1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
50 #define DRV_VERSION "0.3.3.3-k2"
51 char e1000e_driver_name
[] = "e1000e";
52 const char e1000e_driver_version
[] = DRV_VERSION
;
54 static const struct e1000_info
*e1000_info_tbl
[] = {
55 [board_82571
] = &e1000_82571_info
,
56 [board_82572
] = &e1000_82572_info
,
57 [board_82573
] = &e1000_82573_info
,
58 [board_80003es2lan
] = &e1000_es2_info
,
59 [board_ich8lan
] = &e1000_ich8_info
,
60 [board_ich9lan
] = &e1000_ich9_info
,
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
68 char *e1000e_get_hw_dev_name(struct e1000_hw
*hw
)
70 return hw
->adapter
->netdev
->name
;
75 * e1000_desc_unused - calculate if we have unused descriptors
77 static int e1000_desc_unused(struct e1000_ring
*ring
)
79 if (ring
->next_to_clean
> ring
->next_to_use
)
80 return ring
->next_to_clean
- ring
->next_to_use
- 1;
82 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
86 * e1000_receive_skb - helper function to handle Rx indications
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
92 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
93 struct net_device
*netdev
,
95 u8 status
, __le16 vlan
)
97 skb
->protocol
= eth_type_trans(skb
, netdev
);
99 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
100 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
102 E1000_RXD_SPC_VLAN_MASK
);
104 netif_receive_skb(skb
);
106 netdev
->last_rx
= jiffies
;
110 * e1000_rx_checksum - Receive Checksum Offload for 82543
111 * @adapter: board private structure
112 * @status_err: receive descriptor status and error fields
113 * @csum: receive descriptor csum field
114 * @sk_buff: socket buffer with received data
116 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
117 u32 csum
, struct sk_buff
*skb
)
119 u16 status
= (u16
)status_err
;
120 u8 errors
= (u8
)(status_err
>> 24);
121 skb
->ip_summed
= CHECKSUM_NONE
;
123 /* Ignore Checksum bit is set */
124 if (status
& E1000_RXD_STAT_IXSM
)
126 /* TCP/UDP checksum error bit is set */
127 if (errors
& E1000_RXD_ERR_TCPE
) {
128 /* let the stack verify checksum errors */
129 adapter
->hw_csum_err
++;
133 /* TCP/UDP Checksum has not been calculated */
134 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
137 /* It must be a TCP or UDP packet with a valid checksum */
138 if (status
& E1000_RXD_STAT_TCPCS
) {
139 /* TCP checksum is good */
140 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
143 * IP fragment with UDP payload
144 * Hardware complements the payload checksum, so we undo it
145 * and then put the value in host order for further stack use.
147 __sum16 sum
= (__force __sum16
)htons(csum
);
148 skb
->csum
= csum_unfold(~sum
);
149 skb
->ip_summed
= CHECKSUM_COMPLETE
;
151 adapter
->hw_csum_good
++;
155 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
156 * @adapter: address of board private structure
158 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
161 struct net_device
*netdev
= adapter
->netdev
;
162 struct pci_dev
*pdev
= adapter
->pdev
;
163 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
164 struct e1000_rx_desc
*rx_desc
;
165 struct e1000_buffer
*buffer_info
;
168 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
170 i
= rx_ring
->next_to_use
;
171 buffer_info
= &rx_ring
->buffer_info
[i
];
173 while (cleaned_count
--) {
174 skb
= buffer_info
->skb
;
180 skb
= netdev_alloc_skb(netdev
, bufsz
);
182 /* Better luck next round */
183 adapter
->alloc_rx_buff_failed
++;
188 * Make buffer alignment 2 beyond a 16 byte boundary
189 * this will result in a 16 byte aligned IP header after
190 * the 14 byte MAC header is removed
192 skb_reserve(skb
, NET_IP_ALIGN
);
194 buffer_info
->skb
= skb
;
196 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
197 adapter
->rx_buffer_len
,
199 if (pci_dma_mapping_error(buffer_info
->dma
)) {
200 dev_err(&pdev
->dev
, "RX DMA map failed\n");
201 adapter
->rx_dma_failed
++;
205 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
206 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
209 if (i
== rx_ring
->count
)
211 buffer_info
= &rx_ring
->buffer_info
[i
];
214 if (rx_ring
->next_to_use
!= i
) {
215 rx_ring
->next_to_use
= i
;
217 i
= (rx_ring
->count
- 1);
220 * Force memory writes to complete before letting h/w
221 * know there are new descriptors to fetch. (Only
222 * applicable for weak-ordered memory model archs,
226 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
231 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
232 * @adapter: address of board private structure
234 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
237 struct net_device
*netdev
= adapter
->netdev
;
238 struct pci_dev
*pdev
= adapter
->pdev
;
239 union e1000_rx_desc_packet_split
*rx_desc
;
240 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
241 struct e1000_buffer
*buffer_info
;
242 struct e1000_ps_page
*ps_page
;
246 i
= rx_ring
->next_to_use
;
247 buffer_info
= &rx_ring
->buffer_info
[i
];
249 while (cleaned_count
--) {
250 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
252 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
253 ps_page
= &buffer_info
->ps_pages
[j
];
254 if (j
>= adapter
->rx_ps_pages
) {
255 /* all unused desc entries get hw null ptr */
256 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
259 if (!ps_page
->page
) {
260 ps_page
->page
= alloc_page(GFP_ATOMIC
);
261 if (!ps_page
->page
) {
262 adapter
->alloc_rx_buff_failed
++;
265 ps_page
->dma
= pci_map_page(pdev
,
269 if (pci_dma_mapping_error(ps_page
->dma
)) {
270 dev_err(&adapter
->pdev
->dev
,
271 "RX DMA page map failed\n");
272 adapter
->rx_dma_failed
++;
277 * Refresh the desc even if buffer_addrs
278 * didn't change because each write-back
281 rx_desc
->read
.buffer_addr
[j
+1] =
282 cpu_to_le64(ps_page
->dma
);
285 skb
= netdev_alloc_skb(netdev
,
286 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
289 adapter
->alloc_rx_buff_failed
++;
294 * Make buffer alignment 2 beyond a 16 byte boundary
295 * this will result in a 16 byte aligned IP header after
296 * the 14 byte MAC header is removed
298 skb_reserve(skb
, NET_IP_ALIGN
);
300 buffer_info
->skb
= skb
;
301 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
302 adapter
->rx_ps_bsize0
,
304 if (pci_dma_mapping_error(buffer_info
->dma
)) {
305 dev_err(&pdev
->dev
, "RX DMA map failed\n");
306 adapter
->rx_dma_failed
++;
308 dev_kfree_skb_any(skb
);
309 buffer_info
->skb
= NULL
;
313 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
316 if (i
== rx_ring
->count
)
318 buffer_info
= &rx_ring
->buffer_info
[i
];
322 if (rx_ring
->next_to_use
!= i
) {
323 rx_ring
->next_to_use
= i
;
326 i
= (rx_ring
->count
- 1);
329 * Force memory writes to complete before letting h/w
330 * know there are new descriptors to fetch. (Only
331 * applicable for weak-ordered memory model archs,
336 * Hardware increments by 16 bytes, but packet split
337 * descriptors are 32 bytes...so we increment tail
340 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
345 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
346 * @adapter: address of board private structure
347 * @rx_ring: pointer to receive ring structure
348 * @cleaned_count: number of buffers to allocate this pass
351 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
354 struct net_device
*netdev
= adapter
->netdev
;
355 struct pci_dev
*pdev
= adapter
->pdev
;
356 struct e1000_rx_desc
*rx_desc
;
357 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
358 struct e1000_buffer
*buffer_info
;
361 unsigned int bufsz
= 256 -
362 16 /* for skb_reserve */ -
365 i
= rx_ring
->next_to_use
;
366 buffer_info
= &rx_ring
->buffer_info
[i
];
368 while (cleaned_count
--) {
369 skb
= buffer_info
->skb
;
375 skb
= netdev_alloc_skb(netdev
, bufsz
);
376 if (unlikely(!skb
)) {
377 /* Better luck next round */
378 adapter
->alloc_rx_buff_failed
++;
382 /* Make buffer alignment 2 beyond a 16 byte boundary
383 * this will result in a 16 byte aligned IP header after
384 * the 14 byte MAC header is removed
386 skb_reserve(skb
, NET_IP_ALIGN
);
388 buffer_info
->skb
= skb
;
390 /* allocate a new page if necessary */
391 if (!buffer_info
->page
) {
392 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
393 if (unlikely(!buffer_info
->page
)) {
394 adapter
->alloc_rx_buff_failed
++;
399 if (!buffer_info
->dma
)
400 buffer_info
->dma
= pci_map_page(pdev
,
401 buffer_info
->page
, 0,
405 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
406 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
408 if (unlikely(++i
== rx_ring
->count
))
410 buffer_info
= &rx_ring
->buffer_info
[i
];
413 if (likely(rx_ring
->next_to_use
!= i
)) {
414 rx_ring
->next_to_use
= i
;
415 if (unlikely(i
-- == 0))
416 i
= (rx_ring
->count
- 1);
418 /* Force memory writes to complete before letting h/w
419 * know there are new descriptors to fetch. (Only
420 * applicable for weak-ordered memory model archs,
423 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
428 * e1000_clean_rx_irq - Send received data up the network stack; legacy
429 * @adapter: board private structure
431 * the return value indicates whether actual cleaning was done, there
432 * is no guarantee that everything was cleaned
434 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
435 int *work_done
, int work_to_do
)
437 struct net_device
*netdev
= adapter
->netdev
;
438 struct pci_dev
*pdev
= adapter
->pdev
;
439 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
440 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
441 struct e1000_buffer
*buffer_info
, *next_buffer
;
444 int cleaned_count
= 0;
446 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
448 i
= rx_ring
->next_to_clean
;
449 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
450 buffer_info
= &rx_ring
->buffer_info
[i
];
452 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
456 if (*work_done
>= work_to_do
)
460 status
= rx_desc
->status
;
461 skb
= buffer_info
->skb
;
462 buffer_info
->skb
= NULL
;
464 prefetch(skb
->data
- NET_IP_ALIGN
);
467 if (i
== rx_ring
->count
)
469 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
472 next_buffer
= &rx_ring
->buffer_info
[i
];
476 pci_unmap_single(pdev
,
478 adapter
->rx_buffer_len
,
480 buffer_info
->dma
= 0;
482 length
= le16_to_cpu(rx_desc
->length
);
484 /* !EOP means multiple descriptors were used to store a single
485 * packet, also make sure the frame isn't just CRC only */
486 if (!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4)) {
487 /* All receives must fit into a single buffer */
488 ndev_dbg(netdev
, "%s: Receive packet consumed "
489 "multiple buffers\n", netdev
->name
);
491 buffer_info
->skb
= skb
;
495 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
497 buffer_info
->skb
= skb
;
501 total_rx_bytes
+= length
;
505 * code added for copybreak, this should improve
506 * performance for small packets with large amounts
507 * of reassembly being done in the stack
509 if (length
< copybreak
) {
510 struct sk_buff
*new_skb
=
511 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
513 skb_reserve(new_skb
, NET_IP_ALIGN
);
514 memcpy(new_skb
->data
- NET_IP_ALIGN
,
515 skb
->data
- NET_IP_ALIGN
,
516 length
+ NET_IP_ALIGN
);
517 /* save the skb in buffer_info as good */
518 buffer_info
->skb
= skb
;
521 /* else just continue with the old one */
523 /* end copybreak code */
524 skb_put(skb
, length
);
526 /* Receive Checksum Offload */
527 e1000_rx_checksum(adapter
,
529 ((u32
)(rx_desc
->errors
) << 24),
530 le16_to_cpu(rx_desc
->csum
), skb
);
532 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
537 /* return some buffers to hardware, one at a time is too slow */
538 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
539 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
543 /* use prefetched values */
545 buffer_info
= next_buffer
;
547 rx_ring
->next_to_clean
= i
;
549 cleaned_count
= e1000_desc_unused(rx_ring
);
551 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
553 adapter
->total_rx_bytes
+= total_rx_bytes
;
554 adapter
->total_rx_packets
+= total_rx_packets
;
555 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
556 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
560 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
561 struct e1000_buffer
*buffer_info
)
563 if (buffer_info
->dma
) {
564 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
565 buffer_info
->length
, PCI_DMA_TODEVICE
);
566 buffer_info
->dma
= 0;
568 if (buffer_info
->skb
) {
569 dev_kfree_skb_any(buffer_info
->skb
);
570 buffer_info
->skb
= NULL
;
574 static void e1000_print_tx_hang(struct e1000_adapter
*adapter
)
576 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
577 unsigned int i
= tx_ring
->next_to_clean
;
578 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
579 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
580 struct net_device
*netdev
= adapter
->netdev
;
582 /* detected Tx unit hang */
584 "Detected Tx Unit Hang:\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
593 " next_to_watch.status <%x>\n",
594 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
595 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
596 tx_ring
->next_to_use
,
597 tx_ring
->next_to_clean
,
598 tx_ring
->buffer_info
[eop
].time_stamp
,
601 eop_desc
->upper
.fields
.status
);
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
611 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
613 struct net_device
*netdev
= adapter
->netdev
;
614 struct e1000_hw
*hw
= &adapter
->hw
;
615 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
616 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
617 struct e1000_buffer
*buffer_info
;
619 unsigned int count
= 0;
621 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
623 i
= tx_ring
->next_to_clean
;
624 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
625 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
627 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
628 for (cleaned
= 0; !cleaned
; ) {
629 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
630 buffer_info
= &tx_ring
->buffer_info
[i
];
631 cleaned
= (i
== eop
);
634 struct sk_buff
*skb
= buffer_info
->skb
;
635 unsigned int segs
, bytecount
;
636 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
637 /* multiply data chunks by size of headers */
638 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
640 total_tx_packets
+= segs
;
641 total_tx_bytes
+= bytecount
;
644 e1000_put_txbuf(adapter
, buffer_info
);
645 tx_desc
->upper
.data
= 0;
648 if (i
== tx_ring
->count
)
652 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
653 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
654 #define E1000_TX_WEIGHT 64
655 /* weight of a sort for tx, to avoid endless transmit cleanup */
656 if (count
++ == E1000_TX_WEIGHT
)
660 tx_ring
->next_to_clean
= i
;
662 #define TX_WAKE_THRESHOLD 32
663 if (cleaned
&& netif_carrier_ok(netdev
) &&
664 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
665 /* Make sure that anybody stopping the queue after this
666 * sees the new next_to_clean.
