_type_copper
) {
6311 E1000_WRITE_REG(hw
, LEDCTL
, hw
->ledctl_mode1
);
6312 return E1000_SUCCESS
;
6317 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
6319 return E1000_SUCCESS
;
6322 /******************************************************************************
6323 * Clears all hardware statistics counters.
6325 * hw - Struct containing variables accessed by shared code
6326 *****************************************************************************/
6328 e1000_clear_hw_cntrs(struct e1000_hw
*hw
)
6332 temp
= E1000_READ_REG(hw
, CRCERRS
);
6333 temp
= E1000_READ_REG(hw
, SYMERRS
);
6334 temp
= E1000_READ_REG(hw
, MPC
);
6335 temp
= E1000_READ_REG(hw
, SCC
);
6336 temp
= E1000_READ_REG(hw
, ECOL
);
6337 temp
= E1000_READ_REG(hw
, MCC
);
6338 temp
= E1000_READ_REG(hw
, LATECOL
);
6339 temp
= E1000_READ_REG(hw
, COLC
);
6340 temp
= E1000_READ_REG(hw
, DC
);
6341 temp
= E1000_READ_REG(hw
, SEC
);
6342 temp
= E1000_READ_REG(hw
, RLEC
);
6343 temp
= E1000_READ_REG(hw
, XONRXC
);
6344 temp
= E1000_READ_REG(hw
, XONTXC
);
6345 temp
= E1000_READ_REG(hw
, XOFFRXC
);
6346 temp
= E1000_READ_REG(hw
, XOFFTXC
);
6347 temp
= E1000_READ_REG(hw
, FCRUC
);
6349 if (hw
->mac_type
!= e1000_ich8lan
) {
6350 temp
= E1000_READ_REG(hw
, PRC64
);
6351 temp
= E1000_READ_REG(hw
, PRC127
);
6352 temp
= E1000_READ_REG(hw
, PRC255
);
6353 temp
= E1000_READ_REG(hw
, PRC511
);
6354 temp
= E1000_READ_REG(hw
, PRC1023
);
6355 temp
= E1000_READ_REG(hw
, PRC1522
);
6358 temp
= E1000_READ_REG(hw
, GPRC
);
6359 temp
= E1000_READ_REG(hw
, BPRC
);
6360 temp
= E1000_READ_REG(hw
, MPRC
);
6361 temp
= E1000_READ_REG(hw
, GPTC
);
6362 temp
= E1000_READ_REG(hw
, GORCL
);
6363 temp
= E1000_READ_REG(hw
, GORCH
);
6364 temp
= E1000_READ_REG(hw
, GOTCL
);
6365 temp
= E1000_READ_REG(hw
, GOTCH
);
6366 temp
= E1000_READ_REG(hw
, RNBC
);
6367 temp
= E1000_READ_REG(hw
, RUC
);
6368 temp
= E1000_READ_REG(hw
, RFC
);
6369 temp
= E1000_READ_REG(hw
, ROC
);
6370 temp
= E1000_READ_REG(hw
, RJC
);
6371 temp
= E1000_READ_REG(hw
, TORL
);
6372 temp
= E1000_READ_REG(hw
, TORH
);
6373 temp
= E1000_READ_REG(hw
, TOTL
);
6374 temp
= E1000_READ_REG(hw
, TOTH
);
6375 temp
= E1000_READ_REG(hw
, TPR
);
6376 temp
= E1000_READ_REG(hw
, TPT
);
6378 if (hw
->mac_type
!= e1000_ich8lan
) {
6379 temp
= E1000_READ_REG(hw
, PTC64
);
6380 temp
= E1000_READ_REG(hw
, PTC127
);
6381 temp
= E1000_READ_REG(hw
, PTC255
);
6382 temp
= E1000_READ_REG(hw
, PTC511
);
6383 temp
= E1000_READ_REG(hw
, PTC1023
);
6384 temp
= E1000_READ_REG(hw
, PTC1522
);
6387 temp
= E1000_READ_REG(hw
, MPTC
);
6388 temp
= E1000_READ_REG(hw
, BPTC
);
6390 if (hw
->mac_type
< e1000_82543
) return;
6392 temp
= E1000_READ_REG(hw
, ALGNERRC
);
6393 temp
= E1000_READ_REG(hw
, RXERRC
);
6394 temp
= E1000_READ_REG(hw
, TNCRS
);
6395 temp
= E1000_READ_REG(hw
, CEXTERR
);
6396 temp
= E1000_READ_REG(hw
, TSCTC
);
6397 temp
= E1000_READ_REG(hw
, TSCTFC
);
6399 if (hw
->mac_type
<= e1000_82544
) return;
6401 temp
= E1000_READ_REG(hw
, MGTPRC
);
6402 temp
= E1000_READ_REG(hw
, MGTPDC
);
6403 temp
= E1000_READ_REG(hw
, MGTPTC
);
6405 if (hw
->mac_type
<= e1000_82547_rev_2
) return;
6407 temp
= E1000_READ_REG(hw
, IAC
);
6408 temp
= E1000_READ_REG(hw
, ICRXOC
);
6410 if (hw
->mac_type
== e1000_ich8lan
) return;
6412 temp
= E1000_READ_REG(hw
, ICRXPTC
);
6413 temp
= E1000_READ_REG(hw
, ICRXATC
);
6414 temp
= E1000_READ_REG(hw
, ICTXPTC
);
6415 temp
= E1000_READ_REG(hw
, ICTXATC
);
6416 temp
= E1000_READ_REG(hw
, ICTXQEC
);
6417 temp
= E1000_READ_REG(hw
, ICTXQMTC
);
6418 temp
= E1000_READ_REG(hw
, ICRXDMTC
);
6421 /******************************************************************************
6422 * Resets Adaptive IFS to its default state.
6424 * hw - Struct containing variables accessed by shared code
6426 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6427 * hw->ifs_params_forced to true. However, you must initialize hw->
6428 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6429 * before calling this function.
6430 *****************************************************************************/
6432 e1000_reset_adaptive(struct e1000_hw
*hw
)
6434 DEBUGFUNC("e1000_reset_adaptive");
6436 if (hw
->adaptive_ifs
) {
6437 if (!hw
->ifs_params_forced
) {
6438 hw
->current_ifs_val
= 0;
6439 hw
->ifs_min_val
= IFS_MIN
;
6440 hw
->ifs_max_val
= IFS_MAX
;
6441 hw
->ifs_step_size
= IFS_STEP
;
6442 hw
->ifs_ratio
= IFS_RATIO
;
6444 hw
->in_ifs_mode
= false;
6445 E1000_WRITE_REG(hw
, AIT
, 0);
6447 DEBUGOUT("Not in Adaptive IFS mode!\n");
6451 /******************************************************************************
6452 * Called during the callback/watchdog routine to update IFS value based on
6453 * the ratio of transmits to collisions.
6455 * hw - Struct containing variables accessed by shared code
6456 * tx_packets - Number of transmits since last callback
6457 * total_collisions - Number of collisions since last callback
6458 *****************************************************************************/
6460 e1000_update_adaptive(struct e1000_hw
*hw
)
6462 DEBUGFUNC("e1000_update_adaptive");
6464 if (hw
->adaptive_ifs
) {
6465 if ((hw
->collision_delta
* hw
->ifs_ratio
) > hw
->tx_packet_delta
) {
6466 if (hw
->tx_packet_delta
> MIN_NUM_XMITS
) {
6467 hw
->in_ifs_mode
= true;
6468 if (hw
->current_ifs_val
< hw
->ifs_max_val
) {
6469 if (hw
->current_ifs_val
== 0)
6470 hw
->current_ifs_val
= hw
->ifs_min_val
;
6472 hw
->current_ifs_val
+= hw
->ifs_step_size
;
6473 E1000_WRITE_REG(hw
, AIT
, hw
->current_ifs_val
);
6477 if (hw
->in_ifs_mode
&& (hw
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
6478 hw
->current_ifs_val
= 0;
6479 hw
->in_ifs_mode
= false;
6480 E1000_WRITE_REG(hw
, AIT
, 0);
6484 DEBUGOUT("Not in Adaptive IFS mode!\n");
6488 /******************************************************************************
6489 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6491 * hw - Struct containing variables accessed by shared code
6492 * frame_len - The length of the frame in question
6493 * mac_addr - The Ethernet destination address of the frame in question
6494 *****************************************************************************/
6496 e1000_tbi_adjust_stats(struct e1000_hw
*hw
,
6497 struct e1000_hw_stats
*stats
,
6503 /* First adjust the frame length. */
6505 /* We need to adjust the statistics counters, since the hardware
6506 * counters overcount this packet as a CRC error and undercount
6507 * the packet as a good packet
6509 /* This packet should not be counted as a CRC error. */
6511 /* This packet does count as a Good Packet Received. */
6514 /* Adjust the Good Octets received counters */
6515 carry_bit
= 0x80000000 & stats
->gorcl
;
6516 stats
->gorcl
+= frame_len
;
6517 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6518 * Received Count) was one before the addition,
6519 * AND it is zero after, then we lost the carry out,
6520 * need to add one to Gorch (Good Octets Received Count High).
6521 * This could be simplified if all environments supported
6524 if (carry_bit
&& ((stats
->gorcl
& 0x80000000) == 0))
6526 /* Is this a broadcast or multicast? Check broadcast first,
6527 * since the test for a multicast frame will test positive on
6528 * a broadcast frame.
6530 if ((mac_addr
[0] == (u8
) 0xff) && (mac_addr
[1] == (u8
) 0xff))
6531 /* Broadcast packet */
6533 else if (*mac_addr
& 0x01)
6534 /* Multicast packet */
6537 if (frame_len
== hw
->max_frame_size
) {
6538 /* In this case, the hardware has overcounted the number of
6545 /* Adjust the bin counters when the extra byte put the frame in the
6546 * wrong bin. Remember that the frame_len was adjusted above.
