1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.24"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name
[] = "Neterion";
93 static char s2io_driver_version
[] = DRV_VERSION
;
95 static int rxd_size
[2] = {32,48};
96 static int rxd_count
[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
102 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
103 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
123 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
348 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
349 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
350 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
351 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
352 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
353 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
356 static void s2io_vlan_rx_register(struct net_device
*dev
,
357 struct vlan_group
*grp
)
360 struct s2io_nic
*nic
= dev
->priv
;
361 unsigned long flags
[MAX_TX_FIFOS
];
362 struct mac_info
*mac_control
= &nic
->mac_control
;
363 struct config_param
*config
= &nic
->config
;
365 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
366 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
369 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
370 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag
;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
381 struct s2io_nic
*nic
= dev
->priv
;
382 unsigned long flags
[MAX_TX_FIFOS
];
383 struct mac_info
*mac_control
= &nic
->mac_control
;
384 struct config_param
*config
= &nic
->config
;
386 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
387 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
390 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
392 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
393 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
398 * Constants to be programmed into the Xena's registers, to configure
403 static const u64 herc_act_dtx_cfg
[] = {
405 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
407 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
409 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
411 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
413 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
415 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
417 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
419 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
424 static const u64 xena_dtx_cfg
[] = {
426 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
428 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
430 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
432 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
434 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
436 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
441 * Constants for Fixing the MacAddress problem seen mostly on
444 static const u64 fix_mac
[] = {
445 0x0060000000000000ULL
, 0x0060600000000000ULL
,
446 0x0040600000000000ULL
, 0x0000600000000000ULL
,
447 0x0020600000000000ULL
, 0x0060600000000000ULL
,
448 0x0020600000000000ULL
, 0x0060600000000000ULL
,
449 0x0020600000000000ULL
, 0x0060600000000000ULL
,
450 0x0020600000000000ULL
, 0x0060600000000000ULL
,
451 0x0020600000000000ULL
, 0x0060600000000000ULL
,
452 0x0020600000000000ULL
, 0x0060600000000000ULL
,
453 0x0020600000000000ULL
, 0x0060600000000000ULL
,
454 0x0020600000000000ULL
, 0x0060600000000000ULL
,
455 0x0020600000000000ULL
, 0x0060600000000000ULL
,
456 0x0020600000000000ULL
, 0x0060600000000000ULL
,
457 0x0020600000000000ULL
, 0x0000600000000000ULL
,
458 0x0040600000000000ULL
, 0x0060600000000000ULL
,
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION
);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
468 S2IO_PARM_INT(rx_ring_num
, 1);
469 S2IO_PARM_INT(multiq
, 0);
470 S2IO_PARM_INT(rx_ring_mode
, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
472 S2IO_PARM_INT(rmac_pause_time
, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
475 S2IO_PARM_INT(shared_splits
, 0);
476 S2IO_PARM_INT(tmac_util_period
, 5);
477 S2IO_PARM_INT(rmac_util_period
, 5);
478 S2IO_PARM_INT(l3l4hdr_size
, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency
, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type
, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable
;
487 module_param_named(lro
, lro_enable
, uint
, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts
, 0);
495 S2IO_PARM_INT(napi
, 1);
496 S2IO_PARM_INT(ufo
, 0);
497 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
499 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
500 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
501 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
502 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
503 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
504 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
506 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
507 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
508 module_param_array(rts_frm_len
, uint
, NULL
, 0);
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
515 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
516 PCI_ANY_ID
, PCI_ANY_ID
},
517 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
518 PCI_ANY_ID
, PCI_ANY_ID
},
519 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
520 PCI_ANY_ID
, PCI_ANY_ID
},
521 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
522 PCI_ANY_ID
, PCI_ANY_ID
},
526 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
528 static struct pci_error_handlers s2io_err_handler
= {
529 .error_detected
= s2io_io_error_detected
,
530 .slot_reset
= s2io_io_slot_reset
,
531 .resume
= s2io_io_resume
,
534 static struct pci_driver s2io_driver
= {
536 .id_table
= s2io_tbl
,
537 .probe
= s2io_init_nic
,
538 .remove
= __devexit_p(s2io_rem_nic
),
539 .err_handler
= &s2io_err_handler
,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp
->config
.multiq
) {
551 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
552 netif_stop_subqueue(sp
->dev
, i
);
556 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
557 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
558 netif_stop_queue(sp
->dev
);
562 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp
->config
.multiq
)
566 netif_stop_subqueue(sp
->dev
, fifo_no
);
570 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
572 netif_stop_queue(sp
->dev
);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp
->config
.multiq
) {
581 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
582 netif_start_subqueue(sp
->dev
, i
);
586 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
587 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
588 netif_start_queue(sp
->dev
);
592 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp
->config
.multiq
)
596 netif_start_subqueue(sp
->dev
, fifo_no
);
600 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
602 netif_start_queue(sp
->dev
);
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp
->config
.multiq
) {
611 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
612 netif_wake_subqueue(sp
->dev
, i
);
616 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
617 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
618 netif_wake_queue(sp
->dev
);
622 static inline void s2io_wake_tx_queue(
623 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
628 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
629 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
632 if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
633 if (netif_queue_stopped(fifo
->dev
)) {
634 fifo
->queue_state
= FIFO_QUEUE_START
;
635 netif_wake_queue(fifo
->dev
);
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
645 * Rx descriptors and the statistics block.
