Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / e1000e / netdev.c
blobcab1835173cd9bb7096f82647a5f59ae13eaba18
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
48 #include "e1000.h"
50 #define DRV_VERSION "0.3.3.3-k2"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_80003es2lan] = &e1000_es2_info,
59 [board_ich8lan] = &e1000_ich8_info,
60 [board_ich9lan] = &e1000_ich9_info,
63 #ifdef DEBUG
64 /**
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
67 **/
68 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
70 return hw->adapter->netdev->name;
72 #endif
74 /**
75 * e1000_desc_unused - calculate if we have unused descriptors
76 **/
77 static int e1000_desc_unused(struct e1000_ring *ring)
79 if (ring->next_to_clean > ring->next_to_use)
80 return ring->next_to_clean - ring->next_to_use - 1;
82 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
85 /**
86 * e1000_receive_skb - helper function to handle Rx indications
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
91 **/
92 static void e1000_receive_skb(struct e1000_adapter *adapter,
93 struct net_device *netdev,
94 struct sk_buff *skb,
95 u8 status, __le16 vlan)
97 skb->protocol = eth_type_trans(skb, netdev);
99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
101 le16_to_cpu(vlan) &
102 E1000_RXD_SPC_VLAN_MASK);
103 else
104 netif_receive_skb(skb);
106 netdev->last_rx = jiffies;
110 * e1000_rx_checksum - Receive Checksum Offload for 82543
111 * @adapter: board private structure
112 * @status_err: receive descriptor status and error fields
113 * @csum: receive descriptor csum field
114 * @sk_buff: socket buffer with received data
116 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
117 u32 csum, struct sk_buff *skb)
119 u16 status = (u16)status_err;
120 u8 errors = (u8)(status_err >> 24);
121 skb->ip_summed = CHECKSUM_NONE;
123 /* Ignore Checksum bit is set */
124 if (status & E1000_RXD_STAT_IXSM)
125 return;
126 /* TCP/UDP checksum error bit is set */
127 if (errors & E1000_RXD_ERR_TCPE) {
128 /* let the stack verify checksum errors */
129 adapter->hw_csum_err++;
130 return;
133 /* TCP/UDP Checksum has not been calculated */
134 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
135 return;
137 /* It must be a TCP or UDP packet with a valid checksum */
138 if (status & E1000_RXD_STAT_TCPCS) {
139 /* TCP checksum is good */
140 skb->ip_summed = CHECKSUM_UNNECESSARY;
141 } else {
143 * IP fragment with UDP payload
144 * Hardware complements the payload checksum, so we undo it
145 * and then put the value in host order for further stack use.
147 __sum16 sum = (__force __sum16)htons(csum);
148 skb->csum = csum_unfold(~sum);
149 skb->ip_summed = CHECKSUM_COMPLETE;
151 adapter->hw_csum_good++;
155 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
156 * @adapter: address of board private structure
158 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
159 int cleaned_count)
161 struct net_device *netdev = adapter->netdev;
162 struct pci_dev *pdev = adapter->pdev;
163 struct e1000_ring *rx_ring = adapter->rx_ring;
164 struct e1000_rx_desc *rx_desc;
165 struct e1000_buffer *buffer_info;
166 struct sk_buff *skb;
167 unsigned int i;
168 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
170 i = rx_ring->next_to_use;
171 buffer_info = &rx_ring->buffer_info[i];
173 while (cleaned_count--) {
174 skb = buffer_info->skb;
175 if (skb) {
176 skb_trim(skb, 0);
177 goto map_skb;
180 skb = netdev_alloc_skb(netdev, bufsz);
181 if (!skb) {
182 /* Better luck next round */
183 adapter->alloc_rx_buff_failed++;
184 break;
188 * Make buffer alignment 2 beyond a 16 byte boundary
189 * this will result in a 16 byte aligned IP header after
190 * the 14 byte MAC header is removed
192 skb_reserve(skb, NET_IP_ALIGN);
194 buffer_info->skb = skb;
195 map_skb:
196 buffer_info->dma = pci_map_single(pdev, skb->data,
197 adapter->rx_buffer_len,
198 PCI_DMA_FROMDEVICE);
199 if (pci_dma_mapping_error(buffer_info->dma)) {
200 dev_err(&pdev->dev, "RX DMA map failed\n");
201 adapter->rx_dma_failed++;
202 break;
205 rx_desc = E1000_RX_DESC(*rx_ring, i);
206 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208 i++;
209 if (i == rx_ring->count)
210 i = 0;
211 buffer_info = &rx_ring->buffer_info[i];
214 if (rx_ring->next_to_use != i) {
215 rx_ring->next_to_use = i;
216 if (i-- == 0)
217 i = (rx_ring->count - 1);
220 * Force memory writes to complete before letting h/w
221 * know there are new descriptors to fetch. (Only
222 * applicable for weak-ordered memory model archs,
223 * such as IA-64).
225 wmb();
226 writel(i, adapter->hw.hw_addr + rx_ring->tail);
231 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
232 * @adapter: address of board private structure
234 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
235 int cleaned_count)
237 struct net_device *netdev = adapter->netdev;
238 struct pci_dev *pdev = adapter->pdev;
239 union e1000_rx_desc_packet_split *rx_desc;
240 struct e1000_ring *rx_ring = adapter->rx_ring;
241 struct e1000_buffer *buffer_info;
242 struct e1000_ps_page *ps_page;
243 struct sk_buff *skb;
244 unsigned int i, j;
246 i = rx_ring->next_to_use;
247 buffer_info = &rx_ring->buffer_info[i];
249 while (cleaned_count--) {
250 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
252 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
253 ps_page = &buffer_info->ps_pages[j];
254 if (j >= adapter->rx_ps_pages) {
255 /* all unused desc entries get hw null ptr */
256 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
257 continue;
259 if (!ps_page->page) {
260 ps_page->page = alloc_page(GFP_ATOMIC);
261 if (!ps_page->page) {
262 adapter->alloc_rx_buff_failed++;
263 goto no_buffers;
265 ps_page->dma = pci_map_page(pdev,
266 ps_page->page,
267 0, PAGE_SIZE,
268 PCI_DMA_FROMDEVICE);
269 if (pci_dma_mapping_error(ps_page->dma)) {
270 dev_err(&adapter->pdev->dev,
271 "RX DMA page map failed\n");
272 adapter->rx_dma_failed++;
273 goto no_buffers;
277 * Refresh the desc even if buffer_addrs
278 * didn't change because each write-back
279 * erases this info.
281 rx_desc->read.buffer_addr[j+1] =
282 cpu_to_le64(ps_page->dma);
285 skb = netdev_alloc_skb(netdev,
286 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288 if (!skb) {
289 adapter->alloc_rx_buff_failed++;
290 break;
294 * Make buffer alignment 2 beyond a 16 byte boundary
295 * this will result in a 16 byte aligned IP header after
296 * the 14 byte MAC header is removed
298 skb_reserve(skb, NET_IP_ALIGN);
300 buffer_info->skb = skb;
301 buffer_info->dma = pci_map_single(pdev, skb->data,
302 adapter->rx_ps_bsize0,
303 PCI_DMA_FROMDEVICE);
304 if (pci_dma_mapping_error(buffer_info->dma)) {
305 dev_err(&pdev->dev, "RX DMA map failed\n");
306 adapter->rx_dma_failed++;
307 /* cleanup skb */
308 dev_kfree_skb_any(skb);
309 buffer_info->skb = NULL;
310 break;
313 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315 i++;
316 if (i == rx_ring->count)
317 i = 0;
318 buffer_info = &rx_ring->buffer_info[i];
321 no_buffers:
322 if (rx_ring->next_to_use != i) {
323 rx_ring->next_to_use = i;
325 if (!(i--))
326 i = (rx_ring->count - 1);
329 * Force memory writes to complete before letting h/w
330 * know there are new descriptors to fetch. (Only
331 * applicable for weak-ordered memory model archs,
332 * such as IA-64).
334 wmb();
336 * Hardware increments by 16 bytes, but packet split
337 * descriptors are 32 bytes...so we increment tail
338 * twice as much.
340 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
345 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
346 * @adapter: address of board private structure
347 * @rx_ring: pointer to receive ring structure
348 * @cleaned_count: number of buffers to allocate this pass
351 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
352 int cleaned_count)
354 struct net_device *netdev = adapter->netdev;
355 struct pci_dev *pdev = adapter->pdev;
356 struct e1000_rx_desc *rx_desc;
357 struct e1000_ring *rx_ring = adapter->rx_ring;
358 struct e1000_buffer *buffer_info;
359 struct sk_buff *skb;
360 unsigned int i;
361 unsigned int bufsz = 256 -
362 16 /* for skb_reserve */ -
363 NET_IP_ALIGN;
365 i = rx_ring->next_to_use;
366 buffer_info = &rx_ring->buffer_info[i];
368 while (cleaned_count--) {
369 skb = buffer_info->skb;
370 if (skb) {
371 skb_trim(skb, 0);
372 goto check_page;
375 skb = netdev_alloc_skb(netdev, bufsz);
376 if (unlikely(!skb)) {
377 /* Better luck next round */
378 adapter->alloc_rx_buff_failed++;
379 break;
382 /* Make buffer alignment 2 beyond a 16 byte boundary
383 * this will result in a 16 byte aligned IP header after
384 * the 14 byte MAC header is removed
386 skb_reserve(skb, NET_IP_ALIGN);
388 buffer_info->skb = skb;
389 check_page:
390 /* allocate a new page if necessary */
391 if (!buffer_info->page) {
392 buffer_info->page = alloc_page(GFP_ATOMIC);
393 if (unlikely(!buffer_info->page)) {
394 adapter->alloc_rx_buff_failed++;
395 break;
399 if (!buffer_info->dma)
400 buffer_info->dma = pci_map_page(pdev,
401 buffer_info->page, 0,
402 PAGE_SIZE,
403 PCI_DMA_FROMDEVICE);
405 rx_desc = E1000_RX_DESC(*rx_ring, i);
406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
408 if (unlikely(++i == rx_ring->count))
409 i = 0;
410 buffer_info = &rx_ring->buffer_info[i];
413 if (likely(rx_ring->next_to_use != i)) {
414 rx_ring->next_to_use = i;
415 if (unlikely(i-- == 0))
416 i = (rx_ring->count - 1);
418 /* Force memory writes to complete before letting h/w
419 * know there are new descriptors to fetch. (Only
420 * applicable for weak-ordered memory model archs,
421 * such as IA-64). */
422 wmb();
423 writel(i, adapter->hw.hw_addr + rx_ring->tail);
428 * e1000_clean_rx_irq - Send received data up the network stack; legacy
429 * @adapter: board private structure
431 * the return value indicates whether actual cleaning was done, there
432 * is no guarantee that everything was cleaned
434 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
435 int *work_done, int work_to_do)
437 struct net_device *netdev = adapter->netdev;
438 struct pci_dev *pdev = adapter->pdev;
439 struct e1000_ring *rx_ring = adapter->rx_ring;
440 struct e1000_rx_desc *rx_desc, *next_rxd;
441 struct e1000_buffer *buffer_info, *next_buffer;
442 u32 length;
443 unsigned int i;
444 int cleaned_count = 0;
445 bool cleaned = 0;
446 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
448 i = rx_ring->next_to_clean;
449 rx_desc = E1000_RX_DESC(*rx_ring, i);
450 buffer_info = &rx_ring->buffer_info[i];
452 while (rx_desc->status & E1000_RXD_STAT_DD) {
453 struct sk_buff *skb;
454 u8 status;
456 if (*work_done >= work_to_do)
457 break;
458 (*work_done)++;
460 status = rx_desc->status;
461 skb = buffer_info->skb;
462 buffer_info->skb = NULL;
464 prefetch(skb->data - NET_IP_ALIGN);
466 i++;
467 if (i == rx_ring->count)
468 i = 0;
469 next_rxd = E1000_RX_DESC(*rx_ring, i);
470 prefetch(next_rxd);
472 next_buffer = &rx_ring->buffer_info[i];
474 cleaned = 1;
475 cleaned_count++;
476 pci_unmap_single(pdev,
477 buffer_info->dma,
478 adapter->rx_buffer_len,
479 PCI_DMA_FROMDEVICE);
480 buffer_info->dma = 0;
482 length = le16_to_cpu(rx_desc->length);
484 /* !EOP means multiple descriptors were used to store a single
485 * packet, also make sure the frame isn't just CRC only */
486 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
487 /* All receives must fit into a single buffer */
488 ndev_dbg(netdev, "%s: Receive packet consumed "
489 "multiple buffers\n", netdev->name);
490 /* recycle */
491 buffer_info->skb = skb;
492 goto next_desc;
495 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496 /* recycle */
497 buffer_info->skb = skb;
498 goto next_desc;
501 total_rx_bytes += length;
502 total_rx_packets++;
505 * code added for copybreak, this should improve
506 * performance for small packets with large amounts
507 * of reassembly being done in the stack
509 if (length < copybreak) {
510 struct sk_buff *new_skb =
511 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
512 if (new_skb) {
513 skb_reserve(new_skb, NET_IP_ALIGN);
514 memcpy(new_skb->data - NET_IP_ALIGN,
515 skb->data - NET_IP_ALIGN,
516 length + NET_IP_ALIGN);
517 /* save the skb in buffer_info as good */
518 buffer_info->skb = skb;
519 skb = new_skb;
521 /* else just continue with the old one */
523 /* end copybreak code */
524 skb_put(skb, length);
526 /* Receive Checksum Offload */
527 e1000_rx_checksum(adapter,
528 (u32)(status) |
529 ((u32)(rx_desc->errors) << 24),
530 le16_to_cpu(rx_desc->csum), skb);
532 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
534 next_desc:
535 rx_desc->status = 0;
537 /* return some buffers to hardware, one at a time is too slow */
538 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
539 adapter->alloc_rx_buf(adapter, cleaned_count);
540 cleaned_count = 0;
543 /* use prefetched values */
544 rx_desc = next_rxd;
545 buffer_info = next_buffer;
547 rx_ring->next_to_clean = i;
549 cleaned_count = e1000_desc_unused(rx_ring);
550 if (cleaned_count)
551 adapter->alloc_rx_buf(adapter, cleaned_count);
553 adapter->total_rx_bytes += total_rx_bytes;
554 adapter->total_rx_packets += total_rx_packets;
555 adapter->net_stats.rx_bytes += total_rx_bytes;
556 adapter->net_stats.rx_packets += total_rx_packets;
557 return cleaned;
560 static void e1000_put_txbuf(struct e1000_adapter *adapter,
561 struct e1000_buffer *buffer_info)
563 if (buffer_info->dma) {
564 pci_unmap_page(adapter->pdev, buffer_info->dma,
565 buffer_info->length, PCI_DMA_TODEVICE);
566 buffer_info->dma = 0;
568 if (buffer_info->skb) {
569 dev_kfree_skb_any(buffer_info->skb);
570 buffer_info->skb = NULL;
574 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
576 struct e1000_ring *tx_ring = adapter->tx_ring;
577 unsigned int i = tx_ring->next_to_clean;
578 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
579 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
580 struct net_device *netdev = adapter->netdev;
582 /* detected Tx unit hang */
583 ndev_err(netdev,
584 "Detected Tx Unit Hang:\n"
585 " TDH <%x>\n"
586 " TDT <%x>\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
592 " jiffies <%lx>\n"
593 " next_to_watch.status <%x>\n",
594 readl(adapter->hw.hw_addr + tx_ring->head),
595 readl(adapter->hw.hw_addr + tx_ring->tail),
596 tx_ring->next_to_use,
597 tx_ring->next_to_clean,
598 tx_ring->buffer_info[eop].time_stamp,
599 eop,
600 jiffies,
601 eop_desc->upper.fields.status);
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
611 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
613 struct net_device *netdev = adapter->netdev;
614 struct e1000_hw *hw = &adapter->hw;
615 struct e1000_ring *tx_ring = adapter->tx_ring;
616 struct e1000_tx_desc *tx_desc, *eop_desc;
617 struct e1000_buffer *buffer_info;
618 unsigned int i, eop;
619 unsigned int count = 0;
620 bool cleaned = 0;
621 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
623 i = tx_ring->next_to_clean;
624 eop = tx_ring->buffer_info[i].next_to_watch;
625 eop_desc = E1000_TX_DESC(*tx_ring, eop);
627 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
628 for (cleaned = 0; !cleaned; ) {
629 tx_desc = E1000_TX_DESC(*tx_ring, i);
630 buffer_info = &tx_ring->buffer_info[i];
631 cleaned = (i == eop);
633 if (cleaned) {
634 struct sk_buff *skb = buffer_info->skb;
635 unsigned int segs, bytecount;
636 segs = skb_shinfo(skb)->gso_segs ?: 1;
637 /* multiply data chunks by size of headers */
638 bytecount = ((segs - 1) * skb_headlen(skb)) +
639 skb->len;
640 total_tx_packets += segs;
641 total_tx_bytes += bytecount;
644 e1000_put_txbuf(adapter, buffer_info);
645 tx_desc->upper.data = 0;
647 i++;
648 if (i == tx_ring->count)
649 i = 0;
652 eop = tx_ring->buffer_info[i].next_to_watch;
653 eop_desc = E1000_TX_DESC(*tx_ring, eop);
654 #define E1000_TX_WEIGHT 64
655 /* weight of a sort for tx, to avoid endless transmit cleanup */
656 if (count++ == E1000_TX_WEIGHT)
657 break;
660 tx_ring->next_to_clean = i;
662 #define TX_WAKE_THRESHOLD 32
663 if (cleaned && netif_carrier_ok(netdev) &&
664 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
665 /* Make sure that anybody stopping the queue after this
666 * sees the new next_to_clean.