6548 if (frame_len
== 64) {
6551 } else if (frame_len
== 127) {
6554 } else if (frame_len
== 255) {
6557 } else if (frame_len
== 511) {
6560 } else if (frame_len
== 1023) {
6563 } else if (frame_len
== 1522) {
6568 /******************************************************************************
6569 * Gets the current PCI bus type, speed, and width of the hardware
6571 * hw - Struct containing variables accessed by shared code
6572 *****************************************************************************/
6574 e1000_get_bus_info(struct e1000_hw
*hw
)
6577 u16 pci_ex_link_status
;
6580 switch (hw
->mac_type
) {
6581 case e1000_82542_rev2_0
:
6582 case e1000_82542_rev2_1
:
6583 hw
->bus_type
= e1000_bus_type_pci
;
6584 hw
->bus_speed
= e1000_bus_speed_unknown
;
6585 hw
->bus_width
= e1000_bus_width_unknown
;
6590 case e1000_80003es2lan
:
6591 hw
->bus_type
= e1000_bus_type_pci_express
;
6592 hw
->bus_speed
= e1000_bus_speed_2500
;
6593 ret_val
= e1000_read_pcie_cap_reg(hw
,
6595 &pci_ex_link_status
);
6597 hw
->bus_width
= e1000_bus_width_unknown
;
6599 hw
->bus_width
= (pci_ex_link_status
& PCI_EX_LINK_WIDTH_MASK
) >>
6600 PCI_EX_LINK_WIDTH_SHIFT
;
6603 hw
->bus_type
= e1000_bus_type_pci_express
;
6604 hw
->bus_speed
= e1000_bus_speed_2500
;
6605 hw
->bus_width
= e1000_bus_width_pciex_1
;
6608 status
= E1000_READ_REG(hw
, STATUS
);
6609 hw
->bus_type
= (status
& E1000_STATUS_PCIX_MODE
) ?
6610 e1000_bus_type_pcix
: e1000_bus_type_pci
;
6612 if (hw
->device_id
== E1000_DEV_ID_82546EB_QUAD_COPPER
) {
6613 hw
->bus_speed
= (hw
->bus_type
== e1000_bus_type_pci
) ?
6614 e1000_bus_speed_66
: e1000_bus_speed_120
;
6615 } else if (hw
->bus_type
== e1000_bus_type_pci
) {
6616 hw
->bus_speed
= (status
& E1000_STATUS_PCI66
) ?
6617 e1000_bus_speed_66
: e1000_bus_speed_33
;
6619 switch (status
& E1000_STATUS_PCIX_SPEED
) {
6620 case E1000_STATUS_PCIX_SPEED_66
:
6621 hw
->bus_speed
= e1000_bus_speed_66
;
6623 case E1000_STATUS_PCIX_SPEED_100
:
6624 hw
->bus_speed
= e1000_bus_speed_100
;
6626 case E1000_STATUS_PCIX_SPEED_133
:
6627 hw
->bus_speed
= e1000_bus_speed_133
;
6630 hw
->bus_speed
= e1000_bus_speed_reserved
;
6634 hw
->bus_width
= (status
& E1000_STATUS_BUS64
) ?
6635 e1000_bus_width_64
: e1000_bus_width_32
;
6640 /******************************************************************************
6641 * Writes a value to one of the devices registers using port I/O (as opposed to
6642 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6644 * hw - Struct containing variables accessed by shared code
6645 * offset - offset to write to
6646 * value - value to write
6647 *****************************************************************************/
6649 e1000_write_reg_io(struct e1000_hw
*hw
,
6653 unsigned long io_addr
= hw
->io_base
;
6654 unsigned long io_data
= hw
->io_base
+ 4;
6656 e1000_io_write(hw
, io_addr
, offset
);
6657 e1000_io_write(hw
, io_data
, value
);
6660 /******************************************************************************
6661 * Estimates the cable length.
6663 * hw - Struct containing variables accessed by shared code
6664 * min_length - The estimated minimum length
6665 * max_length - The estimated maximum length
6667 * returns: - E1000_ERR_XXX
6670 * This function always returns a ranged length (minimum & maximum).
6671 * So for M88 phy's, this function interprets the one value returned from the
6672 * register to the minimum and maximum range.
6673 * For IGP phy's, the function calculates the range by the AGC registers.
6674 *****************************************************************************/
6676 e1000_get_cable_length(struct e1000_hw
*hw
,
6685 DEBUGFUNC("e1000_get_cable_length");
6687 *min_length
= *max_length
= 0;
6689 /* Use old method for Phy older than IGP */
6690 if (hw
->phy_type
== e1000_phy_m88
) {
6692 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
,
6696 cable_length
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
6697 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
6699 /* Convert the enum value to ranged values */
6700 switch (cable_length
) {
6701 case e1000_cable_length_50
:
6703 *max_length
= e1000_igp_cable_length_50
;
6705 case e1000_cable_length_50_80
:
6706 *min_length
= e1000_igp_cable_length_50
;
6707 *max_length
= e1000_igp_cable_length_80
;
6709 case e1000_cable_length_80_110
:
6710 *min_length
= e1000_igp_cable_length_80
;
6711 *max_length
= e1000_igp_cable_length_110
;
6713 case e1000_cable_length_110_140
:
6714 *min_length
= e1000_igp_cable_length_110
;
6715 *max_length
= e1000_igp_cable_length_140
;
6717 case e1000_cable_length_140
:
6718 *min_length
= e1000_igp_cable_length_140
;
6719 *max_length
= e1000_igp_cable_length_170
;
6722 return -E1000_ERR_PHY
;
6725 } else if (hw
->phy_type
== e1000_phy_gg82563
) {
6726 ret_val
= e1000_read_phy_reg(hw
, GG82563_PHY_DSP_DISTANCE
,
6730 cable_length
= phy_data
& GG82563_DSPD_CABLE_LENGTH
;
6732 switch (cable_length
) {
6733 case e1000_gg_cable_length_60
:
6735 *max_length
= e1000_igp_cable_length_60
;
6737 case e1000_gg_cable_length_60_115
:
6738 *min_length
= e1000_igp_cable_length_60
;
6739 *max_length
= e1000_igp_cable_length_115
;
6741 case e1000_gg_cable_length_115_150
:
6742 *min_length
= e1000_igp_cable_length_115
;
6743 *max_length
= e1000_igp_cable_length_150
;
6745 case e1000_gg_cable_length_150
:
6746 *min_length
= e1000_igp_cable_length_150
;
6747 *max_length
= e1000_igp_cable_length_180
;
6750 return -E1000_ERR_PHY
;
6753 } else if (hw
->phy_type
== e1000_phy_igp
) { /* For IGP PHY */
6755 u16 min_agc_value
= IGP01E1000_AGC_LENGTH_TABLE_SIZE
;
6756 u16 agc_reg_array
[IGP01E1000_PHY_CHANNEL_NUM
] =
6757 {IGP01E1000_PHY_AGC_A
,
6758 IGP01E1000_PHY_AGC_B
,
6759 IGP01E1000_PHY_AGC_C
,
6760 IGP01E1000_PHY_AGC_D
};
6761 /* Read the AGC registers for all channels */
6762 for (i
= 0; i
< IGP01E1000_PHY_CHANNEL_NUM
; i
++) {
6764 ret_val
= e1000_read_phy_reg(hw
, agc_reg_array
[i
], &phy_data
);
6768 cur_agc_value
= phy_data
>> IGP01E1000_AGC_LENGTH_SHIFT
;
6770 /* Value bound check. */
6771 if ((cur_agc_value
>= IGP01E1000_AGC_LENGTH_TABLE_SIZE
- 1) ||
6772 (cur_agc_value
== 0))
6773 return -E1000_ERR_PHY
;
6775 agc_value
+= cur_agc_value
;
6777 /* Update minimal AGC value. */
6778 if (min_agc_value
> cur_agc_value
)
6779 min_agc_value
= cur_agc_value
;
6782 /* Remove the minimal AGC result for length < 50m */
6783 if (agc_value
< IGP01E1000_PHY_CHANNEL_NUM
* e1000_igp_cable_length_50
) {
6784 agc_value
-= min_agc_value
;
6786 /* Get the average length of the remaining 3 channels */
6787 agc_value
/= (IGP01E1000_PHY_CHANNEL_NUM
- 1);
6789 /* Get the average length of all the 4 channels. */
6790 agc_value
/= IGP01E1000_PHY_CHANNEL_NUM
;
6793 /* Set the range of the calculated length. */
6794 *min_length
= ((e1000_igp_cable_length_table
[agc_value
] -
6795 IGP01E1000_AGC_RANGE
) > 0) ?
6796 (e1000_igp_cable_length_table
[agc_value
] -
6797 IGP01E1000_AGC_RANGE
) : 0;
6798 *max_length
= e1000_igp_cable_length_table
[agc_value
] +
6799 IGP01E1000_AGC_RANGE
;
6800 } else if (hw
->phy_type
== e1000_phy_igp_2
||
6801 hw
->phy_type
== e1000_phy_igp_3
) {
6802 u16 cur_agc_index
, max_agc_index
= 0;
6803 u16 min_agc_index
= IGP02E1000_AGC_LENGTH_TABLE_SIZE
- 1;
6804 u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] =
6805 {IGP02E1000_PHY_AGC_A
,
6806 IGP02E1000_PHY_AGC_B
,
6807 IGP02E1000_PHY_AGC_C
,
6808 IGP02E1000_PHY_AGC_D
};
6809 /* Read the AGC registers for all channels */
6810 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
6811 ret_val
= e1000_read_phy_reg(hw
, agc_reg_array
[i
], &phy_data
);
6815 /* Getting bits 15:9, which represent the combination of course and
6816 * fine gain values. The result is a number that can be put into
6817 * the lookup table to obtain the approximate cable length. */
6818 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
6819 IGP02E1000_AGC_LENGTH_MASK
;
6821 /* Array index bound check. */
6822 if ((cur_agc_index
>= IGP02E1000_AGC_LENGTH_TABLE_SIZE
) ||
6823 (cur_agc_index
== 0))
6824 return -E1000_ERR_PHY
;
6826 /* Remove min & max AGC values from calculation. */
6827 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
6828 e1000_igp_2_cable_length_table
[cur_agc_index
])
6829 min_agc_index
= cur_agc_index
;
6830 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
6831 e1000_igp_2_cable_length_table
[cur_agc_index
])
6832 max_agc_index
= cur_agc_index
;
6834 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
6837 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
6838 e1000_igp_2_cable_length_table
[max_agc_index
]);
6839 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
6841 /* Calculate cable length with the error range of +/- 10 meters. */
6842 *min_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
6843 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
6844 *max_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
6847 return E1000_SUCCESS
;
6850 /******************************************************************************
6851 * Check the cable polarity
6853 * hw - Struct containing variables accessed by shared code
6854 * polarity - output parameter : 0 - Polarity is not reversed
6855 * 1 - Polarity is reversed.
