Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / igb / e1000_mac.c
blob3e84a3f0c1d8c8317b48acd5865800f91e2ef33e
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
33 #include "e1000_mac.h"
35 #include "igb.h"
37 static s32 igb_set_default_fc(struct e1000_hw *hw);
38 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
39 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
41 /**
42 * e1000_remove_device - Free device specific structure
43 * @hw: pointer to the HW structure
45 * If a device specific structure was allocated, this function will
46 * free it.
47 **/
48 void igb_remove_device(struct e1000_hw *hw)
50 /* Freeing the dev_spec member of e1000_hw structure */
51 kfree(hw->dev_spec);
54 static void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
56 struct igb_adapter *adapter = hw->back;
58 pci_read_config_word(adapter->pdev, reg, value);
61 static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
63 struct igb_adapter *adapter = hw->back;
64 u16 cap_offset;
66 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
67 if (!cap_offset)
68 return -E1000_ERR_CONFIG;
70 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
72 return 0;
75 /**
76 * e1000_get_bus_info_pcie - Get PCIe bus information
77 * @hw: pointer to the HW structure
79 * Determines and stores the system bus information for a particular
80 * network interface. The following bus information is determined and stored:
81 * bus speed, bus width, type (PCIe), and PCIe function.
82 **/
83 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
85 struct e1000_bus_info *bus = &hw->bus;
86 s32 ret_val;
87 u32 status;
88 u16 pcie_link_status, pci_header_type;
90 bus->type = e1000_bus_type_pci_express;
91 bus->speed = e1000_bus_speed_2500;
93 ret_val = igb_read_pcie_cap_reg(hw,
94 PCIE_LINK_STATUS,
95 &pcie_link_status);
96 if (ret_val)
97 bus->width = e1000_bus_width_unknown;
98 else
99 bus->width = (enum e1000_bus_width)((pcie_link_status &
100 PCIE_LINK_WIDTH_MASK) >>
101 PCIE_LINK_WIDTH_SHIFT);
103 igb_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
104 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
105 status = rd32(E1000_STATUS);
106 bus->func = (status & E1000_STATUS_FUNC_MASK)
107 >> E1000_STATUS_FUNC_SHIFT;
108 } else {
109 bus->func = 0;
112 return 0;
116 * e1000_clear_vfta - Clear VLAN filter table
117 * @hw: pointer to the HW structure
119 * Clears the register array which contains the VLAN filter table by
120 * setting all the values to 0.
122 void igb_clear_vfta(struct e1000_hw *hw)
124 u32 offset;
126 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
127 array_wr32(E1000_VFTA, offset, 0);
128 wrfl();
133 * e1000_write_vfta - Write value to VLAN filter table
134 * @hw: pointer to the HW structure
135 * @offset: register offset in VLAN filter table
136 * @value: register value written to VLAN filter table
138 * Writes value at the given offset in the register array which stores
139 * the VLAN filter table.
141 void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
143 array_wr32(E1000_VFTA, offset, value);
144 wrfl();
148 * e1000_init_rx_addrs - Initialize receive address's
149 * @hw: pointer to the HW structure
150 * @rar_count: receive address registers
152 * Setups the receive address registers by setting the base receive address
153 * register to the devices MAC address and clearing all the other receive
154 * address registers to 0.
156 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
158 u32 i;
160 /* Setup the receive address */
161 hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
163 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
165 /* Zero out the other (rar_entry_count - 1) receive addresses */
166 hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
167 for (i = 1; i < rar_count; i++) {
168 array_wr32(E1000_RA, (i << 1), 0);
169 wrfl();
170 array_wr32(E1000_RA, ((i << 1) + 1), 0);
171 wrfl();
176 * e1000_check_alt_mac_addr - Check for alternate MAC addr
177 * @hw: pointer to the HW structure
179 * Checks the nvm for an alternate MAC address. An alternate MAC address
180 * can be setup by pre-boot software and must be treated like a permanent
181 * address and must override the actual permanent MAC address. If an
182 * alternate MAC address is fopund it is saved in the hw struct and
183 * prgrammed into RAR0 and the cuntion returns success, otherwise the
184 * fucntion returns an error.
186 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
188 u32 i;
189 s32 ret_val = 0;
190 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
191 u8 alt_mac_addr[ETH_ALEN];
193 ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
194 &nvm_alt_mac_addr_offset);
195 if (ret_val) {
196 hw_dbg(hw, "NVM Read Error\n");
197 goto out;
200 if (nvm_alt_mac_addr_offset == 0xFFFF) {
201 ret_val = -(E1000_NOT_IMPLEMENTED);
202 goto out;
205 if (hw->bus.func == E1000_FUNC_1)
206 nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
208 for (i = 0; i < ETH_ALEN; i += 2) {
209 offset = nvm_alt_mac_addr_offset + (i >> 1);
210 ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
211 if (ret_val) {
212 hw_dbg(hw, "NVM Read Error\n");
213 goto out;
216 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
217 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
220 /* if multicast bit is set, the alternate address will not be used */
221 if (alt_mac_addr[0] & 0x01) {
222 ret_val = -(E1000_NOT_IMPLEMENTED);
223 goto out;
226 for (i = 0; i < ETH_ALEN; i++)
227 hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
229 hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
231 out:
232 return ret_val;
236 * e1000_rar_set - Set receive address register
237 * @hw: pointer to the HW structure
238 * @addr: pointer to the receive address
239 * @index: receive address array register
241 * Sets the receive address array register at index to the address passed
242 * in by addr.