668 smp_mb();
670 if (netif_queue_stopped(netdev) &&
671 !(test_bit(__E1000_DOWN, &adapter->state))) {
672 netif_wake_queue(netdev);
673 ++adapter->restart_queue;
677 if (adapter->detect_tx_hung) {
679 * Detect a transmit hang in hardware, this serializes the
680 * check with the clearing of time_stamp and movement of i
682 adapter->detect_tx_hung = 0;
683 if (tx_ring->buffer_info[eop].dma &&
684 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
685 + (adapter->tx_timeout_factor * HZ))
686 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
687 e1000_print_tx_hang(adapter);
688 netif_stop_queue(netdev);
691 adapter->total_tx_bytes += total_tx_bytes;
692 adapter->total_tx_packets += total_tx_packets;
693 adapter->net_stats.tx_bytes += total_tx_bytes;
694 adapter->net_stats.tx_packets += total_tx_packets;
695 return cleaned;
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
706 int *work_done, int work_to_do)
708 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
709 struct net_device *netdev = adapter->netdev;
710 struct pci_dev *pdev = adapter->pdev;
711 struct e1000_ring *rx_ring = adapter->rx_ring;
712 struct e1000_buffer *buffer_info, *next_buffer;
713 struct e1000_ps_page *ps_page;
714 struct sk_buff *skb;
715 unsigned int i, j;
716 u32 length, staterr;
717 int cleaned_count = 0;
718 bool cleaned = 0;
719 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
721 i = rx_ring->next_to_clean;
722 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
724 buffer_info = &rx_ring->buffer_info[i];
726 while (staterr & E1000_RXD_STAT_DD) {
727 if (*work_done >= work_to_do)
728 break;
729 (*work_done)++;
730 skb = buffer_info->skb;
732 /* in the packet split case this is header only */
733 prefetch(skb->data - NET_IP_ALIGN);
735 i++;
736 if (i == rx_ring->count)
737 i = 0;
738 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
739 prefetch(next_rxd);
741 next_buffer = &rx_ring->buffer_info[i];
743 cleaned = 1;
744 cleaned_count++;
745 pci_unmap_single(pdev, buffer_info->dma,
746 adapter->rx_ps_bsize0,
747 PCI_DMA_FROMDEVICE);
748 buffer_info->dma = 0;
750 if (!(staterr & E1000_RXD_STAT_EOP)) {
751 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
752 "up the full packet\n", netdev->name);
753 dev_kfree_skb_irq(skb);
754 goto next_desc;
757 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
758 dev_kfree_skb_irq(skb);
759 goto next_desc;
762 length = le16_to_cpu(rx_desc->wb.middle.length0);
764 if (!length) {
765 ndev_dbg(netdev, "%s: Last part of the packet spanning"
766 " multiple descriptors\n", netdev->name);
767 dev_kfree_skb_irq(skb);
768 goto next_desc;
771 /* Good Receive */
772 skb_put(skb, length);
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
779 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
786 if (l1 && (l1 <= copybreak) &&
787 ((length + l1) <= adapter->rx_ps_bsize0)) {
788 u8 *vaddr;
790 ps_page = &buffer_info->ps_pages[0];
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
795 * very long
797 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
798 PAGE_SIZE, PCI_DMA_FROMDEVICE);
799 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
800 memcpy(skb_tail_pointer(skb), vaddr, l1);
801 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
802 pci_dma_sync_single_for_device(pdev, ps_page->dma,
803 PAGE_SIZE, PCI_DMA_FROMDEVICE);
805 skb_put(skb, l1);
806 goto copydone;
807 } /* if */
810 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
811 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
812 if (!length)
813 break;
815 ps_page = &buffer_info->ps_pages[j];
816 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
817 PCI_DMA_FROMDEVICE);
818 ps_page->dma = 0;
819 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
820 ps_page->page = NULL;
821 skb->len += length;
822 skb->data_len += length;
823 skb->truesize += length;
826 copydone:
827 total_rx_bytes += skb->len;
828 total_rx_packets++;
830 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
831 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
833 if (rx_desc->wb.upper.header_status &
834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
835 adapter->rx_hdr_split++;
837 e1000_receive_skb(adapter, netdev, skb,
838 staterr, rx_desc->wb.middle.vlan);
840 next_desc:
841 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
842 buffer_info->skb = NULL;
844 /* return some buffers to hardware, one at a time is too slow */
845 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
846 adapter->alloc_rx_buf(adapter, cleaned_count);
847 cleaned_count = 0;
850 /* use prefetched values */
851 rx_desc = next_rxd;
852 buffer_info = next_buffer;
854 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
856 rx_ring->next_to_clean = i;
858 cleaned_count = e1000_desc_unused(rx_ring);
859 if (cleaned_count)
860 adapter->alloc_rx_buf(adapter, cleaned_count);
862 adapter->total_rx_bytes += total_rx_bytes;
863 adapter->total_rx_packets += total_rx_packets;
864 adapter->net_stats.rx_bytes += total_rx_bytes;
865 adapter->net_stats.rx_packets += total_rx_packets;
866 return cleaned;
870 * e1000_consume_page - helper function
872 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
873 u16 length)
875 bi->page = NULL;
876 skb->len += length;
877 skb->data_len += length;
878 skb->truesize += length;
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
889 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
890 int *work_done, int work_to_do)
892 struct net_device *netdev = adapter->netdev;
893 struct pci_dev *pdev = adapter->pdev;
894 struct e1000_ring *rx_ring = adapter->rx_ring;
895 struct e1000_rx_desc *rx_desc, *next_rxd;
896 struct e1000_buffer *buffer_info, *next_buffer;
897 u32 length;
898 unsigned int i;
899 int cleaned_count = 0;
900 bool cleaned = false;
901 unsigned int total_rx_bytes=0, total_rx_packets=0;
903 i = rx_ring->next_to_clean;
904 rx_desc = E1000_RX_DESC(*rx_ring, i);
905 buffer_info = &rx_ring->buffer_info[i];
907 while (rx_desc->status & E1000_RXD_STAT_DD) {
908 struct sk_buff *skb;
909 u8 status;
911 if (*work_done >= work_to_do)
912 break;
913 (*work_done)++;
915 status = rx_desc->status;
916 skb = buffer_info->skb;
917 buffer_info->skb = NULL;
919 ++i;
920 if (i == rx_ring->count)
921 i = 0;
922 next_rxd = E1000_RX_DESC(*rx_ring, i);
923 prefetch(next_rxd);
925 next_buffer = &rx_ring->buffer_info[i];
927 cleaned = true;
928 cleaned_count++;
929 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
930 PCI_DMA_FROMDEVICE);
931 buffer_info->dma = 0;
933 length = le16_to_cpu(rx_desc->length);
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status & E1000_RXD_STAT_EOP) &&
937 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
938 /* recycle both page and skb */
939 buffer_info->skb = skb;
940 /* an error means any chain goes out the window
941 * too */
942 if (rx_ring->rx_skb_top)
943 dev_kfree_skb(rx_ring->rx_skb_top);
944 rx_ring->rx_skb_top = NULL;
945 goto next_desc;
948 #define rxtop rx_ring->rx_skb_top
949 if (!(status & E1000_RXD_STAT_EOP)) {
950 /* this descriptor is only the beginning (or middle) */
951 if (!rxtop) {
952 /* this is the beginning of a chain */
953 rxtop = skb;
954 skb_fill_page_desc(rxtop, 0, buffer_info->page,
955 0, length);
956 } else {
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop,
959 skb_shinfo(rxtop)->nr_frags,
960 buffer_info->page, 0, length);
961 /* re-use the skb, only consumed the page */
962 buffer_info->skb = skb;
964 e1000_consume_page(buffer_info, rxtop, length);
965 goto next_desc;
966 } else {
967 if (rxtop) {
968 /* end of the chain */
969 skb_fill_page_desc(rxtop,
970 skb_shinfo(rxtop)->nr_frags,
971 buffer_info->page, 0, length);
972 /* re-use the current skb, we only consumed the
973 * page */
974 buffer_info->skb = skb;
975 skb = rxtop;
976 rxtop = NULL;
977 e1000_consume_page(buffer_info, skb, length);
978 } else {
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length <= copybreak &&
982 skb_tailroom(skb) >= length) {
983 u8 *vaddr;
984 vaddr = kmap_atomic(buffer_info->page,
985 KM_SKB_DATA_SOFTIRQ);
986 memcpy(skb_tail_pointer(skb), vaddr,
987 length);
988 kunmap_atomic(vaddr,
989 KM_SKB_DATA_SOFTIRQ);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb, length);
993 } else {
994 skb_fill_page_desc(skb, 0,
995 buffer_info->page, 0,
996 length);
997 e1000_consume_page(buffer_info, skb,
998 length);
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter,
1005 (u32)(status) |
1006 ((u32)(rx_desc->errors) << 24),
1007 le16_to_cpu(rx_desc->csum), skb);
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes += skb->len;
1011 total_rx_packets++;
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb, ETH_HLEN)) {
1015 ndev_err(netdev, "pskb_may_pull failed.\n");
1016 dev_kfree_skb(skb);
1017 goto next_desc;
1020 e1000_receive_skb(adapter, netdev, skb, status,
1021 rx_desc->special);
1023 next_desc:
1024 rx_desc->status = 0;
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1028 adapter->alloc_rx_buf(adapter, cleaned_count);
1029 cleaned_count = 0;
1032 /* use prefetched values */
1033 rx_desc = next_rxd;
1034 buffer_info = next_buffer;
1036 rx_ring->next_to_clean = i;
1038 cleaned_count = e1000_desc_unused(rx_ring);
1039 if (cleaned_count)
1040 adapter->alloc_rx_buf(adapter, cleaned_count);
1042 adapter->total_rx_bytes += total_rx_bytes;
1043 adapter->total_rx_packets += total_rx_packets;
1044 adapter->net_stats.rx_bytes += total_rx_bytes;
1045 adapter->net_stats.rx_packets += total_rx_packets;
1046 return cleaned;
1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1051 * @adapter: board private structure
1053 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1055 struct e1000_ring *rx_ring = adapter->rx_ring;
1056 struct e1000_buffer *buffer_info;
1057 struct e1000_ps_page *ps_page;
1058 struct pci_dev *pdev = adapter->pdev;
1059 unsigned int i, j;
1061 /* Free all the Rx ring sk_buffs */
1062 for (i = 0; i < rx_ring->count; i++) {
1063 buffer_info = &rx_ring->buffer_info[i];
1064 if (buffer_info->dma) {
1065 if (adapter->clean_rx == e1000_clean_rx_irq)
1066 pci_unmap_single(pdev, buffer_info->dma,
1067 adapter->rx_buffer_len,
1068 PCI_DMA_FROMDEVICE);
1069 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1070 pci_unmap_page(pdev, buffer_info->dma,
1071 PAGE_SIZE,
1072 PCI_DMA_FROMDEVICE);
1073 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1074 pci_unmap_single(pdev, buffer_info->dma,
1075 adapter->rx_ps_bsize0,
1076 PCI_DMA_FROMDEVICE);
1077 buffer_info->dma = 0;
1080 if (buffer_info->page) {
1081 put_page(buffer_info->page);
1082 buffer_info->page = NULL;
1085 if (buffer_info->skb) {
1086 dev_kfree_skb(buffer_info->skb);
1087 buffer_info->skb = NULL;
1090 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1091 ps_page = &buffer_info->ps_pages[j];
1092 if (!ps_page->page)
1093 break;
1094 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1095 PCI_DMA_FROMDEVICE);
1096 ps_page->dma = 0;
1097 put_page(ps_page->page);
1098 ps_page->page = NULL;
1102 /* there also may be some cached data from a chained receive */
1103 if (rx_ring->rx_skb_top) {
1104 dev_kfree_skb(rx_ring->rx_skb_top);
1105 rx_ring->rx_skb_top = NULL;
1108 /* Zero out the descriptor ring */
1109 memset(rx_ring->desc, 0, rx_ring->size);
1111 rx_ring->next_to_clean = 0;
1112 rx_ring->next_to_use = 0;
1114 writel(0, adapter->hw.hw_addr + rx_ring->head);
1115 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1119 * e1000_intr_msi - Interrupt Handler
1120 * @irq: interrupt number
1121 * @data: pointer to a network interface device structure
1123 static irqreturn_t e1000_intr_msi(int irq, void *data)
1125 struct net_device *netdev = data;
1126 struct e1000_adapter *adapter = netdev_priv(netdev);
1127 struct e1000_hw *hw = &adapter->hw;
1128 u32 icr = er32(ICR);
1131 * read ICR disables interrupts using IAM
1134 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1135 hw->mac.get_link_status = 1;
1137 * ICH8 workaround-- Call gig speed drop workaround on cable
1138 * disconnect (LSC) before accessing any PHY registers
1140 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1141 (!(er32(STATUS) & E1000_STATUS_LU)))
1142 e1000e_gig_downshift_workaround_ich8lan(hw);
1145 * 80003ES2LAN workaround-- For packet buffer work-around on
1146 * link down event; disable receives here in the ISR and reset
1147 * adapter in watchdog
1149 if (netif_carrier_ok(netdev) &&
1150 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1151 /* disable receives */
1152 u32 rctl = er32(RCTL);
1153 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1154 adapter->flags |= FLAG_RX_RESTART_NOW;
1156 /* guard against interrupt when we're going down */
1157 if (!test_bit(__E1000_DOWN, &adapter->state))
1158 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1161 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1162 adapter->total_tx_bytes = 0;
1163 adapter->total_tx_packets = 0;
1164 adapter->total_rx_bytes = 0;
1165 adapter->total_rx_packets = 0;
1166 __netif_rx_schedule(netdev, &adapter->napi);
1169 return IRQ_HANDLED;
1173 * e1000_intr - Interrupt Handler
1174 * @irq: interrupt number
1175 * @data: pointer to a network interface device structure
1177 static irqreturn_t e1000_intr(int irq, void *data)
1179 struct net_device *netdev = data;
1180 struct e1000_adapter *adapter = netdev_priv(netdev);
1181 struct e1000_hw *hw = &adapter->hw;
1183 u32 rctl, icr = er32(ICR);
1184 if (!icr)
1185 return IRQ_NONE; /* Not our interrupt */
1188 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1189 * not set, then the adapter didn't send an interrupt
1191 if (!(icr & E1000_ICR_INT_ASSERTED))
1192 return IRQ_NONE;
1195 * Interrupt Auto-Mask...upon reading ICR,
1196 * interrupts are masked. No need for the
1197 * IMC write
1200 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1201 hw->mac.get_link_status = 1;
1203 * ICH8 workaround-- Call gig speed drop workaround on cable
1204 * disconnect (LSC) before accessing any PHY registers
1206 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1207 (!(er32(STATUS) & E1000_STATUS_LU)))
1208 e1000e_gig_downshift_workaround_ich8lan(hw);
1211 * 80003ES2LAN workaround--
1212 * For packet buffer work-around on link down event;
1213 * disable receives here in the ISR and
1214 * reset adapter in watchdog
1216 if (netif_carrier_ok(netdev) &&
1217 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1218 /* disable receives */
1219 rctl = er32(RCTL);
1220 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1221 adapter->flags |= FLAG_RX_RESTART_NOW;
1223 /* guard against interrupt when we're going down */
1224 if (!test_bit(__E1000_DOWN, &adapter->state))
1225 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1228 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1229 adapter->total_tx_bytes = 0;
1230 adapter->total_tx_packets = 0;
1231 adapter->total_rx_bytes = 0;
1232 adapter->total_rx_packets = 0;
1233 __netif_rx_schedule(netdev, &adapter->napi);
1236 return IRQ_HANDLED;
1239 static int e1000_request_irq(struct e1000_adapter *adapter)
1241 struct net_device *netdev = adapter->netdev;
1242 irq_handler_t handler = e1000_intr;
1243 int irq_flags = IRQF_SHARED;
1244 int err;
1246 if (!pci_enable_msi(adapter->pdev)) {
1247 adapter->flags |= FLAG_MSI_ENABLED;
1248 handler = e1000_intr_msi;
1249 irq_flags = 0;
1252 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
1253 netdev);
1254 if (err) {
1255 ndev_err(netdev,
1256 "Unable to allocate %s interrupt (return: %d)\n",
1257 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
1258 err);
1259 if (adapter->flags & FLAG_MSI_ENABLED)
1260 pci_disable_msi(adapter->pdev);
1263 return err;
1266 static void e1000_free_irq(struct e1000_adapter *adapter)
1268 struct net_device *netdev = adapter->netdev;
1270 free_irq(adapter->pdev->irq, netdev);
1271 if (adapter->flags & FLAG_MSI_ENABLED) {
1272 pci_disable_msi(adapter->pdev);
1273 adapter->flags &= ~FLAG_MSI_ENABLED;
1278 * e1000_irq_disable - Mask off interrupt generation on the NIC
1280 static void e1000_irq_disable(struct e1000_adapter *adapter)
1282 struct e1000_hw *hw = &adapter->hw;
1284 ew32(IMC, ~0);
1285 e1e_flush();
1286 synchronize_irq(adapter->pdev->irq);
1290 * e1000_irq_enable - Enable default interrupt generation settings
1292 static void e1000_irq_enable(struct e1000_adapter *adapter)
1294 struct e1000_hw *hw = &adapter->hw;
1296 ew32(IMS, IMS_ENABLE_MASK);
1297 e1e_flush();
1301 * e1000_get_hw_control - get control of the h/w from f/w
1302 * @adapter: address of board private structure
1304 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1305 * For ASF and Pass Through versions of f/w this means that
1306 * the driver is loaded. For AMT version (only with 82573)
1307 * of the f/w this means that the network i/f is open.