6857 * returns: - E1000_ERR_XXX
6860 * For phy's older then IGP, this function simply reads the polarity bit in the
6861 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6862 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6863 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6864 * IGP01E1000_PHY_PCS_INIT_REG.
6865 *****************************************************************************/
6867 e1000_check_polarity(struct e1000_hw
*hw
,
6868 e1000_rev_polarity
*polarity
)
6873 DEBUGFUNC("e1000_check_polarity");
6875 if ((hw
->phy_type
== e1000_phy_m88
) ||
6876 (hw
->phy_type
== e1000_phy_gg82563
)) {
6877 /* return the Polarity bit in the Status register. */
6878 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
,
6882 *polarity
= ((phy_data
& M88E1000_PSSR_REV_POLARITY
) >>
6883 M88E1000_PSSR_REV_POLARITY_SHIFT
) ?
6884 e1000_rev_polarity_reversed
: e1000_rev_polarity_normal
;
6886 } else if (hw
->phy_type
== e1000_phy_igp
||
6887 hw
->phy_type
== e1000_phy_igp_3
||
6888 hw
->phy_type
== e1000_phy_igp_2
) {
6889 /* Read the Status register to check the speed */
6890 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
,
6895 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6896 * find the polarity status */
6897 if ((phy_data
& IGP01E1000_PSSR_SPEED_MASK
) ==
6898 IGP01E1000_PSSR_SPEED_1000MBPS
) {
6900 /* Read the GIG initialization PCS register (0x00B4) */
6901 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
,
6906 /* Check the polarity bits */
6907 *polarity
= (phy_data
& IGP01E1000_PHY_POLARITY_MASK
) ?
6908 e1000_rev_polarity_reversed
: e1000_rev_polarity_normal
;
6910 /* For 10 Mbps, read the polarity bit in the status register. (for
6911 * 100 Mbps this bit is always 0) */
6912 *polarity
= (phy_data
& IGP01E1000_PSSR_POLARITY_REVERSED
) ?
6913 e1000_rev_polarity_reversed
: e1000_rev_polarity_normal
;
6915 } else if (hw
->phy_type
== e1000_phy_ife
) {
6916 ret_val
= e1000_read_phy_reg(hw
, IFE_PHY_EXTENDED_STATUS_CONTROL
,
6920 *polarity
= ((phy_data
& IFE_PESC_POLARITY_REVERSED
) >>
6921 IFE_PESC_POLARITY_REVERSED_SHIFT
) ?
6922 e1000_rev_polarity_reversed
: e1000_rev_polarity_normal
;
6924 return E1000_SUCCESS
;
6927 /******************************************************************************
6928 * Check if Downshift occured
6930 * hw - Struct containing variables accessed by shared code
6931 * downshift - output parameter : 0 - No Downshift ocured.
6932 * 1 - Downshift ocured.
6934 * returns: - E1000_ERR_XXX
6937 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6938 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6939 * Link Health register. In IGP this bit is latched high, so the driver must
6940 * read it immediately after link is established.
6941 *****************************************************************************/
6943 e1000_check_downshift(struct e1000_hw
*hw
)
6948 DEBUGFUNC("e1000_check_downshift");
6950 if (hw
->phy_type
== e1000_phy_igp
||
6951 hw
->phy_type
== e1000_phy_igp_3
||
6952 hw
->phy_type
== e1000_phy_igp_2
) {
6953 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_LINK_HEALTH
,
6958 hw
->speed_downgraded
= (phy_data
& IGP01E1000_PLHR_SS_DOWNGRADE
) ? 1 : 0;
6959 } else if ((hw
->phy_type
== e1000_phy_m88
) ||
6960 (hw
->phy_type
== e1000_phy_gg82563
)) {
6961 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
,
6966 hw
->speed_downgraded
= (phy_data
& M88E1000_PSSR_DOWNSHIFT
) >>
6967 M88E1000_PSSR_DOWNSHIFT_SHIFT
;
6968 } else if (hw
->phy_type
== e1000_phy_ife
) {
6969 /* e1000_phy_ife supports 10/100 speed only */
6970 hw
->speed_downgraded
= false;
6973 return E1000_SUCCESS
;
6976 /*****************************************************************************
6978 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6979 * gigabit link is achieved to improve link quality.
6981 * hw: Struct containing variables accessed by shared code
6983 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6984 * E1000_SUCCESS at any other case.
6986 ****************************************************************************/
6989 e1000_config_dsp_after_link_change(struct e1000_hw
*hw
,
6993 u16 phy_data
, phy_saved_data
, speed
, duplex
, i
;
6994 u16 dsp_reg_array
[IGP01E1000_PHY_CHANNEL_NUM
] =
6995 {IGP01E1000_PHY_AGC_PARAM_A
,
6996 IGP01E1000_PHY_AGC_PARAM_B
,
6997 IGP01E1000_PHY_AGC_PARAM_C
,
6998 IGP01E1000_PHY_AGC_PARAM_D
};
6999 u16 min_length
, max_length
;
7001 DEBUGFUNC("e1000_config_dsp_after_link_change");
7003 if (hw
->phy_type
!= e1000_phy_igp
)
7004 return E1000_SUCCESS
;
7007 ret_val
= e1000_get_speed_and_duplex(hw
, &speed
, &duplex
);
7009 DEBUGOUT("Error getting link speed and duplex\n");
7013 if (speed
== SPEED_1000
) {
7015 ret_val
= e1000_get_cable_length(hw
, &min_length
, &max_length
);
7019 if ((hw
->dsp_config_state
== e1000_dsp_config_enabled
) &&
7020 min_length
>= e1000_igp_cable_length_50
) {
7022 for (i
= 0; i
< IGP01E1000_PHY_CHANNEL_NUM
; i
++) {
7023 ret_val
= e1000_read_phy_reg(hw
, dsp_reg_array
[i
],
7028 phy_data
&= ~IGP01E1000_PHY_EDAC_MU_INDEX
;
7030 ret_val
= e1000_write_phy_reg(hw
, dsp_reg_array
[i
],
7035 hw
->dsp_config_state
= e1000_dsp_config_activated
;
7038 if ((hw
->ffe_config_state
== e1000_ffe_config_enabled
) &&
7039 (min_length
< e1000_igp_cable_length_50
)) {
7041 u16 ffe_idle_err_timeout
= FFE_IDLE_ERR_COUNT_TIMEOUT_20
;
7044 /* clear previous idle error counts */
7045 ret_val
= e1000_read_phy_reg(hw
, PHY_1000T_STATUS
,
7050 for (i
= 0; i
< ffe_idle_err_timeout
; i
++) {
7052 ret_val
= e1000_read_phy_reg(hw
, PHY_1000T_STATUS
,
7057 idle_errs
+= (phy_data
& SR_1000T_IDLE_ERROR_CNT
);
7058 if (idle_errs
> SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT
) {
7059 hw
->ffe_config_state
= e1000_ffe_config_active
;
7061 ret_val
= e1000_write_phy_reg(hw
,
7062 IGP01E1000_PHY_DSP_FFE
,
7063 IGP01E1000_PHY_DSP_FFE_CM_CP
);
7070 ffe_idle_err_timeout
= FFE_IDLE_ERR_COUNT_TIMEOUT_100
;
7075 if (hw
->dsp_config_state
== e1000_dsp_config_activated
) {
7076 /* Save off the current value of register 0x2F5B to be restored at
7077 * the end of the routines. */
7078 ret_val
= e1000_read_phy_reg(hw
, 0x2F5B, &phy_saved_data
);
7083 /* Disable the PHY transmitter */
7084 ret_val
= e1000_write_phy_reg(hw
, 0x2F5B, 0x0003);
7091 ret_val
= e1000_write_phy_reg(hw
, 0x0000,
7092 IGP01E1000_IEEE_FORCE_GIGA
);
7095 for (i
= 0; i
< IGP01E1000_PHY_CHANNEL_NUM
; i
++) {
7096 ret_val
= e1000_read_phy_reg(hw
, dsp_reg_array
[i
], &phy_data
);
7100 phy_data
&= ~IGP01E1000_PHY_EDAC_MU_INDEX
;
7101 phy_data
|= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS
;
7103 ret_val
= e1000_write_phy_reg(hw
,dsp_reg_array
[i
], phy_data
);
7108 ret_val
= e1000_write_phy_reg(hw
, 0x0000,
7109 IGP01E1000_IEEE_RESTART_AUTONEG
);
7115 /* Now enable the transmitter */
7116 ret_val
= e1000_write_phy_reg(hw
, 0x2F5B, phy_saved_data
);
7121 hw
->dsp_config_state
= e1000_dsp_config_enabled
;
7124 if (hw
->ffe_config_state
== e1000_ffe_config_active
) {
7125 /* Save off the current value of register 0x2F5B to be restored at
7126 * the end of the routines. */
7127 ret_val
= e1000_read_phy_reg(hw
, 0x2F5B, &phy_saved_data
);
7132 /* Disable the PHY transmitter */
7133 ret_val
= e1000_write_phy_reg(hw
, 0x2F5B, 0x0003);
7140 ret_val
= e1000_write_phy_reg(hw
, 0x0000,
7141 IGP01E1000_IEEE_FORCE_GIGA
);
7144 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_DSP_FFE
,
7145 IGP01E1000_PHY_DSP_FFE_DEFAULT
);
7149 ret_val
= e1000_write_phy_reg(hw
, 0x0000,
7150 IGP01E1000_IEEE_RESTART_AUTONEG
);
7156 /* Now enable the transmitter */
7157 ret_val
= e1000_write_phy_reg(hw
, 0x2F5B, phy_saved_data
);
7162 hw
->ffe_config_state
= e1000_ffe_config_enabled
;
7165 return E1000_SUCCESS
;
7168 /*****************************************************************************
7169 * Set PHY to class A mode
7170 * Assumes the following operations will follow to enable the new class mode.