244 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
246 u32 rar_low, rar_high;
249 * HW expects these in little endian so we reverse the byte order
250 * from network order (big endian) to little endian
252 rar_low = ((u32) addr[0] |
253 ((u32) addr[1] << 8) |
254 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
256 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
258 if (!hw->mac.disable_av)
259 rar_high |= E1000_RAH_AV;
261 array_wr32(E1000_RA, (index << 1), rar_low);
262 array_wr32(E1000_RA, ((index << 1) + 1), rar_high);
266 * e1000_mta_set - Set multicast filter table address
267 * @hw: pointer to the HW structure
268 * @hash_value: determines the MTA register and bit to set
270 * The multicast table address is a register array of 32-bit registers.
271 * The hash_value is used to determine what register the bit is in, the
272 * current value is read, the new bit is OR'd in and the new value is
273 * written back into the register.
275 static void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
277 u32 hash_bit, hash_reg, mta;
280 * The MTA is a register array of 32-bit registers. It is
281 * treated like an array of (32*mta_reg_count) bits. We want to
282 * set bit BitArray[hash_value]. So we figure out what register
283 * the bit is in, read it, OR in the new bit, then write
284 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
285 * mask to bits 31:5 of the hash value which gives us the
286 * register we're modifying. The hash bit within that register
287 * is determined by the lower 5 bits of the hash value.
289 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
290 hash_bit = hash_value & 0x1F;
292 mta = array_rd32(E1000_MTA, hash_reg);
294 mta |= (1 << hash_bit);
296 array_wr32(E1000_MTA, hash_reg, mta);
297 wrfl();
301 * e1000_update_mc_addr_list - Update Multicast addresses
302 * @hw: pointer to the HW structure
303 * @mc_addr_list: array of multicast addresses to program
304 * @mc_addr_count: number of multicast addresses to program
305 * @rar_used_count: the first RAR register free to program
306 * @rar_count: total number of supported Receive Address Registers
308 * Updates the Receive Address Registers and Multicast Table Array.
309 * The caller must have a packed mc_addr_list of multicast addresses.
310 * The parameter rar_count will usually be hw->mac.rar_entry_count
311 * unless there are workarounds that change this.
313 void igb_update_mc_addr_list(struct e1000_hw *hw,
314 u8 *mc_addr_list, u32 mc_addr_count,
315 u32 rar_used_count, u32 rar_count)
317 u32 hash_value;
318 u32 i;
321 * Load the first set of multicast addresses into the exact
322 * filters (RAR). If there are not enough to fill the RAR
323 * array, clear the filters.
325 for (i = rar_used_count; i < rar_count; i++) {
326 if (mc_addr_count) {
327 hw->mac.ops.rar_set(hw, mc_addr_list, i);
328 mc_addr_count--;
329 mc_addr_list += ETH_ALEN;
330 } else {
331 array_wr32(E1000_RA, i << 1, 0);
332 wrfl();
333 array_wr32(E1000_RA, (i << 1) + 1, 0);
334 wrfl();
338 /* Clear the old settings from the MTA */
339 hw_dbg(hw, "Clearing MTA\n");
340 for (i = 0; i < hw->mac.mta_reg_count; i++) {
341 array_wr32(E1000_MTA, i, 0);
342 wrfl();
345 /* Load any remaining multicast addresses into the hash table. */
346 for (; mc_addr_count > 0; mc_addr_count--) {
347 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
348 hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
349 igb_mta_set(hw, hash_value);
350 mc_addr_list += ETH_ALEN;
355 * e1000_hash_mc_addr - Generate a multicast hash value
356 * @hw: pointer to the HW structure
357 * @mc_addr: pointer to a multicast address
359 * Generates a multicast address hash value which is used to determine
360 * the multicast filter table array address and new table value. See
361 * igb_mta_set()
363 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
365 u32 hash_value, hash_mask;
366 u8 bit_shift = 0;
368 /* Register count multiplied by bits per register */
369 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
372 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
373 * where 0xFF would still fall within the hash mask.
375 while (hash_mask >> bit_shift != 0xFF)
376 bit_shift++;
379 * The portion of the address that is used for the hash table
380 * is determined by the mc_filter_type setting.
381 * The algorithm is such that there is a total of 8 bits of shifting.
382 * The bit_shift for a mc_filter_type of 0 represents the number of
383 * left-shifts where the MSB of mc_addr[5] would still fall within
384 * the hash_mask. Case 0 does this exactly. Since there are a total
385 * of 8 bits of shifting, then mc_addr[4] will shift right the
386 * remaining number of bits. Thus 8 - bit_shift. The rest of the
387 * cases are a variation of this algorithm...essentially raising the
388 * number of bits to shift mc_addr[5] left, while still keeping the
389 * 8-bit shifting total.
391 * For example, given the following Destination MAC Address and an
392 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
393 * we can see that the bit_shift for case 0 is 4. These are the hash
394 * values resulting from each mc_filter_type...