1309 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1311 struct e1000_hw *hw = &adapter->hw;
1312 u32 ctrl_ext;
1313 u32 swsm;
1315 /* Let firmware know the driver has taken over */
1316 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1317 swsm = er32(SWSM);
1318 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1319 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1320 ctrl_ext = er32(CTRL_EXT);
1321 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1326 * e1000_release_hw_control - release control of the h/w to f/w
1327 * @adapter: address of board private structure
1329 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1330 * For ASF and Pass Through versions of f/w this means that the
1331 * driver is no longer loaded. For AMT version (only with 82573) i
1332 * of the f/w this means that the network i/f is closed.
1335 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1337 struct e1000_hw *hw = &adapter->hw;
1338 u32 ctrl_ext;
1339 u32 swsm;
1341 /* Let firmware taken over control of h/w */
1342 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1343 swsm = er32(SWSM);
1344 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1345 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1346 ctrl_ext = er32(CTRL_EXT);
1347 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1352 * @e1000_alloc_ring - allocate memory for a ring structure
1354 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1355 struct e1000_ring *ring)
1357 struct pci_dev *pdev = adapter->pdev;
1359 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1360 GFP_KERNEL);
1361 if (!ring->desc)
1362 return -ENOMEM;
1364 return 0;
1368 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1369 * @adapter: board private structure
1371 * Return 0 on success, negative on failure
1373 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1375 struct e1000_ring *tx_ring = adapter->tx_ring;
1376 int err = -ENOMEM, size;
1378 size = sizeof(struct e1000_buffer) * tx_ring->count;
1379 tx_ring->buffer_info = vmalloc(size);
1380 if (!tx_ring->buffer_info)
1381 goto err;
1382 memset(tx_ring->buffer_info, 0, size);
1384 /* round up to nearest 4K */
1385 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1386 tx_ring->size = ALIGN(tx_ring->size, 4096);
1388 err = e1000_alloc_ring_dma(adapter, tx_ring);
1389 if (err)
1390 goto err;
1392 tx_ring->next_to_use = 0;
1393 tx_ring->next_to_clean = 0;
1394 spin_lock_init(&adapter->tx_queue_lock);
1396 return 0;
1397 err:
1398 vfree(tx_ring->buffer_info);
1399 ndev_err(adapter->netdev,
1400 "Unable to allocate memory for the transmit descriptor ring\n");
1401 return err;
1405 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1406 * @adapter: board private structure
1408 * Returns 0 on success, negative on failure
1410 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1412 struct e1000_ring *rx_ring = adapter->rx_ring;
1413 struct e1000_buffer *buffer_info;
1414 int i, size, desc_len, err = -ENOMEM;
1416 size = sizeof(struct e1000_buffer) * rx_ring->count;
1417 rx_ring->buffer_info = vmalloc(size);
1418 if (!rx_ring->buffer_info)
1419 goto err;
1420 memset(rx_ring->buffer_info, 0, size);
1422 for (i = 0; i < rx_ring->count; i++) {
1423 buffer_info = &rx_ring->buffer_info[i];
1424 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1425 sizeof(struct e1000_ps_page),
1426 GFP_KERNEL);
1427 if (!buffer_info->ps_pages)
1428 goto err_pages;
1431 desc_len = sizeof(union e1000_rx_desc_packet_split);
1433 /* Round up to nearest 4K */
1434 rx_ring->size = rx_ring->count * desc_len;
1435 rx_ring->size = ALIGN(rx_ring->size, 4096);
1437 err = e1000_alloc_ring_dma(adapter, rx_ring);
1438 if (err)
1439 goto err_pages;
1441 rx_ring->next_to_clean = 0;
1442 rx_ring->next_to_use = 0;
1443 rx_ring->rx_skb_top = NULL;
1445 return 0;
1447 err_pages:
1448 for (i = 0; i < rx_ring->count; i++) {
1449 buffer_info = &rx_ring->buffer_info[i];
1450 kfree(buffer_info->ps_pages);
1452 err:
1453 vfree(rx_ring->buffer_info);
1454 ndev_err(adapter->netdev,
1455 "Unable to allocate memory for the transmit descriptor ring\n");
1456 return err;
1460 * e1000_clean_tx_ring - Free Tx Buffers
1461 * @adapter: board private structure
1463 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1465 struct e1000_ring *tx_ring = adapter->tx_ring;
1466 struct e1000_buffer *buffer_info;
1467 unsigned long size;
1468 unsigned int i;
1470 for (i = 0; i < tx_ring->count; i++) {
1471 buffer_info = &tx_ring->buffer_info[i];
1472 e1000_put_txbuf(adapter, buffer_info);
1475 size = sizeof(struct e1000_buffer) * tx_ring->count;
1476 memset(tx_ring->buffer_info, 0, size);
1478 memset(tx_ring->desc, 0, tx_ring->size);
1480 tx_ring->next_to_use = 0;
1481 tx_ring->next_to_clean = 0;
1483 writel(0, adapter->hw.hw_addr + tx_ring->head);
1484 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1488 * e1000e_free_tx_resources - Free Tx Resources per Queue
1489 * @adapter: board private structure
1491 * Free all transmit software resources
1493 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1495 struct pci_dev *pdev = adapter->pdev;
1496 struct e1000_ring *tx_ring = adapter->tx_ring;
1498 e1000_clean_tx_ring(adapter);
1500 vfree(tx_ring->buffer_info);
1501 tx_ring->buffer_info = NULL;
1503 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1504 tx_ring->dma);
1505 tx_ring->desc = NULL;
1509 * e1000e_free_rx_resources - Free Rx Resources
1510 * @adapter: board private structure
1512 * Free all receive software resources
1515 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1517 struct pci_dev *pdev = adapter->pdev;
1518 struct e1000_ring *rx_ring = adapter->rx_ring;
1519 int i;
1521 e1000_clean_rx_ring(adapter);
1523 for (i = 0; i < rx_ring->count; i++) {
1524 kfree(rx_ring->buffer_info[i].ps_pages);
1527 vfree(rx_ring->buffer_info);
1528 rx_ring->buffer_info = NULL;
1530 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1531 rx_ring->dma);
1532 rx_ring->desc = NULL;
1536 * e1000_update_itr - update the dynamic ITR value based on statistics
1537 * @adapter: pointer to adapter
1538 * @itr_setting: current adapter->itr
1539 * @packets: the number of packets during this measurement interval
1540 * @bytes: the number of bytes during this measurement interval
1542 * Stores a new ITR value based on packets and byte
1543 * counts during the last interrupt. The advantage of per interrupt
1544 * computation is faster updates and more accurate ITR for the current
1545 * traffic pattern. Constants in this function were computed
1546 * based on theoretical maximum wire speed and thresholds were set based
1547 * on testing data as well as attempting to minimize response time
1548 * while increasing bulk throughput.
1549 * this functionality is controlled by the InterruptThrottleRate module
1550 * parameter (see e1000_param.c)
1552 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1553 u16 itr_setting, int packets,
1554 int bytes)
1556 unsigned int retval = itr_setting;
1558 if (packets == 0)
1559 goto update_itr_done;
1561 switch (itr_setting) {
1562 case lowest_latency:
1563 /* handle TSO and jumbo frames */
1564 if (bytes/packets > 8000)
1565 retval = bulk_latency;
1566 else if ((packets < 5) && (bytes > 512)) {
1567 retval = low_latency;
1569 break;
1570 case low_latency: /* 50 usec aka 20000 ints/s */
1571 if (bytes > 10000) {
1572 /* this if handles the TSO accounting */
1573 if (bytes/packets > 8000) {
1574 retval = bulk_latency;
1575 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1576 retval = bulk_latency;
1577 } else if ((packets > 35)) {
1578 retval = lowest_latency;
1580 } else if (bytes/packets > 2000) {
1581 retval = bulk_latency;
1582 } else if (packets <= 2 && bytes < 512) {
1583 retval = lowest_latency;
1585 break;
1586 case bulk_latency: /* 250 usec aka 4000 ints/s */
1587 if (bytes > 25000) {
1588 if (packets > 35) {
1589 retval = low_latency;
1591 } else if (bytes < 6000) {
1592 retval = low_latency;
1594 break;
1597 update_itr_done:
1598 return retval;
1601 static void e1000_set_itr(struct e1000_adapter *adapter)
1603 struct e1000_hw *hw = &adapter->hw;
1604 u16 current_itr;
1605 u32 new_itr = adapter->itr;
1607 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1608 if (adapter->link_speed != SPEED_1000) {
1609 current_itr = 0;
1610 new_itr = 4000;
1611 goto set_itr_now;
1614 adapter->tx_itr = e1000_update_itr(adapter,
1615 adapter->tx_itr,
1616 adapter->total_tx_packets,
1617 adapter->total_tx_bytes);
1618 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1619 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1620 adapter->tx_itr = low_latency;
1622 adapter->rx_itr = e1000_update_itr(adapter,
1623 adapter->rx_itr,
1624 adapter->total_rx_packets,
1625 adapter->total_rx_bytes);
1626 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1627 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1628 adapter->rx_itr = low_latency;
1630 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1632 switch (current_itr) {
1633 /* counts and packets in update_itr are dependent on these numbers */
1634 case lowest_latency:
1635 new_itr = 70000;
1636 break;
1637 case low_latency:
1638 new_itr = 20000; /* aka hwitr = ~200 */
1639 break;
1640 case bulk_latency:
1641 new_itr = 4000;
1642 break;
1643 default:
1644 break;
1647 set_itr_now:
1648 if (new_itr != adapter->itr) {
1650 * this attempts to bias the interrupt rate towards Bulk
1651 * by adding intermediate steps when interrupt rate is
1652 * increasing
1654 new_itr = new_itr > adapter->itr ?
1655 min(adapter->itr + (new_itr >> 2), new_itr) :
1656 new_itr;
1657 adapter->itr = new_itr;
1658 ew32(ITR, 1000000000 / (new_itr * 256));
1663 * e1000_clean - NAPI Rx polling callback
1664 * @napi: struct associated with this polling callback
1665 * @budget: amount of packets driver is allowed to process this poll
1667 static int e1000_clean(struct napi_struct *napi, int budget)
1669 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1670 struct net_device *poll_dev = adapter->netdev;
1671 int tx_cleaned = 0, work_done = 0;
1673 /* Must NOT use netdev_priv macro here. */
1674 adapter = poll_dev->priv;
1677 * e1000_clean is called per-cpu. This lock protects
1678 * tx_ring from being cleaned by multiple cpus
1679 * simultaneously. A failure obtaining the lock means
1680 * tx_ring is currently being cleaned anyway.
1682 if (spin_trylock(&adapter->tx_queue_lock)) {
1683 tx_cleaned = e1000_clean_tx_irq(adapter);
1684 spin_unlock(&adapter->tx_queue_lock);
1687 adapter->clean_rx(adapter, &work_done, budget);
1689 if (tx_cleaned)
1690 work_done = budget;
1692 /* If budget not fully consumed, exit the polling mode */
1693 if (work_done < budget) {
1694 if (adapter->itr_setting & 3)
1695 e1000_set_itr(adapter);
1696 netif_rx_complete(poll_dev, napi);
1697 e1000_irq_enable(adapter);
1700 return work_done;
1703 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1705 struct e1000_adapter *adapter = netdev_priv(netdev);
1706 struct e1000_hw *hw = &adapter->hw;
1707 u32 vfta, index;
1709 /* don't update vlan cookie if already programmed */
1710 if ((adapter->hw.mng_cookie.status &
1711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1712 (vid == adapter->mng_vlan_id))
1713 return;
1714 /* add VID to filter table */
1715 index = (vid >> 5) & 0x7F;
1716 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1717 vfta |= (1 << (vid & 0x1F));
1718 e1000e_write_vfta(hw, index, vfta);
1721 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1723 struct e1000_adapter *adapter = netdev_priv(netdev);
1724 struct e1000_hw *hw = &adapter->hw;
1725 u32 vfta, index;
1727 if (!test_bit(__E1000_DOWN, &adapter->state))
1728 e1000_irq_disable(adapter);
1729 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1731 if (!test_bit(__E1000_DOWN, &adapter->state))
1732 e1000_irq_enable(adapter);
1734 if ((adapter->hw.mng_cookie.status &
1735 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1736 (vid == adapter->mng_vlan_id)) {
1737 /* release control to f/w */
1738 e1000_release_hw_control(adapter);
1739 return;
1742 /* remove VID from filter table */
1743 index = (vid >> 5) & 0x7F;
1744 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1745 vfta &= ~(1 << (vid & 0x1F));
1746 e1000e_write_vfta(hw, index, vfta);
1749 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1751 struct net_device *netdev = adapter->netdev;
1752 u16 vid = adapter->hw.mng_cookie.vlan_id;
1753 u16 old_vid = adapter->mng_vlan_id;
1755 if (!adapter->vlgrp)
1756 return;
1758 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1759 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1760 if (adapter->hw.mng_cookie.status &
1761 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1762 e1000_vlan_rx_add_vid(netdev, vid);
1763 adapter->mng_vlan_id = vid;
1766 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1767 (vid != old_vid) &&
1768 !vlan_group_get_device(adapter->vlgrp, old_vid))
1769 e1000_vlan_rx_kill_vid(netdev, old_vid);
1770 } else {
1771 adapter->mng_vlan_id = vid;
1776 static void e1000_vlan_rx_register(struct net_device *netdev,
1777 struct vlan_group *grp)
1779 struct e1000_adapter *adapter = netdev_priv(netdev);
1780 struct e1000_hw *hw = &adapter->hw;
1781 u32 ctrl, rctl;
1783 if (!test_bit(__E1000_DOWN, &adapter->state))
1784 e1000_irq_disable(adapter);
1785 adapter->vlgrp = grp;
1787 if (grp) {
1788 /* enable VLAN tag insert/strip */
1789 ctrl = er32(CTRL);
1790 ctrl |= E1000_CTRL_VME;
1791 ew32(CTRL, ctrl);
1793 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1794 /* enable VLAN receive filtering */
1795 rctl = er32(RCTL);
1796 rctl |= E1000_RCTL_VFE;
1797 rctl &= ~E1000_RCTL_CFIEN;
1798 ew32(RCTL, rctl);
1799 e1000_update_mng_vlan(adapter);
1801 } else {
1802 /* disable VLAN tag insert/strip */
1803 ctrl = er32(CTRL);
1804 ctrl &= ~E1000_CTRL_VME;
1805 ew32(CTRL, ctrl);
1807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1808 /* disable VLAN filtering */
1809 rctl = er32(RCTL);
1810 rctl &= ~E1000_RCTL_VFE;
1811 ew32(RCTL, rctl);
1812 if (adapter->mng_vlan_id !=
1813 (u16)E1000_MNG_VLAN_NONE) {
1814 e1000_vlan_rx_kill_vid(netdev,
1815 adapter->mng_vlan_id);
1816 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1821 if (!test_bit(__E1000_DOWN, &adapter->state))
1822 e1000_irq_enable(adapter);
1825 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1827 u16 vid;
1829 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1831 if (!adapter->vlgrp)
1832 return;
1834 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1835 if (!vlan_group_get_device(adapter->vlgrp, vid))
1836 continue;
1837 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1841 static void e1000_init_manageability(struct e1000_adapter *adapter)
1843 struct e1000_hw *hw = &adapter->hw;
1844 u32 manc, manc2h;
1846 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1847 return;
1849 manc = er32(MANC);
1852 * enable receiving management packets to the host. this will probably
1853 * generate destination unreachable messages from the host OS, but
1854 * the packets will be handled on SMBUS
1856 manc |= E1000_MANC_EN_MNG2HOST;
1857 manc2h = er32(MANC2H);
1858 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1859 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1860 manc2h |= E1000_MNG2HOST_PORT_623;
1861 manc2h |= E1000_MNG2HOST_PORT_664;
1862 ew32(MANC2H, manc2h);
1863 ew32(MANC, manc);
1867 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1868 * @adapter: board private structure
1870 * Configure the Tx unit of the MAC after a reset.