7171 * 1. Do a PHY soft reset
7172 * 2. Restart auto-negotiation or force link.
7174 * hw - Struct containing variables accessed by shared code
7175 ****************************************************************************/
7177 e1000_set_phy_mode(struct e1000_hw
*hw
)
7182 DEBUGFUNC("e1000_set_phy_mode");
7184 if ((hw
->mac_type
== e1000_82545_rev_3
) &&
7185 (hw
->media_type
== e1000_media_type_copper
)) {
7186 ret_val
= e1000_read_eeprom(hw
, EEPROM_PHY_CLASS_WORD
, 1, &eeprom_data
);
7191 if ((eeprom_data
!= EEPROM_RESERVED_WORD
) &&
7192 (eeprom_data
& EEPROM_PHY_CLASS_A
)) {
7193 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x000B);
7196 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0x8104);
7200 hw
->phy_reset_disable
= false;
7204 return E1000_SUCCESS
;
7207 /*****************************************************************************
7209 * This function sets the lplu state according to the active flag. When
7210 * activating lplu this function also disables smart speed and vise versa.
7211 * lplu will not be activated unless the device autonegotiation advertisment
7212 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7213 * hw: Struct containing variables accessed by shared code
7214 * active - true to enable lplu false to disable lplu.
7216 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7217 * E1000_SUCCESS at any other case.
7219 ****************************************************************************/
7222 e1000_set_d3_lplu_state(struct e1000_hw
*hw
,
7228 DEBUGFUNC("e1000_set_d3_lplu_state");
7230 if (hw
->phy_type
!= e1000_phy_igp
&& hw
->phy_type
!= e1000_phy_igp_2
7231 && hw
->phy_type
!= e1000_phy_igp_3
)
7232 return E1000_SUCCESS
;
7234 /* During driver activity LPLU should not be used or it will attain link
7235 * from the lowest speeds starting from 10Mbps. The capability is used for
7236 * Dx transitions and states */
7237 if (hw
->mac_type
== e1000_82541_rev_2
|| hw
->mac_type
== e1000_82547_rev_2
) {
7238 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_GMII_FIFO
, &phy_data
);
7241 } else if (hw
->mac_type
== e1000_ich8lan
) {
7242 /* MAC writes into PHY register based on the state transition
7243 * and start auto-negotiation. SW driver can overwrite the settings
7244 * in CSR PHY power control E1000_PHY_CTRL register. */
7245 phy_ctrl
= E1000_READ_REG(hw
, PHY_CTRL
);
7247 ret_val
= e1000_read_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
7253 if (hw
->mac_type
== e1000_82541_rev_2
||
7254 hw
->mac_type
== e1000_82547_rev_2
) {
7255 phy_data
&= ~IGP01E1000_GMII_FLEX_SPD
;
7256 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_GMII_FIFO
, phy_data
);
7260 if (hw
->mac_type
== e1000_ich8lan
) {
7261 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
7262 E1000_WRITE_REG(hw
, PHY_CTRL
, phy_ctrl
);
7264 phy_data
&= ~IGP02E1000_PM_D3_LPLU
;
7265 ret_val
= e1000_write_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
7272 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7273 * Dx states where the power conservation is most important. During
7274 * driver activity we should enable SmartSpeed, so performance is
7276 if (hw
->smart_speed
== e1000_smart_speed_on
) {
7277 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
7282 phy_data
|= IGP01E1000_PSCFR_SMART_SPEED
;
7283 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
7287 } else if (hw
->smart_speed
== e1000_smart_speed_off
) {
7288 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
7293 phy_data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
7294 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
7300 } else if ((hw
->autoneg_advertised
== AUTONEG_ADVERTISE_SPEED_DEFAULT
) ||
7301 (hw
->autoneg_advertised
== AUTONEG_ADVERTISE_10_ALL
) ||
7302 (hw
->autoneg_advertised
== AUTONEG_ADVERTISE_10_100_ALL
)) {
7304 if (hw
->mac_type
== e1000_82541_rev_2
||
7305 hw
->mac_type
== e1000_82547_rev_2
) {
7306 phy_data
|= IGP01E1000_GMII_FLEX_SPD
;
7307 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_GMII_FIFO
, phy_data
);
7311 if (hw
->mac_type
== e1000_ich8lan
) {
7312 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
7313 E1000_WRITE_REG(hw
, PHY_CTRL
, phy_ctrl
);
7315 phy_data
|= IGP02E1000_PM_D3_LPLU
;
7316 ret_val
= e1000_write_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
7323 /* When LPLU is enabled we should disable SmartSpeed */
7324 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
, &phy_data
);
7328 phy_data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
7329 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
, phy_data
);
7334 return E1000_SUCCESS
;
7337 /*****************************************************************************
7339 * This function sets the lplu d0 state according to the active flag. When
7340 * activating lplu this function also disables smart speed and vise versa.
7341 * lplu will not be activated unless the device autonegotiation advertisment
7342 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7343 * hw: Struct containing variables accessed by shared code
7344 * active - true to enable lplu false to disable lplu.
7346 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7347 * E1000_SUCCESS at any other case.
7349 ****************************************************************************/
7352 e1000_set_d0_lplu_state(struct e1000_hw
*hw
,
7358 DEBUGFUNC("e1000_set_d0_lplu_state");
7360 if (hw
->mac_type
<= e1000_82547_rev_2
)
7361 return E1000_SUCCESS
;
7363 if (hw
->mac_type
== e1000_ich8lan
) {
7364 phy_ctrl
= E1000_READ_REG(hw
, PHY_CTRL
);
7366 ret_val
= e1000_read_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
7372 if (hw
->mac_type
== e1000_ich8lan
) {
7373 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
7374 E1000_WRITE_REG(hw
, PHY_CTRL
, phy_ctrl
);
7376 phy_data
&= ~IGP02E1000_PM_D0_LPLU
;
7377 ret_val
= e1000_write_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
7382 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7383 * Dx states where the power conservation is most important. During
7384 * driver activity we should enable SmartSpeed, so performance is
7386 if (hw
->smart_speed
== e1000_smart_speed_on
) {
7387 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
7392 phy_data
|= IGP01E1000_PSCFR_SMART_SPEED
;
7393 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
7397 } else if (hw
->smart_speed
== e1000_smart_speed_off
) {
7398 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
7403 phy_data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
7404 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
7413 if (hw
->mac_type
== e1000_ich8lan
) {
7414 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
7415 E1000_WRITE_REG(hw
, PHY_CTRL
, phy_ctrl
);
7417 phy_data
|= IGP02E1000_PM_D0_LPLU
;
7418 ret_val
= e1000_write_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
7423 /* When LPLU is enabled we should disable SmartSpeed */
7424 ret_val
= e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
, &phy_data
);
7428 phy_data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
7429 ret_val
= e1000_write_phy_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
, phy_data
);
7434 return E1000_SUCCESS
;
7437 /******************************************************************************
7438 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7440 * hw - Struct containing variables accessed by shared code
7441 *****************************************************************************/
7443 e1000_set_vco_speed(struct e1000_hw
*hw
)
7446 u16 default_page
= 0;
7449 DEBUGFUNC("e1000_set_vco_speed");
7451 switch (hw
->mac_type
) {
7452 case e1000_82545_rev_3
:
7453 case e1000_82546_rev_3
:
7456 return E1000_SUCCESS
;
7459 /* Set PHY register 30, page 5, bit 8 to 0 */
7461 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, &default_page
);
7465 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0005);
7469 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, &phy_data
);
7473 phy_data
&= ~M88E1000_PHY_VCO_REG_BIT8
;
7474 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, phy_data
);
7478 /* Set PHY register 30, page 4, bit 11 to 1 */
7480 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0004);
7484 ret_val
= e1000_read_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, &phy_data
);
7488 phy_data
|= M88E1000_PHY_VCO_REG_BIT11
;
7489 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, phy_data
);
7493 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, default_page
);
7497 return E1000_SUCCESS
;
7501 /*****************************************************************************
7502 * This function reads the cookie from ARC ram.
7504 * returns: - E1000_SUCCESS .
7505 ****************************************************************************/
7507 e1000_host_if_read_cookie(struct e1000_hw
* hw
, u8
*buffer
)
7510 u32 offset
= E1000_MNG_DHCP_COOKIE_OFFSET
;
7511 u8 length
= E1000_MNG_DHCP_COOKIE_LENGTH
;
7513 length
= (length
>> 2);
7514 offset
= (offset
>> 2);
7516 for (i
= 0; i
< length
; i
++) {
7517 *((u32
*) buffer
+ i
) =
7518 E1000_READ_REG_ARRAY_DWORD(hw
, HOST_IF
, offset
+ i
);
7520 return E1000_SUCCESS
;
7524 /*****************************************************************************
7525 * This function checks whether the HOST IF is enabled for command operaton
7526 * and also checks whether the previous command is completed.
7527 * It busy waits in case of previous command is not completed.
7529 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7531 * - E1000_SUCCESS for success.
7532 ****************************************************************************/
7534 e1000_mng_enable_host_if(struct e1000_hw
* hw
)
7539 /* Check that the host interface is enabled. */
7540 hicr
= E1000_READ_REG(hw
, HICR
);
7541 if ((hicr
& E1000_HICR_EN
) == 0) {
7542 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7543 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
7545 /* check the previous command is completed */
7546 for (i
= 0; i
< E1000_MNG_DHCP_COMMAND_TIMEOUT
; i
++) {
7547 hicr
= E1000_READ_REG(hw
, HICR
);
7548 if (!(hicr
& E1000_HICR_C
))
7553 if (i
== E1000_MNG_DHCP_COMMAND_TIMEOUT
) {
7554 DEBUGOUT("Previous command timeout failed .\n");
7555 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
7557 return E1000_SUCCESS
;
7560 /*****************************************************************************
7561 * This function writes the buffer content at the offset given on the host if.
7562 * It also does alignment considerations to do the writes in most efficient way.
7563 * Also fills up the sum of the buffer in *buffer parameter.
7565 * returns - E1000_SUCCESS for success.