395 * [0] [1] [2] [3] [4] [5]
396 * 01 AA 00 12 34 56
397 * LSB MSB
399 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
400 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
401 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
402 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
404 switch (hw->mac.mc_filter_type) {
405 default:
406 case 0:
407 break;
408 case 1:
409 bit_shift += 1;
410 break;
411 case 2:
412 bit_shift += 2;
413 break;
414 case 3:
415 bit_shift += 4;
416 break;
419 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
420 (((u16) mc_addr[5]) << bit_shift)));
422 return hash_value;
426 * e1000_clear_hw_cntrs_base - Clear base hardware counters
427 * @hw: pointer to the HW structure
429 * Clears the base hardware counters by reading the counter registers.
431 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
433 u32 temp;
435 temp = rd32(E1000_CRCERRS);
436 temp = rd32(E1000_SYMERRS);
437 temp = rd32(E1000_MPC);
438 temp = rd32(E1000_SCC);
439 temp = rd32(E1000_ECOL);
440 temp = rd32(E1000_MCC);
441 temp = rd32(E1000_LATECOL);
442 temp = rd32(E1000_COLC);
443 temp = rd32(E1000_DC);
444 temp = rd32(E1000_SEC);
445 temp = rd32(E1000_RLEC);
446 temp = rd32(E1000_XONRXC);
447 temp = rd32(E1000_XONTXC);
448 temp = rd32(E1000_XOFFRXC);
449 temp = rd32(E1000_XOFFTXC);
450 temp = rd32(E1000_FCRUC);
451 temp = rd32(E1000_GPRC);
452 temp = rd32(E1000_BPRC);
453 temp = rd32(E1000_MPRC);
454 temp = rd32(E1000_GPTC);
455 temp = rd32(E1000_GORCL);
456 temp = rd32(E1000_GORCH);
457 temp = rd32(E1000_GOTCL);
458 temp = rd32(E1000_GOTCH);
459 temp = rd32(E1000_RNBC);
460 temp = rd32(E1000_RUC);
461 temp = rd32(E1000_RFC);
462 temp = rd32(E1000_ROC);
463 temp = rd32(E1000_RJC);
464 temp = rd32(E1000_TORL);
465 temp = rd32(E1000_TORH);
466 temp = rd32(E1000_TOTL);
467 temp = rd32(E1000_TOTH);
468 temp = rd32(E1000_TPR);
469 temp = rd32(E1000_TPT);
470 temp = rd32(E1000_MPTC);
471 temp = rd32(E1000_BPTC);
475 * e1000_check_for_copper_link - Check for link (Copper)
476 * @hw: pointer to the HW structure
478 * Checks to see of the link status of the hardware has changed. If a
479 * change in link status has been detected, then we read the PHY registers
480 * to get the current speed/duplex if link exists.
482 s32 igb_check_for_copper_link(struct e1000_hw *hw)
484 struct e1000_mac_info *mac = &hw->mac;
485 s32 ret_val;
486 bool link;
489 * We only want to go out to the PHY registers to see if Auto-Neg
490 * has completed and/or if our link status has changed. The
491 * get_link_status flag is set upon receiving a Link Status
492 * Change or Rx Sequence Error interrupt.
494 if (!mac->get_link_status) {
495 ret_val = 0;
496 goto out;
500 * First we want to see if the MII Status Register reports
501 * link. If so, then we want to get the current speed/duplex
502 * of the PHY.
504 ret_val = igb_phy_has_link(hw, 1, 0, &link);
505 if (ret_val)
506 goto out;
508 if (!link)
509 goto out; /* No link detected */
511 mac->get_link_status = false;
514 * Check if there was DownShift, must be checked
515 * immediately after link-up
517 igb_check_downshift(hw);
520 * If we are forcing speed/duplex, then we simply return since
521 * we have already determined whether we have link or not.
523 if (!mac->autoneg) {
524 ret_val = -E1000_ERR_CONFIG;
525 goto out;
529 * Auto-Neg is enabled. Auto Speed Detection takes care
530 * of MAC speed/duplex configuration. So we only need to
531 * configure Collision Distance in the MAC.
533 igb_config_collision_dist(hw);
536 * Configure Flow Control now that Auto-Neg has completed.
537 * First, we need to restore the desired flow control
538 * settings because we may have had to re-autoneg with a
539 * different link partner.
541 ret_val = igb_config_fc_after_link_up(hw);
542 if (ret_val)
543 hw_dbg(hw, "Error configuring flow control\n");
545 out:
546 return ret_val;
550 * e1000_setup_link - Setup flow control and link settings
551 * @hw: pointer to the HW structure
553 * Determines which flow control settings to use, then configures flow
554 * control. Calls the appropriate media-specific link configuration
555 * function. Assuming the adapter has a valid link partner, a valid link
556 * should be established. Assumes the hardware has previously been reset
557 * and the transmitter and receiver are not enabled.
559 s32 igb_setup_link(struct e1000_hw *hw)
561 s32 ret_val = 0;
564 * In the case of the phy reset being blocked, we already have a link.
565 * We do not need to set it up again.
567 if (igb_check_reset_block(hw))
568 goto out;
570 ret_val = igb_set_default_fc(hw);
571 if (ret_val)
572 goto out;
575 * We want to save off the original Flow Control configuration just
576 * in case we get disconnected and then reconnected into a different
577 * hub or switch with different Flow Control capabilities.