648 static int init_shared_mem(struct s2io_nic
*nic
)
651 void *tmp_v_addr
, *tmp_v_addr_next
;
652 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
653 struct RxD_block
*pre_rxd_blk
= NULL
;
655 int lst_size
, lst_per_page
;
656 struct net_device
*dev
= nic
->dev
;
660 struct mac_info
*mac_control
;
661 struct config_param
*config
;
662 unsigned long long mem_allocated
= 0;
664 mac_control
= &nic
->mac_control
;
665 config
= &nic
->config
;
668 /* Allocation and initialization of TXDLs in FIOFs */
670 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
671 size
+= config
->tx_cfg
[i
].fifo_len
;
673 if (size
> MAX_AVAILABLE_TXDS
) {
674 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
675 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
680 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
681 size
= config
->tx_cfg
[i
].fifo_len
;
683 * Legal values are from 2 to 8192
686 DBG_PRINT(ERR_DBG
, "s2io: Invalid fifo len (%d)", size
);
687 DBG_PRINT(ERR_DBG
, "for fifo %d\n", i
);
688 DBG_PRINT(ERR_DBG
, "s2io: Legal values for fifo len"
694 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
695 lst_per_page
= PAGE_SIZE
/ lst_size
;
697 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
698 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
699 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
700 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
702 if (!mac_control
->fifos
[i
].list_info
) {
704 "Malloc failed for list_info\n");
707 mem_allocated
+= list_holder_size
;
709 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
710 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
712 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
713 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
714 config
->tx_cfg
[i
].fifo_len
- 1;
715 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
716 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
717 config
->tx_cfg
[i
].fifo_len
- 1;
718 mac_control
->fifos
[i
].fifo_no
= i
;
719 mac_control
->fifos
[i
].nic
= nic
;
720 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
721 mac_control
->fifos
[i
].dev
= dev
;
723 for (j
= 0; j
< page_num
; j
++) {
727 tmp_v
= pci_alloc_consistent(nic
->pdev
,
731 "pci_alloc_consistent ");
732 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
741 mac_control
->zerodma_virt_addr
= tmp_v
;
743 "%s: Zero DMA address for TxDL. ", dev
->name
);
745 "Virtual address %p\n", tmp_v
);
746 tmp_v
= pci_alloc_consistent(nic
->pdev
,
750 "pci_alloc_consistent ");
751 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
754 mem_allocated
+= PAGE_SIZE
;
756 while (k
< lst_per_page
) {
757 int l
= (j
* lst_per_page
) + k
;
758 if (l
== config
->tx_cfg
[i
].fifo_len
)
760 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
761 tmp_v
+ (k
* lst_size
);
762 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
763 tmp_p
+ (k
* lst_size
);
769 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
770 size
= config
->tx_cfg
[i
].fifo_len
;
771 mac_control
->fifos
[i
].ufo_in_band_v
772 = kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
773 if (!mac_control
->fifos
[i
].ufo_in_band_v
)
775 mem_allocated
+= (size
* sizeof(u64
));
778 /* Allocation and initialization of RXDs in Rings */
780 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
781 if (config
->rx_cfg
[i
].num_rxd
%
782 (rxd_count
[nic
->rxd_mode
] + 1)) {
783 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
784 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
786 DBG_PRINT(ERR_DBG
, "RxDs per Block");
789 size
+= config
->rx_cfg
[i
].num_rxd
;
790 mac_control
->rings
[i
].block_count
=
791 config
->rx_cfg
[i
].num_rxd
/
792 (rxd_count
[nic
->rxd_mode
] + 1 );
793 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
794 mac_control
->rings
[i
].block_count
;
796 if (nic
->rxd_mode
== RXD_MODE_1
)
797 size
= (size
* (sizeof(struct RxD1
)));
799 size
= (size
* (sizeof(struct RxD3
)));
801 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
802 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
803 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
804 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
805 config
->rx_cfg
[i
].num_rxd
- 1;
806 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
807 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