7566 ****************************************************************************/
7568 e1000_mng_host_if_write(struct e1000_hw
* hw
, u8
*buffer
,
7569 u16 length
, u16 offset
, u8
*sum
)
7572 u8
*bufptr
= buffer
;
7574 u16 remaining
, i
, j
, prev_bytes
;
7576 /* sum = only sum of the data and it is not checksum */
7578 if (length
== 0 || offset
+ length
> E1000_HI_MAX_MNG_DATA_LENGTH
) {
7579 return -E1000_ERR_PARAM
;
7583 prev_bytes
= offset
& 0x3;
7588 data
= E1000_READ_REG_ARRAY_DWORD(hw
, HOST_IF
, offset
);
7589 for (j
= prev_bytes
; j
< sizeof(u32
); j
++) {
7590 *(tmp
+ j
) = *bufptr
++;
7593 E1000_WRITE_REG_ARRAY_DWORD(hw
, HOST_IF
, offset
, data
);
7594 length
-= j
- prev_bytes
;
7598 remaining
= length
& 0x3;
7599 length
-= remaining
;
7601 /* Calculate length in DWORDs */
7604 /* The device driver writes the relevant command block into the
7606 for (i
= 0; i
< length
; i
++) {
7607 for (j
= 0; j
< sizeof(u32
); j
++) {
7608 *(tmp
+ j
) = *bufptr
++;
7612 E1000_WRITE_REG_ARRAY_DWORD(hw
, HOST_IF
, offset
+ i
, data
);
7615 for (j
= 0; j
< sizeof(u32
); j
++) {
7617 *(tmp
+ j
) = *bufptr
++;
7623 E1000_WRITE_REG_ARRAY_DWORD(hw
, HOST_IF
, offset
+ i
, data
);
7626 return E1000_SUCCESS
;
7630 /*****************************************************************************
7631 * This function writes the command header after does the checksum calculation.
7633 * returns - E1000_SUCCESS for success.
7634 ****************************************************************************/
7636 e1000_mng_write_cmd_header(struct e1000_hw
* hw
,
7637 struct e1000_host_mng_command_header
* hdr
)
7643 /* Write the whole command header structure which includes sum of
7646 u16 length
= sizeof(struct e1000_host_mng_command_header
);
7648 sum
= hdr
->checksum
;
7651 buffer
= (u8
*) hdr
;
7656 hdr
->checksum
= 0 - sum
;
7659 /* The device driver writes the relevant command block into the ram area. */
7660 for (i
= 0; i
< length
; i
++) {
7661 E1000_WRITE_REG_ARRAY_DWORD(hw
, HOST_IF
, i
, *((u32
*) hdr
+ i
));
7662 E1000_WRITE_FLUSH(hw
);
7665 return E1000_SUCCESS
;
7669 /*****************************************************************************
7670 * This function indicates to ARC that a new command is pending which completes
7671 * one write operation by the driver.
7673 * returns - E1000_SUCCESS for success.
7674 ****************************************************************************/
7676 e1000_mng_write_commit(struct e1000_hw
* hw
)
7680 hicr
= E1000_READ_REG(hw
, HICR
);
7681 /* Setting this bit tells the ARC that a new command is pending. */
7682 E1000_WRITE_REG(hw
, HICR
, hicr
| E1000_HICR_C
);
7684 return E1000_SUCCESS
;
7688 /*****************************************************************************
7689 * This function checks the mode of the firmware.
7691 * returns - true when the mode is IAMT or false.
7692 ****************************************************************************/
7694 e1000_check_mng_mode(struct e1000_hw
*hw
)
7698 fwsm
= E1000_READ_REG(hw
, FWSM
);
7700 if (hw
->mac_type
== e1000_ich8lan
) {
7701 if ((fwsm
& E1000_FWSM_MODE_MASK
) ==
7702 (E1000_MNG_ICH_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
))
7704 } else if ((fwsm
& E1000_FWSM_MODE_MASK
) ==
7705 (E1000_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
))
7712 /*****************************************************************************
7713 * This function writes the dhcp info .
7714 ****************************************************************************/
7716 e1000_mng_write_dhcp_info(struct e1000_hw
* hw
, u8
*buffer
,
7720 struct e1000_host_mng_command_header hdr
;
7722 hdr
.command_id
= E1000_MNG_DHCP_TX_PAYLOAD_CMD
;
7723 hdr
.command_length
= length
;
7728 ret_val
= e1000_mng_enable_host_if(hw
);
7729 if (ret_val
== E1000_SUCCESS
) {
7730 ret_val
= e1000_mng_host_if_write(hw
, buffer
, length
, sizeof(hdr
),
7732 if (ret_val
== E1000_SUCCESS
) {
7733 ret_val
= e1000_mng_write_cmd_header(hw
, &hdr
);
7734 if (ret_val
== E1000_SUCCESS
)
7735 ret_val
= e1000_mng_write_commit(hw
);
7742 /*****************************************************************************
7743 * This function calculates the checksum.
7745 * returns - checksum of buffer contents.
7746 ****************************************************************************/
7748 e1000_calculate_mng_checksum(char *buffer
, u32 length
)
7756 for (i
=0; i
< length
; i
++)
7759 return (u8
) (0 - sum
);
7762 /*****************************************************************************
7763 * This function checks whether tx pkt filtering needs to be enabled or not.
7765 * returns - true for packet filtering or false.
7766 ****************************************************************************/
7768 e1000_enable_tx_pkt_filtering(struct e1000_hw
*hw
)
7770 /* called in init as well as watchdog timer functions */
7772 s32 ret_val
, checksum
;
7773 bool tx_filter
= false;
7774 struct e1000_host_mng_dhcp_cookie
*hdr
= &(hw
->mng_cookie
);
7775 u8
*buffer
= (u8
*) &(hw
->mng_cookie
);
7777 if (e1000_check_mng_mode(hw
)) {
7778 ret_val
= e1000_mng_enable_host_if(hw
);
7779 if (ret_val
== E1000_SUCCESS
) {
7780 ret_val
= e1000_host_if_read_cookie(hw
, buffer
);
7781 if (ret_val
== E1000_SUCCESS
) {
7782 checksum
= hdr
->checksum
;
7784 if ((hdr
->signature
== E1000_IAMT_SIGNATURE
) &&
7785 checksum
== e1000_calculate_mng_checksum((char *)buffer
,
7786 E1000_MNG_DHCP_COOKIE_LENGTH
)) {
7788 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT
)
7797 hw
->tx_pkt_filtering
= tx_filter
;
7801 /******************************************************************************
7802 * Verifies the hardware needs to allow ARPs to be processed by the host
7804 * hw - Struct containing variables accessed by shared code
7806 * returns: - true/false
7808 *****************************************************************************/
7810 e1000_enable_mng_pass_thru(struct e1000_hw
*hw
)
7815 if (hw
->asf_firmware_present
) {
7816 manc
= E1000_READ_REG(hw
, MANC
);
7818 if (!(manc
& E1000_MANC_RCV_TCO_EN
) ||
7819 !(manc
& E1000_MANC_EN_MAC_ADDR_FILTER
))
7821 if (e1000_arc_subsystem_valid(hw
)) {
7822 fwsm
= E1000_READ_REG(hw
, FWSM
);
7823 factps
= E1000_READ_REG(hw
, FACTPS
);
7825 if ((((fwsm
& E1000_FWSM_MODE_MASK
) >> E1000_FWSM_MODE_SHIFT
) ==
7826 e1000_mng_mode_pt
) && !(factps
& E1000_FACTPS_MNGCG
))
7829 if ((manc
& E1000_MANC_SMBUS_EN
) && !(manc
& E1000_MANC_ASF_EN
))
7836 e1000_polarity_reversal_workaround(struct e1000_hw
*hw
)
7842 /* Polarity reversal workaround for forced 10F/10H links. */
7844 /* Disable the transmitter on the PHY */
7846 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0019);
7849 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xFFFF);
7853 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0000);
7857 /* This loop will early-out if the NO link condition has been met. */
7858 for (i
= PHY_FORCE_TIME
; i
> 0; i
--) {
7859 /* Read the MII Status Register and wait for Link Status bit
7863 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
7867 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
7871 if ((mii_status_reg
& ~MII_SR_LINK_STATUS
) == 0) break;
7875 /* Recommended delay time after link has been lost */
7878 /* Now we will re-enable th transmitter on the PHY */
7880 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0019);
7884 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xFFF0);
7888 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xFF00);
7892 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0x0000);
7896 ret_val
= e1000_write_phy_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0000);
7900 /* This loop will early-out if the link condition has been met. */
7901 for (i
= PHY_FORCE_TIME
; i
> 0; i
--) {
7902 /* Read the MII Status Register and wait for Link Status bit
7906 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
7910 ret_val
= e1000_read_phy_reg(hw
, PHY_STATUS
, &mii_status_reg
);
7914 if (mii_status_reg
& MII_SR_LINK_STATUS
) break;
7917 return E1000_SUCCESS
;
7920 /***************************************************************************
7922 * Disables PCI-Express master access.
7924 * hw: Struct containing variables accessed by shared code
7928 ***************************************************************************/
7930 e1000_set_pci_express_master_disable(struct e1000_hw
*hw
)
7934 DEBUGFUNC("e1000_set_pci_express_master_disable");
7936 if (hw
->bus_type
!= e1000_bus_type_pci_express
)
7939 ctrl
= E1000_READ_REG(hw
, CTRL
);
7940 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
7941 E1000_WRITE_REG(hw
, CTRL
, ctrl
);
7944 /*******************************************************************************
7946 * Disables PCI-Express master access and verifies there are no pending requests
7948 * hw: Struct containing variables accessed by shared code
7950 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7951 * caused the master requests to be disabled.
7952 * E1000_SUCCESS master requests disabled.
7954 ******************************************************************************/
7956 e1000_disable_pciex_master(struct e1000_hw
*hw
)
7958 s32 timeout
= MASTER_DISABLE_TIMEOUT
; /* 80ms */
7960 DEBUGFUNC("e1000_disable_pciex_master");
7962 if (hw
->bus_type
!= e1000_bus_type_pci_express
)
7963 return E1000_SUCCESS
;
7965 e1000_set_pci_express_master_disable(hw
);
7968 if (!(E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_GIO_MASTER_ENABLE
))
7976 DEBUGOUT("Master requests are pending.\n");
7977 return -E1000_ERR_MASTER_REQUESTS_PENDING
;
7980 return E1000_SUCCESS
;
7983 /*******************************************************************************
7985 * Check for EEPROM Auto Read bit done.