579 hw->fc.original_type = hw->fc.type;
581 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
583 /* Call the necessary media_type subroutine to configure the link. */
584 ret_val = hw->mac.ops.setup_physical_interface(hw);
585 if (ret_val)
586 goto out;
589 * Initialize the flow control address, type, and PAUSE timer
590 * registers to their default values. This is done even if flow
591 * control is disabled, because it does not hurt anything to
592 * initialize these registers.
594 hw_dbg(hw,
595 "Initializing the Flow Control address, type and timer regs\n");
596 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
597 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
598 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
600 wr32(E1000_FCTTV, hw->fc.pause_time);
602 ret_val = igb_set_fc_watermarks(hw);
604 out:
605 return ret_val;
609 * e1000_config_collision_dist - Configure collision distance
610 * @hw: pointer to the HW structure
612 * Configures the collision distance to the default value and is used
613 * during link setup. Currently no func pointer exists and all
614 * implementations are handled in the generic version of this function.
616 void igb_config_collision_dist(struct e1000_hw *hw)
618 u32 tctl;
620 tctl = rd32(E1000_TCTL);
622 tctl &= ~E1000_TCTL_COLD;
623 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
625 wr32(E1000_TCTL, tctl);
626 wrfl();
630 * e1000_set_fc_watermarks - Set flow control high/low watermarks
631 * @hw: pointer to the HW structure
633 * Sets the flow control high/low threshold (watermark) registers. If
634 * flow control XON frame transmission is enabled, then set XON frame
635 * tansmission as well.
637 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
639 s32 ret_val = 0;
640 u32 fcrtl = 0, fcrth = 0;
643 * Set the flow control receive threshold registers. Normally,
644 * these registers will be set to a default threshold that may be
645 * adjusted later by the driver's runtime code. However, if the
646 * ability to transmit pause frames is not enabled, then these
647 * registers will be set to 0.
649 if (hw->fc.type & e1000_fc_tx_pause) {
651 * We need to set up the Receive Threshold high and low water
652 * marks as well as (optionally) enabling the transmission of
653 * XON frames.
655 fcrtl = hw->fc.low_water;
656 if (hw->fc.send_xon)
657 fcrtl |= E1000_FCRTL_XONE;
659 fcrth = hw->fc.high_water;
661 wr32(E1000_FCRTL, fcrtl);
662 wr32(E1000_FCRTH, fcrth);
664 return ret_val;
668 * e1000_set_default_fc - Set flow control default values
669 * @hw: pointer to the HW structure
671 * Read the EEPROM for the default values for flow control and store the
672 * values.
674 static s32 igb_set_default_fc(struct e1000_hw *hw)
676 s32 ret_val = 0;
677 u16 nvm_data;
680 * Read and store word 0x0F of the EEPROM. This word contains bits
681 * that determine the hardware's default PAUSE (flow control) mode,
682 * a bit that determines whether the HW defaults to enabling or
683 * disabling auto-negotiation, and the direction of the
684 * SW defined pins. If there is no SW over-ride of the flow
685 * control setting, then the variable hw->fc will
686 * be initialized based on a value in the EEPROM.
688 ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1,
689 &nvm_data);
691 if (ret_val) {
692 hw_dbg(hw, "NVM Read Error\n");
693 goto out;
696 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
697 hw->fc.type = e1000_fc_none;
698 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
699 NVM_WORD0F_ASM_DIR)
700 hw->fc.type = e1000_fc_tx_pause;
701 else
702 hw->fc.type = e1000_fc_full;
704 out:
705 return ret_val;
709 * e1000_force_mac_fc - Force the MAC's flow control settings
710 * @hw: pointer to the HW structure
712 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
713 * device control register to reflect the adapter settings. TFCE and RFCE
714 * need to be explicitly set by software when a copper PHY is used because
715 * autonegotiation is managed by the PHY rather than the MAC. Software must
716 * also configure these bits when link is forced on a fiber connection.
718 s32 igb_force_mac_fc(struct e1000_hw *hw)
720 u32 ctrl;
721 s32 ret_val = 0;
723 ctrl = rd32(E1000_CTRL);
726 * Because we didn't get link via the internal auto-negotiation
727 * mechanism (we either forced link or we got link via PHY
728 * auto-neg), we have to manually enable/disable transmit an
729 * receive flow control.
731 * The "Case" statement below enables/disable flow control
732 * according to the "hw->fc.type" parameter.
734 * The possible values of the "fc" parameter are:
735 * 0: Flow control is completely disabled
736 * 1: Rx flow control is enabled (we can receive pause
737 * frames but not send pause frames).
738 * 2: Tx flow control is enabled (we can send pause frames
739 * frames but we do not receive pause frames).
740 * 3: Both Rx and TX flow control (symmetric) is enabled.
741 * other: No other values should be possible at this point.