670 if (netif_queue_stopped(netdev
) &&
671 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
672 netif_wake_queue(netdev
);
673 ++adapter
->restart_queue
;
677 if (adapter
->detect_tx_hung
) {
679 * Detect a transmit hang in hardware, this serializes the
680 * check with the clearing of time_stamp and movement of i
682 adapter
->detect_tx_hung
= 0;
683 if (tx_ring
->buffer_info
[eop
].dma
&&
684 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
685 + (adapter
->tx_timeout_factor
* HZ
))
686 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
687 e1000_print_tx_hang(adapter
);
688 netif_stop_queue(netdev
);
691 adapter
->total_tx_bytes
+= total_tx_bytes
;
692 adapter
->total_tx_packets
+= total_tx_packets
;
693 adapter
->net_stats
.tx_bytes
+= total_tx_bytes
;
694 adapter
->net_stats
.tx_packets
+= total_tx_packets
;
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
706 int *work_done
, int work_to_do
)
708 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
709 struct net_device
*netdev
= adapter
->netdev
;
710 struct pci_dev
*pdev
= adapter
->pdev
;
711 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
712 struct e1000_buffer
*buffer_info
, *next_buffer
;
713 struct e1000_ps_page
*ps_page
;
717 int cleaned_count
= 0;
719 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
721 i
= rx_ring
->next_to_clean
;
722 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
723 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
724 buffer_info
= &rx_ring
->buffer_info
[i
];
726 while (staterr
& E1000_RXD_STAT_DD
) {
727 if (*work_done
>= work_to_do
)
730 skb
= buffer_info
->skb
;
732 /* in the packet split case this is header only */
733 prefetch(skb
->data
- NET_IP_ALIGN
);
736 if (i
== rx_ring
->count
)
738 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
741 next_buffer
= &rx_ring
->buffer_info
[i
];
745 pci_unmap_single(pdev
, buffer_info
->dma
,
746 adapter
->rx_ps_bsize0
,
748 buffer_info
->dma
= 0;
750 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
751 ndev_dbg(netdev
, "%s: Packet Split buffers didn't pick "
752 "up the full packet\n", netdev
->name
);
753 dev_kfree_skb_irq(skb
);
757 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
758 dev_kfree_skb_irq(skb
);
762 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
765 ndev_dbg(netdev
, "%s: Last part of the packet spanning"
766 " multiple descriptors\n", netdev
->name
);
767 dev_kfree_skb_irq(skb
);
772 skb_put(skb
, length
);
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
779 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
786 if (l1
&& (l1
<= copybreak
) &&
787 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
790 ps_page
= &buffer_info
->ps_pages
[0];
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
797 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
798 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
799 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
800 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
801 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
802 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
803 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
810 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
811 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
815 ps_page
= &buffer_info
->ps_pages
[j
];
816 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
819 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
820 ps_page
->page
= NULL
;
822 skb
->data_len
+= length
;
823 skb
->truesize
+= length
;
827 total_rx_bytes
+= skb
->len
;
830 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
831 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
833 if (rx_desc
->wb
.upper
.header_status
&
834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
835 adapter
->rx_hdr_split
++;
837 e1000_receive_skb(adapter
, netdev
, skb
,
838 staterr
, rx_desc
->wb
.middle
.vlan
);
841 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
842 buffer_info
->skb
= NULL
;
844 /* return some buffers to hardware, one at a time is too slow */
845 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
846 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
850 /* use prefetched values */
852 buffer_info
= next_buffer
;
854 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
856 rx_ring
->next_to_clean
= i
;
858 cleaned_count
= e1000_desc_unused(rx_ring
);
860 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
862 adapter
->total_rx_bytes
+= total_rx_bytes
;
863 adapter
->total_rx_packets
+= total_rx_packets
;
864 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
865 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
870 * e1000_consume_page - helper function
872 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
877 skb
->data_len
+= length
;
878 skb
->truesize
+= length
;
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
889 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
890 int *work_done
, int work_to_do
)
892 struct net_device
*netdev
= adapter
->netdev
;
893 struct pci_dev
*pdev
= adapter
->pdev
;
894 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
895 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
896 struct e1000_buffer
*buffer_info
, *next_buffer
;
899 int cleaned_count
= 0;
900 bool cleaned
= false;
901 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
903 i
= rx_ring
->next_to_clean
;
904 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
905 buffer_info
= &rx_ring
->buffer_info
[i
];
907 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
911 if (*work_done
>= work_to_do
)
915 status
= rx_desc
->status
;
916 skb
= buffer_info
->skb
;
917 buffer_info
->skb
= NULL
;
920 if (i
== rx_ring
->count
)
922 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
925 next_buffer
= &rx_ring
->buffer_info
[i
];
929 pci_unmap_page(pdev
, buffer_info
->dma
, PAGE_SIZE
,
931 buffer_info
->dma
= 0;
933 length
= le16_to_cpu(rx_desc
->length
);
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
937 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
938 /* recycle both page and skb */
939 buffer_info
->skb
= skb
;
940 /* an error means any chain goes out the window
942 if (rx_ring
->rx_skb_top
)
943 dev_kfree_skb(rx_ring
->rx_skb_top
);
944 rx_ring
->rx_skb_top
= NULL
;
948 #define rxtop rx_ring->rx_skb_top
949 if (!(status
& E1000_RXD_STAT_EOP
)) {
950 /* this descriptor is only the beginning (or middle) */
952 /* this is the beginning of a chain */
954 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop
,
959 skb_shinfo(rxtop
)->nr_frags
,
960 buffer_info
->page
, 0, length
);
961 /* re-use the skb, only consumed the page */
962 buffer_info
->skb
= skb
;
964 e1000_consume_page(buffer_info
, rxtop
, length
);
968 /* end of the chain */
969 skb_fill_page_desc(rxtop
,
970 skb_shinfo(rxtop
)->nr_frags
,
971 buffer_info
->page
, 0, length
);
972 /* re-use the current skb, we only consumed the
974 buffer_info
->skb
= skb
;
977 e1000_consume_page(buffer_info
, skb
, length
);
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length
<= copybreak
&&
982 skb_tailroom(skb
) >= length
) {
984 vaddr
= kmap_atomic(buffer_info
->page
,
985 KM_SKB_DATA_SOFTIRQ
);
986 memcpy(skb_tail_pointer(skb
), vaddr
,
989 KM_SKB_DATA_SOFTIRQ
);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb
, length
);
994 skb_fill_page_desc(skb
, 0,
995 buffer_info
->page
, 0,
997 e1000_consume_page(buffer_info
, skb
,
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter
,
1006 ((u32
)(rx_desc
->errors
) << 24),
1007 le16_to_cpu(rx_desc
->csum
), skb
);
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes
+= skb
->len
;
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1015 ndev_err(netdev
, "pskb_may_pull failed.\n");
1020 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1024 rx_desc
->status
= 0;
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1028 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1032 /* use prefetched values */
1034 buffer_info
= next_buffer
;
1036 rx_ring
->next_to_clean
= i
;
1038 cleaned_count
= e1000_desc_unused(rx_ring
);
1040 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1042 adapter
->total_rx_bytes
+= total_rx_bytes
;
1043 adapter
->total_rx_packets
+= total_rx_packets
;
1044 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
1045 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1051 * @adapter: board private structure
1053 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1055 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1056 struct e1000_buffer
*buffer_info
;
1057 struct e1000_ps_page
*ps_page
;
1058 struct pci_dev
*pdev
= adapter
->pdev
;
1061 /* Free all the Rx ring sk_buffs */
1062 for (i
= 0; i
< rx_ring
->count
; i
++) {
1063 buffer_info
= &rx_ring
->buffer_info
[i
];
1064 if (buffer_info
->dma
) {
1065 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1066 pci_unmap_single(pdev
, buffer_info
->dma
,
1067 adapter
->rx_buffer_len
,
1068 PCI_DMA_FROMDEVICE
);
1069 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1070 pci_unmap_page(pdev
, buffer_info
->dma
,
1072 PCI_DMA_FROMDEVICE
);
1073 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1074 pci_unmap_single(pdev
, buffer_info
->dma
,
1075 adapter
->rx_ps_bsize0
,
1076 PCI_DMA_FROMDEVICE
);
1077 buffer_info
->dma
= 0;
1080 if (buffer_info
->page
) {
1081 put_page(buffer_info
->page
);
1082 buffer_info
->page
= NULL
;
1085 if (buffer_info
->skb
) {
1086 dev_kfree_skb(buffer_info
->skb
);
1087 buffer_info
->skb
= NULL
;
1090 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1091 ps_page
= &buffer_info
->ps_pages
[j
];
1094 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
1095 PCI_DMA_FROMDEVICE
);
1097 put_page(ps_page
->page
);
1098 ps_page
->page
= NULL
;
1102 /* there also may be some cached data from a chained receive */
1103 if (rx_ring
->rx_skb_top
) {
1104 dev_kfree_skb(rx_ring
->rx_skb_top
);
1105 rx_ring
->rx_skb_top
= NULL
;
1108 /* Zero out the descriptor ring */
1109 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1111 rx_ring
->next_to_clean
= 0;
1112 rx_ring
->next_to_use
= 0;
1114 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1115 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1119 * e1000_intr_msi - Interrupt Handler
1120 * @irq: interrupt number
1121 * @data: pointer to a network interface device structure
1123 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1125 struct net_device
*netdev
= data
;
1126 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1127 struct e1000_hw
*hw
= &adapter
->hw
;
1128 u32 icr
= er32(ICR
);
1131 * read ICR disables interrupts using IAM
1134 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
1135 hw
->mac
.get_link_status
= 1;
1137 * ICH8 workaround-- Call gig speed drop workaround on cable
1138 * disconnect (LSC) before accessing any PHY registers
1140 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1141 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1142 e1000e_gig_downshift_workaround_ich8lan(hw
);
1145 * 80003ES2LAN workaround-- For packet buffer work-around on
1146 * link down event; disable receives here in the ISR and reset
1147 * adapter in watchdog
1149 if (netif_carrier_ok(netdev
) &&
1150 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1151 /* disable receives */
1152 u32 rctl
= er32(RCTL
);
1153 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1154 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1156 /* guard against interrupt when we're going down */
1157 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1158 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1161 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
1162 adapter
->total_tx_bytes
= 0;
1163 adapter
->total_tx_packets
= 0;
1164 adapter
->total_rx_bytes
= 0;
1165 adapter
->total_rx_packets
= 0;
1166 __netif_rx_schedule(netdev
, &adapter
->napi
);
1173 * e1000_intr - Interrupt Handler
1174 * @irq: interrupt number
1175 * @data: pointer to a network interface device structure
1177 static irqreturn_t
e1000_intr(int irq
, void *data
)
1179 struct net_device
*netdev
= data
;
1180 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1181 struct e1000_hw
*hw
= &adapter
->hw
;
1183 u32 rctl
, icr
= er32(ICR
);
1185 return IRQ_NONE
; /* Not our interrupt */
1188 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1189 * not set, then the adapter didn't send an interrupt
1191 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1195 * Interrupt Auto-Mask...upon reading ICR,
1196 * interrupts are masked. No need for the
1200 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
1201 hw
->mac
.get_link_status
= 1;
1203 * ICH8 workaround-- Call gig speed drop workaround on cable
1204 * disconnect (LSC) before accessing any PHY registers
1206 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1207 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1208 e1000e_gig_downshift_workaround_ich8lan(hw
);
1211 * 80003ES2LAN workaround--
1212 * For packet buffer work-around on link down event;
1213 * disable receives here in the ISR and
1214 * reset adapter in watchdog
1216 if (netif_carrier_ok(netdev
) &&
1217 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1218 /* disable receives */
1220 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1221 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1223 /* guard against interrupt when we're going down */
1224 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1225 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1228 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
1229 adapter
->total_tx_bytes
= 0;
1230 adapter
->total_tx_packets
= 0;
1231 adapter
->total_rx_bytes
= 0;
1232 adapter
->total_rx_packets
= 0;
1233 __netif_rx_schedule(netdev
, &adapter
->napi
);
1239 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1241 struct net_device
*netdev
= adapter
->netdev
;
1242 irq_handler_t handler
= e1000_intr
;
1243 int irq_flags
= IRQF_SHARED
;
1246 if (!pci_enable_msi(adapter
->pdev
)) {
1247 adapter
->flags
|= FLAG_MSI_ENABLED
;
1248 handler
= e1000_intr_msi
;
1252 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
1256 "Unable to allocate %s interrupt (return: %d)\n",
1257 adapter
->flags
& FLAG_MSI_ENABLED
? "MSI":"INTx",
1259 if (adapter
->flags
& FLAG_MSI_ENABLED
)
1260 pci_disable_msi(adapter
->pdev
);
1266 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1268 struct net_device
*netdev
= adapter
->netdev
;
1270 free_irq(adapter
->pdev
->irq
, netdev
);
1271 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1272 pci_disable_msi(adapter
->pdev
);
1273 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1278 * e1000_irq_disable - Mask off interrupt generation on the NIC
1280 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1282 struct e1000_hw
*hw
= &adapter
->hw
;
1286 synchronize_irq(adapter
->pdev
->irq
);
1290 * e1000_irq_enable - Enable default interrupt generation settings
1292 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1294 struct e1000_hw
*hw
= &adapter
->hw
;
1296 ew32(IMS
, IMS_ENABLE_MASK
);
1301 * e1000_get_hw_control - get control of the h/w from f/w
1302 * @adapter: address of board private structure
1304 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1305 * For ASF and Pass Through versions of f/w this means that
1306 * the driver is loaded. For AMT version (only with 82573)
1307 * of the f/w this means that the network i/f is open.