808 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
809 config
->rx_cfg
[i
].num_rxd
- 1;
810 mac_control
->rings
[i
].nic
= nic
;
811 mac_control
->rings
[i
].ring_no
= i
;
812 mac_control
->rings
[i
].lro
= lro_enable
;
814 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
815 (rxd_count
[nic
->rxd_mode
] + 1);
816 /* Allocating all the Rx blocks */
817 for (j
= 0; j
< blk_cnt
; j
++) {
818 struct rx_block_info
*rx_blocks
;
821 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
822 size
= SIZE_OF_BLOCK
; //size is always page size
823 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
825 if (tmp_v_addr
== NULL
) {
827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
832 rx_blocks
->block_virt_addr
= tmp_v_addr
;
835 mem_allocated
+= size
;
836 memset(tmp_v_addr
, 0, size
);
837 rx_blocks
->block_virt_addr
= tmp_v_addr
;
838 rx_blocks
->block_dma_addr
= tmp_p_addr
;
839 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
840 rxd_count
[nic
->rxd_mode
],
842 if (!rx_blocks
->rxds
)
845 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
846 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
847 rx_blocks
->rxds
[l
].virt_addr
=
848 rx_blocks
->block_virt_addr
+
849 (rxd_size
[nic
->rxd_mode
] * l
);
850 rx_blocks
->rxds
[l
].dma_addr
=
851 rx_blocks
->block_dma_addr
+
852 (rxd_size
[nic
->rxd_mode
] * l
);
855 /* Interlinking all Rx Blocks */
856 for (j
= 0; j
< blk_cnt
; j
++) {
858 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
860 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
861 blk_cnt
].block_virt_addr
;
863 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
865 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
866 blk_cnt
].block_dma_addr
;
868 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
869 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
870 (unsigned long) tmp_v_addr_next
;
871 pre_rxd_blk
->pNext_RxD_Blk_physical
=
872 (u64
) tmp_p_addr_next
;
875 if (nic
->rxd_mode
== RXD_MODE_3B
) {
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
880 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
881 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
882 (rxd_count
[nic
->rxd_mode
]+ 1);
883 mac_control
->rings
[i
].ba
=
884 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
886 if (!mac_control
->rings
[i
].ba
)
888 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
889 for (j
= 0; j
< blk_cnt
; j
++) {
891 mac_control
->rings
[i
].ba
[j
] =
892 kmalloc((sizeof(struct buffAdd
) *
893 (rxd_count
[nic
->rxd_mode
] + 1)),
895 if (!mac_control
->rings
[i
].ba
[j
])
897 mem_allocated
+= (sizeof(struct buffAdd
) * \
898 (rxd_count
[nic
->rxd_mode
] + 1));
899 while (k
!= rxd_count
[nic
->rxd_mode
]) {
900 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
902 ba
->ba_0_org
= (void *) kmalloc
903 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
907 (BUF0_LEN
+ ALIGN_SIZE
);
908 tmp
= (unsigned long)ba
->ba_0_org
;
910 tmp
&= ~((unsigned long) ALIGN_SIZE
);
911 ba
->ba_0
= (void *) tmp
;
913 ba
->ba_1_org
= (void *) kmalloc
914 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
918 += (BUF1_LEN
+ ALIGN_SIZE
);
919 tmp
= (unsigned long) ba
->ba_1_org
;
921 tmp
&= ~((unsigned long) ALIGN_SIZE
);
922 ba
->ba_1
= (void *) tmp
;
929 /* Allocation and initialization of Statistics block */
930 size
= sizeof(struct stat_block
);
931 mac_control
->stats_mem
= pci_alloc_consistent
932 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
934 if (!mac_control
->stats_mem
) {
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
942 mem_allocated
+= size
;
943 mac_control
->stats_mem_sz
= size
;
945 tmp_v_addr
= mac_control
->stats_mem
;
946 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
947 memset(tmp_v_addr
, 0, size
);
948 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
949 (unsigned long long) tmp_p_addr
);
950 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
955 * free_shared_mem - Free the allocated Memory
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
961 static void free_shared_mem(struct s2io_nic
*nic
)
963 int i
, j
, blk_cnt
, size
;
965 dma_addr_t tmp_p_addr
;
966 struct mac_info
*mac_control
;
967 struct config_param
*config
;
968 int lst_size
, lst_per_page
;
969 struct net_device
*dev
;
977 mac_control
= &nic
->mac_control
;
978 config
= &nic
->config
;