743 hw_dbg(hw, "hw->fc.type = %u\n", hw->fc.type);
745 switch (hw->fc.type) {
746 case e1000_fc_none:
747 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
748 break;
749 case e1000_fc_rx_pause:
750 ctrl &= (~E1000_CTRL_TFCE);
751 ctrl |= E1000_CTRL_RFCE;
752 break;
753 case e1000_fc_tx_pause:
754 ctrl &= (~E1000_CTRL_RFCE);
755 ctrl |= E1000_CTRL_TFCE;
756 break;
757 case e1000_fc_full:
758 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
759 break;
760 default:
761 hw_dbg(hw, "Flow control param set incorrectly\n");
762 ret_val = -E1000_ERR_CONFIG;
763 goto out;
766 wr32(E1000_CTRL, ctrl);
768 out:
769 return ret_val;
773 * e1000_config_fc_after_link_up - Configures flow control after link
774 * @hw: pointer to the HW structure
776 * Checks the status of auto-negotiation after link up to ensure that the
777 * speed and duplex were not forced. If the link needed to be forced, then
778 * flow control needs to be forced also. If auto-negotiation is enabled
779 * and did not fail, then we configure flow control based on our link
780 * partner.
782 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
784 struct e1000_mac_info *mac = &hw->mac;
785 s32 ret_val = 0;
786 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
787 u16 speed, duplex;
790 * Check for the case where we have fiber media and auto-neg failed
791 * so we had to force link. In this case, we need to force the
792 * configuration of the MAC to match the "fc" parameter.
794 if (mac->autoneg_failed) {
795 if (hw->phy.media_type == e1000_media_type_fiber ||
796 hw->phy.media_type == e1000_media_type_internal_serdes)
797 ret_val = igb_force_mac_fc(hw);
798 } else {
799 if (hw->phy.media_type == e1000_media_type_copper)
800 ret_val = igb_force_mac_fc(hw);
803 if (ret_val) {
804 hw_dbg(hw, "Error forcing flow control settings\n");
805 goto out;
809 * Check for the case where we have copper media and auto-neg is
810 * enabled. In this case, we need to check and see if Auto-Neg
811 * has completed, and if so, how the PHY and link partner has
812 * flow control configured.
814 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
816 * Read the MII Status Register and check to see if AutoNeg
817 * has completed. We read this twice because this reg has
818 * some "sticky" (latched) bits.
820 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
821 &mii_status_reg);
822 if (ret_val)
823 goto out;
824 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
825 &mii_status_reg);
826 if (ret_val)
827 goto out;
829 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
830 hw_dbg(hw, "Copper PHY and Auto Neg "
831 "has not completed.\n");
832 goto out;
836 * The AutoNeg process has completed, so we now need to
837 * read both the Auto Negotiation Advertisement
838 * Register (Address 4) and the Auto_Negotiation Base
839 * Page Ability Register (Address 5) to determine how
840 * flow control was negotiated.
842 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV,
843 &mii_nway_adv_reg);
844 if (ret_val)
845 goto out;
846 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY,
847 &mii_nway_lp_ability_reg);
848 if (ret_val)
849 goto out;
852 * Two bits in the Auto Negotiation Advertisement Register
853 * (Address 4) and two bits in the Auto Negotiation Base
854 * Page Ability Register (Address 5) determine flow control
855 * for both the PHY and the link partner. The following
856 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
857 * 1999, describes these PAUSE resolution bits and how flow
858 * control is determined based upon these settings.
859 * NOTE: DC = Don't Care
861 * LOCAL DEVICE | LINK PARTNER
862 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
863 *-------|---------|-------|---------|--------------------
864 * 0 | 0 | DC | DC | e1000_fc_none
865 * 0 | 1 | 0 | DC | e1000_fc_none
866 * 0 | 1 | 1 | 0 | e1000_fc_none
867 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
868 * 1 | 0 | 0 | DC | e1000_fc_none
869 * 1 | DC | 1 | DC | e1000_fc_full
870 * 1 | 1 | 0 | 0 | e1000_fc_none
871 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
873 * Are both PAUSE bits set to 1? If so, this implies
874 * Symmetric Flow Control is enabled at both ends. The
875 * ASM_DIR bits are irrelevant per the spec.
877 * For Symmetric Flow Control:
879 * LOCAL DEVICE | LINK PARTNER
880 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
881 *-------|---------|-------|---------|--------------------
882 * 1 | DC | 1 | DC | E1000_fc_full
885 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
886 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
888 * Now we need to check if the user selected RX ONLY
889 * of pause frames. In this case, we had to advertise
890 * FULL flow control because we could not advertise RX
891 * ONLY. Hence, we must now check to see if we need to
892 * turn OFF the TRANSMISSION of PAUSE frames.
894 if (hw->fc.original_type == e1000_fc_full) {
895 hw->fc.type = e1000_fc_full;
896 hw_dbg(hw, "Flow Control = FULL.\r\n");
897 } else {
898 hw->fc.type = e1000_fc_rx_pause;
899 hw_dbg(hw, "Flow Control = "
900 "RX PAUSE frames only.\r\n");
904 * For receiving PAUSE frames ONLY.
906 * LOCAL DEVICE | LINK PARTNER
907 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
908 *-------|---------|-------|---------|--------------------
909 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
911 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
912 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
913 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
914 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
915 hw->fc.type = e1000_fc_tx_pause;
916 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
919 * For transmitting PAUSE frames ONLY.