1309 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1311 struct e1000_hw
*hw
= &adapter
->hw
;
1315 /* Let firmware know the driver has taken over */
1316 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1318 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1319 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1320 ctrl_ext
= er32(CTRL_EXT
);
1321 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1326 * e1000_release_hw_control - release control of the h/w to f/w
1327 * @adapter: address of board private structure
1329 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1330 * For ASF and Pass Through versions of f/w this means that the
1331 * driver is no longer loaded. For AMT version (only with 82573) i
1332 * of the f/w this means that the network i/f is closed.
1335 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1337 struct e1000_hw
*hw
= &adapter
->hw
;
1341 /* Let firmware taken over control of h/w */
1342 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1344 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1345 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1346 ctrl_ext
= er32(CTRL_EXT
);
1347 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1352 * @e1000_alloc_ring - allocate memory for a ring structure
1354 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1355 struct e1000_ring
*ring
)
1357 struct pci_dev
*pdev
= adapter
->pdev
;
1359 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1368 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1369 * @adapter: board private structure
1371 * Return 0 on success, negative on failure
1373 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1375 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1376 int err
= -ENOMEM
, size
;
1378 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1379 tx_ring
->buffer_info
= vmalloc(size
);
1380 if (!tx_ring
->buffer_info
)
1382 memset(tx_ring
->buffer_info
, 0, size
);
1384 /* round up to nearest 4K */
1385 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1386 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1388 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1392 tx_ring
->next_to_use
= 0;
1393 tx_ring
->next_to_clean
= 0;
1394 spin_lock_init(&adapter
->tx_queue_lock
);
1398 vfree(tx_ring
->buffer_info
);
1399 ndev_err(adapter
->netdev
,
1400 "Unable to allocate memory for the transmit descriptor ring\n");
1405 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1406 * @adapter: board private structure
1408 * Returns 0 on success, negative on failure
1410 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1412 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1413 struct e1000_buffer
*buffer_info
;
1414 int i
, size
, desc_len
, err
= -ENOMEM
;
1416 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1417 rx_ring
->buffer_info
= vmalloc(size
);
1418 if (!rx_ring
->buffer_info
)
1420 memset(rx_ring
->buffer_info
, 0, size
);
1422 for (i
= 0; i
< rx_ring
->count
; i
++) {
1423 buffer_info
= &rx_ring
->buffer_info
[i
];
1424 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
1425 sizeof(struct e1000_ps_page
),
1427 if (!buffer_info
->ps_pages
)
1431 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1433 /* Round up to nearest 4K */
1434 rx_ring
->size
= rx_ring
->count
* desc_len
;
1435 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1437 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1441 rx_ring
->next_to_clean
= 0;
1442 rx_ring
->next_to_use
= 0;
1443 rx_ring
->rx_skb_top
= NULL
;
1448 for (i
= 0; i
< rx_ring
->count
; i
++) {
1449 buffer_info
= &rx_ring
->buffer_info
[i
];
1450 kfree(buffer_info
->ps_pages
);
1453 vfree(rx_ring
->buffer_info
);
1454 ndev_err(adapter
->netdev
,
1455 "Unable to allocate memory for the transmit descriptor ring\n");
1460 * e1000_clean_tx_ring - Free Tx Buffers
1461 * @adapter: board private structure
1463 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1465 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1466 struct e1000_buffer
*buffer_info
;
1470 for (i
= 0; i
< tx_ring
->count
; i
++) {
1471 buffer_info
= &tx_ring
->buffer_info
[i
];
1472 e1000_put_txbuf(adapter
, buffer_info
);
1475 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1476 memset(tx_ring
->buffer_info
, 0, size
);
1478 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1480 tx_ring
->next_to_use
= 0;
1481 tx_ring
->next_to_clean
= 0;
1483 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1484 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1488 * e1000e_free_tx_resources - Free Tx Resources per Queue
1489 * @adapter: board private structure
1491 * Free all transmit software resources
1493 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1495 struct pci_dev
*pdev
= adapter
->pdev
;
1496 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1498 e1000_clean_tx_ring(adapter
);
1500 vfree(tx_ring
->buffer_info
);
1501 tx_ring
->buffer_info
= NULL
;
1503 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1505 tx_ring
->desc
= NULL
;
1509 * e1000e_free_rx_resources - Free Rx Resources
1510 * @adapter: board private structure
1512 * Free all receive software resources
1515 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1517 struct pci_dev
*pdev
= adapter
->pdev
;
1518 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1521 e1000_clean_rx_ring(adapter
);
1523 for (i
= 0; i
< rx_ring
->count
; i
++) {
1524 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
1527 vfree(rx_ring
->buffer_info
);
1528 rx_ring
->buffer_info
= NULL
;
1530 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1532 rx_ring
->desc
= NULL
;
1536 * e1000_update_itr - update the dynamic ITR value based on statistics
1537 * @adapter: pointer to adapter
1538 * @itr_setting: current adapter->itr
1539 * @packets: the number of packets during this measurement interval
1540 * @bytes: the number of bytes during this measurement interval
1542 * Stores a new ITR value based on packets and byte
1543 * counts during the last interrupt. The advantage of per interrupt
1544 * computation is faster updates and more accurate ITR for the current
1545 * traffic pattern. Constants in this function were computed
1546 * based on theoretical maximum wire speed and thresholds were set based
1547 * on testing data as well as attempting to minimize response time
1548 * while increasing bulk throughput.
1549 * this functionality is controlled by the InterruptThrottleRate module
1550 * parameter (see e1000_param.c)
1552 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1553 u16 itr_setting
, int packets
,
1556 unsigned int retval
= itr_setting
;
1559 goto update_itr_done
;
1561 switch (itr_setting
) {
1562 case lowest_latency
:
1563 /* handle TSO and jumbo frames */
1564 if (bytes
/packets
> 8000)
1565 retval
= bulk_latency
;
1566 else if ((packets
< 5) && (bytes
> 512)) {
1567 retval
= low_latency
;
1570 case low_latency
: /* 50 usec aka 20000 ints/s */
1571 if (bytes
> 10000) {
1572 /* this if handles the TSO accounting */
1573 if (bytes
/packets
> 8000) {
1574 retval
= bulk_latency
;
1575 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1576 retval
= bulk_latency
;
1577 } else if ((packets
> 35)) {
1578 retval
= lowest_latency
;
1580 } else if (bytes
/packets
> 2000) {
1581 retval
= bulk_latency
;
1582 } else if (packets
<= 2 && bytes
< 512) {
1583 retval
= lowest_latency
;
1586 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1587 if (bytes
> 25000) {
1589 retval
= low_latency
;
1591 } else if (bytes
< 6000) {
1592 retval
= low_latency
;
1601 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1603 struct e1000_hw
*hw
= &adapter
->hw
;
1605 u32 new_itr
= adapter
->itr
;
1607 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1608 if (adapter
->link_speed
!= SPEED_1000
) {
1614 adapter
->tx_itr
= e1000_update_itr(adapter
,
1616 adapter
->total_tx_packets
,
1617 adapter
->total_tx_bytes
);
1618 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1619 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1620 adapter
->tx_itr
= low_latency
;
1622 adapter
->rx_itr
= e1000_update_itr(adapter
,
1624 adapter
->total_rx_packets
,
1625 adapter
->total_rx_bytes
);
1626 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1627 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1628 adapter
->rx_itr
= low_latency
;
1630 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1632 switch (current_itr
) {
1633 /* counts and packets in update_itr are dependent on these numbers */
1634 case lowest_latency
:
1638 new_itr
= 20000; /* aka hwitr = ~200 */
1648 if (new_itr
!= adapter
->itr
) {
1650 * this attempts to bias the interrupt rate towards Bulk
1651 * by adding intermediate steps when interrupt rate is
1654 new_itr
= new_itr
> adapter
->itr
?
1655 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1657 adapter
->itr
= new_itr
;
1658 ew32(ITR
, 1000000000 / (new_itr
* 256));
1663 * e1000_clean - NAPI Rx polling callback
1664 * @napi: struct associated with this polling callback
1665 * @budget: amount of packets driver is allowed to process this poll
1667 static int e1000_clean(struct napi_struct
*napi
, int budget
)
1669 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
1670 struct net_device
*poll_dev
= adapter
->netdev
;
1671 int tx_cleaned
= 0, work_done
= 0;
1673 /* Must NOT use netdev_priv macro here. */
1674 adapter
= poll_dev
->priv
;
1677 * e1000_clean is called per-cpu. This lock protects
1678 * tx_ring from being cleaned by multiple cpus
1679 * simultaneously. A failure obtaining the lock means
1680 * tx_ring is currently being cleaned anyway.
1682 if (spin_trylock(&adapter
->tx_queue_lock
)) {
1683 tx_cleaned
= e1000_clean_tx_irq(adapter
);
1684 spin_unlock(&adapter
->tx_queue_lock
);
1687 adapter
->clean_rx(adapter
, &work_done
, budget
);
1692 /* If budget not fully consumed, exit the polling mode */
1693 if (work_done
< budget
) {
1694 if (adapter
->itr_setting
& 3)
1695 e1000_set_itr(adapter
);
1696 netif_rx_complete(poll_dev
, napi
);
1697 e1000_irq_enable(adapter
);
1703 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1705 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1706 struct e1000_hw
*hw
= &adapter
->hw
;
1709 /* don't update vlan cookie if already programmed */
1710 if ((adapter
->hw
.mng_cookie
.status
&
1711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1712 (vid
== adapter
->mng_vlan_id
))
1714 /* add VID to filter table */
1715 index
= (vid
>> 5) & 0x7F;
1716 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1717 vfta
|= (1 << (vid
& 0x1F));
1718 e1000e_write_vfta(hw
, index
, vfta
);
1721 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1723 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1724 struct e1000_hw
*hw
= &adapter
->hw
;
1727 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1728 e1000_irq_disable(adapter
);
1729 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1731 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1732 e1000_irq_enable(adapter
);
1734 if ((adapter
->hw
.mng_cookie
.status
&
1735 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1736 (vid
== adapter
->mng_vlan_id
)) {
1737 /* release control to f/w */
1738 e1000_release_hw_control(adapter
);
1742 /* remove VID from filter table */
1743 index
= (vid
>> 5) & 0x7F;
1744 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1745 vfta
&= ~(1 << (vid
& 0x1F));
1746 e1000e_write_vfta(hw
, index
, vfta
);
1749 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
1751 struct net_device
*netdev
= adapter
->netdev
;
1752 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
1753 u16 old_vid
= adapter
->mng_vlan_id
;
1755 if (!adapter
->vlgrp
)
1758 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
1759 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1760 if (adapter
->hw
.mng_cookie
.status
&
1761 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
1762 e1000_vlan_rx_add_vid(netdev
, vid
);
1763 adapter
->mng_vlan_id
= vid
;
1766 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
1768 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
1769 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
1771 adapter
->mng_vlan_id
= vid
;
1776 static void e1000_vlan_rx_register(struct net_device
*netdev
,
1777 struct vlan_group
*grp
)
1779 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1780 struct e1000_hw
*hw
= &adapter
->hw
;
1783 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1784 e1000_irq_disable(adapter
);
1785 adapter
->vlgrp
= grp
;
1788 /* enable VLAN tag insert/strip */
1790 ctrl
|= E1000_CTRL_VME
;
1793 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1794 /* enable VLAN receive filtering */
1796 rctl
|= E1000_RCTL_VFE
;
1797 rctl
&= ~E1000_RCTL_CFIEN
;
1799 e1000_update_mng_vlan(adapter
);
1802 /* disable VLAN tag insert/strip */
1804 ctrl
&= ~E1000_CTRL_VME
;
1807 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1808 /* disable VLAN filtering */
1810 rctl
&= ~E1000_RCTL_VFE
;
1812 if (adapter
->mng_vlan_id
!=
1813 (u16
)E1000_MNG_VLAN_NONE
) {
1814 e1000_vlan_rx_kill_vid(netdev
,
1815 adapter
->mng_vlan_id
);
1816 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1821 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1822 e1000_irq_enable(adapter
);
1825 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
1829 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
1831 if (!adapter
->vlgrp
)
1834 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
1835 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1837 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
1841 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
1843 struct e1000_hw
*hw
= &adapter
->hw
;
1846 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
1852 * enable receiving management packets to the host. this will probably
1853 * generate destination unreachable messages from the host OS, but
1854 * the packets will be handled on SMBUS
1856 manc
|= E1000_MANC_EN_MNG2HOST
;
1857 manc2h
= er32(MANC2H
);
1858 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1859 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1860 manc2h
|= E1000_MNG2HOST_PORT_623
;
1861 manc2h
|= E1000_MNG2HOST_PORT_664
;
1862 ew32(MANC2H
, manc2h
);
1867 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1868 * @adapter: board private structure
1870 * Configure the Tx unit of the MAC after a reset.