1872 static void e1000_configure_tx(struct e1000_adapter *adapter)
1874 struct e1000_hw *hw = &adapter->hw;
1875 struct e1000_ring *tx_ring = adapter->tx_ring;
1876 u64 tdba;
1877 u32 tdlen, tctl, tipg, tarc;
1878 u32 ipgr1, ipgr2;
1880 /* Setup the HW Tx Head and Tail descriptor pointers */
1881 tdba = tx_ring->dma;
1882 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1883 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1884 ew32(TDBAH, (tdba >> 32));
1885 ew32(TDLEN, tdlen);
1886 ew32(TDH, 0);
1887 ew32(TDT, 0);
1888 tx_ring->head = E1000_TDH;
1889 tx_ring->tail = E1000_TDT;
1891 /* Set the default values for the Tx Inter Packet Gap timer */
1892 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1893 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1894 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1896 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1897 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1899 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1900 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1901 ew32(TIPG, tipg);
1903 /* Set the Tx Interrupt Delay register */
1904 ew32(TIDV, adapter->tx_int_delay);
1905 /* Tx irq moderation */
1906 ew32(TADV, adapter->tx_abs_int_delay);
1908 /* Program the Transmit Control Register */
1909 tctl = er32(TCTL);
1910 tctl &= ~E1000_TCTL_CT;
1911 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1912 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1914 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1915 tarc = er32(TARC(0));
1917 * set the speed mode bit, we'll clear it if we're not at
1918 * gigabit link later
1920 #define SPEED_MODE_BIT (1 << 21)
1921 tarc |= SPEED_MODE_BIT;
1922 ew32(TARC(0), tarc);
1925 /* errata: program both queues to unweighted RR */
1926 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1927 tarc = er32(TARC(0));
1928 tarc |= 1;
1929 ew32(TARC(0), tarc);
1930 tarc = er32(TARC(1));
1931 tarc |= 1;
1932 ew32(TARC(1), tarc);
1935 e1000e_config_collision_dist(hw);
1937 /* Setup Transmit Descriptor Settings for eop descriptor */
1938 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1940 /* only set IDE if we are delaying interrupts using the timers */
1941 if (adapter->tx_int_delay)
1942 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1944 /* enable Report Status bit */
1945 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1947 ew32(TCTL, tctl);
1949 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1953 * e1000_setup_rctl - configure the receive control registers
1954 * @adapter: Board private structure
1956 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1957 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1958 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1960 struct e1000_hw *hw = &adapter->hw;
1961 u32 rctl, rfctl;
1962 u32 psrctl = 0;
1963 u32 pages = 0;
1965 /* Program MC offset vector base */
1966 rctl = er32(RCTL);
1967 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1968 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1969 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1970 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1972 /* Do not Store bad packets */
1973 rctl &= ~E1000_RCTL_SBP;
1975 /* Enable Long Packet receive */
1976 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1977 rctl &= ~E1000_RCTL_LPE;
1978 else
1979 rctl |= E1000_RCTL_LPE;
1981 /* Enable hardware CRC frame stripping */
1982 rctl |= E1000_RCTL_SECRC;
1984 /* Setup buffer sizes */
1985 rctl &= ~E1000_RCTL_SZ_4096;
1986 rctl |= E1000_RCTL_BSEX;
1987 switch (adapter->rx_buffer_len) {
1988 case 256:
1989 rctl |= E1000_RCTL_SZ_256;
1990 rctl &= ~E1000_RCTL_BSEX;
1991 break;
1992 case 512:
1993 rctl |= E1000_RCTL_SZ_512;
1994 rctl &= ~E1000_RCTL_BSEX;
1995 break;
1996 case 1024:
1997 rctl |= E1000_RCTL_SZ_1024;
1998 rctl &= ~E1000_RCTL_BSEX;
1999 break;
2000 case 2048:
2001 default:
2002 rctl |= E1000_RCTL_SZ_2048;
2003 rctl &= ~E1000_RCTL_BSEX;
2004 break;
2005 case 4096:
2006 rctl |= E1000_RCTL_SZ_4096;
2007 break;
2008 case 8192:
2009 rctl |= E1000_RCTL_SZ_8192;
2010 break;
2011 case 16384:
2012 rctl |= E1000_RCTL_SZ_16384;
2013 break;
2017 * 82571 and greater support packet-split where the protocol
2018 * header is placed in skb->data and the packet data is
2019 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2020 * In the case of a non-split, skb->data is linearly filled,
2021 * followed by the page buffers. Therefore, skb->data is
2022 * sized to hold the largest protocol header.
2024 * allocations using alloc_page take too long for regular MTU
2025 * so only enable packet split for jumbo frames
2027 * Using pages when the page size is greater than 16k wastes
2028 * a lot of memory, since we allocate 3 pages at all times
2029 * per packet.
2031 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2032 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2033 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2034 adapter->rx_ps_pages = pages;
2035 else
2036 adapter->rx_ps_pages = 0;
2038 if (adapter->rx_ps_pages) {
2039 /* Configure extra packet-split registers */
2040 rfctl = er32(RFCTL);
2041 rfctl |= E1000_RFCTL_EXTEN;
2043 * disable packet split support for IPv6 extension headers,
2044 * because some malformed IPv6 headers can hang the Rx
2046 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2047 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2049 ew32(RFCTL, rfctl);
2051 /* Enable Packet split descriptors */
2052 rctl |= E1000_RCTL_DTYP_PS;
2054 psrctl |= adapter->rx_ps_bsize0 >>
2055 E1000_PSRCTL_BSIZE0_SHIFT;
2057 switch (adapter->rx_ps_pages) {
2058 case 3:
2059 psrctl |= PAGE_SIZE <<
2060 E1000_PSRCTL_BSIZE3_SHIFT;
2061 case 2:
2062 psrctl |= PAGE_SIZE <<
2063 E1000_PSRCTL_BSIZE2_SHIFT;
2064 case 1:
2065 psrctl |= PAGE_SIZE >>
2066 E1000_PSRCTL_BSIZE1_SHIFT;
2067 break;
2070 ew32(PSRCTL, psrctl);
2073 ew32(RCTL, rctl);
2074 /* just started the receive unit, no need to restart */
2075 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2079 * e1000_configure_rx - Configure Receive Unit after Reset
2080 * @adapter: board private structure
2082 * Configure the Rx unit of the MAC after a reset.
2084 static void e1000_configure_rx(struct e1000_adapter *adapter)
2086 struct e1000_hw *hw = &adapter->hw;
2087 struct e1000_ring *rx_ring = adapter->rx_ring;
2088 u64 rdba;
2089 u32 rdlen, rctl, rxcsum, ctrl_ext;
2091 if (adapter->rx_ps_pages) {
2092 /* this is a 32 byte descriptor */
2093 rdlen = rx_ring->count *
2094 sizeof(union e1000_rx_desc_packet_split);
2095 adapter->clean_rx = e1000_clean_rx_irq_ps;
2096 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2097 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2098 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2099 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2100 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2101 } else {
2102 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2103 adapter->clean_rx = e1000_clean_rx_irq;
2104 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2107 /* disable receives while setting up the descriptors */
2108 rctl = er32(RCTL);
2109 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2110 e1e_flush();
2111 msleep(10);
2113 /* set the Receive Delay Timer Register */
2114 ew32(RDTR, adapter->rx_int_delay);
2116 /* irq moderation */
2117 ew32(RADV, adapter->rx_abs_int_delay);
2118 if (adapter->itr_setting != 0)
2119 ew32(ITR, 1000000000 / (adapter->itr * 256));
2121 ctrl_ext = er32(CTRL_EXT);
2122 /* Reset delay timers after every interrupt */
2123 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2124 /* Auto-Mask interrupts upon ICR access */
2125 ctrl_ext |= E1000_CTRL_EXT_IAME;
2126 ew32(IAM, 0xffffffff);
2127 ew32(CTRL_EXT, ctrl_ext);
2128 e1e_flush();
2131 * Setup the HW Rx Head and Tail Descriptor Pointers and
2132 * the Base and Length of the Rx Descriptor Ring
2134 rdba = rx_ring->dma;
2135 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2136 ew32(RDBAH, (rdba >> 32));
2137 ew32(RDLEN, rdlen);
2138 ew32(RDH, 0);
2139 ew32(RDT, 0);
2140 rx_ring->head = E1000_RDH;
2141 rx_ring->tail = E1000_RDT;
2143 /* Enable Receive Checksum Offload for TCP and UDP */
2144 rxcsum = er32(RXCSUM);
2145 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2146 rxcsum |= E1000_RXCSUM_TUOFL;
2149 * IPv4 payload checksum for UDP fragments must be
2150 * used in conjunction with packet-split.
2152 if (adapter->rx_ps_pages)
2153 rxcsum |= E1000_RXCSUM_IPPCSE;
2154 } else {
2155 rxcsum &= ~E1000_RXCSUM_TUOFL;
2156 /* no need to clear IPPCSE as it defaults to 0 */
2158 ew32(RXCSUM, rxcsum);
2161 * Enable early receives on supported devices, only takes effect when
2162 * packet size is equal or larger than the specified value (in 8 byte
2163 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2165 if ((adapter->flags & FLAG_HAS_ERT) &&
2166 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2167 u32 rxdctl = er32(RXDCTL(0));
2168 ew32(RXDCTL(0), rxdctl | 0x3);
2169 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2171 * With jumbo frames and early-receive enabled, excessive
2172 * C4->C2 latencies result in dropped transactions.
2174 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2175 e1000e_driver_name, 55);
2176 } else {
2177 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2178 e1000e_driver_name,
2179 PM_QOS_DEFAULT_VALUE);
2182 /* Enable Receives */
2183 ew32(RCTL, rctl);
2187 * e1000_update_mc_addr_list - Update Multicast addresses
2188 * @hw: pointer to the HW structure
2189 * @mc_addr_list: array of multicast addresses to program
2190 * @mc_addr_count: number of multicast addresses to program
2191 * @rar_used_count: the first RAR register free to program
2192 * @rar_count: total number of supported Receive Address Registers
2194 * Updates the Receive Address Registers and Multicast Table Array.
2195 * The caller must have a packed mc_addr_list of multicast addresses.
2196 * The parameter rar_count will usually be hw->mac.rar_entry_count
2197 * unless there are workarounds that change this. Currently no func pointer
2198 * exists and all implementations are handled in the generic version of this
2199 * function.
2201 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2202 u32 mc_addr_count, u32 rar_used_count,
2203 u32 rar_count)
2205 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2206 rar_used_count, rar_count);
2210 * e1000_set_multi - Multicast and Promiscuous mode set
2211 * @netdev: network interface device structure
2213 * The set_multi entry point is called whenever the multicast address
2214 * list or the network interface flags are updated. This routine is
2215 * responsible for configuring the hardware for proper multicast,
2216 * promiscuous mode, and all-multi behavior.
2218 static void e1000_set_multi(struct net_device *netdev)
2220 struct e1000_adapter *adapter = netdev_priv(netdev);
2221 struct e1000_hw *hw = &adapter->hw;
2222 struct e1000_mac_info *mac = &hw->mac;
2223 struct dev_mc_list *mc_ptr;
2224 u8 *mta_list;
2225 u32 rctl;
2226 int i;
2228 /* Check for Promiscuous and All Multicast modes */
2230 rctl = er32(RCTL);
2232 if (netdev->flags & IFF_PROMISC) {
2233 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2234 } else if (netdev->flags & IFF_ALLMULTI) {
2235 rctl |= E1000_RCTL_MPE;
2236 rctl &= ~E1000_RCTL_UPE;
2237 } else {
2238 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2241 ew32(RCTL, rctl);
2243 if (netdev->mc_count) {
2244 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2245 if (!mta_list)
2246 return;
2248 /* prepare a packed array of only addresses. */
2249 mc_ptr = netdev->mc_list;
2251 for (i = 0; i < netdev->mc_count; i++) {
2252 if (!mc_ptr)
2253 break;
2254 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2255 ETH_ALEN);
2256 mc_ptr = mc_ptr->next;
2259 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2260 mac->rar_entry_count);
2261 kfree(mta_list);
2262 } else {
2264 * if we're called from probe, we might not have
2265 * anything to do here, so clear out the list
2267 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2272 * e1000_configure - configure the hardware for Rx and Tx
2273 * @adapter: private board structure
2275 static void e1000_configure(struct e1000_adapter *adapter)
2277 e1000_set_multi(adapter->netdev);
2279 e1000_restore_vlan(adapter);
2280 e1000_init_manageability(adapter);
2282 e1000_configure_tx(adapter);
2283 e1000_setup_rctl(adapter);
2284 e1000_configure_rx(adapter);
2285 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2289 * e1000e_power_up_phy - restore link in case the phy was powered down
2290 * @adapter: address of board private structure
2292 * The phy may be powered down to save power and turn off link when the
2293 * driver is unloaded and wake on lan is not enabled (among others)
2294 * *** this routine MUST be followed by a call to e1000e_reset ***
2296 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2298 u16 mii_reg = 0;
2300 /* Just clear the power down bit to wake the phy back up */
2301 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2303 * According to the manual, the phy will retain its
2304 * settings across a power-down/up cycle
2306 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2307 mii_reg &= ~MII_CR_POWER_DOWN;
2308 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2311 adapter->hw.mac.ops.setup_link(&adapter->hw);
2315 * e1000_power_down_phy - Power down the PHY
2317 * Power down the PHY so no link is implied when interface is down
2318 * The PHY cannot be powered down is management or WoL is active
2320 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2322 struct e1000_hw *hw = &adapter->hw;
2323 u16 mii_reg;
2325 /* WoL is enabled */
2326 if (adapter->wol)
2327 return;
2329 /* non-copper PHY? */
2330 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2331 return;
2333 /* reset is blocked because of a SoL/IDER session */
2334 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2335 return;
2337 /* manageability (AMT) is enabled */
2338 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2339 return;
2341 /* power down the PHY */
2342 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2343 mii_reg |= MII_CR_POWER_DOWN;
2344 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2345 mdelay(1);
2349 * e1000e_reset - bring the hardware into a known good state
2351 * This function boots the hardware and enables some settings that
2352 * require a configuration cycle of the hardware - those cannot be
2353 * set/changed during runtime. After reset the device needs to be
2354 * properly configured for Rx, Tx etc.
2356 void e1000e_reset(struct e1000_adapter *adapter)
2358 struct e1000_mac_info *mac = &adapter->hw.mac;
2359 struct e1000_fc_info *fc = &adapter->hw.fc;
2360 struct e1000_hw *hw = &adapter->hw;
2361 u32 tx_space, min_tx_space, min_rx_space;
2362 u32 pba = adapter->pba;
2363 u16 hwm;
2365 /* reset Packet Buffer Allocation to default */
2366 ew32(PBA, pba);
2368 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2370 * To maintain wire speed transmits, the Tx FIFO should be
2371 * large enough to accommodate two full transmit packets,
2372 * rounded up to the next 1KB and expressed in KB. Likewise,
2373 * the Rx FIFO should be large enough to accommodate at least
2374 * one full receive packet and is similarly rounded up and
2375 * expressed in KB.