980 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
981 lst_per_page
= PAGE_SIZE
/ lst_size
;
983 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
984 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
986 for (j
= 0; j
< page_num
; j
++) {
987 int mem_blks
= (j
* lst_per_page
);
988 if (!mac_control
->fifos
[i
].list_info
)
990 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
993 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
994 mac_control
->fifos
[i
].
997 mac_control
->fifos
[i
].
1000 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1003 /* If we got a zero DMA address during allocation,
1006 if (mac_control
->zerodma_virt_addr
) {
1007 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
1008 mac_control
->zerodma_virt_addr
,
1011 "%s: Freeing TxDL with zero DMA addr. ",
1013 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
1014 mac_control
->zerodma_virt_addr
);
1015 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1018 kfree(mac_control
->fifos
[i
].list_info
);
1019 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1020 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
1023 size
= SIZE_OF_BLOCK
;
1024 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1025 blk_cnt
= mac_control
->rings
[i
].block_count
;
1026 for (j
= 0; j
< blk_cnt
; j
++) {
1027 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1029 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1031 if (tmp_v_addr
== NULL
)
1033 pci_free_consistent(nic
->pdev
, size
,
1034 tmp_v_addr
, tmp_p_addr
);
1035 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
1036 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
1037 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1038 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
1042 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1045 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
1046 (rxd_count
[nic
->rxd_mode
] + 1);
1047 for (j
= 0; j
< blk_cnt
; j
++) {
1049 if (!mac_control
->rings
[i
].ba
[j
])
1051 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1052 struct buffAdd
*ba
=
1053 &mac_control
->rings
[i
].ba
[j
][k
];
1054 kfree(ba
->ba_0_org
);
1055 nic
->mac_control
.stats_info
->sw_stat
.\
1056 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
1057 kfree(ba
->ba_1_org
);
1058 nic
->mac_control
.stats_info
->sw_stat
.\
1059 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
1062 kfree(mac_control
->rings
[i
].ba
[j
]);
1063 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1064 (sizeof(struct buffAdd
) *
1065 (rxd_count
[nic
->rxd_mode
] + 1));
1067 kfree(mac_control
->rings
[i
].ba
);
1068 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1069 (sizeof(struct buffAdd
*) * blk_cnt
);
1073 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1074 if (mac_control
->fifos
[i
].ufo_in_band_v
) {
1075 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1076 += (config
->tx_cfg
[i
].fifo_len
* sizeof(u64
));
1077 kfree(mac_control
->fifos
[i
].ufo_in_band_v
);
1081 if (mac_control
->stats_mem
) {
1082 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1083 mac_control
->stats_mem_sz
;
1084 pci_free_consistent(nic
->pdev
,
1085 mac_control
->stats_mem_sz
,
1086 mac_control
->stats_mem
,
1087 mac_control
->stats_mem_phy
);
1092 * s2io_verify_pci_mode -
1095 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1097 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1098 register u64 val64
= 0;
1101 val64
= readq(&bar0
->pci_mode
);
1102 mode
= (u8
)GET_PCI_MODE(val64
);
1104 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1105 return -1; /* Unknown PCI mode */
1109 #define NEC_VENID 0x1033
1110 #define NEC_DEVID 0x0125
1111 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1113 struct pci_dev
*tdev
= NULL
;
1114 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1115 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1116 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1125 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1127 * s2io_print_pci_mode -
1129 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1131 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1132 register u64 val64
= 0;
1134 struct config_param
*config
= &nic
->config
;
1136 val64
= readq(&bar0
->pci_mode
);
1137 mode
= (u8
)GET_PCI_MODE(val64
);