1872 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1874 struct e1000_hw
*hw
= &adapter
->hw
;
1875 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1877 u32 tdlen
, tctl
, tipg
, tarc
;
1880 /* Setup the HW Tx Head and Tail descriptor pointers */
1881 tdba
= tx_ring
->dma
;
1882 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1883 ew32(TDBAL
, (tdba
& DMA_32BIT_MASK
));
1884 ew32(TDBAH
, (tdba
>> 32));
1888 tx_ring
->head
= E1000_TDH
;
1889 tx_ring
->tail
= E1000_TDT
;
1891 /* Set the default values for the Tx Inter Packet Gap timer */
1892 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
1893 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
1894 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
1896 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
1897 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
1899 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1900 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1903 /* Set the Tx Interrupt Delay register */
1904 ew32(TIDV
, adapter
->tx_int_delay
);
1905 /* Tx irq moderation */
1906 ew32(TADV
, adapter
->tx_abs_int_delay
);
1908 /* Program the Transmit Control Register */
1910 tctl
&= ~E1000_TCTL_CT
;
1911 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1912 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1914 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
1915 tarc
= er32(TARC(0));
1917 * set the speed mode bit, we'll clear it if we're not at
1918 * gigabit link later
1920 #define SPEED_MODE_BIT (1 << 21)
1921 tarc
|= SPEED_MODE_BIT
;
1922 ew32(TARC(0), tarc
);
1925 /* errata: program both queues to unweighted RR */
1926 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
1927 tarc
= er32(TARC(0));
1929 ew32(TARC(0), tarc
);
1930 tarc
= er32(TARC(1));
1932 ew32(TARC(1), tarc
);
1935 e1000e_config_collision_dist(hw
);
1937 /* Setup Transmit Descriptor Settings for eop descriptor */
1938 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1940 /* only set IDE if we are delaying interrupts using the timers */
1941 if (adapter
->tx_int_delay
)
1942 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1944 /* enable Report Status bit */
1945 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1949 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
1953 * e1000_setup_rctl - configure the receive control registers
1954 * @adapter: Board private structure
1956 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1957 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1958 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1960 struct e1000_hw
*hw
= &adapter
->hw
;
1965 /* Program MC offset vector base */
1967 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1968 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1969 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1970 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1972 /* Do not Store bad packets */
1973 rctl
&= ~E1000_RCTL_SBP
;
1975 /* Enable Long Packet receive */
1976 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1977 rctl
&= ~E1000_RCTL_LPE
;
1979 rctl
|= E1000_RCTL_LPE
;
1981 /* Enable hardware CRC frame stripping */
1982 rctl
|= E1000_RCTL_SECRC
;
1984 /* Setup buffer sizes */
1985 rctl
&= ~E1000_RCTL_SZ_4096
;
1986 rctl
|= E1000_RCTL_BSEX
;
1987 switch (adapter
->rx_buffer_len
) {
1989 rctl
|= E1000_RCTL_SZ_256
;
1990 rctl
&= ~E1000_RCTL_BSEX
;
1993 rctl
|= E1000_RCTL_SZ_512
;
1994 rctl
&= ~E1000_RCTL_BSEX
;
1997 rctl
|= E1000_RCTL_SZ_1024
;
1998 rctl
&= ~E1000_RCTL_BSEX
;
2002 rctl
|= E1000_RCTL_SZ_2048
;
2003 rctl
&= ~E1000_RCTL_BSEX
;
2006 rctl
|= E1000_RCTL_SZ_4096
;
2009 rctl
|= E1000_RCTL_SZ_8192
;
2012 rctl
|= E1000_RCTL_SZ_16384
;
2017 * 82571 and greater support packet-split where the protocol
2018 * header is placed in skb->data and the packet data is
2019 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2020 * In the case of a non-split, skb->data is linearly filled,
2021 * followed by the page buffers. Therefore, skb->data is
2022 * sized to hold the largest protocol header.
2024 * allocations using alloc_page take too long for regular MTU
2025 * so only enable packet split for jumbo frames
2027 * Using pages when the page size is greater than 16k wastes
2028 * a lot of memory, since we allocate 3 pages at all times
2031 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2032 if (!(adapter
->flags
& FLAG_IS_ICH
) && (pages
<= 3) &&
2033 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2034 adapter
->rx_ps_pages
= pages
;
2036 adapter
->rx_ps_pages
= 0;
2038 if (adapter
->rx_ps_pages
) {
2039 /* Configure extra packet-split registers */
2040 rfctl
= er32(RFCTL
);
2041 rfctl
|= E1000_RFCTL_EXTEN
;
2043 * disable packet split support for IPv6 extension headers,
2044 * because some malformed IPv6 headers can hang the Rx
2046 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2047 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2051 /* Enable Packet split descriptors */
2052 rctl
|= E1000_RCTL_DTYP_PS
;
2054 psrctl
|= adapter
->rx_ps_bsize0
>>
2055 E1000_PSRCTL_BSIZE0_SHIFT
;
2057 switch (adapter
->rx_ps_pages
) {
2059 psrctl
|= PAGE_SIZE
<<
2060 E1000_PSRCTL_BSIZE3_SHIFT
;
2062 psrctl
|= PAGE_SIZE
<<
2063 E1000_PSRCTL_BSIZE2_SHIFT
;
2065 psrctl
|= PAGE_SIZE
>>
2066 E1000_PSRCTL_BSIZE1_SHIFT
;
2070 ew32(PSRCTL
, psrctl
);
2074 /* just started the receive unit, no need to restart */
2075 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2079 * e1000_configure_rx - Configure Receive Unit after Reset
2080 * @adapter: board private structure
2082 * Configure the Rx unit of the MAC after a reset.
2084 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2086 struct e1000_hw
*hw
= &adapter
->hw
;
2087 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2089 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2091 if (adapter
->rx_ps_pages
) {
2092 /* this is a 32 byte descriptor */
2093 rdlen
= rx_ring
->count
*
2094 sizeof(union e1000_rx_desc_packet_split
);
2095 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2096 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2097 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2098 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2099 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2100 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2102 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2103 adapter
->clean_rx
= e1000_clean_rx_irq
;
2104 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2107 /* disable receives while setting up the descriptors */
2109 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2113 /* set the Receive Delay Timer Register */
2114 ew32(RDTR
, adapter
->rx_int_delay
);
2116 /* irq moderation */
2117 ew32(RADV
, adapter
->rx_abs_int_delay
);
2118 if (adapter
->itr_setting
!= 0)
2119 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2121 ctrl_ext
= er32(CTRL_EXT
);
2122 /* Reset delay timers after every interrupt */
2123 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2124 /* Auto-Mask interrupts upon ICR access */
2125 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2126 ew32(IAM
, 0xffffffff);
2127 ew32(CTRL_EXT
, ctrl_ext
);
2131 * Setup the HW Rx Head and Tail Descriptor Pointers and
2132 * the Base and Length of the Rx Descriptor Ring
2134 rdba
= rx_ring
->dma
;
2135 ew32(RDBAL
, (rdba
& DMA_32BIT_MASK
));
2136 ew32(RDBAH
, (rdba
>> 32));
2140 rx_ring
->head
= E1000_RDH
;
2141 rx_ring
->tail
= E1000_RDT
;
2143 /* Enable Receive Checksum Offload for TCP and UDP */
2144 rxcsum
= er32(RXCSUM
);
2145 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2146 rxcsum
|= E1000_RXCSUM_TUOFL
;
2149 * IPv4 payload checksum for UDP fragments must be
2150 * used in conjunction with packet-split.
2152 if (adapter
->rx_ps_pages
)
2153 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2155 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2156 /* no need to clear IPPCSE as it defaults to 0 */
2158 ew32(RXCSUM
, rxcsum
);
2161 * Enable early receives on supported devices, only takes effect when
2162 * packet size is equal or larger than the specified value (in 8 byte
2163 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2165 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2166 (adapter
->netdev
->mtu
> ETH_DATA_LEN
)) {
2167 u32 rxdctl
= er32(RXDCTL(0));
2168 ew32(RXDCTL(0), rxdctl
| 0x3);
2169 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2171 * With jumbo frames and early-receive enabled, excessive
2172 * C4->C2 latencies result in dropped transactions.
2174 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2175 e1000e_driver_name
, 55);
2177 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2179 PM_QOS_DEFAULT_VALUE
);
2182 /* Enable Receives */
2187 * e1000_update_mc_addr_list - Update Multicast addresses
2188 * @hw: pointer to the HW structure
2189 * @mc_addr_list: array of multicast addresses to program
2190 * @mc_addr_count: number of multicast addresses to program
2191 * @rar_used_count: the first RAR register free to program
2192 * @rar_count: total number of supported Receive Address Registers
2194 * Updates the Receive Address Registers and Multicast Table Array.
2195 * The caller must have a packed mc_addr_list of multicast addresses.
2196 * The parameter rar_count will usually be hw->mac.rar_entry_count
2197 * unless there are workarounds that change this. Currently no func pointer
2198 * exists and all implementations are handled in the generic version of this
2201 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
2202 u32 mc_addr_count
, u32 rar_used_count
,
2205 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
,
2206 rar_used_count
, rar_count
);
2210 * e1000_set_multi - Multicast and Promiscuous mode set
2211 * @netdev: network interface device structure
2213 * The set_multi entry point is called whenever the multicast address
2214 * list or the network interface flags are updated. This routine is
2215 * responsible for configuring the hardware for proper multicast,
2216 * promiscuous mode, and all-multi behavior.
2218 static void e1000_set_multi(struct net_device
*netdev
)
2220 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2221 struct e1000_hw
*hw
= &adapter
->hw
;
2222 struct e1000_mac_info
*mac
= &hw
->mac
;
2223 struct dev_mc_list
*mc_ptr
;
2228 /* Check for Promiscuous and All Multicast modes */
2232 if (netdev
->flags
& IFF_PROMISC
) {
2233 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2234 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2235 rctl
|= E1000_RCTL_MPE
;
2236 rctl
&= ~E1000_RCTL_UPE
;
2238 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2243 if (netdev
->mc_count
) {
2244 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2248 /* prepare a packed array of only addresses. */
2249 mc_ptr
= netdev
->mc_list
;
2251 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2254 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
2256 mc_ptr
= mc_ptr
->next
;
2259 e1000_update_mc_addr_list(hw
, mta_list
, i
, 1,
2260 mac
->rar_entry_count
);
2264 * if we're called from probe, we might not have
2265 * anything to do here, so clear out the list
2267 e1000_update_mc_addr_list(hw
, NULL
, 0, 1, mac
->rar_entry_count
);
2272 * e1000_configure - configure the hardware for Rx and Tx
2273 * @adapter: private board structure
2275 static void e1000_configure(struct e1000_adapter
*adapter
)
2277 e1000_set_multi(adapter
->netdev
);
2279 e1000_restore_vlan(adapter
);
2280 e1000_init_manageability(adapter
);
2282 e1000_configure_tx(adapter
);
2283 e1000_setup_rctl(adapter
);
2284 e1000_configure_rx(adapter
);
2285 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
2289 * e1000e_power_up_phy - restore link in case the phy was powered down
2290 * @adapter: address of board private structure
2292 * The phy may be powered down to save power and turn off link when the
2293 * driver is unloaded and wake on lan is not enabled (among others)
2294 * *** this routine MUST be followed by a call to e1000e_reset ***
2296 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
2300 /* Just clear the power down bit to wake the phy back up */
2301 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
2303 * According to the manual, the phy will retain its
2304 * settings across a power-down/up cycle
2306 e1e_rphy(&adapter
->hw
, PHY_CONTROL
, &mii_reg
);
2307 mii_reg
&= ~MII_CR_POWER_DOWN
;
2308 e1e_wphy(&adapter
->hw
, PHY_CONTROL
, mii_reg
);
2311 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
2315 * e1000_power_down_phy - Power down the PHY
2317 * Power down the PHY so no link is implied when interface is down
2318 * The PHY cannot be powered down is management or WoL is active
2320 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2322 struct e1000_hw
*hw
= &adapter
->hw
;
2325 /* WoL is enabled */
2329 /* non-copper PHY? */
2330 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
2333 /* reset is blocked because of a SoL/IDER session */
2334 if (e1000e_check_mng_mode(hw
) || e1000_check_reset_block(hw
))
2337 /* manageability (AMT) is enabled */
2338 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
2341 /* power down the PHY */
2342 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2343 mii_reg
|= MII_CR_POWER_DOWN
;
2344 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2349 * e1000e_reset - bring the hardware into a known good state
2351 * This function boots the hardware and enables some settings that
2352 * require a configuration cycle of the hardware - those cannot be
2353 * set/changed during runtime. After reset the device needs to be
2354 * properly configured for Rx, Tx etc.
2356 void e1000e_reset(struct e1000_adapter
*adapter
)
2358 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2359 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
2360 struct e1000_hw
*hw
= &adapter
->hw
;
2361 u32 tx_space
, min_tx_space
, min_rx_space
;
2362 u32 pba
= adapter
->pba
;
2365 /* reset Packet Buffer Allocation to default */
2368 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2370 * To maintain wire speed transmits, the Tx FIFO should be
2371 * large enough to accommodate two full transmit packets,
2372 * rounded up to the next 1KB and expressed in KB. Likewise,
2373 * the Rx FIFO should be large enough to accommodate at least
2374 * one full receive packet and is similarly rounded up and
2378 /* upper 16 bits has Tx packet buffer allocation size in KB */
2379 tx_space
= pba
>> 16;
2380 /* lower 16 bits has Rx packet buffer allocation size in KB */
2383 * the Tx fifo also stores 16 bytes of information about the tx
2384 * but don't include ethernet FCS because hardware appends it
2386 min_tx_space
= (adapter
->max_frame_size
+
2387 sizeof(struct e1000_tx_desc
) -
2389 min_tx_space
= ALIGN(min_tx_space
, 1024);
2390 min_tx_space
>>= 10;
2391 /* software strips receive CRC, so leave room for it */
2392 min_rx_space
= adapter
->max_frame_size
;
2393 min_rx_space
= ALIGN(min_rx_space
, 1024);
2394 min_rx_space
>>= 10;
2397 * If current Tx allocation is less than the min Tx FIFO size,
2398 * and the min Tx FIFO size is less than the current Rx FIFO
2399 * allocation, take space away from current Rx allocation
2401 if ((tx_space
< min_tx_space
) &&
2402 ((min_tx_space
- tx_space
) < pba
)) {
2403 pba
-= min_tx_space
- tx_space
;
2406 * if short on Rx space, Rx wins and must trump tx
2407 * adjustment or use Early Receive if available
2409 if ((pba
< min_rx_space
) &&
2410 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2411 /* ERT enabled in e1000_configure_rx */
2420 * flow control settings
2422 * The high water mark must be low enough to fit one full frame
2423 * (or the size used for early receive) above it in the Rx FIFO.