2377 pba = er32(PBA);
2378 /* upper 16 bits has Tx packet buffer allocation size in KB */
2379 tx_space = pba >> 16;
2380 /* lower 16 bits has Rx packet buffer allocation size in KB */
2381 pba &= 0xffff;
2383 * the Tx fifo also stores 16 bytes of information about the tx
2384 * but don't include ethernet FCS because hardware appends it
2386 min_tx_space = (adapter->max_frame_size +
2387 sizeof(struct e1000_tx_desc) -
2388 ETH_FCS_LEN) * 2;
2389 min_tx_space = ALIGN(min_tx_space, 1024);
2390 min_tx_space >>= 10;
2391 /* software strips receive CRC, so leave room for it */
2392 min_rx_space = adapter->max_frame_size;
2393 min_rx_space = ALIGN(min_rx_space, 1024);
2394 min_rx_space >>= 10;
2397 * If current Tx allocation is less than the min Tx FIFO size,
2398 * and the min Tx FIFO size is less than the current Rx FIFO
2399 * allocation, take space away from current Rx allocation
2401 if ((tx_space < min_tx_space) &&
2402 ((min_tx_space - tx_space) < pba)) {
2403 pba -= min_tx_space - tx_space;
2406 * if short on Rx space, Rx wins and must trump tx
2407 * adjustment or use Early Receive if available
2409 if ((pba < min_rx_space) &&
2410 (!(adapter->flags & FLAG_HAS_ERT)))
2411 /* ERT enabled in e1000_configure_rx */
2412 pba = min_rx_space;
2415 ew32(PBA, pba);
2420 * flow control settings
2422 * The high water mark must be low enough to fit one full frame
2423 * (or the size used for early receive) above it in the Rx FIFO.
2424 * Set it to the lower of:
2425 * - 90% of the Rx FIFO size, and
2426 * - the full Rx FIFO size minus the early receive size (for parts
2427 * with ERT support assuming ERT set to E1000_ERT_2048), or
2428 * - the full Rx FIFO size minus one full frame
2430 if (adapter->flags & FLAG_HAS_ERT)
2431 hwm = min(((pba << 10) * 9 / 10),
2432 ((pba << 10) - (E1000_ERT_2048 << 3)));
2433 else
2434 hwm = min(((pba << 10) * 9 / 10),
2435 ((pba << 10) - adapter->max_frame_size));
2437 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2438 fc->low_water = fc->high_water - 8;
2440 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2441 fc->pause_time = 0xFFFF;
2442 else
2443 fc->pause_time = E1000_FC_PAUSE_TIME;
2444 fc->send_xon = 1;
2445 fc->type = fc->original_type;
2447 /* Allow time for pending master requests to run */
2448 mac->ops.reset_hw(hw);
2451 * For parts with AMT enabled, let the firmware know
2452 * that the network interface is in control
2454 if ((adapter->flags & FLAG_HAS_AMT) && e1000e_check_mng_mode(hw))
2455 e1000_get_hw_control(adapter);
2457 ew32(WUC, 0);
2459 if (mac->ops.init_hw(hw))
2460 ndev_err(adapter->netdev, "Hardware Error\n");
2462 e1000_update_mng_vlan(adapter);
2464 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2465 ew32(VET, ETH_P_8021Q);
2467 e1000e_reset_adaptive(hw);
2468 e1000_get_phy_info(hw);
2470 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2471 u16 phy_data = 0;
2473 * speed up time to link by disabling smart power down, ignore
2474 * the return value of this function because there is nothing
2475 * different we would do if it failed
2477 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2478 phy_data &= ~IGP02E1000_PM_SPD;
2479 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2483 int e1000e_up(struct e1000_adapter *adapter)
2485 struct e1000_hw *hw = &adapter->hw;
2487 /* hardware has been reset, we need to reload some things */
2488 e1000_configure(adapter);
2490 clear_bit(__E1000_DOWN, &adapter->state);
2492 napi_enable(&adapter->napi);
2493 e1000_irq_enable(adapter);
2495 /* fire a link change interrupt to start the watchdog */
2496 ew32(ICS, E1000_ICS_LSC);
2497 return 0;
2500 void e1000e_down(struct e1000_adapter *adapter)
2502 struct net_device *netdev = adapter->netdev;
2503 struct e1000_hw *hw = &adapter->hw;
2504 u32 tctl, rctl;
2507 * signal that we're down so the interrupt handler does not
2508 * reschedule our watchdog timer
2510 set_bit(__E1000_DOWN, &adapter->state);
2512 /* disable receives in the hardware */
2513 rctl = er32(RCTL);
2514 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2515 /* flush and sleep below */
2517 netif_stop_queue(netdev);
2519 /* disable transmits in the hardware */
2520 tctl = er32(TCTL);
2521 tctl &= ~E1000_TCTL_EN;
2522 ew32(TCTL, tctl);
2523 /* flush both disables and wait for them to finish */
2524 e1e_flush();
2525 msleep(10);
2527 napi_disable(&adapter->napi);
2528 e1000_irq_disable(adapter);
2530 del_timer_sync(&adapter->watchdog_timer);
2531 del_timer_sync(&adapter->phy_info_timer);
2533 netdev->tx_queue_len = adapter->tx_queue_len;
2534 netif_carrier_off(netdev);
2535 adapter->link_speed = 0;
2536 adapter->link_duplex = 0;
2538 e1000e_reset(adapter);
2539 e1000_clean_tx_ring(adapter);
2540 e1000_clean_rx_ring(adapter);
2543 * TODO: for power management, we could drop the link and
2544 * pci_disable_device here.
2548 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2550 might_sleep();
2551 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2552 msleep(1);
2553 e1000e_down(adapter);
2554 e1000e_up(adapter);
2555 clear_bit(__E1000_RESETTING, &adapter->state);
2559 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2560 * @adapter: board private structure to initialize
2562 * e1000_sw_init initializes the Adapter private data structure.
2563 * Fields are initialized based on PCI device information and
2564 * OS network device settings (MTU size).
2566 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2568 struct net_device *netdev = adapter->netdev;
2570 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2571 adapter->rx_ps_bsize0 = 128;
2572 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2573 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2575 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2576 if (!adapter->tx_ring)
2577 goto err;
2579 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2580 if (!adapter->rx_ring)
2581 goto err;
2583 spin_lock_init(&adapter->tx_queue_lock);
2585 /* Explicitly disable IRQ since the NIC can be in any state. */
2586 e1000_irq_disable(adapter);
2588 spin_lock_init(&adapter->stats_lock);
2590 set_bit(__E1000_DOWN, &adapter->state);
2591 return 0;
2593 err:
2594 ndev_err(netdev, "Unable to allocate memory for queues\n");
2595 kfree(adapter->rx_ring);
2596 kfree(adapter->tx_ring);
2597 return -ENOMEM;
2601 * e1000_open - Called when a network interface is made active
2602 * @netdev: network interface device structure
2604 * Returns 0 on success, negative value on failure
2606 * The open entry point is called when a network interface is made
2607 * active by the system (IFF_UP). At this point all resources needed
2608 * for transmit and receive operations are allocated, the interrupt
2609 * handler is registered with the OS, the watchdog timer is started,
2610 * and the stack is notified that the interface is ready.
2612 static int e1000_open(struct net_device *netdev)
2614 struct e1000_adapter *adapter = netdev_priv(netdev);
2615 struct e1000_hw *hw = &adapter->hw;
2616 int err;
2618 /* disallow open during test */
2619 if (test_bit(__E1000_TESTING, &adapter->state))
2620 return -EBUSY;
2622 /* allocate transmit descriptors */
2623 err = e1000e_setup_tx_resources(adapter);
2624 if (err)
2625 goto err_setup_tx;
2627 /* allocate receive descriptors */
2628 err = e1000e_setup_rx_resources(adapter);
2629 if (err)
2630 goto err_setup_rx;
2632 e1000e_power_up_phy(adapter);
2634 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2635 if ((adapter->hw.mng_cookie.status &
2636 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2637 e1000_update_mng_vlan(adapter);
2640 * If AMT is enabled, let the firmware know that the network
2641 * interface is now open
2643 if ((adapter->flags & FLAG_HAS_AMT) &&
2644 e1000e_check_mng_mode(&adapter->hw))
2645 e1000_get_hw_control(adapter);
2648 * before we allocate an interrupt, we must be ready to handle it.
2649 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2650 * as soon as we call pci_request_irq, so we have to setup our
2651 * clean_rx handler before we do so.
2653 e1000_configure(adapter);
2655 err = e1000_request_irq(adapter);
2656 if (err)
2657 goto err_req_irq;
2659 /* From here on the code is the same as e1000e_up() */
2660 clear_bit(__E1000_DOWN, &adapter->state);
2662 napi_enable(&adapter->napi);
2664 e1000_irq_enable(adapter);
2666 /* fire a link status change interrupt to start the watchdog */
2667 ew32(ICS, E1000_ICS_LSC);
2669 return 0;
2671 err_req_irq:
2672 e1000_release_hw_control(adapter);
2673 e1000_power_down_phy(adapter);
2674 e1000e_free_rx_resources(adapter);
2675 err_setup_rx:
2676 e1000e_free_tx_resources(adapter);
2677 err_setup_tx:
2678 e1000e_reset(adapter);
2680 return err;
2684 * e1000_close - Disables a network interface
2685 * @netdev: network interface device structure
2687 * Returns 0, this is not allowed to fail
2689 * The close entry point is called when an interface is de-activated
2690 * by the OS. The hardware is still under the drivers control, but
2691 * needs to be disabled. A global MAC reset is issued to stop the
2692 * hardware, and all transmit and receive resources are freed.
2694 static int e1000_close(struct net_device *netdev)
2696 struct e1000_adapter *adapter = netdev_priv(netdev);
2698 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2699 e1000e_down(adapter);
2700 e1000_power_down_phy(adapter);
2701 e1000_free_irq(adapter);
2703 e1000e_free_tx_resources(adapter);
2704 e1000e_free_rx_resources(adapter);
2707 * kill manageability vlan ID if supported, but not if a vlan with
2708 * the same ID is registered on the host OS (let 8021q kill it)
2710 if ((adapter->hw.mng_cookie.status &
2711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2712 !(adapter->vlgrp &&
2713 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2714 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2717 * If AMT is enabled, let the firmware know that the network
2718 * interface is now closed
2720 if ((adapter->flags & FLAG_HAS_AMT) &&
2721 e1000e_check_mng_mode(&adapter->hw))
2722 e1000_release_hw_control(adapter);
2724 return 0;
2727 * e1000_set_mac - Change the Ethernet Address of the NIC
2728 * @netdev: network interface device structure
2729 * @p: pointer to an address structure
2731 * Returns 0 on success, negative on failure
2733 static int e1000_set_mac(struct net_device *netdev, void *p)
2735 struct e1000_adapter *adapter = netdev_priv(netdev);
2736 struct sockaddr *addr = p;
2738 if (!is_valid_ether_addr(addr->sa_data))
2739 return -EADDRNOTAVAIL;
2741 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2742 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2744 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2746 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2747 /* activate the work around */
2748 e1000e_set_laa_state_82571(&adapter->hw, 1);
2751 * Hold a copy of the LAA in RAR[14] This is done so that
2752 * between the time RAR[0] gets clobbered and the time it
2753 * gets fixed (in e1000_watchdog), the actual LAA is in one
2754 * of the RARs and no incoming packets directed to this port
2755 * are dropped. Eventually the LAA will be in RAR[0] and
2756 * RAR[14]
2758 e1000e_rar_set(&adapter->hw,
2759 adapter->hw.mac.addr,
2760 adapter->hw.mac.rar_entry_count - 1);
2763 return 0;
2767 * Need to wait a few seconds after link up to get diagnostic information from
2768 * the phy
2770 static void e1000_update_phy_info(unsigned long data)
2772 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2773 e1000_get_phy_info(&adapter->hw);
2777 * e1000e_update_stats - Update the board statistics counters
2778 * @adapter: board private structure
2780 void e1000e_update_stats(struct e1000_adapter *adapter)
2782 struct e1000_hw *hw = &adapter->hw;
2783 struct pci_dev *pdev = adapter->pdev;
2784 unsigned long irq_flags;
2785 u16 phy_tmp;
2787 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2790 * Prevent stats update while adapter is being reset, or if the pci
2791 * connection is down.
2793 if (adapter->link_speed == 0)
2794 return;
2795 if (pci_channel_offline(pdev))
2796 return;
2798 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2801 * these counters are modified from e1000_adjust_tbi_stats,
2802 * called from the interrupt context, so they must only
2803 * be written while holding adapter->stats_lock
2806 adapter->stats.crcerrs += er32(CRCERRS);
2807 adapter->stats.gprc += er32(GPRC);
2808 adapter->stats.gorc += er32(GORCL);
2809 er32(GORCH); /* Clear gorc */
2810 adapter->stats.bprc += er32(BPRC);
2811 adapter->stats.mprc += er32(MPRC);
2812 adapter->stats.roc += er32(ROC);
2814 adapter->stats.mpc += er32(MPC);
2815 adapter->stats.scc += er32(SCC);
2816 adapter->stats.ecol += er32(ECOL);
2817 adapter->stats.mcc += er32(MCC);
2818 adapter->stats.latecol += er32(LATECOL);
2819 adapter->stats.dc += er32(DC);
2820 adapter->stats.xonrxc += er32(XONRXC);
2821 adapter->stats.xontxc += er32(XONTXC);
2822 adapter->stats.xoffrxc += er32(XOFFRXC);
2823 adapter->stats.xofftxc += er32(XOFFTXC);
2824 adapter->stats.gptc += er32(GPTC);
2825 adapter->stats.gotc += er32(GOTCL);
2826 er32(GOTCH); /* Clear gotc */
2827 adapter->stats.rnbc += er32(RNBC);
2828 adapter->stats.ruc += er32(RUC);
2830 adapter->stats.mptc += er32(MPTC);
2831 adapter->stats.bptc += er32(BPTC);
2833 /* used for adaptive IFS */
2835 hw->mac.tx_packet_delta = er32(TPT);
2836 adapter->stats.tpt += hw->mac.tx_packet_delta;
2837 hw->mac.collision_delta = er32(COLC);
2838 adapter->stats.colc += hw->mac.collision_delta;
2840 adapter->stats.algnerrc += er32(ALGNERRC);
2841 adapter->stats.rxerrc += er32(RXERRC);
2842 adapter->stats.tncrs += er32(TNCRS);
2843 adapter->stats.cexterr += er32(CEXTERR);
2844 adapter->stats.tsctc += er32(TSCTC);
2845 adapter->stats.tsctfc += er32(TSCTFC);
2847 /* Fill out the OS statistics structure */
2848 adapter->net_stats.multicast = adapter->stats.mprc;
2849 adapter->net_stats.collisions = adapter->stats.colc;
2851 /* Rx Errors */
2854 * RLEC on some newer hardware can be incorrect so build
2855 * our own version based on RUC and ROC
2857 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2858 adapter->stats.crcerrs + adapter->stats.algnerrc +
2859 adapter->stats.ruc + adapter->stats.roc +
2860 adapter->stats.cexterr;
2861 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2862 adapter->stats.roc;
2863 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2864 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2865 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2867 /* Tx Errors */
2868 adapter->net_stats.tx_errors = adapter->stats.ecol +
2869 adapter->stats.latecol;
2870 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2871 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2872 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2874 /* Tx Dropped needs to be maintained elsewhere */
2876 /* Phy Stats */
2877 if (hw->phy.media_type == e1000_media_type_copper) {
2878 if ((adapter->link_speed == SPEED_1000) &&
2879 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2880 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2881 adapter->phy_stats.idle_errors += phy_tmp;
2885 /* Management Stats */
2886 adapter->stats.mgptc += er32(MGTPTC);
2887 adapter->stats.mgprc += er32(MGTPRC);
2888 adapter->stats.mgpdc += er32(MGTPDC);
2890 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2894 * e1000_phy_read_status - Update the PHY register status snapshot
2895 * @adapter: board private structure
2897 static void e1000_phy_read_status(struct e1000_adapter *adapter)
2899 struct e1000_hw *hw = &adapter->hw;
2900 struct e1000_phy_regs *phy = &adapter->phy_regs;
2901 int ret_val;
2902 unsigned long irq_flags;
2905 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2907 if ((er32(STATUS) & E1000_STATUS_LU) &&
2908 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
2909 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
2910 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
2911 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
2912 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
2913 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
2914 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
2915 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
2916 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
2917 if (ret_val)
2918 ndev_warn(adapter->netdev,
2919 "Error reading PHY register\n");
2920 } else {
2922 * Do not read PHY registers if link is not up
2923 * Set values to typical power-on defaults
2925 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
2926 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
2927 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
2928 BMSR_ERCAP);
2929 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
2930 ADVERTISE_ALL | ADVERTISE_CSMA);
2931 phy->lpa = 0;
2932 phy->expansion = EXPANSION_ENABLENPAGE;
2933 phy->ctrl1000 = ADVERTISE_1000FULL;
2934 phy->stat1000 = 0;
2935 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
2938 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2941 static void e1000_print_link_info(struct e1000_adapter *adapter)
2943 struct e1000_hw *hw = &adapter->hw;
2944 struct net_device *netdev = adapter->netdev;
2945 u32 ctrl = er32(CTRL);
2947 ndev_info(netdev,
2948 "Link is Up %d Mbps %s, Flow Control: %s\n",
2949 adapter->link_speed,
2950 (adapter->link_duplex == FULL_DUPLEX) ?