1139 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1140 return -1; /* Unknown PCI mode */
1142 config
->bus_speed
= bus_speed
[mode
];
1144 if (s2io_on_nec_bridge(nic
->pdev
)) {
1145 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1150 if (val64
& PCI_MODE_32_BITS
) {
1151 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1153 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1157 case PCI_MODE_PCI_33
:
1158 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1160 case PCI_MODE_PCI_66
:
1161 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1163 case PCI_MODE_PCIX_M1_66
:
1164 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1166 case PCI_MODE_PCIX_M1_100
:
1167 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1169 case PCI_MODE_PCIX_M1_133
:
1170 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1172 case PCI_MODE_PCIX_M2_66
:
1173 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1175 case PCI_MODE_PCIX_M2_100
:
1176 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1178 case PCI_MODE_PCIX_M2_133
:
1179 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1182 return -1; /* Unsupported bus speed */
1189 * init_tti - Initialization transmit traffic interrupt scheme
1190 * @nic: device private variable
1191 * @link: link status (UP/DOWN) used to enable/disable continuous
1192 * transmit interrupts
1193 * Description: The function configures transmit traffic interrupts
1194 * Return Value: SUCCESS on success and
1198 static int init_tti(struct s2io_nic
*nic
, int link
)
1200 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1201 register u64 val64
= 0;
1203 struct config_param
*config
;
1205 config
= &nic
->config
;
1207 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1209 * TTI Initialization. Default Tx timer gets us about
1210 * 250 interrupts per sec. Continuous interrupts are enabled
1213 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1214 int count
= (nic
->config
.bus_speed
* 125)/2;
1215 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1217 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1219 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1220 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1221 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1222 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1224 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1225 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1226 writeq(val64
, &bar0
->tti_data1_mem
);
1228 if (nic
->config
.intr_type
== MSI_X
) {
1229 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1230 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1231 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1232 TTI_DATA2_MEM_TX_UFC_D(0x300);
1234 if ((nic
->config
.tx_steering_type
==
1235 TX_DEFAULT_STEERING
) &&
1236 (config
->tx_fifo_num
> 1) &&
1237 (i
>= nic
->udp_fifo_idx
) &&
1238 (i
< (nic
->udp_fifo_idx
+
1239 nic
->total_udp_fifos
)))
1240 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x120);
1245 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1246 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1247 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1248 TTI_DATA2_MEM_TX_UFC_D(0x80);
1251 writeq(val64
, &bar0
->tti_data2_mem
);
1253 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
|
1254 TTI_CMD_MEM_OFFSET(i
);
1255 writeq(val64
, &bar0
->tti_command_mem
);
1257 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1258 TTI_CMD_MEM_STROBE_NEW_CMD
, S2IO_BIT_RESET
) != SUCCESS
)
1266 * init_nic - Initialization of hardware
1267 * @nic: device private variable
1268 * Description: The function sequentially configures every block
1269 * of the H/W from their reset values.
1270 * Return Value: SUCCESS on success and
1271 * '-1' on failure (endian settings incorrect).
1274 static int init_nic(struct s2io_nic
*nic
)
1276 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1277 struct net_device
*dev
= nic
->dev
;
1278 register u64 val64
= 0;
1282 struct mac_info
*mac_control
;
1283 struct config_param
*config
;
1285 unsigned long long mem_share
;
1288 mac_control
= &nic
->mac_control
;
1289 config
= &nic
->config
;
1291 /* to set the swapper controle on the card */
1292 if(s2io_set_swapper(nic
)) {
1293 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1298 * Herc requires EOI to be removed from reset before XGXS, so..