921 * LOCAL DEVICE | LINK PARTNER
922 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
923 *-------|---------|-------|---------|--------------------
924 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
926 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
927 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
928 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
929 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
930 hw->fc.type = e1000_fc_rx_pause;
931 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
934 * Per the IEEE spec, at this point flow control should be
935 * disabled. However, we want to consider that we could
936 * be connected to a legacy switch that doesn't advertise
937 * desired flow control, but can be forced on the link
938 * partner. So if we advertised no flow control, that is
939 * what we will resolve to. If we advertised some kind of
940 * receive capability (Rx Pause Only or Full Flow Control)
941 * and the link partner advertised none, we will configure
942 * ourselves to enable Rx Flow Control only. We can do
943 * this safely for two reasons: If the link partner really
944 * didn't want flow control enabled, and we enable Rx, no
945 * harm done since we won't be receiving any PAUSE frames
946 * anyway. If the intent on the link partner was to have
947 * flow control enabled, then by us enabling RX only, we
948 * can at least receive pause frames and process them.
949 * This is a good idea because in most cases, since we are
950 * predominantly a server NIC, more times than not we will
951 * be asked to delay transmission of packets than asking
952 * our link partner to pause transmission of frames.
954 else if ((hw->fc.original_type == e1000_fc_none ||
955 hw->fc.original_type == e1000_fc_tx_pause) ||
956 hw->fc.strict_ieee) {
957 hw->fc.type = e1000_fc_none;
958 hw_dbg(hw, "Flow Control = NONE.\r\n");
959 } else {
960 hw->fc.type = e1000_fc_rx_pause;
961 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
965 * Now we need to do one last check... If we auto-
966 * negotiated to HALF DUPLEX, flow control should not be
967 * enabled per IEEE 802.3 spec.
969 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
970 if (ret_val) {
971 hw_dbg(hw, "Error getting link speed and duplex\n");
972 goto out;
975 if (duplex == HALF_DUPLEX)
976 hw->fc.type = e1000_fc_none;
979 * Now we call a subroutine to actually force the MAC
980 * controller to use the correct flow control settings.
982 ret_val = igb_force_mac_fc(hw);
983 if (ret_val) {
984 hw_dbg(hw, "Error forcing flow control settings\n");
985 goto out;
989 out:
990 return ret_val;
994 * e1000_get_speed_and_duplex_copper - Retreive current speed/duplex
995 * @hw: pointer to the HW structure
996 * @speed: stores the current speed
997 * @duplex: stores the current duplex
999 * Read the status register for the current speed/duplex and store the current
1000 * speed and duplex for copper connections.
1002 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1003 u16 *duplex)
1005 u32 status;
1007 status = rd32(E1000_STATUS);
1008 if (status & E1000_STATUS_SPEED_1000) {
1009 *speed = SPEED_1000;
1010 hw_dbg(hw, "1000 Mbs, ");
1011 } else if (status & E1000_STATUS_SPEED_100) {
1012 *speed = SPEED_100;
1013 hw_dbg(hw, "100 Mbs, ");
1014 } else {
1015 *speed = SPEED_10;
1016 hw_dbg(hw, "10 Mbs, ");
1019 if (status & E1000_STATUS_FD) {
1020 *duplex = FULL_DUPLEX;
1021 hw_dbg(hw, "Full Duplex\n");
1022 } else {
1023 *duplex = HALF_DUPLEX;
1024 hw_dbg(hw, "Half Duplex\n");
1027 return 0;
1031 * e1000_get_hw_semaphore - Acquire hardware semaphore
1032 * @hw: pointer to the HW structure
1034 * Acquire the HW semaphore to access the PHY or NVM
1036 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1038 u32 swsm;
1039 s32 ret_val = 0;
1040 s32 timeout = hw->nvm.word_size + 1;
1041 s32 i = 0;
1043 /* Get the SW semaphore */
1044 while (i < timeout) {
1045 swsm = rd32(E1000_SWSM);
1046 if (!(swsm & E1000_SWSM_SMBI))
1047 break;
1049 udelay(50);
1050 i++;
1053 if (i == timeout) {
1054 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
1055 ret_val = -E1000_ERR_NVM;
1056 goto out;
1059 /* Get the FW semaphore. */
1060 for (i = 0; i < timeout; i++) {
1061 swsm = rd32(E1000_SWSM);
1062 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1064 /* Semaphore acquired if bit latched */
1065 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1066 break;
1068 udelay(50);
1071 if (i == timeout) {
1072 /* Release semaphores */
1073 igb_put_hw_semaphore(hw);
1074 hw_dbg(hw, "Driver can't access the NVM\n");
1075 ret_val = -E1000_ERR_NVM;
1076 goto out;
1079 out:
1080 return ret_val;
1084 * e1000_put_hw_semaphore - Release hardware semaphore
1085 * @hw: pointer to the HW structure
1087 * Release hardware semaphore used to access the PHY or NVM
1089 void igb_put_hw_semaphore(struct e1000_hw *hw)
1091 u32 swsm;
1093 swsm = rd32(E1000_SWSM);
1095 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1097 wr32(E1000_SWSM, swsm);
1101 * e1000_get_auto_rd_done - Check for auto read completion
1102 * @hw: pointer to the HW structure
1104 * Check EEPROM for Auto Read done bit.