2951 "Full Duplex" : "Half Duplex",
2952 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2953 "RX/TX" :
2954 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2955 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2958 static bool e1000_has_link(struct e1000_adapter *adapter)
2960 struct e1000_hw *hw = &adapter->hw;
2961 bool link_active = 0;
2962 s32 ret_val = 0;
2965 * get_link_status is set on LSC (link status) interrupt or
2966 * Rx sequence error interrupt. get_link_status will stay
2967 * false until the check_for_link establishes link
2968 * for copper adapters ONLY
2970 switch (hw->phy.media_type) {
2971 case e1000_media_type_copper:
2972 if (hw->mac.get_link_status) {
2973 ret_val = hw->mac.ops.check_for_link(hw);
2974 link_active = !hw->mac.get_link_status;
2975 } else {
2976 link_active = 1;
2978 break;
2979 case e1000_media_type_fiber:
2980 ret_val = hw->mac.ops.check_for_link(hw);
2981 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2982 break;
2983 case e1000_media_type_internal_serdes:
2984 ret_val = hw->mac.ops.check_for_link(hw);
2985 link_active = adapter->hw.mac.serdes_has_link;
2986 break;
2987 default:
2988 case e1000_media_type_unknown:
2989 break;
2992 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
2993 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2994 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2995 ndev_info(adapter->netdev,
2996 "Gigabit has been disabled, downgrading speed\n");
2999 return link_active;
3002 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3004 /* make sure the receive unit is started */
3005 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3006 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3007 struct e1000_hw *hw = &adapter->hw;
3008 u32 rctl = er32(RCTL);
3009 ew32(RCTL, rctl | E1000_RCTL_EN);
3010 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3015 * e1000_watchdog - Timer Call-back
3016 * @data: pointer to adapter cast into an unsigned long
3018 static void e1000_watchdog(unsigned long data)
3020 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3022 /* Do the rest outside of interrupt context */
3023 schedule_work(&adapter->watchdog_task);
3025 /* TODO: make this use queue_delayed_work() */
3028 static void e1000_watchdog_task(struct work_struct *work)
3030 struct e1000_adapter *adapter = container_of(work,
3031 struct e1000_adapter, watchdog_task);
3032 struct net_device *netdev = adapter->netdev;
3033 struct e1000_mac_info *mac = &adapter->hw.mac;
3034 struct e1000_ring *tx_ring = adapter->tx_ring;
3035 struct e1000_hw *hw = &adapter->hw;
3036 u32 link, tctl;
3037 int tx_pending = 0;
3039 link = e1000_has_link(adapter);
3040 if ((netif_carrier_ok(netdev)) && link) {
3041 e1000e_enable_receives(adapter);
3042 goto link_up;
3045 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3046 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3047 e1000_update_mng_vlan(adapter);
3049 if (link) {
3050 if (!netif_carrier_ok(netdev)) {
3051 bool txb2b = 1;
3052 /* update snapshot of PHY registers on LSC */
3053 e1000_phy_read_status(adapter);
3054 mac->ops.get_link_up_info(&adapter->hw,
3055 &adapter->link_speed,
3056 &adapter->link_duplex);
3057 e1000_print_link_info(adapter);
3059 * tweak tx_queue_len according to speed/duplex
3060 * and adjust the timeout factor
3062 netdev->tx_queue_len = adapter->tx_queue_len;
3063 adapter->tx_timeout_factor = 1;
3064 switch (adapter->link_speed) {
3065 case SPEED_10:
3066 txb2b = 0;
3067 netdev->tx_queue_len = 10;
3068 adapter->tx_timeout_factor = 14;
3069 break;
3070 case SPEED_100:
3071 txb2b = 0;
3072 netdev->tx_queue_len = 100;
3073 /* maybe add some timeout factor ? */
3074 break;
3078 * workaround: re-program speed mode bit after
3079 * link-up event
3081 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3082 !txb2b) {
3083 u32 tarc0;
3084 tarc0 = er32(TARC(0));
3085 tarc0 &= ~SPEED_MODE_BIT;
3086 ew32(TARC(0), tarc0);
3090 * disable TSO for pcie and 10/100 speeds, to avoid
3091 * some hardware issues
3093 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3094 switch (adapter->link_speed) {
3095 case SPEED_10:
3096 case SPEED_100:
3097 ndev_info(netdev,
3098 "10/100 speed: disabling TSO\n");
3099 netdev->features &= ~NETIF_F_TSO;
3100 netdev->features &= ~NETIF_F_TSO6;
3101 break;
3102 case SPEED_1000:
3103 netdev->features |= NETIF_F_TSO;
3104 netdev->features |= NETIF_F_TSO6;
3105 break;
3106 default:
3107 /* oops */
3108 break;
3113 * enable transmits in the hardware, need to do this
3114 * after setting TARC(0)
3116 tctl = er32(TCTL);
3117 tctl |= E1000_TCTL_EN;
3118 ew32(TCTL, tctl);
3120 netif_carrier_on(netdev);
3121 netif_wake_queue(netdev);
3123 if (!test_bit(__E1000_DOWN, &adapter->state))
3124 mod_timer(&adapter->phy_info_timer,
3125 round_jiffies(jiffies + 2 * HZ));
3127 } else {
3128 if (netif_carrier_ok(netdev)) {
3129 adapter->link_speed = 0;
3130 adapter->link_duplex = 0;
3131 ndev_info(netdev, "Link is Down\n");
3132 netif_carrier_off(netdev);
3133 netif_stop_queue(netdev);
3134 if (!test_bit(__E1000_DOWN, &adapter->state))
3135 mod_timer(&adapter->phy_info_timer,
3136 round_jiffies(jiffies + 2 * HZ));
3138 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3139 schedule_work(&adapter->reset_task);
3143 link_up:
3144 e1000e_update_stats(adapter);
3146 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3147 adapter->tpt_old = adapter->stats.tpt;
3148 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3149 adapter->colc_old = adapter->stats.colc;
3151 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3152 adapter->gorc_old = adapter->stats.gorc;
3153 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3154 adapter->gotc_old = adapter->stats.gotc;
3156 e1000e_update_adaptive(&adapter->hw);
3158 if (!netif_carrier_ok(netdev)) {
3159 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3160 tx_ring->count);
3161 if (tx_pending) {
3163 * We've lost link, so the controller stops DMA,
3164 * but we've got queued Tx work that's never going
3165 * to get done, so reset controller to flush Tx.
3166 * (Do the reset outside of interrupt context).
3168 adapter->tx_timeout_count++;
3169 schedule_work(&adapter->reset_task);
3173 /* Cause software interrupt to ensure Rx ring is cleaned */
3174 ew32(ICS, E1000_ICS_RXDMT0);
3176 /* Force detection of hung controller every watchdog period */
3177 adapter->detect_tx_hung = 1;
3180 * With 82571 controllers, LAA may be overwritten due to controller
3181 * reset from the other port. Set the appropriate LAA in RAR[0]
3183 if (e1000e_get_laa_state_82571(hw))
3184 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3186 /* Reset the timer */
3187 if (!test_bit(__E1000_DOWN, &adapter->state))
3188 mod_timer(&adapter->watchdog_timer,
3189 round_jiffies(jiffies + 2 * HZ));
3192 #define E1000_TX_FLAGS_CSUM 0x00000001
3193 #define E1000_TX_FLAGS_VLAN 0x00000002
3194 #define E1000_TX_FLAGS_TSO 0x00000004
3195 #define E1000_TX_FLAGS_IPV4 0x00000008
3196 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3197 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3199 static int e1000_tso(struct e1000_adapter *adapter,
3200 struct sk_buff *skb)
3202 struct e1000_ring *tx_ring = adapter->tx_ring;
3203 struct e1000_context_desc *context_desc;
3204 struct e1000_buffer *buffer_info;
3205 unsigned int i;
3206 u32 cmd_length = 0;
3207 u16 ipcse = 0, tucse, mss;
3208 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3209 int err;
3211 if (skb_is_gso(skb)) {
3212 if (skb_header_cloned(skb)) {
3213 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3214 if (err)
3215 return err;
3218 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3219 mss = skb_shinfo(skb)->gso_size;
3220 if (skb->protocol == htons(ETH_P_IP)) {
3221 struct iphdr *iph = ip_hdr(skb);
3222 iph->tot_len = 0;
3223 iph->check = 0;
3224 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3225 iph->daddr, 0,
3226 IPPROTO_TCP,
3228 cmd_length = E1000_TXD_CMD_IP;
3229 ipcse = skb_transport_offset(skb) - 1;
3230 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3231 ipv6_hdr(skb)->payload_len = 0;
3232 tcp_hdr(skb)->check =
3233 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3234 &ipv6_hdr(skb)->daddr,
3235 0, IPPROTO_TCP, 0);
3236 ipcse = 0;
3238 ipcss = skb_network_offset(skb);
3239 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3240 tucss = skb_transport_offset(skb);
3241 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3242 tucse = 0;
3244 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3245 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3247 i = tx_ring->next_to_use;
3248 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3249 buffer_info = &tx_ring->buffer_info[i];
3251 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3252 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3253 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3254 context_desc->upper_setup.tcp_fields.tucss = tucss;
3255 context_desc->upper_setup.tcp_fields.tucso = tucso;
3256 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3257 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3258 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3259 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3261 buffer_info->time_stamp = jiffies;
3262 buffer_info->next_to_watch = i;
3264 i++;
3265 if (i == tx_ring->count)
3266 i = 0;
3267 tx_ring->next_to_use = i;
3269 return 1;
3272 return 0;
3275 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3277 struct e1000_ring *tx_ring = adapter->tx_ring;
3278 struct e1000_context_desc *context_desc;
3279 struct e1000_buffer *buffer_info;
3280 unsigned int i;
3281 u8 css;
3283 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3284 css = skb_transport_offset(skb);
3286 i = tx_ring->next_to_use;
3287 buffer_info = &tx_ring->buffer_info[i];
3288 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3290 context_desc->lower_setup.ip_config = 0;
3291 context_desc->upper_setup.tcp_fields.tucss = css;
3292 context_desc->upper_setup.tcp_fields.tucso =
3293 css + skb->csum_offset;
3294 context_desc->upper_setup.tcp_fields.tucse = 0;
3295 context_desc->tcp_seg_setup.data = 0;
3296 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3298 buffer_info->time_stamp = jiffies;
3299 buffer_info->next_to_watch = i;
3301 i++;
3302 if (i == tx_ring->count)
3303 i = 0;
3304 tx_ring->next_to_use = i;
3306 return 1;
3309 return 0;
3312 #define E1000_MAX_PER_TXD 8192
3313 #define E1000_MAX_TXD_PWR 12
3315 static int e1000_tx_map(struct e1000_adapter *adapter,
3316 struct sk_buff *skb, unsigned int first,
3317 unsigned int max_per_txd, unsigned int nr_frags,
3318 unsigned int mss)
3320 struct e1000_ring *tx_ring = adapter->tx_ring;
3321 struct e1000_buffer *buffer_info;
3322 unsigned int len = skb->len - skb->data_len;
3323 unsigned int offset = 0, size, count = 0, i;
3324 unsigned int f;
3326 i = tx_ring->next_to_use;
3328 while (len) {
3329 buffer_info = &tx_ring->buffer_info[i];
3330 size = min(len, max_per_txd);
3332 /* Workaround for premature desc write-backs
3333 * in TSO mode. Append 4-byte sentinel desc */
3334 if (mss && !nr_frags && size == len && size > 8)
3335 size -= 4;
3337 buffer_info->length = size;
3338 /* set time_stamp *before* dma to help avoid a possible race */
3339 buffer_info->time_stamp = jiffies;
3340 buffer_info->dma =
3341 pci_map_single(adapter->pdev,
3342 skb->data + offset,
3343 size,
3344 PCI_DMA_TODEVICE);
3345 if (pci_dma_mapping_error(buffer_info->dma)) {
3346 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3347 adapter->tx_dma_failed++;
3348 return -1;
3350 buffer_info->next_to_watch = i;
3352 len -= size;
3353 offset += size;
3354 count++;
3355 i++;
3356 if (i == tx_ring->count)
3357 i = 0;
3360 for (f = 0; f < nr_frags; f++) {
3361 struct skb_frag_struct *frag;
3363 frag = &skb_shinfo(skb)->frags[f];
3364 len = frag->size;
3365 offset = frag->page_offset;
3367 while (len) {
3368 buffer_info = &tx_ring->buffer_info[i];
3369 size = min(len, max_per_txd);
3370 /* Workaround for premature desc write-backs
3371 * in TSO mode. Append 4-byte sentinel desc */
3372 if (mss && f == (nr_frags-1) && size == len && size > 8)
3373 size -= 4;
3375 buffer_info->length = size;
3376 buffer_info->time_stamp = jiffies;
3377 buffer_info->dma =
3378 pci_map_page(adapter->pdev,
3379 frag->page,
3380 offset,
3381 size,
3382 PCI_DMA_TODEVICE);
3383 if (pci_dma_mapping_error(buffer_info->dma)) {
3384 dev_err(&adapter->pdev->dev,
3385 "TX DMA page map failed\n");
3386 adapter->tx_dma_failed++;
3387 return -1;
3390 buffer_info->next_to_watch = i;
3392 len -= size;
3393 offset += size;
3394 count++;
3396 i++;
3397 if (i == tx_ring->count)
3398 i = 0;
3402 if (i == 0)
3403 i = tx_ring->count - 1;
3404 else
3405 i--;
3407 tx_ring->buffer_info[i].skb = skb;
3408 tx_ring->buffer_info[first].next_to_watch = i;
3410 return count;
3413 static void e1000_tx_queue(struct e1000_adapter *adapter,
3414 int tx_flags, int count)
3416 struct e1000_ring *tx_ring = adapter->tx_ring;
3417 struct e1000_tx_desc *tx_desc = NULL;
3418 struct e1000_buffer *buffer_info;
3419 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3420 unsigned int i;
3422 if (tx_flags & E1000_TX_FLAGS_TSO) {
3423 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3424 E1000_TXD_CMD_TSE;
3425 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3427 if (tx_flags & E1000_TX_FLAGS_IPV4)
3428 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3431 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3432 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3433 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3436 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3437 txd_lower |= E1000_TXD_CMD_VLE;
3438 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3441 i = tx_ring->next_to_use;
3443 while (count--) {
3444 buffer_info = &tx_ring->buffer_info[i];
3445 tx_desc = E1000_TX_DESC(*tx_ring, i);
3446 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3447 tx_desc->lower.data =
3448 cpu_to_le32(txd_lower | buffer_info->length);
3449 tx_desc->upper.data = cpu_to_le32(txd_upper);
3451 i++;
3452 if (i == tx_ring->count)
3453 i = 0;
3456 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3459 * Force memory writes to complete before letting h/w
3460 * know there are new descriptors to fetch. (Only
3461 * applicable for weak-ordered memory model archs,
3462 * such as IA-64).
3464 wmb();
3466 tx_ring->next_to_use = i;
3467 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3469 * we need this if more than one processor can write to our tail
3470 * at a time, it synchronizes IO on IA64/Altix systems
3472 mmiowb();
3475 #define MINIMUM_DHCP_PACKET_SIZE 282
3476 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3477 struct sk_buff *skb)
3479 struct e1000_hw *hw = &adapter->hw;
3480 u16 length, offset;
3482 if (vlan_tx_tag_present(skb)) {
3483 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3484 && (adapter->hw.mng_cookie.status &
3485 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3486 return 0;
3489 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3490 return 0;
3492 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3493 return 0;
3496 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3497 struct udphdr *udp;
3499 if (ip->protocol != IPPROTO_UDP)
3500 return 0;
3502 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3503 if (ntohs(udp->dest) != 67)
3504 return 0;
3506 offset = (u8 *)udp + 8 - skb->data;
3507 length = skb->len - offset;
3508 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3511 return 0;
3514 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3516 struct e1000_adapter *adapter = netdev_priv(netdev);
3518 netif_stop_queue(netdev);
3520 * Herbert's original patch had:
3521 * smp_mb__after_netif_stop_queue();
3522 * but since that doesn't exist yet, just open code it.