1300 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1301 val64
= 0xA500000000ULL
;
1302 writeq(val64
, &bar0
->sw_reset
);
1304 val64
= readq(&bar0
->sw_reset
);
1307 /* Remove XGXS from reset state */
1309 writeq(val64
, &bar0
->sw_reset
);
1311 val64
= readq(&bar0
->sw_reset
);
1313 /* Ensure that it's safe to access registers by checking
1314 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1316 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1317 for (i
= 0; i
< 50; i
++) {
1318 val64
= readq(&bar0
->adapter_status
);
1319 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1327 /* Enable Receiving broadcasts */
1328 add
= &bar0
->mac_cfg
;
1329 val64
= readq(&bar0
->mac_cfg
);
1330 val64
|= MAC_RMAC_BCAST_ENABLE
;
1331 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1332 writel((u32
) val64
, add
);
1333 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1334 writel((u32
) (val64
>> 32), (add
+ 4));
1336 /* Read registers in all blocks */
1337 val64
= readq(&bar0
->mac_int_mask
);
1338 val64
= readq(&bar0
->mc_int_mask
);
1339 val64
= readq(&bar0
->xgxs_int_mask
);
1343 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1345 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1346 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1347 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1348 &bar0
->dtx_control
, UF
);
1350 msleep(1); /* Necessary!! */
1354 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1355 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1356 &bar0
->dtx_control
, UF
);
1357 val64
= readq(&bar0
->dtx_control
);
1362 /* Tx DMA Initialization */
1364 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1365 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1366 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1367 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1370 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1372 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((j
* 32) + 19),
1373 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1376 if (i
== (config
->tx_fifo_num
- 1)) {
1383 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1388 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1393 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1398 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1409 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1410 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1412 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1413 (nic
->pdev
->revision
< 4))
1414 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1416 val64
= readq(&bar0
->tx_fifo_partition_0
);
1417 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1418 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1421 * Initialization of Tx_PA_CONFIG register to ignore packet
1422 * integrity checking.
1424 val64
= readq(&bar0
->tx_pa_cfg
);
1425 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1426 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1427 writeq(val64
, &bar0
->tx_pa_cfg
);
1429 /* Rx DMA intialization. */
1431 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1433 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1436 writeq(val64
, &bar0
->rx_queue_priority
);
1439 * Allocating equal share of memory to all the
1443 if (nic
->device_type
& XFRAME_II_DEVICE
)
1448 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1451 mem_share
= (mem_size
/ config
->rx_ring_num
+
1452 mem_size
% config
->rx_ring_num
);
1453 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1456 mem_share
= (mem_size
/ config
->rx_ring_num
);
1457 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1460 mem_share
= (mem_size
/ config
->rx_ring_num
);
1461 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1464 mem_share
= (mem_size
/ config
->rx_ring_num
);
1465 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1468 mem_share
= (mem_size
/ config
->rx_ring_num
);
1469 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1472 mem_share
= (mem_size
/ config
->rx_ring_num
);
1473 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1476 mem_share
= (mem_size
/ config
->rx_ring_num
);
1477 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1480 mem_share
= (mem_size
/ config
->rx_ring_num
);
1481 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1485 writeq(val64
, &bar0
->rx_queue_cfg
);
1488 * Filling Tx round robin registers
1489 * as per the number of FIFOs for equal scheduling priority
1491 switch (config
->tx_fifo_num
) {
1494 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1495 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1496 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1497 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1498 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1501 val64
= 0x0001000100010001ULL
;
1502 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1503 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1504 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1505 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1506 val64
= 0x0001000100000000ULL
;
1507 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1510 val64
= 0x0001020001020001ULL
;
1511 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1512 val64
= 0x0200010200010200ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1514 val64
= 0x0102000102000102ULL
;
1515 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1516 val64
= 0x0001020001020001ULL
;
1517 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1518 val64
= 0x0200010200000000ULL
;
1519 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1522 val64
= 0x0001020300010203ULL
;
1523 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1524 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1525 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1526 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1527 val64
= 0x0001020300000000ULL
;
1528 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1531 val64
= 0x0001020304000102ULL
;