1106 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1108 s32 i = 0;
1109 s32 ret_val = 0;
1112 while (i < AUTO_READ_DONE_TIMEOUT) {
1113 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1114 break;
1115 msleep(1);
1116 i++;
1119 if (i == AUTO_READ_DONE_TIMEOUT) {
1120 hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
1121 ret_val = -E1000_ERR_RESET;
1122 goto out;
1125 out:
1126 return ret_val;
1130 * e1000_valid_led_default - Verify a valid default LED config
1131 * @hw: pointer to the HW structure
1132 * @data: pointer to the NVM (EEPROM)
1134 * Read the EEPROM for the current default LED configuration. If the
1135 * LED configuration is not valid, set to a valid LED configuration.
1137 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1139 s32 ret_val;
1141 ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1142 if (ret_val) {
1143 hw_dbg(hw, "NVM Read Error\n");
1144 goto out;
1147 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1148 *data = ID_LED_DEFAULT;
1150 out:
1151 return ret_val;
1155 * e1000_id_led_init -
1156 * @hw: pointer to the HW structure
1159 s32 igb_id_led_init(struct e1000_hw *hw)
1161 struct e1000_mac_info *mac = &hw->mac;
1162 s32 ret_val;
1163 const u32 ledctl_mask = 0x000000FF;
1164 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1165 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1166 u16 data, i, temp;
1167 const u16 led_mask = 0x0F;
1169 ret_val = igb_valid_led_default(hw, &data);
1170 if (ret_val)
1171 goto out;
1173 mac->ledctl_default = rd32(E1000_LEDCTL);
1174 mac->ledctl_mode1 = mac->ledctl_default;
1175 mac->ledctl_mode2 = mac->ledctl_default;
1177 for (i = 0; i < 4; i++) {
1178 temp = (data >> (i << 2)) & led_mask;
1179 switch (temp) {
1180 case ID_LED_ON1_DEF2:
1181 case ID_LED_ON1_ON2:
1182 case ID_LED_ON1_OFF2:
1183 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1184 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1185 break;
1186 case ID_LED_OFF1_DEF2:
1187 case ID_LED_OFF1_ON2:
1188 case ID_LED_OFF1_OFF2:
1189 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1190 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1191 break;
1192 default:
1193 /* Do nothing */
1194 break;
1196 switch (temp) {
1197 case ID_LED_DEF1_ON2:
1198 case ID_LED_ON1_ON2:
1199 case ID_LED_OFF1_ON2:
1200 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1201 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1202 break;
1203 case ID_LED_DEF1_OFF2:
1204 case ID_LED_ON1_OFF2:
1205 case ID_LED_OFF1_OFF2:
1206 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1207 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1208 break;
1209 default:
1210 /* Do nothing */
1211 break;
1215 out:
1216 return ret_val;
1220 * e1000_cleanup_led - Set LED config to default operation
1221 * @hw: pointer to the HW structure
1223 * Remove the current LED configuration and set the LED configuration
1224 * to the default value, saved from the EEPROM.
1226 s32 igb_cleanup_led(struct e1000_hw *hw)
1228 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1229 return 0;
1233 * e1000_blink_led - Blink LED
1234 * @hw: pointer to the HW structure
1236 * Blink the led's which are set to be on.
1238 s32 igb_blink_led(struct e1000_hw *hw)
1240 u32 ledctl_blink = 0;
1241 u32 i;
1243 if (hw->phy.media_type == e1000_media_type_fiber) {
1244 /* always blink LED0 for PCI-E fiber */
1245 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1246 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1247 } else {
1249 * set the blink bit for each LED that's "on" (0x0E)
1250 * in ledctl_mode2
1252 ledctl_blink = hw->mac.ledctl_mode2;
1253 for (i = 0; i < 4; i++)
1254 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1255 E1000_LEDCTL_MODE_LED_ON)
1256 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1257 (i * 8));
1260 wr32(E1000_LEDCTL, ledctl_blink);
1262 return 0;
1266 * e1000_led_off - Turn LED off
1267 * @hw: pointer to the HW structure
1269 * Turn LED off.
1271 s32 igb_led_off(struct e1000_hw *hw)
1273 u32 ctrl;
1275 switch (hw->phy.media_type) {
1276 case e1000_media_type_fiber:
1277 ctrl = rd32(E1000_CTRL);
1278 ctrl |= E1000_CTRL_SWDPIN0;
1279 ctrl |= E1000_CTRL_SWDPIO0;
1280 wr32(E1000_CTRL, ctrl);
1281 break;
1282 case e1000_media_type_copper:
1283 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1284 break;
1285 default:
1286 break;
1289 return 0;
1293 * e1000_disable_pcie_master - Disables PCI-express master access
1294 * @hw: pointer to the HW structure
1296 * Returns 0 (0) if successful, else returns -10
1297 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1298 * the master requests to be disabled.
1300 * Disables PCI-Express master access and verifies there are no pending
1301 * requests.