7987 * hw: Struct containing variables accessed by shared code
7989 * returns: - E1000_ERR_RESET if fail to reset MAC
7990 * E1000_SUCCESS at any other case.
7992 ******************************************************************************/
7994 e1000_get_auto_rd_done(struct e1000_hw
*hw
)
7996 s32 timeout
= AUTO_READ_DONE_TIMEOUT
;
7998 DEBUGFUNC("e1000_get_auto_rd_done");
8000 switch (hw
->mac_type
) {
8007 case e1000_80003es2lan
:
8010 if (E1000_READ_REG(hw
, EECD
) & E1000_EECD_AUTO_RD
)
8017 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
8018 return -E1000_ERR_RESET
;
8023 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
8024 * Need to wait for PHY configuration completion before accessing NVM
8026 if (hw
->mac_type
== e1000_82573
)
8029 return E1000_SUCCESS
;
8032 /***************************************************************************
8033 * Checks if the PHY configuration is done
8035 * hw: Struct containing variables accessed by shared code
8037 * returns: - E1000_ERR_RESET if fail to reset MAC
8038 * E1000_SUCCESS at any other case.
8040 ***************************************************************************/
8042 e1000_get_phy_cfg_done(struct e1000_hw
*hw
)
8044 s32 timeout
= PHY_CFG_TIMEOUT
;
8045 u32 cfg_mask
= E1000_EEPROM_CFG_DONE
;
8047 DEBUGFUNC("e1000_get_phy_cfg_done");
8049 switch (hw
->mac_type
) {
8053 case e1000_80003es2lan
:
8054 /* Separate *_CFG_DONE_* bit for each port */
8055 if (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)
8056 cfg_mask
= E1000_EEPROM_CFG_DONE_PORT_1
;
8061 if (E1000_READ_REG(hw
, EEMNGCTL
) & cfg_mask
)
8068 DEBUGOUT("MNG configuration cycle has not completed.\n");
8069 return -E1000_ERR_RESET
;
8074 return E1000_SUCCESS
;
8077 /***************************************************************************
8079 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
8080 * adapter or Eeprom access.
8082 * hw: Struct containing variables accessed by shared code
8084 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
8085 * E1000_SUCCESS at any other case.
8087 ***************************************************************************/
8089 e1000_get_hw_eeprom_semaphore(struct e1000_hw
*hw
)
8094 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
8096 if (!hw
->eeprom_semaphore_present
)
8097 return E1000_SUCCESS
;
8099 if (hw
->mac_type
== e1000_80003es2lan
) {
8100 /* Get the SW semaphore. */
8101 if (e1000_get_software_semaphore(hw
) != E1000_SUCCESS
)
8102 return -E1000_ERR_EEPROM
;
8105 /* Get the FW semaphore. */
8106 timeout
= hw
->eeprom
.word_size
+ 1;
8108 swsm
= E1000_READ_REG(hw
, SWSM
);
8109 swsm
|= E1000_SWSM_SWESMBI
;
8110 E1000_WRITE_REG(hw
, SWSM
, swsm
);
8111 /* if we managed to set the bit we got the semaphore. */
8112 swsm
= E1000_READ_REG(hw
, SWSM
);
8113 if (swsm
& E1000_SWSM_SWESMBI
)
8121 /* Release semaphores */
8122 e1000_put_hw_eeprom_semaphore(hw
);
8123 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
8124 return -E1000_ERR_EEPROM
;
8127 return E1000_SUCCESS
;
8130 /***************************************************************************
8131 * This function clears HW semaphore bits.
8133 * hw: Struct containing variables accessed by shared code
8137 ***************************************************************************/
8139 e1000_put_hw_eeprom_semaphore(struct e1000_hw
*hw
)
8143 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8145 if (!hw
->eeprom_semaphore_present
)
8148 swsm
= E1000_READ_REG(hw
, SWSM
);
8149 if (hw
->mac_type
== e1000_80003es2lan
) {
8150 /* Release both semaphores. */
8151 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
8153 swsm
&= ~(E1000_SWSM_SWESMBI
);
8154 E1000_WRITE_REG(hw
, SWSM
, swsm
);
8157 /***************************************************************************
8159 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8161 * hw: Struct containing variables accessed by shared code
8163 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8164 * E1000_SUCCESS at any other case.
8166 ***************************************************************************/
8168 e1000_get_software_semaphore(struct e1000_hw
*hw
)
8170 s32 timeout
= hw
->eeprom
.word_size
+ 1;
8173 DEBUGFUNC("e1000_get_software_semaphore");
8175 if (hw
->mac_type
!= e1000_80003es2lan
) {
8176 return E1000_SUCCESS
;
8180 swsm
= E1000_READ_REG(hw
, SWSM
);
8181 /* If SMBI bit cleared, it is now set and we hold the semaphore */
8182 if (!(swsm
& E1000_SWSM_SMBI
))
8189 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8190 return -E1000_ERR_RESET
;
8193 return E1000_SUCCESS
;
8196 /***************************************************************************
8198 * Release semaphore bit (SMBI).
8200 * hw: Struct containing variables accessed by shared code
8202 ***************************************************************************/
8204 e1000_release_software_semaphore(struct e1000_hw
*hw
)
8208 DEBUGFUNC("e1000_release_software_semaphore");
8210 if (hw
->mac_type
!= e1000_80003es2lan
) {
8214 swsm
= E1000_READ_REG(hw
, SWSM
);
8215 /* Release the SW semaphores.*/
8216 swsm
&= ~E1000_SWSM_SMBI
;
8217 E1000_WRITE_REG(hw
, SWSM
, swsm
);
8220 /******************************************************************************
8221 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8222 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8223 * the caller to figure out how to deal with it.
8225 * hw - Struct containing variables accessed by shared code
8227 * returns: - E1000_BLK_PHY_RESET
8230 *****************************************************************************/
8232 e1000_check_phy_reset_block(struct e1000_hw
*hw
)
8237 if (hw
->mac_type
== e1000_ich8lan
) {
8238 fwsm
= E1000_READ_REG(hw
, FWSM
);
8239 return (fwsm
& E1000_FWSM_RSPCIPHY
) ? E1000_SUCCESS
8240 : E1000_BLK_PHY_RESET
;
8243 if (hw
->mac_type
> e1000_82547_rev_2
)
8244 manc
= E1000_READ_REG(hw
, MANC
);
8245 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
8246 E1000_BLK_PHY_RESET
: E1000_SUCCESS
;
8250 e1000_arc_subsystem_valid(struct e1000_hw
*hw
)
8254 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8255 * may not be provided a DMA clock when no manageability features are
8256 * enabled. We do not want to perform any reads/writes to these registers
8257 * if this is the case. We read FWSM to determine the manageability mode.
8259 switch (hw
->mac_type
) {
8263 case e1000_80003es2lan
:
8264 fwsm
= E1000_READ_REG(hw
, FWSM
);
8265 if ((fwsm
& E1000_FWSM_MODE_MASK
) != 0)
8277 /******************************************************************************
8278 * Configure PCI-Ex no-snoop
8280 * hw - Struct containing variables accessed by shared code.
8281 * no_snoop - Bitmap of no-snoop events.
8283 * returns: E1000_SUCCESS
8285 *****************************************************************************/
8287 e1000_set_pci_ex_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
)
8291 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8293 if (hw
->bus_type
== e1000_bus_type_unknown
)
8294 e1000_get_bus_info(hw
);
8296 if (hw
->bus_type
!= e1000_bus_type_pci_express
)
8297 return E1000_SUCCESS
;
8300 gcr_reg
= E1000_READ_REG(hw
, GCR
);
8301 gcr_reg
&= ~(PCI_EX_NO_SNOOP_ALL
);
8302 gcr_reg
|= no_snoop
;
8303 E1000_WRITE_REG(hw
, GCR
, gcr_reg
);
8305 if (hw
->mac_type
== e1000_ich8lan
) {
8308 E1000_WRITE_REG(hw
, GCR
, PCI_EX_82566_SNOOP_ALL
);
8310 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
8311 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
8312 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
8315 return E1000_SUCCESS
;
8318 /***************************************************************************
8320 * Get software semaphore FLAG bit (SWFLAG).
8321 * SWFLAG is used to synchronize the access to all shared resource between
8324 * hw: Struct containing variables accessed by shared code
8326 ***************************************************************************/
8328 e1000_get_software_flag(struct e1000_hw
*hw
)
8330 s32 timeout
= PHY_CFG_TIMEOUT
;
8333 DEBUGFUNC("e1000_get_software_flag");
8335 if (hw
->mac_type
== e1000_ich8lan
) {
8337 extcnf_ctrl
= E1000_READ_REG(hw
, EXTCNF_CTRL
);
8338 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
8339 E1000_WRITE_REG(hw
, EXTCNF_CTRL
, extcnf_ctrl
);
8341 extcnf_ctrl
= E1000_READ_REG(hw
, EXTCNF_CTRL
);
8342 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
8349 DEBUGOUT("FW or HW locks the resource too long.\n");
8350 return -E1000_ERR_CONFIG
;
8354 return E1000_SUCCESS
;
8357 /***************************************************************************
8359 * Release software semaphore FLAG bit (SWFLAG).
8360 * SWFLAG is used to synchronize the access to all shared resource between
8363 * hw: Struct containing variables accessed by shared code
8365 ***************************************************************************/
8367 e1000_release_software_flag(struct e1000_hw
*hw
)
8371 DEBUGFUNC("e1000_release_software_flag");
8373 if (hw
->mac_type
== e1000_ich8lan
) {
8374 extcnf_ctrl
= E1000_READ_REG(hw
, EXTCNF_CTRL
);
8375 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
8376 E1000_WRITE_REG(hw
, EXTCNF_CTRL
, extcnf_ctrl
);
8382 /******************************************************************************
8383 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8386 * hw - Struct containing variables accessed by shared code
8387 * offset - offset of word in the EEPROM to read
8388 * data - word read from the EEPROM
8389 * words - number of words to read
8390 *****************************************************************************/
8392 e1000_read_eeprom_ich8(struct e1000_hw
*hw
, u16 offset
, u16 words
,
8395 s32 error
= E1000_SUCCESS
;
8398 u32 bank_offset
= 0;
8402 /* We need to know which is the valid flash bank. In the event
8403 * that we didn't allocate eeprom_shadow_ram, we may not be
8404 * managing flash_bank. So it cannot be trusted and needs
8405 * to be updated with each read.