2424 * Set it to the lower of:
2425 * - 90% of the Rx FIFO size, and
2426 * - the full Rx FIFO size minus the early receive size (for parts
2427 * with ERT support assuming ERT set to E1000_ERT_2048), or
2428 * - the full Rx FIFO size minus one full frame
2430 if (adapter
->flags
& FLAG_HAS_ERT
)
2431 hwm
= min(((pba
<< 10) * 9 / 10),
2432 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
2434 hwm
= min(((pba
<< 10) * 9 / 10),
2435 ((pba
<< 10) - adapter
->max_frame_size
));
2437 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
2438 fc
->low_water
= fc
->high_water
- 8;
2440 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2441 fc
->pause_time
= 0xFFFF;
2443 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
2445 fc
->type
= fc
->original_type
;
2447 /* Allow time for pending master requests to run */
2448 mac
->ops
.reset_hw(hw
);
2451 * For parts with AMT enabled, let the firmware know
2452 * that the network interface is in control
2454 if ((adapter
->flags
& FLAG_HAS_AMT
) && e1000e_check_mng_mode(hw
))
2455 e1000_get_hw_control(adapter
);
2459 if (mac
->ops
.init_hw(hw
))
2460 ndev_err(adapter
->netdev
, "Hardware Error\n");
2462 e1000_update_mng_vlan(adapter
);
2464 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2465 ew32(VET
, ETH_P_8021Q
);
2467 e1000e_reset_adaptive(hw
);
2468 e1000_get_phy_info(hw
);
2470 if (!(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2473 * speed up time to link by disabling smart power down, ignore
2474 * the return value of this function because there is nothing
2475 * different we would do if it failed
2477 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2478 phy_data
&= ~IGP02E1000_PM_SPD
;
2479 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2483 int e1000e_up(struct e1000_adapter
*adapter
)
2485 struct e1000_hw
*hw
= &adapter
->hw
;
2487 /* hardware has been reset, we need to reload some things */
2488 e1000_configure(adapter
);
2490 clear_bit(__E1000_DOWN
, &adapter
->state
);
2492 napi_enable(&adapter
->napi
);
2493 e1000_irq_enable(adapter
);
2495 /* fire a link change interrupt to start the watchdog */
2496 ew32(ICS
, E1000_ICS_LSC
);
2500 void e1000e_down(struct e1000_adapter
*adapter
)
2502 struct net_device
*netdev
= adapter
->netdev
;
2503 struct e1000_hw
*hw
= &adapter
->hw
;
2507 * signal that we're down so the interrupt handler does not
2508 * reschedule our watchdog timer
2510 set_bit(__E1000_DOWN
, &adapter
->state
);
2512 /* disable receives in the hardware */
2514 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2515 /* flush and sleep below */
2517 netif_stop_queue(netdev
);
2519 /* disable transmits in the hardware */
2521 tctl
&= ~E1000_TCTL_EN
;
2523 /* flush both disables and wait for them to finish */
2527 napi_disable(&adapter
->napi
);
2528 e1000_irq_disable(adapter
);
2530 del_timer_sync(&adapter
->watchdog_timer
);
2531 del_timer_sync(&adapter
->phy_info_timer
);
2533 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2534 netif_carrier_off(netdev
);
2535 adapter
->link_speed
= 0;
2536 adapter
->link_duplex
= 0;
2538 e1000e_reset(adapter
);
2539 e1000_clean_tx_ring(adapter
);
2540 e1000_clean_rx_ring(adapter
);
2543 * TODO: for power management, we could drop the link and
2544 * pci_disable_device here.
2548 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2551 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2553 e1000e_down(adapter
);
2555 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2559 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2560 * @adapter: board private structure to initialize
2562 * e1000_sw_init initializes the Adapter private data structure.
2563 * Fields are initialized based on PCI device information and
2564 * OS network device settings (MTU size).
2566 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2568 struct net_device
*netdev
= adapter
->netdev
;
2570 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2571 adapter
->rx_ps_bsize0
= 128;
2572 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2573 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2575 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2576 if (!adapter
->tx_ring
)
2579 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2580 if (!adapter
->rx_ring
)
2583 spin_lock_init(&adapter
->tx_queue_lock
);
2585 /* Explicitly disable IRQ since the NIC can be in any state. */
2586 e1000_irq_disable(adapter
);
2588 spin_lock_init(&adapter
->stats_lock
);
2590 set_bit(__E1000_DOWN
, &adapter
->state
);
2594 ndev_err(netdev
, "Unable to allocate memory for queues\n");
2595 kfree(adapter
->rx_ring
);
2596 kfree(adapter
->tx_ring
);
2601 * e1000_open - Called when a network interface is made active
2602 * @netdev: network interface device structure
2604 * Returns 0 on success, negative value on failure
2606 * The open entry point is called when a network interface is made
2607 * active by the system (IFF_UP). At this point all resources needed
2608 * for transmit and receive operations are allocated, the interrupt
2609 * handler is registered with the OS, the watchdog timer is started,
2610 * and the stack is notified that the interface is ready.
2612 static int e1000_open(struct net_device
*netdev
)
2614 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2615 struct e1000_hw
*hw
= &adapter
->hw
;
2618 /* disallow open during test */
2619 if (test_bit(__E1000_TESTING
, &adapter
->state
))
2622 /* allocate transmit descriptors */
2623 err
= e1000e_setup_tx_resources(adapter
);
2627 /* allocate receive descriptors */
2628 err
= e1000e_setup_rx_resources(adapter
);
2632 e1000e_power_up_phy(adapter
);
2634 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2635 if ((adapter
->hw
.mng_cookie
.status
&
2636 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
2637 e1000_update_mng_vlan(adapter
);
2640 * If AMT is enabled, let the firmware know that the network
2641 * interface is now open
2643 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
2644 e1000e_check_mng_mode(&adapter
->hw
))
2645 e1000_get_hw_control(adapter
);
2648 * before we allocate an interrupt, we must be ready to handle it.
2649 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2650 * as soon as we call pci_request_irq, so we have to setup our
2651 * clean_rx handler before we do so.
2653 e1000_configure(adapter
);
2655 err
= e1000_request_irq(adapter
);
2659 /* From here on the code is the same as e1000e_up() */
2660 clear_bit(__E1000_DOWN
, &adapter
->state
);
2662 napi_enable(&adapter
->napi
);
2664 e1000_irq_enable(adapter
);
2666 /* fire a link status change interrupt to start the watchdog */
2667 ew32(ICS
, E1000_ICS_LSC
);
2672 e1000_release_hw_control(adapter
);
2673 e1000_power_down_phy(adapter
);
2674 e1000e_free_rx_resources(adapter
);
2676 e1000e_free_tx_resources(adapter
);
2678 e1000e_reset(adapter
);
2684 * e1000_close - Disables a network interface
2685 * @netdev: network interface device structure
2687 * Returns 0, this is not allowed to fail
2689 * The close entry point is called when an interface is de-activated
2690 * by the OS. The hardware is still under the drivers control, but
2691 * needs to be disabled. A global MAC reset is issued to stop the
2692 * hardware, and all transmit and receive resources are freed.
2694 static int e1000_close(struct net_device
*netdev
)
2696 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2698 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
2699 e1000e_down(adapter
);
2700 e1000_power_down_phy(adapter
);
2701 e1000_free_irq(adapter
);
2703 e1000e_free_tx_resources(adapter
);
2704 e1000e_free_rx_resources(adapter
);
2707 * kill manageability vlan ID if supported, but not if a vlan with
2708 * the same ID is registered on the host OS (let 8021q kill it)
2710 if ((adapter
->hw
.mng_cookie
.status
&
2711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2713 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
2714 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2717 * If AMT is enabled, let the firmware know that the network
2718 * interface is now closed
2720 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
2721 e1000e_check_mng_mode(&adapter
->hw
))
2722 e1000_release_hw_control(adapter
);
2727 * e1000_set_mac - Change the Ethernet Address of the NIC
2728 * @netdev: network interface device structure
2729 * @p: pointer to an address structure
2731 * Returns 0 on success, negative on failure
2733 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2735 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2736 struct sockaddr
*addr
= p
;
2738 if (!is_valid_ether_addr(addr
->sa_data
))
2739 return -EADDRNOTAVAIL
;
2741 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2742 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2744 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2746 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
2747 /* activate the work around */
2748 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
2751 * Hold a copy of the LAA in RAR[14] This is done so that
2752 * between the time RAR[0] gets clobbered and the time it
2753 * gets fixed (in e1000_watchdog), the actual LAA is in one
2754 * of the RARs and no incoming packets directed to this port
2755 * are dropped. Eventually the LAA will be in RAR[0] and
2758 e1000e_rar_set(&adapter
->hw
,
2759 adapter
->hw
.mac
.addr
,
2760 adapter
->hw
.mac
.rar_entry_count
- 1);
2767 * Need to wait a few seconds after link up to get diagnostic information from
2770 static void e1000_update_phy_info(unsigned long data
)
2772 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2773 e1000_get_phy_info(&adapter
->hw
);
2777 * e1000e_update_stats - Update the board statistics counters
2778 * @adapter: board private structure
2780 void e1000e_update_stats(struct e1000_adapter
*adapter
)
2782 struct e1000_hw
*hw
= &adapter
->hw
;
2783 struct pci_dev
*pdev
= adapter
->pdev
;
2784 unsigned long irq_flags
;
2787 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2790 * Prevent stats update while adapter is being reset, or if the pci
2791 * connection is down.
2793 if (adapter
->link_speed
== 0)
2795 if (pci_channel_offline(pdev
))
2798 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
2801 * these counters are modified from e1000_adjust_tbi_stats,
2802 * called from the interrupt context, so they must only
2803 * be written while holding adapter->stats_lock
2806 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
2807 adapter
->stats
.gprc
+= er32(GPRC
);
2808 adapter
->stats
.gorc
+= er32(GORCL
);
2809 er32(GORCH
); /* Clear gorc */
2810 adapter
->stats
.bprc
+= er32(BPRC
);
2811 adapter
->stats
.mprc
+= er32(MPRC
);
2812 adapter
->stats
.roc
+= er32(ROC
);
2814 adapter
->stats
.mpc
+= er32(MPC
);
2815 adapter
->stats
.scc
+= er32(SCC
);
2816 adapter
->stats
.ecol
+= er32(ECOL
);
2817 adapter
->stats
.mcc
+= er32(MCC
);
2818 adapter
->stats
.latecol
+= er32(LATECOL
);
2819 adapter
->stats
.dc
+= er32(DC
);
2820 adapter
->stats
.xonrxc
+= er32(XONRXC
);
2821 adapter
->stats
.xontxc
+= er32(XONTXC
);
2822 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
2823 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
2824 adapter
->stats
.gptc
+= er32(GPTC
);
2825 adapter
->stats
.gotc
+= er32(GOTCL
);
2826 er32(GOTCH
); /* Clear gotc */
2827 adapter
->stats
.rnbc
+= er32(RNBC
);
2828 adapter
->stats
.ruc
+= er32(RUC
);
2830 adapter
->stats
.mptc
+= er32(MPTC
);
2831 adapter
->stats
.bptc
+= er32(BPTC
);
2833 /* used for adaptive IFS */
2835 hw
->mac
.tx_packet_delta
= er32(TPT
);
2836 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2837 hw
->mac
.collision_delta
= er32(COLC
);
2838 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2840 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
2841 adapter
->stats
.rxerrc
+= er32(RXERRC
);
2842 adapter
->stats
.tncrs
+= er32(TNCRS
);
2843 adapter
->stats
.cexterr
+= er32(CEXTERR
);
2844 adapter
->stats
.tsctc
+= er32(TSCTC
);
2845 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
2847 /* Fill out the OS statistics structure */
2848 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2849 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2854 * RLEC on some newer hardware can be incorrect so build
2855 * our own version based on RUC and ROC
2857 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2858 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2859 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2860 adapter
->stats
.cexterr
;
2861 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2863 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2864 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2865 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2868 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2869 adapter
->stats
.latecol
;
2870 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
2871 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
2872 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
2874 /* Tx Dropped needs to be maintained elsewhere */
2877 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
2878 if ((adapter
->link_speed
== SPEED_1000
) &&
2879 (!e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
2880 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
2881 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
2885 /* Management Stats */
2886 adapter
->stats
.mgptc
+= er32(MGTPTC
);
2887 adapter
->stats
.mgprc
+= er32(MGTPRC
);
2888 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
2890 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
2894 * e1000_phy_read_status - Update the PHY register status snapshot
2895 * @adapter: board private structure
2897 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
2899 struct e1000_hw
*hw
= &adapter
->hw
;
2900 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
2902 unsigned long irq_flags
;
2905 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
2907 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
2908 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
2909 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
2910 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
2911 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
2912 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
2913 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
2914 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
2915 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
2916 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
2918 ndev_warn(adapter
->netdev
,
2919 "Error reading PHY register\n");
2922 * Do not read PHY registers if link is not up
2923 * Set values to typical power-on defaults
2925 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
2926 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
2927 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
2929 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
2930 ADVERTISE_ALL
| ADVERTISE_CSMA
);
2932 phy
->expansion
= EXPANSION_ENABLENPAGE
;
2933 phy
->ctrl1000
= ADVERTISE_1000FULL
;
2935 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
2938 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
2941 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
2943 struct e1000_hw
*hw
= &adapter
->hw
;
2944 struct net_device
*netdev
= adapter
->netdev
;
2945 u32 ctrl
= er32(CTRL
);
2948 "Link is Up %d Mbps %s, Flow Control: %s\n",
2949 adapter
->link_speed
,
2950 (adapter
->link_duplex
== FULL_DUPLEX
) ?