1303 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1305 u32 ctrl;
1306 s32 timeout = MASTER_DISABLE_TIMEOUT;
1307 s32 ret_val = 0;
1309 if (hw->bus.type != e1000_bus_type_pci_express)
1310 goto out;
1312 ctrl = rd32(E1000_CTRL);
1313 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1314 wr32(E1000_CTRL, ctrl);
1316 while (timeout) {
1317 if (!(rd32(E1000_STATUS) &
1318 E1000_STATUS_GIO_MASTER_ENABLE))
1319 break;
1320 udelay(100);
1321 timeout--;
1324 if (!timeout) {
1325 hw_dbg(hw, "Master requests are pending.\n");
1326 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1327 goto out;
1330 out:
1331 return ret_val;
1335 * e1000_reset_adaptive - Reset Adaptive Interframe Spacing
1336 * @hw: pointer to the HW structure
1338 * Reset the Adaptive Interframe Spacing throttle to default values.
1340 void igb_reset_adaptive(struct e1000_hw *hw)
1342 struct e1000_mac_info *mac = &hw->mac;
1344 if (!mac->adaptive_ifs) {
1345 hw_dbg(hw, "Not in Adaptive IFS mode!\n");
1346 goto out;
1349 if (!mac->ifs_params_forced) {
1350 mac->current_ifs_val = 0;
1351 mac->ifs_min_val = IFS_MIN;
1352 mac->ifs_max_val = IFS_MAX;
1353 mac->ifs_step_size = IFS_STEP;
1354 mac->ifs_ratio = IFS_RATIO;
1357 mac->in_ifs_mode = false;
1358 wr32(E1000_AIT, 0);
1359 out:
1360 return;
1364 * e1000_update_adaptive - Update Adaptive Interframe Spacing
1365 * @hw: pointer to the HW structure
1367 * Update the Adaptive Interframe Spacing Throttle value based on the
1368 * time between transmitted packets and time between collisions.
1370 void igb_update_adaptive(struct e1000_hw *hw)
1372 struct e1000_mac_info *mac = &hw->mac;
1374 if (!mac->adaptive_ifs) {
1375 hw_dbg(hw, "Not in Adaptive IFS mode!\n");
1376 goto out;
1379 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1380 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1381 mac->in_ifs_mode = true;
1382 if (mac->current_ifs_val < mac->ifs_max_val) {
1383 if (!mac->current_ifs_val)
1384 mac->current_ifs_val = mac->ifs_min_val;
1385 else
1386 mac->current_ifs_val +=
1387 mac->ifs_step_size;
1388 wr32(E1000_AIT,
1389 mac->current_ifs_val);
1392 } else {
1393 if (mac->in_ifs_mode &&
1394 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1395 mac->current_ifs_val = 0;
1396 mac->in_ifs_mode = false;
1397 wr32(E1000_AIT, 0);
1400 out:
1401 return;
1405 * e1000_validate_mdi_setting - Verify MDI/MDIx settings
1406 * @hw: pointer to the HW structure
1408 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1409 * set, which is forced to MDI mode only.
1411 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1413 s32 ret_val = 0;
1415 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1416 hw_dbg(hw, "Invalid MDI setting detected\n");
1417 hw->phy.mdix = 1;
1418 ret_val = -E1000_ERR_CONFIG;
1419 goto out;
1422 out:
1423 return ret_val;
1427 * e1000_write_8bit_ctrl_reg - Write a 8bit CTRL register
1428 * @hw: pointer to the HW structure
1429 * @reg: 32bit register offset such as E1000_SCTL
1430 * @offset: register offset to write to
1431 * @data: data to write at register offset
1433 * Writes an address/data control type register. There are several of these
1434 * and they all have the format address << 8 | data and bit 31 is polled for
1435 * completion.
1437 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1438 u32 offset, u8 data)
1440 u32 i, regvalue = 0;
1441 s32 ret_val = 0;
1443 /* Set up the address and data */
1444 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1445 wr32(reg, regvalue);
1447 /* Poll the ready bit to see if the MDI read completed */
1448 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1449 udelay(5);
1450 regvalue = rd32(reg);
1451 if (regvalue & E1000_GEN_CTL_READY)
1452 break;
1454 if (!(regvalue & E1000_GEN_CTL_READY)) {
1455 hw_dbg(hw, "Reg %08x did not indicate ready\n", reg);
1456 ret_val = -E1000_ERR_PHY;
1457 goto out;
1460 out:
1461 return ret_val;
1465 * e1000_enable_mng_pass_thru - Enable processing of ARP's
1466 * @hw: pointer to the HW structure
1468 * Verifies the hardware needs to allow ARPs to be processed by the host.
1470 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1472 u32 manc;
1473 u32 fwsm, factps;
1474 bool ret_val = false;
1476 if (!hw->mac.asf_firmware_present)
1477 goto out;
1479 manc = rd32(E1000_MANC);
1481 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1482 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1483 goto out;
1485 if (hw->mac.arc_subsystem_valid) {
1486 fwsm = rd32(E1000_FWSM);
1487 factps = rd32(E1000_FACTPS);
1489 if (!(factps & E1000_FACTPS_MNGCG) &&
1490 ((fwsm & E1000_FWSM_MODE_MASK) ==
1491 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1492 ret_val = true;
1493 goto out;
1495 } else {
1496 if ((manc & E1000_MANC_SMBUS_EN) &&
1497 !(manc & E1000_MANC_ASF_EN)) {
1498 ret_val = true;
1499 goto out;
1503 out:
1504 return ret_val;