8407 /* Value of bit 22 corresponds to the flash bank we're on. */
8408 flash_bank
= (E1000_READ_REG(hw
, EECD
) & E1000_EECD_SEC1VAL
) ? 1 : 0;
8410 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8411 bank_offset
= flash_bank
* (hw
->flash_bank_size
* 2);
8413 error
= e1000_get_software_flag(hw
);
8414 if (error
!= E1000_SUCCESS
)
8417 for (i
= 0; i
< words
; i
++) {
8418 if (hw
->eeprom_shadow_ram
!= NULL
&&
8419 hw
->eeprom_shadow_ram
[offset
+i
].modified
) {
8420 data
[i
] = hw
->eeprom_shadow_ram
[offset
+i
].eeprom_word
;
8422 /* The NVM part needs a byte offset, hence * 2 */
8423 act_offset
= bank_offset
+ ((offset
+ i
) * 2);
8424 error
= e1000_read_ich8_word(hw
, act_offset
, &word
);
8425 if (error
!= E1000_SUCCESS
)
8431 e1000_release_software_flag(hw
);
8436 /******************************************************************************
8437 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8438 * register. Actually, writes are written to the shadow ram cache in the hw
8439 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8440 * the NVM, which occurs when the NVM checksum is updated.
8442 * hw - Struct containing variables accessed by shared code
8443 * offset - offset of word in the EEPROM to write
8444 * words - number of words to write
8445 * data - words to write to the EEPROM
8446 *****************************************************************************/
8448 e1000_write_eeprom_ich8(struct e1000_hw
*hw
, u16 offset
, u16 words
,
8452 s32 error
= E1000_SUCCESS
;
8454 error
= e1000_get_software_flag(hw
);
8455 if (error
!= E1000_SUCCESS
)
8458 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8459 * allocated. Subsequent reads to the modified words are read from
8460 * this cached structure as well. Writes will only go into this
8461 * cached structure unless it's followed by a call to
8462 * e1000_update_eeprom_checksum() where it will commit the changes
8463 * and clear the "modified" field.
8465 if (hw
->eeprom_shadow_ram
!= NULL
) {
8466 for (i
= 0; i
< words
; i
++) {
8467 if ((offset
+ i
) < E1000_SHADOW_RAM_WORDS
) {
8468 hw
->eeprom_shadow_ram
[offset
+i
].modified
= true;
8469 hw
->eeprom_shadow_ram
[offset
+i
].eeprom_word
= data
[i
];
8471 error
= -E1000_ERR_EEPROM
;
8476 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8477 * as they don't perform any NVM writes. An attempt in doing so
8478 * will result in this error.
8480 error
= -E1000_ERR_EEPROM
;
8483 e1000_release_software_flag(hw
);
8488 /******************************************************************************
8489 * This function does initial flash setup so that a new read/write/erase cycle
8492 * hw - The pointer to the hw structure
8493 ****************************************************************************/
8495 e1000_ich8_cycle_init(struct e1000_hw
*hw
)
8497 union ich8_hws_flash_status hsfsts
;
8498 s32 error
= E1000_ERR_EEPROM
;
8501 DEBUGFUNC("e1000_ich8_cycle_init");
8503 hsfsts
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
);
8505 /* May be check the Flash Des Valid bit in Hw status */
8506 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
8507 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8511 /* Clear FCERR in Hw status by writing 1 */
8512 /* Clear DAEL in Hw status by writing a 1 */
8513 hsfsts
.hsf_status
.flcerr
= 1;
8514 hsfsts
.hsf_status
.dael
= 1;
8516 E1000_WRITE_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
, hsfsts
.regval
);
8518 /* Either we should have a hardware SPI cycle in progress bit to check
8519 * against, in order to start a new cycle or FDONE bit should be changed
8520 * in the hardware so that it is 1 after harware reset, which can then be
8521 * used as an indication whether a cycle is in progress or has been
8522 * completed .. we should also have some software semaphore mechanism to
8523 * guard FDONE or the cycle in progress bit so that two threads access to
8524 * those bits can be sequentiallized or a way so that 2 threads dont
8525 * start the cycle at the same time */
8527 if (hsfsts
.hsf_status
.flcinprog
== 0) {
8528 /* There is no cycle running at present, so we can start a cycle */
8529 /* Begin by setting Flash Cycle Done. */
8530 hsfsts
.hsf_status
.flcdone
= 1;
8531 E1000_WRITE_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
, hsfsts
.regval
);
8532 error
= E1000_SUCCESS
;
8534 /* otherwise poll for sometime so the current cycle has a chance
8535 * to end before giving up. */
8536 for (i
= 0; i
< ICH_FLASH_COMMAND_TIMEOUT
; i
++) {
8537 hsfsts
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
);
8538 if (hsfsts
.hsf_status
.flcinprog
== 0) {
8539 error
= E1000_SUCCESS
;
8544 if (error
== E1000_SUCCESS
) {
8545 /* Successful in waiting for previous cycle to timeout,
8546 * now set the Flash Cycle Done. */
8547 hsfsts
.hsf_status
.flcdone
= 1;
8548 E1000_WRITE_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
, hsfsts
.regval
);
8550 DEBUGOUT("Flash controller busy, cannot get access");
8556 /******************************************************************************
8557 * This function starts a flash cycle and waits for its completion
8559 * hw - The pointer to the hw structure
8560 ****************************************************************************/
8562 e1000_ich8_flash_cycle(struct e1000_hw
*hw
, u32 timeout
)
8564 union ich8_hws_flash_ctrl hsflctl
;
8565 union ich8_hws_flash_status hsfsts
;
8566 s32 error
= E1000_ERR_EEPROM
;
8569 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8570 hsflctl
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFCTL
);
8571 hsflctl
.hsf_ctrl
.flcgo
= 1;
8572 E1000_WRITE_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFCTL
, hsflctl
.regval
);
8574 /* wait till FDONE bit is set to 1 */
8576 hsfsts
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
);
8577 if (hsfsts
.hsf_status
.flcdone
== 1)
8581 } while (i
< timeout
);
8582 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0) {
8583 error
= E1000_SUCCESS
;
8588 /******************************************************************************
8589 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8591 * hw - The pointer to the hw structure
8592 * index - The index of the byte or word to read.
8593 * size - Size of data to read, 1=byte 2=word
8594 * data - Pointer to the word to store the value read.
8595 *****************************************************************************/
8597 e1000_read_ich8_data(struct e1000_hw
*hw
, u32 index
,
8598 u32 size
, u16
* data
)
8600 union ich8_hws_flash_status hsfsts
;
8601 union ich8_hws_flash_ctrl hsflctl
;
8602 u32 flash_linear_address
;
8604 s32 error
= -E1000_ERR_EEPROM
;
8607 DEBUGFUNC("e1000_read_ich8_data");
8609 if (size
< 1 || size
> 2 || data
== NULL
||
8610 index
> ICH_FLASH_LINEAR_ADDR_MASK
)
8613 flash_linear_address
= (ICH_FLASH_LINEAR_ADDR_MASK
& index
) +
8614 hw
->flash_base_addr
;
8619 error
= e1000_ich8_cycle_init(hw
);
8620 if (error
!= E1000_SUCCESS
)
8623 hsflctl
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFCTL
);
8624 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8625 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
8626 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
8627 E1000_WRITE_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFCTL
, hsflctl
.regval
);
8629 /* Write the last 24 bits of index into Flash Linear address field in
8631 /* TODO: TBD maybe check the index against the size of flash */
8633 E1000_WRITE_ICH_FLASH_REG(hw
, ICH_FLASH_FADDR
, flash_linear_address
);
8635 error
= e1000_ich8_flash_cycle(hw
, ICH_FLASH_COMMAND_TIMEOUT
);
8637 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8638 * sequence a few more times, else read in (shift in) the Flash Data0,
8639 * the order is least significant byte first msb to lsb */
8640 if (error
== E1000_SUCCESS
) {
8641 flash_data
= E1000_READ_ICH_FLASH_REG(hw
, ICH_FLASH_FDATA0
);
8643 *data
= (u8
)(flash_data
& 0x000000FF);
8644 } else if (size
== 2) {
8645 *data
= (u16
)(flash_data
& 0x0000FFFF);
8649 /* If we've gotten here, then things are probably completely hosed,
8650 * but if the error condition is detected, it won't hurt to give
8651 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8653 hsfsts
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
);
8654 if (hsfsts
.hsf_status
.flcerr
== 1) {
8655 /* Repeat for some time before giving up. */
8657 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
8658 DEBUGOUT("Timeout error - flash cycle did not complete.");
8662 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
8667 /******************************************************************************
8668 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8670 * hw - The pointer to the hw structure
8671 * index - The index of the byte/word to read.
8672 * size - Size of data to read, 1=byte 2=word
8673 * data - The byte(s) to write to the NVM.
8674 *****************************************************************************/
8676 e1000_write_ich8_data(struct e1000_hw
*hw
, u32 index
, u32 size
,
8679 union ich8_hws_flash_status hsfsts
;
8680 union ich8_hws_flash_ctrl hsflctl
;
8681 u32 flash_linear_address
;
8683 s32 error
= -E1000_ERR_EEPROM
;
8686 DEBUGFUNC("e1000_write_ich8_data");
8688 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
8689 index
> ICH_FLASH_LINEAR_ADDR_MASK
)
8692 flash_linear_address
= (ICH_FLASH_LINEAR_ADDR_MASK
& index
) +
8693 hw
->flash_base_addr
;
8698 error
= e1000_ich8_cycle_init(hw
);
8699 if (error
!= E1000_SUCCESS
)
8702 hsflctl
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFCTL
);
8703 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8704 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
8705 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
8706 E1000_WRITE_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFCTL
, hsflctl
.regval
);
8708 /* Write the last 24 bits of index into Flash Linear address field in
8710 E1000_WRITE_ICH_FLASH_REG(hw
, ICH_FLASH_FADDR
, flash_linear_address
);
8713 flash_data
= (u32
)data
& 0x00FF;
8715 flash_data
= (u32
)data
;
8717 E1000_WRITE_ICH_FLASH_REG(hw
, ICH_FLASH_FDATA0
, flash_data
);
8719 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8720 * sequence a few more times else done */
8721 error
= e1000_ich8_flash_cycle(hw
, ICH_FLASH_COMMAND_TIMEOUT
);
8722 if (error
== E1000_SUCCESS
) {
8725 /* If we're here, then things are most likely completely hosed,
8726 * but if the error condition is detected, it won't hurt to give
8727 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8729 hsfsts
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
);
8730 if (hsfsts
.hsf_status
.flcerr
== 1) {
8731 /* Repeat for some time before giving up. */
8733 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
8734 DEBUGOUT("Timeout error - flash cycle did not complete.");
8738 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
8743 /******************************************************************************
8744 * Reads a single byte from the NVM using the ICH8 flash access registers.