2951 "Full Duplex" : "Half Duplex",
2952 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
2954 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
2955 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
2958 static bool e1000_has_link(struct e1000_adapter
*adapter
)
2960 struct e1000_hw
*hw
= &adapter
->hw
;
2961 bool link_active
= 0;
2965 * get_link_status is set on LSC (link status) interrupt or
2966 * Rx sequence error interrupt. get_link_status will stay
2967 * false until the check_for_link establishes link
2968 * for copper adapters ONLY
2970 switch (hw
->phy
.media_type
) {
2971 case e1000_media_type_copper
:
2972 if (hw
->mac
.get_link_status
) {
2973 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2974 link_active
= !hw
->mac
.get_link_status
;
2979 case e1000_media_type_fiber
:
2980 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2981 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2983 case e1000_media_type_internal_serdes
:
2984 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2985 link_active
= adapter
->hw
.mac
.serdes_has_link
;
2988 case e1000_media_type_unknown
:
2992 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
2993 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2994 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2995 ndev_info(adapter
->netdev
,
2996 "Gigabit has been disabled, downgrading speed\n");
3002 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
3004 /* make sure the receive unit is started */
3005 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
3006 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
3007 struct e1000_hw
*hw
= &adapter
->hw
;
3008 u32 rctl
= er32(RCTL
);
3009 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3010 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
3015 * e1000_watchdog - Timer Call-back
3016 * @data: pointer to adapter cast into an unsigned long
3018 static void e1000_watchdog(unsigned long data
)
3020 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3022 /* Do the rest outside of interrupt context */
3023 schedule_work(&adapter
->watchdog_task
);
3025 /* TODO: make this use queue_delayed_work() */
3028 static void e1000_watchdog_task(struct work_struct
*work
)
3030 struct e1000_adapter
*adapter
= container_of(work
,
3031 struct e1000_adapter
, watchdog_task
);
3032 struct net_device
*netdev
= adapter
->netdev
;
3033 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3034 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3035 struct e1000_hw
*hw
= &adapter
->hw
;
3039 link
= e1000_has_link(adapter
);
3040 if ((netif_carrier_ok(netdev
)) && link
) {
3041 e1000e_enable_receives(adapter
);
3045 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
3046 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
3047 e1000_update_mng_vlan(adapter
);
3050 if (!netif_carrier_ok(netdev
)) {
3052 /* update snapshot of PHY registers on LSC */
3053 e1000_phy_read_status(adapter
);
3054 mac
->ops
.get_link_up_info(&adapter
->hw
,
3055 &adapter
->link_speed
,
3056 &adapter
->link_duplex
);
3057 e1000_print_link_info(adapter
);
3059 * tweak tx_queue_len according to speed/duplex
3060 * and adjust the timeout factor
3062 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
3063 adapter
->tx_timeout_factor
= 1;
3064 switch (adapter
->link_speed
) {
3067 netdev
->tx_queue_len
= 10;
3068 adapter
->tx_timeout_factor
= 14;
3072 netdev
->tx_queue_len
= 100;
3073 /* maybe add some timeout factor ? */
3078 * workaround: re-program speed mode bit after
3081 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
3084 tarc0
= er32(TARC(0));
3085 tarc0
&= ~SPEED_MODE_BIT
;
3086 ew32(TARC(0), tarc0
);
3090 * disable TSO for pcie and 10/100 speeds, to avoid
3091 * some hardware issues
3093 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
3094 switch (adapter
->link_speed
) {
3098 "10/100 speed: disabling TSO\n");
3099 netdev
->features
&= ~NETIF_F_TSO
;
3100 netdev
->features
&= ~NETIF_F_TSO6
;
3103 netdev
->features
|= NETIF_F_TSO
;
3104 netdev
->features
|= NETIF_F_TSO6
;
3113 * enable transmits in the hardware, need to do this
3114 * after setting TARC(0)
3117 tctl
|= E1000_TCTL_EN
;
3120 netif_carrier_on(netdev
);
3121 netif_wake_queue(netdev
);
3123 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3124 mod_timer(&adapter
->phy_info_timer
,
3125 round_jiffies(jiffies
+ 2 * HZ
));
3128 if (netif_carrier_ok(netdev
)) {
3129 adapter
->link_speed
= 0;
3130 adapter
->link_duplex
= 0;
3131 ndev_info(netdev
, "Link is Down\n");
3132 netif_carrier_off(netdev
);
3133 netif_stop_queue(netdev
);
3134 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3135 mod_timer(&adapter
->phy_info_timer
,
3136 round_jiffies(jiffies
+ 2 * HZ
));
3138 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
3139 schedule_work(&adapter
->reset_task
);
3144 e1000e_update_stats(adapter
);
3146 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
3147 adapter
->tpt_old
= adapter
->stats
.tpt
;
3148 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
3149 adapter
->colc_old
= adapter
->stats
.colc
;
3151 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
3152 adapter
->gorc_old
= adapter
->stats
.gorc
;
3153 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
3154 adapter
->gotc_old
= adapter
->stats
.gotc
;
3156 e1000e_update_adaptive(&adapter
->hw
);
3158 if (!netif_carrier_ok(netdev
)) {
3159 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
3163 * We've lost link, so the controller stops DMA,
3164 * but we've got queued Tx work that's never going
3165 * to get done, so reset controller to flush Tx.
3166 * (Do the reset outside of interrupt context).
3168 adapter
->tx_timeout_count
++;
3169 schedule_work(&adapter
->reset_task
);
3173 /* Cause software interrupt to ensure Rx ring is cleaned */
3174 ew32(ICS
, E1000_ICS_RXDMT0
);
3176 /* Force detection of hung controller every watchdog period */
3177 adapter
->detect_tx_hung
= 1;
3180 * With 82571 controllers, LAA may be overwritten due to controller
3181 * reset from the other port. Set the appropriate LAA in RAR[0]
3183 if (e1000e_get_laa_state_82571(hw
))
3184 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
3186 /* Reset the timer */
3187 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3188 mod_timer(&adapter
->watchdog_timer
,
3189 round_jiffies(jiffies
+ 2 * HZ
));
3192 #define E1000_TX_FLAGS_CSUM 0x00000001
3193 #define E1000_TX_FLAGS_VLAN 0x00000002
3194 #define E1000_TX_FLAGS_TSO 0x00000004
3195 #define E1000_TX_FLAGS_IPV4 0x00000008
3196 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3197 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3199 static int e1000_tso(struct e1000_adapter
*adapter
,
3200 struct sk_buff
*skb
)
3202 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3203 struct e1000_context_desc
*context_desc
;
3204 struct e1000_buffer
*buffer_info
;
3207 u16 ipcse
= 0, tucse
, mss
;
3208 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
3211 if (skb_is_gso(skb
)) {
3212 if (skb_header_cloned(skb
)) {
3213 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3218 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3219 mss
= skb_shinfo(skb
)->gso_size
;
3220 if (skb
->protocol
== htons(ETH_P_IP
)) {
3221 struct iphdr
*iph
= ip_hdr(skb
);
3224 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3228 cmd_length
= E1000_TXD_CMD_IP
;
3229 ipcse
= skb_transport_offset(skb
) - 1;
3230 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3231 ipv6_hdr(skb
)->payload_len
= 0;
3232 tcp_hdr(skb
)->check
=
3233 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3234 &ipv6_hdr(skb
)->daddr
,
3238 ipcss
= skb_network_offset(skb
);
3239 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
3240 tucss
= skb_transport_offset(skb
);
3241 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
3244 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
3245 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
3247 i
= tx_ring
->next_to_use
;
3248 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3249 buffer_info
= &tx_ring
->buffer_info
[i
];
3251 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
3252 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
3253 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
3254 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
3255 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
3256 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
3257 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
3258 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
3259 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
3261 buffer_info
->time_stamp
= jiffies
;
3262 buffer_info
->next_to_watch
= i
;
3265 if (i
== tx_ring
->count
)
3267 tx_ring
->next_to_use
= i
;
3275 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3277 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3278 struct e1000_context_desc
*context_desc
;
3279 struct e1000_buffer
*buffer_info
;
3283 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3284 css
= skb_transport_offset(skb
);
3286 i
= tx_ring
->next_to_use
;
3287 buffer_info
= &tx_ring
->buffer_info
[i
];
3288 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3290 context_desc
->lower_setup
.ip_config
= 0;
3291 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
3292 context_desc
->upper_setup
.tcp_fields
.tucso
=
3293 css
+ skb
->csum_offset
;
3294 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
3295 context_desc
->tcp_seg_setup
.data
= 0;
3296 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
3298 buffer_info
->time_stamp
= jiffies
;
3299 buffer_info
->next_to_watch
= i
;
3302 if (i
== tx_ring
->count
)
3304 tx_ring
->next_to_use
= i
;
3312 #define E1000_MAX_PER_TXD 8192
3313 #define E1000_MAX_TXD_PWR 12
3315 static int e1000_tx_map(struct e1000_adapter
*adapter
,
3316 struct sk_buff
*skb
, unsigned int first
,
3317 unsigned int max_per_txd
, unsigned int nr_frags
,
3320 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3321 struct e1000_buffer
*buffer_info
;
3322 unsigned int len
= skb
->len
- skb
->data_len
;
3323 unsigned int offset
= 0, size
, count
= 0, i
;
3326 i
= tx_ring
->next_to_use
;
3329 buffer_info
= &tx_ring
->buffer_info
[i
];
3330 size
= min(len
, max_per_txd
);
3332 /* Workaround for premature desc write-backs
3333 * in TSO mode. Append 4-byte sentinel desc */
3334 if (mss
&& !nr_frags
&& size
== len
&& size
> 8)
3337 buffer_info
->length
= size
;
3338 /* set time_stamp *before* dma to help avoid a possible race */
3339 buffer_info
->time_stamp
= jiffies
;
3341 pci_map_single(adapter
->pdev
,
3345 if (pci_dma_mapping_error(buffer_info
->dma
)) {
3346 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
3347 adapter
->tx_dma_failed
++;
3350 buffer_info
->next_to_watch
= i
;
3356 if (i
== tx_ring
->count
)
3360 for (f
= 0; f
< nr_frags
; f
++) {
3361 struct skb_frag_struct
*frag
;
3363 frag
= &skb_shinfo(skb
)->frags
[f
];
3365 offset
= frag
->page_offset
;
3368 buffer_info
= &tx_ring
->buffer_info
[i
];
3369 size
= min(len
, max_per_txd
);
3370 /* Workaround for premature desc write-backs
3371 * in TSO mode. Append 4-byte sentinel desc */
3372 if (mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8)
3375 buffer_info
->length
= size
;
3376 buffer_info
->time_stamp
= jiffies
;
3378 pci_map_page(adapter
->pdev
,
3383 if (pci_dma_mapping_error(buffer_info
->dma
)) {
3384 dev_err(&adapter
->pdev
->dev
,
3385 "TX DMA page map failed\n");
3386 adapter
->tx_dma_failed
++;
3390 buffer_info
->next_to_watch
= i
;
3397 if (i
== tx_ring
->count
)
3403 i
= tx_ring
->count
- 1;
3407 tx_ring
->buffer_info
[i
].skb
= skb
;
3408 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3413 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3414 int tx_flags
, int count
)
3416 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3417 struct e1000_tx_desc
*tx_desc
= NULL
;
3418 struct e1000_buffer
*buffer_info
;
3419 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3422 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
3423 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3425 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3427 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
3428 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3431 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
3432 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3433 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3436 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
3437 txd_lower
|= E1000_TXD_CMD_VLE
;
3438 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3441 i
= tx_ring
->next_to_use
;
3444 buffer_info
= &tx_ring
->buffer_info
[i
];
3445 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3446 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3447 tx_desc
->lower
.data
=
3448 cpu_to_le32(txd_lower
| buffer_info
->length
);
3449 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3452 if (i
== tx_ring
->count
)
3456 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3459 * Force memory writes to complete before letting h/w
3460 * know there are new descriptors to fetch. (Only
3461 * applicable for weak-ordered memory model archs,
3466 tx_ring
->next_to_use
= i
;
3467 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
3469 * we need this if more than one processor can write to our tail
3470 * at a time, it synchronizes IO on IA64/Altix systems
3475 #define MINIMUM_DHCP_PACKET_SIZE 282
3476 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
3477 struct sk_buff
*skb
)
3479 struct e1000_hw
*hw
= &adapter
->hw
;
3482 if (vlan_tx_tag_present(skb
)) {
3483 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
)
3484 && (adapter
->hw
.mng_cookie
.status
&
3485 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
3489 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
3492 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
3496 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
3499 if (ip
->protocol
!= IPPROTO_UDP
)
3502 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
3503 if (ntohs(udp
->dest
) != 67)
3506 offset
= (u8
*)udp
+ 8 - skb
->data
;
3507 length
= skb
->len
- offset
;
3508 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
3514 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3516 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3518 netif_stop_queue(netdev
);
3520 * Herbert's original patch had:
3521 * smp_mb__after_netif_stop_queue();
3522 * but since that doesn't exist yet, just open code it.