3524 smp_mb();
3527 * We need to check again in a case another CPU has just
3528 * made room available.
3530 if (e1000_desc_unused(adapter->tx_ring) < size)
3531 return -EBUSY;
3533 /* A reprieve! */
3534 netif_start_queue(netdev);
3535 ++adapter->restart_queue;
3536 return 0;
3539 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3541 struct e1000_adapter *adapter = netdev_priv(netdev);
3543 if (e1000_desc_unused(adapter->tx_ring) >= size)
3544 return 0;
3545 return __e1000_maybe_stop_tx(netdev, size);
3548 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3549 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3551 struct e1000_adapter *adapter = netdev_priv(netdev);
3552 struct e1000_ring *tx_ring = adapter->tx_ring;
3553 unsigned int first;
3554 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3555 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3556 unsigned int tx_flags = 0;
3557 unsigned int len = skb->len - skb->data_len;
3558 unsigned long irq_flags;
3559 unsigned int nr_frags;
3560 unsigned int mss;
3561 int count = 0;
3562 int tso;
3563 unsigned int f;
3565 if (test_bit(__E1000_DOWN, &adapter->state)) {
3566 dev_kfree_skb_any(skb);
3567 return NETDEV_TX_OK;
3570 if (skb->len <= 0) {
3571 dev_kfree_skb_any(skb);
3572 return NETDEV_TX_OK;
3575 mss = skb_shinfo(skb)->gso_size;
3577 * The controller does a simple calculation to
3578 * make sure there is enough room in the FIFO before
3579 * initiating the DMA for each buffer. The calc is:
3580 * 4 = ceil(buffer len/mss). To make sure we don't
3581 * overrun the FIFO, adjust the max buffer len if mss
3582 * drops.
3584 if (mss) {
3585 u8 hdr_len;
3586 max_per_txd = min(mss << 2, max_per_txd);
3587 max_txd_pwr = fls(max_per_txd) - 1;
3590 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3591 * points to just header, pull a few bytes of payload from
3592 * frags into skb->data
3594 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3596 * we do this workaround for ES2LAN, but it is un-necessary,
3597 * avoiding it could save a lot of cycles
3599 if (skb->data_len && (hdr_len == len)) {
3600 unsigned int pull_size;
3602 pull_size = min((unsigned int)4, skb->data_len);
3603 if (!__pskb_pull_tail(skb, pull_size)) {
3604 ndev_err(netdev,
3605 "__pskb_pull_tail failed.\n");
3606 dev_kfree_skb_any(skb);
3607 return NETDEV_TX_OK;
3609 len = skb->len - skb->data_len;
3613 /* reserve a descriptor for the offload context */
3614 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3615 count++;
3616 count++;
3618 count += TXD_USE_COUNT(len, max_txd_pwr);
3620 nr_frags = skb_shinfo(skb)->nr_frags;
3621 for (f = 0; f < nr_frags; f++)
3622 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3623 max_txd_pwr);
3625 if (adapter->hw.mac.tx_pkt_filtering)
3626 e1000_transfer_dhcp_info(adapter, skb);
3628 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3629 /* Collision - tell upper layer to requeue */
3630 return NETDEV_TX_LOCKED;
3633 * need: count + 2 desc gap to keep tail from touching
3634 * head, otherwise try next time
3636 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3637 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3638 return NETDEV_TX_BUSY;
3641 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3642 tx_flags |= E1000_TX_FLAGS_VLAN;
3643 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3646 first = tx_ring->next_to_use;
3648 tso = e1000_tso(adapter, skb);
3649 if (tso < 0) {
3650 dev_kfree_skb_any(skb);
3651 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3652 return NETDEV_TX_OK;
3655 if (tso)
3656 tx_flags |= E1000_TX_FLAGS_TSO;
3657 else if (e1000_tx_csum(adapter, skb))
3658 tx_flags |= E1000_TX_FLAGS_CSUM;
3661 * Old method was to assume IPv4 packet by default if TSO was enabled.
3662 * 82571 hardware supports TSO capabilities for IPv6 as well...
3663 * no longer assume, we must.
3665 if (skb->protocol == htons(ETH_P_IP))
3666 tx_flags |= E1000_TX_FLAGS_IPV4;
3668 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3669 if (count < 0) {
3670 /* handle pci_map_single() error in e1000_tx_map */
3671 dev_kfree_skb_any(skb);
3672 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3673 return NETDEV_TX_OK;
3676 e1000_tx_queue(adapter, tx_flags, count);
3678 netdev->trans_start = jiffies;
3680 /* Make sure there is space in the ring for the next send. */
3681 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3683 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3684 return NETDEV_TX_OK;
3688 * e1000_tx_timeout - Respond to a Tx Hang
3689 * @netdev: network interface device structure
3691 static void e1000_tx_timeout(struct net_device *netdev)
3693 struct e1000_adapter *adapter = netdev_priv(netdev);
3695 /* Do the reset outside of interrupt context */
3696 adapter->tx_timeout_count++;
3697 schedule_work(&adapter->reset_task);
3700 static void e1000_reset_task(struct work_struct *work)
3702 struct e1000_adapter *adapter;
3703 adapter = container_of(work, struct e1000_adapter, reset_task);
3705 e1000e_reinit_locked(adapter);
3709 * e1000_get_stats - Get System Network Statistics
3710 * @netdev: network interface device structure
3712 * Returns the address of the device statistics structure.
3713 * The statistics are actually updated from the timer callback.
3715 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3717 struct e1000_adapter *adapter = netdev_priv(netdev);
3719 /* only return the current stats */
3720 return &adapter->net_stats;
3724 * e1000_change_mtu - Change the Maximum Transfer Unit
3725 * @netdev: network interface device structure
3726 * @new_mtu: new value for maximum frame size
3728 * Returns 0 on success, negative on failure
3730 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3732 struct e1000_adapter *adapter = netdev_priv(netdev);
3733 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3735 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3736 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3737 ndev_err(netdev, "Invalid MTU setting\n");
3738 return -EINVAL;
3741 /* Jumbo frame size limits */
3742 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3743 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3744 ndev_err(netdev, "Jumbo Frames not supported.\n");
3745 return -EINVAL;
3747 if (adapter->hw.phy.type == e1000_phy_ife) {
3748 ndev_err(netdev, "Jumbo Frames not supported.\n");
3749 return -EINVAL;
3753 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3754 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3755 ndev_err(netdev, "MTU > 9216 not supported.\n");
3756 return -EINVAL;
3759 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3760 msleep(1);
3761 /* e1000e_down has a dependency on max_frame_size */
3762 adapter->max_frame_size = max_frame;
3763 if (netif_running(netdev))
3764 e1000e_down(adapter);
3767 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3768 * means we reserve 2 more, this pushes us to allocate from the next
3769 * larger slab size.
3770 * i.e. RXBUFFER_2048 --> size-4096 slab
3771 * However with the new *_jumbo_rx* routines, jumbo receives will use
3772 * fragmented skbs
3775 if (max_frame <= 256)
3776 adapter->rx_buffer_len = 256;
3777 else if (max_frame <= 512)
3778 adapter->rx_buffer_len = 512;
3779 else if (max_frame <= 1024)
3780 adapter->rx_buffer_len = 1024;
3781 else if (max_frame <= 2048)
3782 adapter->rx_buffer_len = 2048;
3783 else
3784 adapter->rx_buffer_len = 4096;
3786 /* adjust allocation if LPE protects us, and we aren't using SBP */
3787 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3788 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3789 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3790 + ETH_FCS_LEN;
3792 ndev_info(netdev, "changing MTU from %d to %d\n",
3793 netdev->mtu, new_mtu);
3794 netdev->mtu = new_mtu;
3796 if (netif_running(netdev))
3797 e1000e_up(adapter);
3798 else
3799 e1000e_reset(adapter);
3801 clear_bit(__E1000_RESETTING, &adapter->state);
3803 return 0;
3806 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3807 int cmd)
3809 struct e1000_adapter *adapter = netdev_priv(netdev);
3810 struct mii_ioctl_data *data = if_mii(ifr);
3812 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3813 return -EOPNOTSUPP;
3815 switch (cmd) {
3816 case SIOCGMIIPHY:
3817 data->phy_id = adapter->hw.phy.addr;
3818 break;
3819 case SIOCGMIIREG:
3820 if (!capable(CAP_NET_ADMIN))
3821 return -EPERM;
3822 switch (data->reg_num & 0x1F) {
3823 case MII_BMCR:
3824 data->val_out = adapter->phy_regs.bmcr;
3825 break;
3826 case MII_BMSR:
3827 data->val_out = adapter->phy_regs.bmsr;
3828 break;
3829 case MII_PHYSID1:
3830 data->val_out = (adapter->hw.phy.id >> 16);
3831 break;
3832 case MII_PHYSID2:
3833 data->val_out = (adapter->hw.phy.id & 0xFFFF);
3834 break;
3835 case MII_ADVERTISE:
3836 data->val_out = adapter->phy_regs.advertise;
3837 break;
3838 case MII_LPA:
3839 data->val_out = adapter->phy_regs.lpa;
3840 break;
3841 case MII_EXPANSION:
3842 data->val_out = adapter->phy_regs.expansion;
3843 break;
3844 case MII_CTRL1000:
3845 data->val_out = adapter->phy_regs.ctrl1000;
3846 break;
3847 case MII_STAT1000:
3848 data->val_out = adapter->phy_regs.stat1000;
3849 break;
3850 case MII_ESTATUS:
3851 data->val_out = adapter->phy_regs.estatus;
3852 break;
3853 default:
3854 return -EIO;
3856 break;
3857 case SIOCSMIIREG:
3858 default:
3859 return -EOPNOTSUPP;
3861 return 0;
3864 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3866 switch (cmd) {
3867 case SIOCGMIIPHY:
3868 case SIOCGMIIREG:
3869 case SIOCSMIIREG:
3870 return e1000_mii_ioctl(netdev, ifr, cmd);
3871 default:
3872 return -EOPNOTSUPP;
3876 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3878 struct net_device *netdev = pci_get_drvdata(pdev);
3879 struct e1000_adapter *adapter = netdev_priv(netdev);
3880 struct e1000_hw *hw = &adapter->hw;
3881 u32 ctrl, ctrl_ext, rctl, status;
3882 u32 wufc = adapter->wol;
3883 int retval = 0;
3885 netif_device_detach(netdev);
3887 if (netif_running(netdev)) {
3888 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3889 e1000e_down(adapter);
3890 e1000_free_irq(adapter);
3893 retval = pci_save_state(pdev);
3894 if (retval)
3895 return retval;
3897 status = er32(STATUS);
3898 if (status & E1000_STATUS_LU)
3899 wufc &= ~E1000_WUFC_LNKC;
3901 if (wufc) {
3902 e1000_setup_rctl(adapter);
3903 e1000_set_multi(netdev);
3905 /* turn on all-multi mode if wake on multicast is enabled */
3906 if (wufc & E1000_WUFC_MC) {
3907 rctl = er32(RCTL);
3908 rctl |= E1000_RCTL_MPE;
3909 ew32(RCTL, rctl);
3912 ctrl = er32(CTRL);
3913 /* advertise wake from D3Cold */
3914 #define E1000_CTRL_ADVD3WUC 0x00100000
3915 /* phy power management enable */
3916 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3917 ctrl |= E1000_CTRL_ADVD3WUC |
3918 E1000_CTRL_EN_PHY_PWR_MGMT;
3919 ew32(CTRL, ctrl);
3921 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3922 adapter->hw.phy.media_type ==
3923 e1000_media_type_internal_serdes) {
3924 /* keep the laser running in D3 */
3925 ctrl_ext = er32(CTRL_EXT);
3926 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3927 ew32(CTRL_EXT, ctrl_ext);
3930 if (adapter->flags & FLAG_IS_ICH)
3931 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
3933 /* Allow time for pending master requests to run */
3934 e1000e_disable_pcie_master(&adapter->hw);
3936 ew32(WUC, E1000_WUC_PME_EN);
3937 ew32(WUFC, wufc);
3938 pci_enable_wake(pdev, PCI_D3hot, 1);
3939 pci_enable_wake(pdev, PCI_D3cold, 1);
3940 } else {
3941 ew32(WUC, 0);
3942 ew32(WUFC, 0);
3943 pci_enable_wake(pdev, PCI_D3hot, 0);
3944 pci_enable_wake(pdev, PCI_D3cold, 0);
3947 /* make sure adapter isn't asleep if manageability is enabled */
3948 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3949 pci_enable_wake(pdev, PCI_D3hot, 1);
3950 pci_enable_wake(pdev, PCI_D3cold, 1);
3953 if (adapter->hw.phy.type == e1000_phy_igp_3)
3954 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3957 * Release control of h/w to f/w. If f/w is AMT enabled, this
3958 * would have already happened in close and is redundant.
3960 e1000_release_hw_control(adapter);
3962 pci_disable_device(pdev);
3964 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3966 return 0;
3969 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3971 int pos;
3972 u16 val;
3975 * 82573 workaround - disable L1 ASPM on mobile chipsets
3977 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3978 * resulting in lost data or garbage information on the pci-e link
3979 * level. This could result in (false) bad EEPROM checksum errors,
3980 * long ping times (up to 2s) or even a system freeze/hang.
3982 * Unfortunately this feature saves about 1W power consumption when
3983 * active.
3985 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3986 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3987 if (val & 0x2) {
3988 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3989 val &= ~0x2;
3990 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3994 #ifdef CONFIG_PM
3995 static int e1000_resume(struct pci_dev *pdev)
3997 struct net_device *netdev = pci_get_drvdata(pdev);
3998 struct e1000_adapter *adapter = netdev_priv(netdev);
3999 struct e1000_hw *hw = &adapter->hw;
4000 u32 err;
4002 pci_set_power_state(pdev, PCI_D0);
4003 pci_restore_state(pdev);
4004 e1000e_disable_l1aspm(pdev);
4005 err = pci_enable_device(pdev);
4006 if (err) {
4007 dev_err(&pdev->dev,
4008 "Cannot enable PCI device from suspend\n");
4009 return err;
4012 pci_set_master(pdev);
4014 pci_enable_wake(pdev, PCI_D3hot, 0);
4015 pci_enable_wake(pdev, PCI_D3cold, 0);
4017 if (netif_running(netdev)) {
4018 err = e1000_request_irq(adapter);
4019 if (err)
4020 return err;
4023 e1000e_power_up_phy(adapter);
4024 e1000e_reset(adapter);
4025 ew32(WUS, ~0);
4027 e1000_init_manageability(adapter);
4029 if (netif_running(netdev))
4030 e1000e_up(adapter);
4032 netif_device_attach(netdev);
4035 * If the controller has AMT, do not set DRV_LOAD until the interface
4036 * is up. For all other cases, let the f/w know that the h/w is now
4037 * under the control of the driver.
4039 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
4040 e1000_get_hw_control(adapter);
4042 return 0;
4044 #endif
4046 static void e1000_shutdown(struct pci_dev *pdev)
4048 e1000_suspend(pdev, PMSG_SUSPEND);
4051 #ifdef CONFIG_NET_POLL_CONTROLLER
4053 * Polling 'interrupt' - used by things like netconsole to send skbs
4054 * without having to re-enable interrupts. It's not called while
4055 * the interrupt routine is executing.
4057 static void e1000_netpoll(struct net_device *netdev)
4059 struct e1000_adapter *adapter = netdev_priv(netdev);
4061 disable_irq(adapter->pdev->irq);
4062 e1000_intr(adapter->pdev->irq, netdev);
4064 e1000_clean_tx_irq(adapter);
4066 enable_irq(adapter->pdev->irq);
4068 #endif
4071 * e1000_io_error_detected - called when PCI error is detected
4072 * @pdev: Pointer to PCI device
4073 * @state: The current pci connection state
4075 * This function is called after a PCI bus error affecting
4076 * this device has been detected.
4078 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4079 pci_channel_state_t state)
4081 struct net_device *netdev = pci_get_drvdata(pdev);
4082 struct e1000_adapter *adapter = netdev_priv(netdev);
4084 netif_device_detach(netdev);
4086 if (netif_running(netdev))
4087 e1000e_down(adapter);
4088 pci_disable_device(pdev);
4090 /* Request a slot slot reset. */
4091 return PCI_ERS_RESULT_NEED_RESET;
4095 * e1000_io_slot_reset - called after the pci bus has been reset.