8746 * hw - pointer to e1000_hw structure
8747 * index - The index of the byte to read.
8748 * data - Pointer to a byte to store the value read.
8749 *****************************************************************************/
8751 e1000_read_ich8_byte(struct e1000_hw
*hw
, u32 index
, u8
* data
)
8753 s32 status
= E1000_SUCCESS
;
8756 status
= e1000_read_ich8_data(hw
, index
, 1, &word
);
8757 if (status
== E1000_SUCCESS
) {
8764 /******************************************************************************
8765 * Writes a single byte to the NVM using the ICH8 flash access registers.
8766 * Performs verification by reading back the value and then going through
8767 * a retry algorithm before giving up.
8769 * hw - pointer to e1000_hw structure
8770 * index - The index of the byte to write.
8771 * byte - The byte to write to the NVM.
8772 *****************************************************************************/
8774 e1000_verify_write_ich8_byte(struct e1000_hw
*hw
, u32 index
, u8 byte
)
8776 s32 error
= E1000_SUCCESS
;
8777 s32 program_retries
= 0;
8779 DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte
, index
);
8781 error
= e1000_write_ich8_byte(hw
, index
, byte
);
8783 if (error
!= E1000_SUCCESS
) {
8784 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
8785 DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte
, index
);
8786 error
= e1000_write_ich8_byte(hw
, index
, byte
);
8788 if (error
== E1000_SUCCESS
)
8793 if (program_retries
== 100)
8794 error
= E1000_ERR_EEPROM
;
8799 /******************************************************************************
8800 * Writes a single byte to the NVM using the ICH8 flash access registers.
8802 * hw - pointer to e1000_hw structure
8803 * index - The index of the byte to read.
8804 * data - The byte to write to the NVM.
8805 *****************************************************************************/
8807 e1000_write_ich8_byte(struct e1000_hw
*hw
, u32 index
, u8 data
)
8809 s32 status
= E1000_SUCCESS
;
8810 u16 word
= (u16
)data
;
8812 status
= e1000_write_ich8_data(hw
, index
, 1, word
);
8817 /******************************************************************************
8818 * Reads a word from the NVM using the ICH8 flash access registers.
8820 * hw - pointer to e1000_hw structure
8821 * index - The starting byte index of the word to read.
8822 * data - Pointer to a word to store the value read.
8823 *****************************************************************************/
8825 e1000_read_ich8_word(struct e1000_hw
*hw
, u32 index
, u16
*data
)
8827 s32 status
= E1000_SUCCESS
;
8828 status
= e1000_read_ich8_data(hw
, index
, 2, data
);
8832 /******************************************************************************
8833 * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
8836 * hw - pointer to e1000_hw structure
8837 * bank - 0 for first bank, 1 for second bank
8839 * Note that this function may actually erase as much as 8 or 64 KBytes. The
8840 * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
8841 * bank size may be 4, 8 or 64 KBytes
8842 *****************************************************************************/
8844 e1000_erase_ich8_4k_segment(struct e1000_hw
*hw
, u32 bank
)
8846 union ich8_hws_flash_status hsfsts
;
8847 union ich8_hws_flash_ctrl hsflctl
;
8848 u32 flash_linear_address
;
8850 s32 error
= E1000_ERR_EEPROM
;
8852 s32 sub_sector_size
= 0;
8857 hsfsts
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
);
8859 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8860 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8861 * consecutive sectors. The start index for the nth Hw sector can be
8862 * calculated as bank * 4096 + n * 256
8863 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8864 * The start index for the nth Hw sector can be calculated
8866 * 10: The HW sector is 8K bytes
8867 * 11: The Hw sector size is 64K bytes */
8868 if (hsfsts
.hsf_status
.berasesz
== 0x0) {
8869 /* Hw sector size 256 */
8870 sub_sector_size
= ICH_FLASH_SEG_SIZE_256
;
8871 bank_size
= ICH_FLASH_SECTOR_SIZE
;
8872 iteration
= ICH_FLASH_SECTOR_SIZE
/ ICH_FLASH_SEG_SIZE_256
;
8873 } else if (hsfsts
.hsf_status
.berasesz
== 0x1) {
8874 bank_size
= ICH_FLASH_SEG_SIZE_4K
;
8876 } else if (hsfsts
.hsf_status
.berasesz
== 0x3) {
8877 bank_size
= ICH_FLASH_SEG_SIZE_64K
;
8883 for (j
= 0; j
< iteration
; j
++) {
8887 error
= e1000_ich8_cycle_init(hw
);
8888 if (error
!= E1000_SUCCESS
) {
8893 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8895 hsflctl
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFCTL
);
8896 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
8897 E1000_WRITE_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFCTL
, hsflctl
.regval
);
8899 /* Write the last 24 bits of an index within the block into Flash
8900 * Linear address field in Flash Address. This probably needs to
8901 * be calculated here based off the on-chip erase sector size and
8902 * the software bank size (4, 8 or 64 KBytes) */
8903 flash_linear_address
= bank
* bank_size
+ j
* sub_sector_size
;
8904 flash_linear_address
+= hw
->flash_base_addr
;
8905 flash_linear_address
&= ICH_FLASH_LINEAR_ADDR_MASK
;
8907 E1000_WRITE_ICH_FLASH_REG(hw
, ICH_FLASH_FADDR
, flash_linear_address
);
8909 error
= e1000_ich8_flash_cycle(hw
, ICH_FLASH_ERASE_TIMEOUT
);
8910 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8911 * sequence a few more times else Done */
8912 if (error
== E1000_SUCCESS
) {
8915 hsfsts
.regval
= E1000_READ_ICH_FLASH_REG16(hw
, ICH_FLASH_HSFSTS
);
8916 if (hsfsts
.hsf_status
.flcerr
== 1) {
8917 /* repeat for some time before giving up */
8919 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
8924 } while ((count
< ICH_FLASH_CYCLE_REPEAT_COUNT
) && !error_flag
);
8925 if (error_flag
== 1)
8928 if (error_flag
!= 1)
8929 error
= E1000_SUCCESS
;
8934 e1000_init_lcd_from_nvm_config_region(struct e1000_hw
*hw
,
8935 u32 cnf_base_addr
, u32 cnf_size
)
8937 u32 ret_val
= E1000_SUCCESS
;
8938 u16 word_addr
, reg_data
, reg_addr
;
8941 /* cnf_base_addr is in DWORD */
8942 word_addr
= (u16
)(cnf_base_addr
<< 1);
8944 /* cnf_size is returned in size of dwords */
8945 for (i
= 0; i
< cnf_size
; i
++) {
8946 ret_val
= e1000_read_eeprom(hw
, (word_addr
+ i
*2), 1, ®_data
);
8950 ret_val
= e1000_read_eeprom(hw
, (word_addr
+ i
*2 + 1), 1, ®_addr
);
8954 ret_val
= e1000_get_software_flag(hw
);
8955 if (ret_val
!= E1000_SUCCESS
)
8958 ret_val
= e1000_write_phy_reg_ex(hw
, (u32
)reg_addr
, reg_data
);
8960 e1000_release_software_flag(hw
);
8967 /******************************************************************************
8968 * This function initializes the PHY from the NVM on ICH8 platforms. This
8969 * is needed due to an issue where the NVM configuration is not properly
8970 * autoloaded after power transitions. Therefore, after each PHY reset, we
8971 * will load the configuration data out of the NVM manually.
8973 * hw: Struct containing variables accessed by shared code
8974 *****************************************************************************/
8976 e1000_init_lcd_from_nvm(struct e1000_hw
*hw
)
8978 u32 reg_data
, cnf_base_addr
, cnf_size
, ret_val
, loop
;
8980 if (hw
->phy_type
!= e1000_phy_igp_3
)
8981 return E1000_SUCCESS
;
8983 /* Check if SW needs configure the PHY */
8984 reg_data
= E1000_READ_REG(hw
, FEXTNVM
);
8985 if (!(reg_data
& FEXTNVM_SW_CONFIG
))
8986 return E1000_SUCCESS
;
8988 /* Wait for basic configuration completes before proceeding*/
8991 reg_data
= E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_LAN_INIT_DONE
;
8994 } while ((!reg_data
) && (loop
< 50));
8996 /* Clear the Init Done bit for the next init event */
8997 reg_data
= E1000_READ_REG(hw
, STATUS
);
8998 reg_data
&= ~E1000_STATUS_LAN_INIT_DONE
;
8999 E1000_WRITE_REG(hw
, STATUS
, reg_data
);
9001 /* Make sure HW does not configure LCD from PHY extended configuration
9002 before SW configuration */
9003 reg_data
= E1000_READ_REG(hw
, EXTCNF_CTRL
);
9004 if ((reg_data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
) == 0x0000) {
9005 reg_data
= E1000_READ_REG(hw
, EXTCNF_SIZE
);
9006 cnf_size
= reg_data
& E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH
;
9009 reg_data
= E1000_READ_REG(hw
, EXTCNF_CTRL
);
9010 cnf_base_addr
= reg_data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER
;
9011 /* cnf_base_addr is in DWORD */
9012 cnf_base_addr
>>= 16;
9014 /* Configure LCD from extended configuration region. */
9015 ret_val
= e1000_init_lcd_from_nvm_config_region(hw
, cnf_base_addr
,
9022 return E1000_SUCCESS
;