3527 * We need to check again in a case another CPU has just
3528 * made room available.
3530 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
3534 netif_start_queue(netdev
);
3535 ++adapter
->restart_queue
;
3539 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3541 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3543 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
3545 return __e1000_maybe_stop_tx(netdev
, size
);
3548 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3549 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3551 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3552 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3554 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
3555 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3556 unsigned int tx_flags
= 0;
3557 unsigned int len
= skb
->len
- skb
->data_len
;
3558 unsigned long irq_flags
;
3559 unsigned int nr_frags
;
3565 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
3566 dev_kfree_skb_any(skb
);
3567 return NETDEV_TX_OK
;
3570 if (skb
->len
<= 0) {
3571 dev_kfree_skb_any(skb
);
3572 return NETDEV_TX_OK
;
3575 mss
= skb_shinfo(skb
)->gso_size
;
3577 * The controller does a simple calculation to
3578 * make sure there is enough room in the FIFO before
3579 * initiating the DMA for each buffer. The calc is:
3580 * 4 = ceil(buffer len/mss). To make sure we don't
3581 * overrun the FIFO, adjust the max buffer len if mss
3586 max_per_txd
= min(mss
<< 2, max_per_txd
);
3587 max_txd_pwr
= fls(max_per_txd
) - 1;
3590 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3591 * points to just header, pull a few bytes of payload from
3592 * frags into skb->data
3594 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3596 * we do this workaround for ES2LAN, but it is un-necessary,
3597 * avoiding it could save a lot of cycles
3599 if (skb
->data_len
&& (hdr_len
== len
)) {
3600 unsigned int pull_size
;
3602 pull_size
= min((unsigned int)4, skb
->data_len
);
3603 if (!__pskb_pull_tail(skb
, pull_size
)) {
3605 "__pskb_pull_tail failed.\n");
3606 dev_kfree_skb_any(skb
);
3607 return NETDEV_TX_OK
;
3609 len
= skb
->len
- skb
->data_len
;
3613 /* reserve a descriptor for the offload context */
3614 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3618 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3620 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3621 for (f
= 0; f
< nr_frags
; f
++)
3622 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3625 if (adapter
->hw
.mac
.tx_pkt_filtering
)
3626 e1000_transfer_dhcp_info(adapter
, skb
);
3628 if (!spin_trylock_irqsave(&adapter
->tx_queue_lock
, irq_flags
))
3629 /* Collision - tell upper layer to requeue */
3630 return NETDEV_TX_LOCKED
;
3633 * need: count + 2 desc gap to keep tail from touching
3634 * head, otherwise try next time
3636 if (e1000_maybe_stop_tx(netdev
, count
+ 2)) {
3637 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3638 return NETDEV_TX_BUSY
;
3641 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3642 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3643 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3646 first
= tx_ring
->next_to_use
;
3648 tso
= e1000_tso(adapter
, skb
);
3650 dev_kfree_skb_any(skb
);
3651 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3652 return NETDEV_TX_OK
;
3656 tx_flags
|= E1000_TX_FLAGS_TSO
;
3657 else if (e1000_tx_csum(adapter
, skb
))
3658 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3661 * Old method was to assume IPv4 packet by default if TSO was enabled.
3662 * 82571 hardware supports TSO capabilities for IPv6 as well...
3663 * no longer assume, we must.
3665 if (skb
->protocol
== htons(ETH_P_IP
))
3666 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3668 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
3670 /* handle pci_map_single() error in e1000_tx_map */
3671 dev_kfree_skb_any(skb
);
3672 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3673 return NETDEV_TX_OK
;
3676 e1000_tx_queue(adapter
, tx_flags
, count
);
3678 netdev
->trans_start
= jiffies
;
3680 /* Make sure there is space in the ring for the next send. */
3681 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
3683 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3684 return NETDEV_TX_OK
;
3688 * e1000_tx_timeout - Respond to a Tx Hang
3689 * @netdev: network interface device structure
3691 static void e1000_tx_timeout(struct net_device
*netdev
)
3693 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3695 /* Do the reset outside of interrupt context */
3696 adapter
->tx_timeout_count
++;
3697 schedule_work(&adapter
->reset_task
);
3700 static void e1000_reset_task(struct work_struct
*work
)
3702 struct e1000_adapter
*adapter
;
3703 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
3705 e1000e_reinit_locked(adapter
);
3709 * e1000_get_stats - Get System Network Statistics
3710 * @netdev: network interface device structure
3712 * Returns the address of the device statistics structure.
3713 * The statistics are actually updated from the timer callback.
3715 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3717 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3719 /* only return the current stats */
3720 return &adapter
->net_stats
;
3724 * e1000_change_mtu - Change the Maximum Transfer Unit
3725 * @netdev: network interface device structure
3726 * @new_mtu: new value for maximum frame size
3728 * Returns 0 on success, negative on failure
3730 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3732 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3733 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3735 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3736 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3737 ndev_err(netdev
, "Invalid MTU setting\n");
3741 /* Jumbo frame size limits */
3742 if (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3743 if (!(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
3744 ndev_err(netdev
, "Jumbo Frames not supported.\n");
3747 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
3748 ndev_err(netdev
, "Jumbo Frames not supported.\n");
3753 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3754 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3755 ndev_err(netdev
, "MTU > 9216 not supported.\n");
3759 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3761 /* e1000e_down has a dependency on max_frame_size */
3762 adapter
->max_frame_size
= max_frame
;
3763 if (netif_running(netdev
))
3764 e1000e_down(adapter
);
3767 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3768 * means we reserve 2 more, this pushes us to allocate from the next
3770 * i.e. RXBUFFER_2048 --> size-4096 slab
3771 * However with the new *_jumbo_rx* routines, jumbo receives will use
3775 if (max_frame
<= 256)
3776 adapter
->rx_buffer_len
= 256;
3777 else if (max_frame
<= 512)
3778 adapter
->rx_buffer_len
= 512;
3779 else if (max_frame
<= 1024)
3780 adapter
->rx_buffer_len
= 1024;
3781 else if (max_frame
<= 2048)
3782 adapter
->rx_buffer_len
= 2048;
3784 adapter
->rx_buffer_len
= 4096;
3786 /* adjust allocation if LPE protects us, and we aren't using SBP */
3787 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3788 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
3789 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
3792 ndev_info(netdev
, "changing MTU from %d to %d\n",
3793 netdev
->mtu
, new_mtu
);
3794 netdev
->mtu
= new_mtu
;
3796 if (netif_running(netdev
))
3799 e1000e_reset(adapter
);
3801 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3806 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
3809 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3810 struct mii_ioctl_data
*data
= if_mii(ifr
);
3812 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
3817 data
->phy_id
= adapter
->hw
.phy
.addr
;
3820 if (!capable(CAP_NET_ADMIN
))
3822 switch (data
->reg_num
& 0x1F) {
3824 data
->val_out
= adapter
->phy_regs
.bmcr
;
3827 data
->val_out
= adapter
->phy_regs
.bmsr
;
3830 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
3833 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
3836 data
->val_out
= adapter
->phy_regs
.advertise
;
3839 data
->val_out
= adapter
->phy_regs
.lpa
;
3842 data
->val_out
= adapter
->phy_regs
.expansion
;
3845 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
3848 data
->val_out
= adapter
->phy_regs
.stat1000
;
3851 data
->val_out
= adapter
->phy_regs
.estatus
;
3864 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3870 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
3876 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3878 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3879 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3880 struct e1000_hw
*hw
= &adapter
->hw
;
3881 u32 ctrl
, ctrl_ext
, rctl
, status
;
3882 u32 wufc
= adapter
->wol
;
3885 netif_device_detach(netdev
);
3887 if (netif_running(netdev
)) {
3888 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3889 e1000e_down(adapter
);
3890 e1000_free_irq(adapter
);
3893 retval
= pci_save_state(pdev
);
3897 status
= er32(STATUS
);
3898 if (status
& E1000_STATUS_LU
)
3899 wufc
&= ~E1000_WUFC_LNKC
;
3902 e1000_setup_rctl(adapter
);
3903 e1000_set_multi(netdev
);
3905 /* turn on all-multi mode if wake on multicast is enabled */
3906 if (wufc
& E1000_WUFC_MC
) {
3908 rctl
|= E1000_RCTL_MPE
;
3913 /* advertise wake from D3Cold */
3914 #define E1000_CTRL_ADVD3WUC 0x00100000
3915 /* phy power management enable */
3916 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3917 ctrl
|= E1000_CTRL_ADVD3WUC
|
3918 E1000_CTRL_EN_PHY_PWR_MGMT
;
3921 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
3922 adapter
->hw
.phy
.media_type
==
3923 e1000_media_type_internal_serdes
) {
3924 /* keep the laser running in D3 */
3925 ctrl_ext
= er32(CTRL_EXT
);
3926 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3927 ew32(CTRL_EXT
, ctrl_ext
);
3930 if (adapter
->flags
& FLAG_IS_ICH
)
3931 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
3933 /* Allow time for pending master requests to run */
3934 e1000e_disable_pcie_master(&adapter
->hw
);
3936 ew32(WUC
, E1000_WUC_PME_EN
);
3938 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3939 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3943 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3944 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3947 /* make sure adapter isn't asleep if manageability is enabled */
3948 if (adapter
->flags
& FLAG_MNG_PT_ENABLED
) {
3949 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3950 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3953 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
3954 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
3957 * Release control of h/w to f/w. If f/w is AMT enabled, this
3958 * would have already happened in close and is redundant.
3960 e1000_release_hw_control(adapter
);
3962 pci_disable_device(pdev
);
3964 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3969 static void e1000e_disable_l1aspm(struct pci_dev
*pdev
)
3975 * 82573 workaround - disable L1 ASPM on mobile chipsets
3977 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3978 * resulting in lost data or garbage information on the pci-e link
3979 * level. This could result in (false) bad EEPROM checksum errors,
3980 * long ping times (up to 2s) or even a system freeze/hang.
3982 * Unfortunately this feature saves about 1W power consumption when
3985 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
3986 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, &val
);
3988 dev_warn(&pdev
->dev
, "Disabling L1 ASPM\n");
3990 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, val
);
3995 static int e1000_resume(struct pci_dev
*pdev
)
3997 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3998 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3999 struct e1000_hw
*hw
= &adapter
->hw
;
4002 pci_set_power_state(pdev
, PCI_D0
);
4003 pci_restore_state(pdev
);
4004 e1000e_disable_l1aspm(pdev
);
4005 err
= pci_enable_device(pdev
);
4008 "Cannot enable PCI device from suspend\n");
4012 pci_set_master(pdev
);
4014 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4015 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4017 if (netif_running(netdev
)) {
4018 err
= e1000_request_irq(adapter
);
4023 e1000e_power_up_phy(adapter
);
4024 e1000e_reset(adapter
);
4027 e1000_init_manageability(adapter
);
4029 if (netif_running(netdev
))
4032 netif_device_attach(netdev
);
4035 * If the controller has AMT, do not set DRV_LOAD until the interface
4036 * is up. For all other cases, let the f/w know that the h/w is now
4037 * under the control of the driver.
4039 if (!(adapter
->flags
& FLAG_HAS_AMT
) || !e1000e_check_mng_mode(&adapter
->hw
))
4040 e1000_get_hw_control(adapter
);
4046 static void e1000_shutdown(struct pci_dev
*pdev
)
4048 e1000_suspend(pdev
, PMSG_SUSPEND
);
4051 #ifdef CONFIG_NET_POLL_CONTROLLER
4053 * Polling 'interrupt' - used by things like netconsole to send skbs
4054 * without having to re-enable interrupts. It's not called while
4055 * the interrupt routine is executing.
4057 static void e1000_netpoll(struct net_device
*netdev
)
4059 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4061 disable_irq(adapter
->pdev
->irq
);
4062 e1000_intr(adapter
->pdev
->irq
, netdev
);
4064 e1000_clean_tx_irq(adapter
);
4066 enable_irq(adapter
->pdev
->irq
);
4071 * e1000_io_error_detected - called when PCI error is detected
4072 * @pdev: Pointer to PCI device
4073 * @state: The current pci connection state
4075 * This function is called after a PCI bus error affecting
4076 * this device has been detected.
4078 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4079 pci_channel_state_t state
)
4081 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4082 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4084 netif_device_detach(netdev
);
4086 if (netif_running(netdev
))
4087 e1000e_down(adapter
);
4088 pci_disable_device(pdev
);
4090 /* Request a slot slot reset. */
4091 return PCI_ERS_RESULT_NEED_RESET
;
4095 * e1000_io_slot_reset - called after the pci bus has been reset.
4096 * @pdev: Pointer to PCI device
4098 * Restart the card from scratch, as if from a cold-boot. Implementation
4099 * resembles the first-half of the e1000_resume routine.
4101 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4103 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4104 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4105 struct e1000_hw
*hw
= &adapter
->hw
;
4107 e1000e_disable_l1aspm(pdev
);
4108 if (pci_enable_device(pdev
)) {
4110 "Cannot re-enable PCI device after reset.\n");
4111 return PCI_ERS_RESULT_DISCONNECT
;
4113 pci_set_master(pdev
);
4114 pci_restore_state(pdev
);
4116 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4117 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4119 e1000e_reset(adapter
);
4122 return PCI_ERS_RESULT_RECOVERED
;
4126 * e1000_io_resume - called when traffic can start flowing again.
4127 * @pdev: Pointer to PCI device
4129 * This callback is called when the error recovery driver tells us that
4130 * its OK to resume normal operation. Implementation resembles the
4131 * second-half of the e1000_resume routine.