4096 * @pdev: Pointer to PCI device
4098 * Restart the card from scratch, as if from a cold-boot. Implementation
4099 * resembles the first-half of the e1000_resume routine.
4101 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4103 struct net_device *netdev = pci_get_drvdata(pdev);
4104 struct e1000_adapter *adapter = netdev_priv(netdev);
4105 struct e1000_hw *hw = &adapter->hw;
4107 e1000e_disable_l1aspm(pdev);
4108 if (pci_enable_device(pdev)) {
4109 dev_err(&pdev->dev,
4110 "Cannot re-enable PCI device after reset.\n");
4111 return PCI_ERS_RESULT_DISCONNECT;
4113 pci_set_master(pdev);
4114 pci_restore_state(pdev);
4116 pci_enable_wake(pdev, PCI_D3hot, 0);
4117 pci_enable_wake(pdev, PCI_D3cold, 0);
4119 e1000e_reset(adapter);
4120 ew32(WUS, ~0);
4122 return PCI_ERS_RESULT_RECOVERED;
4126 * e1000_io_resume - called when traffic can start flowing again.
4127 * @pdev: Pointer to PCI device
4129 * This callback is called when the error recovery driver tells us that
4130 * its OK to resume normal operation. Implementation resembles the
4131 * second-half of the e1000_resume routine.
4133 static void e1000_io_resume(struct pci_dev *pdev)
4135 struct net_device *netdev = pci_get_drvdata(pdev);
4136 struct e1000_adapter *adapter = netdev_priv(netdev);
4138 e1000_init_manageability(adapter);
4140 if (netif_running(netdev)) {
4141 if (e1000e_up(adapter)) {
4142 dev_err(&pdev->dev,
4143 "can't bring device back up after reset\n");
4144 return;
4148 netif_device_attach(netdev);
4151 * If the controller has AMT, do not set DRV_LOAD until the interface
4152 * is up. For all other cases, let the f/w know that the h/w is now
4153 * under the control of the driver.
4155 if (!(adapter->flags & FLAG_HAS_AMT) ||
4156 !e1000e_check_mng_mode(&adapter->hw))
4157 e1000_get_hw_control(adapter);
4161 static void e1000_print_device_info(struct e1000_adapter *adapter)
4163 struct e1000_hw *hw = &adapter->hw;
4164 struct net_device *netdev = adapter->netdev;
4165 u32 pba_num;
4167 /* print bus type/speed/width info */
4168 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
4169 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4170 /* bus width */
4171 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4172 "Width x1"),
4173 /* MAC address */
4174 netdev->dev_addr[0], netdev->dev_addr[1],
4175 netdev->dev_addr[2], netdev->dev_addr[3],
4176 netdev->dev_addr[4], netdev->dev_addr[5]);
4177 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
4178 (hw->phy.type == e1000_phy_ife)
4179 ? "10/100" : "1000");
4180 e1000e_read_pba_num(hw, &pba_num);
4181 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4182 hw->mac.type, hw->phy.type,
4183 (pba_num >> 8), (pba_num & 0xff));
4187 * e1000_probe - Device Initialization Routine
4188 * @pdev: PCI device information struct
4189 * @ent: entry in e1000_pci_tbl
4191 * Returns 0 on success, negative on failure
4193 * e1000_probe initializes an adapter identified by a pci_dev structure.
4194 * The OS initialization, configuring of the adapter private structure,
4195 * and a hardware reset occur.
4197 static int __devinit e1000_probe(struct pci_dev *pdev,
4198 const struct pci_device_id *ent)
4200 struct net_device *netdev;
4201 struct e1000_adapter *adapter;
4202 struct e1000_hw *hw;
4203 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4204 resource_size_t mmio_start, mmio_len;
4205 resource_size_t flash_start, flash_len;
4207 static int cards_found;
4208 int i, err, pci_using_dac;
4209 u16 eeprom_data = 0;
4210 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4212 e1000e_disable_l1aspm(pdev);
4213 err = pci_enable_device(pdev);
4214 if (err)
4215 return err;
4217 pci_using_dac = 0;
4218 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4219 if (!err) {
4220 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4221 if (!err)
4222 pci_using_dac = 1;
4223 } else {
4224 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4225 if (err) {
4226 err = pci_set_consistent_dma_mask(pdev,
4227 DMA_32BIT_MASK);
4228 if (err) {
4229 dev_err(&pdev->dev, "No usable DMA "
4230 "configuration, aborting\n");
4231 goto err_dma;
4236 err = pci_request_regions(pdev, e1000e_driver_name);
4237 if (err)
4238 goto err_pci_reg;
4240 pci_set_master(pdev);
4241 pci_save_state(pdev);
4243 err = -ENOMEM;
4244 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4245 if (!netdev)
4246 goto err_alloc_etherdev;
4248 SET_NETDEV_DEV(netdev, &pdev->dev);
4250 pci_set_drvdata(pdev, netdev);
4251 adapter = netdev_priv(netdev);
4252 hw = &adapter->hw;
4253 adapter->netdev = netdev;
4254 adapter->pdev = pdev;
4255 adapter->ei = ei;
4256 adapter->pba = ei->pba;
4257 adapter->flags = ei->flags;
4258 adapter->hw.adapter = adapter;
4259 adapter->hw.mac.type = ei->mac;
4260 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4262 mmio_start = pci_resource_start(pdev, 0);
4263 mmio_len = pci_resource_len(pdev, 0);
4265 err = -EIO;
4266 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4267 if (!adapter->hw.hw_addr)
4268 goto err_ioremap;
4270 if ((adapter->flags & FLAG_HAS_FLASH) &&
4271 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4272 flash_start = pci_resource_start(pdev, 1);
4273 flash_len = pci_resource_len(pdev, 1);
4274 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4275 if (!adapter->hw.flash_address)
4276 goto err_flashmap;
4279 /* construct the net_device struct */
4280 netdev->open = &e1000_open;
4281 netdev->stop = &e1000_close;
4282 netdev->hard_start_xmit = &e1000_xmit_frame;
4283 netdev->get_stats = &e1000_get_stats;
4284 netdev->set_multicast_list = &e1000_set_multi;
4285 netdev->set_mac_address = &e1000_set_mac;
4286 netdev->change_mtu = &e1000_change_mtu;
4287 netdev->do_ioctl = &e1000_ioctl;
4288 e1000e_set_ethtool_ops(netdev);
4289 netdev->tx_timeout = &e1000_tx_timeout;
4290 netdev->watchdog_timeo = 5 * HZ;
4291 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4292 netdev->vlan_rx_register = e1000_vlan_rx_register;
4293 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4294 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4295 #ifdef CONFIG_NET_POLL_CONTROLLER
4296 netdev->poll_controller = e1000_netpoll;
4297 #endif
4298 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4300 netdev->mem_start = mmio_start;
4301 netdev->mem_end = mmio_start + mmio_len;
4303 adapter->bd_number = cards_found++;
4305 /* setup adapter struct */
4306 err = e1000_sw_init(adapter);
4307 if (err)
4308 goto err_sw_init;
4310 err = -EIO;
4312 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4313 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4314 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4316 err = ei->get_variants(adapter);
4317 if (err)
4318 goto err_hw_init;
4320 hw->mac.ops.get_bus_info(&adapter->hw);
4322 adapter->hw.phy.autoneg_wait_to_complete = 0;
4324 /* Copper options */
4325 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4326 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4327 adapter->hw.phy.disable_polarity_correction = 0;
4328 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4331 if (e1000_check_reset_block(&adapter->hw))
4332 ndev_info(netdev,
4333 "PHY reset is blocked due to SOL/IDER session.\n");
4335 netdev->features = NETIF_F_SG |
4336 NETIF_F_HW_CSUM |
4337 NETIF_F_HW_VLAN_TX |
4338 NETIF_F_HW_VLAN_RX;
4340 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4341 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4343 netdev->features |= NETIF_F_TSO;
4344 netdev->features |= NETIF_F_TSO6;
4346 if (pci_using_dac)
4347 netdev->features |= NETIF_F_HIGHDMA;
4350 * We should not be using LLTX anymore, but we are still Tx faster with
4351 * it.
4353 netdev->features |= NETIF_F_LLTX;
4355 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4356 adapter->flags |= FLAG_MNG_PT_ENABLED;
4359 * before reading the NVM, reset the controller to
4360 * put the device in a known good starting state
4362 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4365 * systems with ASPM and others may see the checksum fail on the first
4366 * attempt. Let's give it a few tries
4368 for (i = 0;; i++) {
4369 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4370 break;
4371 if (i == 2) {
4372 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
4373 err = -EIO;
4374 goto err_eeprom;
4378 /* copy the MAC address out of the NVM */
4379 if (e1000e_read_mac_addr(&adapter->hw))
4380 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
4382 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4383 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4385 if (!is_valid_ether_addr(netdev->perm_addr)) {
4386 ndev_err(netdev, "Invalid MAC Address: "
4387 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4388 netdev->perm_addr[0], netdev->perm_addr[1],
4389 netdev->perm_addr[2], netdev->perm_addr[3],
4390 netdev->perm_addr[4], netdev->perm_addr[5]);
4391 err = -EIO;
4392 goto err_eeprom;
4395 init_timer(&adapter->watchdog_timer);
4396 adapter->watchdog_timer.function = &e1000_watchdog;
4397 adapter->watchdog_timer.data = (unsigned long) adapter;
4399 init_timer(&adapter->phy_info_timer);
4400 adapter->phy_info_timer.function = &e1000_update_phy_info;
4401 adapter->phy_info_timer.data = (unsigned long) adapter;
4403 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4404 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4406 e1000e_check_options(adapter);
4408 /* Initialize link parameters. User can change them with ethtool */
4409 adapter->hw.mac.autoneg = 1;
4410 adapter->fc_autoneg = 1;
4411 adapter->hw.fc.original_type = e1000_fc_default;
4412 adapter->hw.fc.type = e1000_fc_default;
4413 adapter->hw.phy.autoneg_advertised = 0x2f;
4415 /* ring size defaults */
4416 adapter->rx_ring->count = 256;
4417 adapter->tx_ring->count = 256;
4420 * Initial Wake on LAN setting - If APM wake is enabled in
4421 * the EEPROM, enable the ACPI Magic Packet filter
4423 if (adapter->flags & FLAG_APME_IN_WUC) {
4424 /* APME bit in EEPROM is mapped to WUC.APME */
4425 eeprom_data = er32(WUC);
4426 eeprom_apme_mask = E1000_WUC_APME;
4427 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4428 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4429 (adapter->hw.bus.func == 1))
4430 e1000_read_nvm(&adapter->hw,
4431 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4432 else
4433 e1000_read_nvm(&adapter->hw,
4434 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4437 /* fetch WoL from EEPROM */
4438 if (eeprom_data & eeprom_apme_mask)
4439 adapter->eeprom_wol |= E1000_WUFC_MAG;
4442 * now that we have the eeprom settings, apply the special cases
4443 * where the eeprom may be wrong or the board simply won't support
4444 * wake on lan on a particular port
4446 if (!(adapter->flags & FLAG_HAS_WOL))
4447 adapter->eeprom_wol = 0;
4449 /* initialize the wol settings based on the eeprom settings */
4450 adapter->wol = adapter->eeprom_wol;
4452 /* reset the hardware with the new settings */
4453 e1000e_reset(adapter);
4456 * If the controller has AMT, do not set DRV_LOAD until the interface
4457 * is up. For all other cases, let the f/w know that the h/w is now
4458 * under the control of the driver.
4460 if (!(adapter->flags & FLAG_HAS_AMT) ||
4461 !e1000e_check_mng_mode(&adapter->hw))
4462 e1000_get_hw_control(adapter);
4464 /* tell the stack to leave us alone until e1000_open() is called */
4465 netif_carrier_off(netdev);
4466 netif_stop_queue(netdev);
4468 strcpy(netdev->name, "eth%d");
4469 err = register_netdev(netdev);
4470 if (err)
4471 goto err_register;
4473 e1000_print_device_info(adapter);
4475 return 0;
4477 err_register:
4478 err_hw_init:
4479 e1000_release_hw_control(adapter);
4480 err_eeprom:
4481 if (!e1000_check_reset_block(&adapter->hw))
4482 e1000_phy_hw_reset(&adapter->hw);
4484 if (adapter->hw.flash_address)
4485 iounmap(adapter->hw.flash_address);
4487 err_flashmap:
4488 kfree(adapter->tx_ring);
4489 kfree(adapter->rx_ring);
4490 err_sw_init:
4491 iounmap(adapter->hw.hw_addr);
4492 err_ioremap:
4493 free_netdev(netdev);
4494 err_alloc_etherdev:
4495 pci_release_regions(pdev);
4496 err_pci_reg:
4497 err_dma:
4498 pci_disable_device(pdev);
4499 return err;
4503 * e1000_remove - Device Removal Routine
4504 * @pdev: PCI device information struct
4506 * e1000_remove is called by the PCI subsystem to alert the driver
4507 * that it should release a PCI device. The could be caused by a
4508 * Hot-Plug event, or because the driver is going to be removed from
4509 * memory.
4511 static void __devexit e1000_remove(struct pci_dev *pdev)
4513 struct net_device *netdev = pci_get_drvdata(pdev);
4514 struct e1000_adapter *adapter = netdev_priv(netdev);
4517 * flush_scheduled work may reschedule our watchdog task, so
4518 * explicitly disable watchdog tasks from being rescheduled
4520 set_bit(__E1000_DOWN, &adapter->state);
4521 del_timer_sync(&adapter->watchdog_timer);
4522 del_timer_sync(&adapter->phy_info_timer);
4524 flush_scheduled_work();
4527 * Release control of h/w to f/w. If f/w is AMT enabled, this
4528 * would have already happened in close and is redundant.
4530 e1000_release_hw_control(adapter);
4532 unregister_netdev(netdev);
4534 if (!e1000_check_reset_block(&adapter->hw))
4535 e1000_phy_hw_reset(&adapter->hw);
4537 kfree(adapter->tx_ring);
4538 kfree(adapter->rx_ring);
4540 iounmap(adapter->hw.hw_addr);
4541 if (adapter->hw.flash_address)
4542 iounmap(adapter->hw.flash_address);
4543 pci_release_regions(pdev);
4545 free_netdev(netdev);
4547 pci_disable_device(pdev);
4550 /* PCI Error Recovery (ERS) */
4551 static struct pci_error_handlers e1000_err_handler = {
4552 .error_detected = e1000_io_error_detected,
4553 .slot_reset = e1000_io_slot_reset,
4554 .resume = e1000_io_resume,
4557 static struct pci_device_id e1000_pci_tbl[] = {
4558 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4559 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4560 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4561 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4562 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4563 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4564 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4565 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4566 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4568 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4569 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4570 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4571 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4573 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4574 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4575 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4577 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4578 board_80003es2lan },
4579 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4580 board_80003es2lan },
4581 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4582 board_80003es2lan },
4583 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4584 board_80003es2lan },
4586 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4587 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4588 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4589 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4590 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4591 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4592 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4594 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4595 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4596 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4597 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4598 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4599 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4600 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4601 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4603 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4604 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4605 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
4607 { } /* terminate list */
4609 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4611 /* PCI Device API Driver */
4612 static struct pci_driver e1000_driver = {
4613 .name = e1000e_driver_name,
4614 .id_table = e1000_pci_tbl,
4615 .probe = e1000_probe,
4616 .remove = __devexit_p(e1000_remove),
4617 #ifdef CONFIG_PM
4618 /* Power Management Hooks */
4619 .suspend = e1000_suspend,
4620 .resume = e1000_resume,
4621 #endif
4622 .shutdown = e1000_shutdown,
4623 .err_handler = &e1000_err_handler
4627 * e1000_init_module - Driver Registration Routine
4629 * e1000_init_module is the first routine called when the driver is
4630 * loaded. All it does is register with the PCI subsystem.
4632 static int __init e1000_init_module(void)
4634 int ret;
4635 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4636 e1000e_driver_name, e1000e_driver_version);
4637 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4638 e1000e_driver_name);
4639 ret = pci_register_driver(&e1000_driver);
4640 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4641 PM_QOS_DEFAULT_VALUE);
4643 return ret;
4645 module_init(e1000_init_module);
4648 * e1000_exit_module - Driver Exit Cleanup Routine
4650 * e1000_exit_module is called just before the driver is removed
4651 * from memory.
4653 static void __exit e1000_exit_module(void)
4655 pci_unregister_driver(&e1000_driver);
4656 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
4658 module_exit(e1000_exit_module);
4661 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4662 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4663 MODULE_LICENSE("GPL");
4664 MODULE_VERSION(DRV_VERSION);
4666 /* e1000_main.c */