4133 static void e1000_io_resume(struct pci_dev
*pdev
)
4135 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4136 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4138 e1000_init_manageability(adapter
);
4140 if (netif_running(netdev
)) {
4141 if (e1000e_up(adapter
)) {
4143 "can't bring device back up after reset\n");
4148 netif_device_attach(netdev
);
4151 * If the controller has AMT, do not set DRV_LOAD until the interface
4152 * is up. For all other cases, let the f/w know that the h/w is now
4153 * under the control of the driver.
4155 if (!(adapter
->flags
& FLAG_HAS_AMT
) ||
4156 !e1000e_check_mng_mode(&adapter
->hw
))
4157 e1000_get_hw_control(adapter
);
4161 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
4163 struct e1000_hw
*hw
= &adapter
->hw
;
4164 struct net_device
*netdev
= adapter
->netdev
;
4167 /* print bus type/speed/width info */
4168 ndev_info(netdev
, "(PCI Express:2.5GB/s:%s) "
4169 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4171 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
4174 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
4175 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
4176 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
4177 ndev_info(netdev
, "Intel(R) PRO/%s Network Connection\n",
4178 (hw
->phy
.type
== e1000_phy_ife
)
4179 ? "10/100" : "1000");
4180 e1000e_read_pba_num(hw
, &pba_num
);
4181 ndev_info(netdev
, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4182 hw
->mac
.type
, hw
->phy
.type
,
4183 (pba_num
>> 8), (pba_num
& 0xff));
4187 * e1000_probe - Device Initialization Routine
4188 * @pdev: PCI device information struct
4189 * @ent: entry in e1000_pci_tbl
4191 * Returns 0 on success, negative on failure
4193 * e1000_probe initializes an adapter identified by a pci_dev structure.
4194 * The OS initialization, configuring of the adapter private structure,
4195 * and a hardware reset occur.
4197 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
4198 const struct pci_device_id
*ent
)
4200 struct net_device
*netdev
;
4201 struct e1000_adapter
*adapter
;
4202 struct e1000_hw
*hw
;
4203 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
4204 resource_size_t mmio_start
, mmio_len
;
4205 resource_size_t flash_start
, flash_len
;
4207 static int cards_found
;
4208 int i
, err
, pci_using_dac
;
4209 u16 eeprom_data
= 0;
4210 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
4212 e1000e_disable_l1aspm(pdev
);
4213 err
= pci_enable_device(pdev
);
4218 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
4220 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
4224 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
4226 err
= pci_set_consistent_dma_mask(pdev
,
4229 dev_err(&pdev
->dev
, "No usable DMA "
4230 "configuration, aborting\n");
4236 err
= pci_request_regions(pdev
, e1000e_driver_name
);
4240 pci_set_master(pdev
);
4241 pci_save_state(pdev
);
4244 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
4246 goto err_alloc_etherdev
;
4248 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
4250 pci_set_drvdata(pdev
, netdev
);
4251 adapter
= netdev_priv(netdev
);
4253 adapter
->netdev
= netdev
;
4254 adapter
->pdev
= pdev
;
4256 adapter
->pba
= ei
->pba
;
4257 adapter
->flags
= ei
->flags
;
4258 adapter
->hw
.adapter
= adapter
;
4259 adapter
->hw
.mac
.type
= ei
->mac
;
4260 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
4262 mmio_start
= pci_resource_start(pdev
, 0);
4263 mmio_len
= pci_resource_len(pdev
, 0);
4266 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
4267 if (!adapter
->hw
.hw_addr
)
4270 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
4271 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
4272 flash_start
= pci_resource_start(pdev
, 1);
4273 flash_len
= pci_resource_len(pdev
, 1);
4274 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
4275 if (!adapter
->hw
.flash_address
)
4279 /* construct the net_device struct */
4280 netdev
->open
= &e1000_open
;
4281 netdev
->stop
= &e1000_close
;
4282 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
4283 netdev
->get_stats
= &e1000_get_stats
;
4284 netdev
->set_multicast_list
= &e1000_set_multi
;
4285 netdev
->set_mac_address
= &e1000_set_mac
;
4286 netdev
->change_mtu
= &e1000_change_mtu
;
4287 netdev
->do_ioctl
= &e1000_ioctl
;
4288 e1000e_set_ethtool_ops(netdev
);
4289 netdev
->tx_timeout
= &e1000_tx_timeout
;
4290 netdev
->watchdog_timeo
= 5 * HZ
;
4291 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
4292 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
4293 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
4294 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
4295 #ifdef CONFIG_NET_POLL_CONTROLLER
4296 netdev
->poll_controller
= e1000_netpoll
;
4298 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
4300 netdev
->mem_start
= mmio_start
;
4301 netdev
->mem_end
= mmio_start
+ mmio_len
;
4303 adapter
->bd_number
= cards_found
++;
4305 /* setup adapter struct */
4306 err
= e1000_sw_init(adapter
);
4312 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
4313 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
4314 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
4316 err
= ei
->get_variants(adapter
);
4320 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
4322 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
4324 /* Copper options */
4325 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
4326 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
4327 adapter
->hw
.phy
.disable_polarity_correction
= 0;
4328 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
4331 if (e1000_check_reset_block(&adapter
->hw
))
4333 "PHY reset is blocked due to SOL/IDER session.\n");
4335 netdev
->features
= NETIF_F_SG
|
4337 NETIF_F_HW_VLAN_TX
|
4340 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
4341 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
4343 netdev
->features
|= NETIF_F_TSO
;
4344 netdev
->features
|= NETIF_F_TSO6
;
4347 netdev
->features
|= NETIF_F_HIGHDMA
;
4350 * We should not be using LLTX anymore, but we are still Tx faster with
4353 netdev
->features
|= NETIF_F_LLTX
;
4355 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
4356 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
4359 * before reading the NVM, reset the controller to
4360 * put the device in a known good starting state
4362 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
4365 * systems with ASPM and others may see the checksum fail on the first
4366 * attempt. Let's give it a few tries
4369 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
4372 ndev_err(netdev
, "The NVM Checksum Is Not Valid\n");
4378 /* copy the MAC address out of the NVM */
4379 if (e1000e_read_mac_addr(&adapter
->hw
))
4380 ndev_err(netdev
, "NVM Read Error while reading MAC address\n");
4382 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
4383 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
4385 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
4386 ndev_err(netdev
, "Invalid MAC Address: "
4387 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4388 netdev
->perm_addr
[0], netdev
->perm_addr
[1],
4389 netdev
->perm_addr
[2], netdev
->perm_addr
[3],
4390 netdev
->perm_addr
[4], netdev
->perm_addr
[5]);
4395 init_timer(&adapter
->watchdog_timer
);
4396 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
4397 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
4399 init_timer(&adapter
->phy_info_timer
);
4400 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
4401 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
4403 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
4404 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
4406 e1000e_check_options(adapter
);
4408 /* Initialize link parameters. User can change them with ethtool */
4409 adapter
->hw
.mac
.autoneg
= 1;
4410 adapter
->fc_autoneg
= 1;
4411 adapter
->hw
.fc
.original_type
= e1000_fc_default
;
4412 adapter
->hw
.fc
.type
= e1000_fc_default
;
4413 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
4415 /* ring size defaults */
4416 adapter
->rx_ring
->count
= 256;
4417 adapter
->tx_ring
->count
= 256;
4420 * Initial Wake on LAN setting - If APM wake is enabled in
4421 * the EEPROM, enable the ACPI Magic Packet filter
4423 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
4424 /* APME bit in EEPROM is mapped to WUC.APME */
4425 eeprom_data
= er32(WUC
);
4426 eeprom_apme_mask
= E1000_WUC_APME
;
4427 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
4428 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
4429 (adapter
->hw
.bus
.func
== 1))
4430 e1000_read_nvm(&adapter
->hw
,
4431 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
4433 e1000_read_nvm(&adapter
->hw
,
4434 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
4437 /* fetch WoL from EEPROM */
4438 if (eeprom_data
& eeprom_apme_mask
)
4439 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
4442 * now that we have the eeprom settings, apply the special cases
4443 * where the eeprom may be wrong or the board simply won't support
4444 * wake on lan on a particular port
4446 if (!(adapter
->flags
& FLAG_HAS_WOL
))
4447 adapter
->eeprom_wol
= 0;
4449 /* initialize the wol settings based on the eeprom settings */
4450 adapter
->wol
= adapter
->eeprom_wol
;
4452 /* reset the hardware with the new settings */
4453 e1000e_reset(adapter
);
4456 * If the controller has AMT, do not set DRV_LOAD until the interface
4457 * is up. For all other cases, let the f/w know that the h/w is now
4458 * under the control of the driver.
4460 if (!(adapter
->flags
& FLAG_HAS_AMT
) ||
4461 !e1000e_check_mng_mode(&adapter
->hw
))
4462 e1000_get_hw_control(adapter
);
4464 /* tell the stack to leave us alone until e1000_open() is called */
4465 netif_carrier_off(netdev
);
4466 netif_stop_queue(netdev
);
4468 strcpy(netdev
->name
, "eth%d");
4469 err
= register_netdev(netdev
);
4473 e1000_print_device_info(adapter
);
4479 e1000_release_hw_control(adapter
);
4481 if (!e1000_check_reset_block(&adapter
->hw
))
4482 e1000_phy_hw_reset(&adapter
->hw
);
4484 if (adapter
->hw
.flash_address
)
4485 iounmap(adapter
->hw
.flash_address
);
4488 kfree(adapter
->tx_ring
);
4489 kfree(adapter
->rx_ring
);
4491 iounmap(adapter
->hw
.hw_addr
);
4493 free_netdev(netdev
);
4495 pci_release_regions(pdev
);
4498 pci_disable_device(pdev
);
4503 * e1000_remove - Device Removal Routine
4504 * @pdev: PCI device information struct
4506 * e1000_remove is called by the PCI subsystem to alert the driver
4507 * that it should release a PCI device. The could be caused by a
4508 * Hot-Plug event, or because the driver is going to be removed from
4511 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
4513 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4514 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4517 * flush_scheduled work may reschedule our watchdog task, so
4518 * explicitly disable watchdog tasks from being rescheduled
4520 set_bit(__E1000_DOWN
, &adapter
->state
);
4521 del_timer_sync(&adapter
->watchdog_timer
);
4522 del_timer_sync(&adapter
->phy_info_timer
);
4524 flush_scheduled_work();
4527 * Release control of h/w to f/w. If f/w is AMT enabled, this
4528 * would have already happened in close and is redundant.
4530 e1000_release_hw_control(adapter
);
4532 unregister_netdev(netdev
);
4534 if (!e1000_check_reset_block(&adapter
->hw
))
4535 e1000_phy_hw_reset(&adapter
->hw
);
4537 kfree(adapter
->tx_ring
);
4538 kfree(adapter
->rx_ring
);
4540 iounmap(adapter
->hw
.hw_addr
);
4541 if (adapter
->hw
.flash_address
)
4542 iounmap(adapter
->hw
.flash_address
);
4543 pci_release_regions(pdev
);
4545 free_netdev(netdev
);
4547 pci_disable_device(pdev
);
4550 /* PCI Error Recovery (ERS) */
4551 static struct pci_error_handlers e1000_err_handler
= {
4552 .error_detected
= e1000_io_error_detected
,
4553 .slot_reset
= e1000_io_slot_reset
,
4554 .resume
= e1000_io_resume
,
4557 static struct pci_device_id e1000_pci_tbl
[] = {
4558 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
4559 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
4560 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
4561 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
4562 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
4563 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
4564 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
4565 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
4566 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
4568 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
4569 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
4570 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
4571 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
4573 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
4574 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
4575 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
4577 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
4578 board_80003es2lan
},
4579 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
4580 board_80003es2lan
},
4581 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
4582 board_80003es2lan
},
4583 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
4584 board_80003es2lan
},
4586 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
4587 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
4588 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
4589 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
4590 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
4591 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
4592 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
4594 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
4595 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
4596 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
4597 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
4598 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
4599 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
4600 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
4601 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
4603 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
4604 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
4605 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
4607 { } /* terminate list */
4609 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
4611 /* PCI Device API Driver */
4612 static struct pci_driver e1000_driver
= {
4613 .name
= e1000e_driver_name
,
4614 .id_table
= e1000_pci_tbl
,
4615 .probe
= e1000_probe
,
4616 .remove
= __devexit_p(e1000_remove
),
4618 /* Power Management Hooks */
4619 .suspend
= e1000_suspend
,
4620 .resume
= e1000_resume
,
4622 .shutdown
= e1000_shutdown
,
4623 .err_handler
= &e1000_err_handler
4627 * e1000_init_module - Driver Registration Routine
4629 * e1000_init_module is the first routine called when the driver is
4630 * loaded. All it does is register with the PCI subsystem.
4632 static int __init
e1000_init_module(void)
4635 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
4636 e1000e_driver_name
, e1000e_driver_version
);
4637 printk(KERN_INFO
"%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4638 e1000e_driver_name
);
4639 ret
= pci_register_driver(&e1000_driver
);
4640 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
, e1000e_driver_name
,
4641 PM_QOS_DEFAULT_VALUE
);
4645 module_init(e1000_init_module
);
4648 * e1000_exit_module - Driver Exit Cleanup Routine
4650 * e1000_exit_module is called just before the driver is removed
4653 static void __exit
e1000_exit_module(void)
4655 pci_unregister_driver(&e1000_driver
);
4656 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
, e1000e_driver_name
);
4658 module_exit(e1000_exit_module
);
4661 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4662 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4663 MODULE_LICENSE("GPL");
4664 MODULE_VERSION(DRV_VERSION
);