1532 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1533 val64
= 0x0304000102030400ULL
;
1534 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1535 val64
= 0x0102030400010203ULL
;
1536 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1537 val64
= 0x0400010203040001ULL
;
1538 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1539 val64
= 0x0203040000000000ULL
;
1540 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1543 val64
= 0x0001020304050001ULL
;
1544 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1545 val64
= 0x0203040500010203ULL
;
1546 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1547 val64
= 0x0405000102030405ULL
;
1548 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1549 val64
= 0x0001020304050001ULL
;
1550 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1551 val64
= 0x0203040500000000ULL
;
1552 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1555 val64
= 0x0001020304050600ULL
;
1556 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1557 val64
= 0x0102030405060001ULL
;
1558 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1559 val64
= 0x0203040506000102ULL
;
1560 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1561 val64
= 0x0304050600010203ULL
;
1562 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1563 val64
= 0x0405060000000000ULL
;
1564 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1567 val64
= 0x0001020304050607ULL
;
1568 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1569 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1570 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1571 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1572 val64
= 0x0001020300000000ULL
;
1573 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1577 /* Enable all configured Tx FIFO partitions */
1578 val64
= readq(&bar0
->tx_fifo_partition_0
);
1579 val64
|= (TX_FIFO_PARTITION_EN
);
1580 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1582 /* Filling the Rx round robin registers as per the
1583 * number of Rings and steering based on QoS with
1586 switch (config
->rx_ring_num
) {
1589 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1590 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1591 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1592 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1593 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1595 val64
= 0x8080808080808080ULL
;
1596 writeq(val64
, &bar0
->rts_qos_steering
);
1599 val64
= 0x0001000100010001ULL
;
1600 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1601 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1602 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1603 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1604 val64
= 0x0001000100000000ULL
;
1605 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1607 val64
= 0x8080808040404040ULL
;
1608 writeq(val64
, &bar0
->rts_qos_steering
);
1611 val64
= 0x0001020001020001ULL
;
1612 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1613 val64
= 0x0200010200010200ULL
;
1614 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1615 val64
= 0x0102000102000102ULL
;
1616 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1617 val64
= 0x0001020001020001ULL
;
1618 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1619 val64
= 0x0200010200000000ULL
;
1620 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1622 val64
= 0x8080804040402020ULL
;
1623 writeq(val64
, &bar0
->rts_qos_steering
);
1626 val64
= 0x0001020300010203ULL
;
1627 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1628 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1629 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1630 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1631 val64
= 0x0001020300000000ULL
;
1632 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1634 val64
= 0x8080404020201010ULL
;
1635 writeq(val64
, &bar0
->rts_qos_steering
);
1638 val64
= 0x0001020304000102ULL
;
1639 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1640 val64
= 0x0304000102030400ULL
;
1641 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1642 val64
= 0x0102030400010203ULL
;
1643 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1644 val64
= 0x0400010203040001ULL
;
1645 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1646 val64
= 0x0203040000000000ULL
;
1647 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1649 val64
= 0x8080404020201008ULL
;
1650 writeq(val64
, &bar0
->rts_qos_steering
);
1653 val64
= 0x0001020304050001ULL
;
1654 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1655 val64
= 0x0203040500010203ULL
;
1656 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1657 val64
= 0x0405000102030405ULL
;
1658 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1659 val64
= 0x0001020304050001ULL
;
1660 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1661 val64
= 0x0203040500000000ULL
;
1662 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1664 val64
= 0x8080404020100804ULL
;
1665 writeq(val64
, &bar0
->rts_qos_steering
);
1668 val64
= 0x0001020304050600ULL
;
1669 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1670 val64
= 0x0102030405060001ULL
;
1671 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1672 val64
= 0x0203040506000102ULL
;
1673 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1674 val64
= 0x0304050600010203ULL
;
1675 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1676 val64
= 0x0405060000000000ULL
;
1677 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1679 val64
= 0x8080402010080402ULL
;
1680 writeq(val64
, &bar0
->rts_qos_steering
);
1683 val64
= 0x0001020304050607ULL
;
1684 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1685 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1686 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1687 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1688 val64
= 0x0001020300000000ULL
;
1689 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1691 val64
= 0x8040201008040201ULL
;
1692 writeq(val64
, &bar0
->rts_qos_steering
);
1698 for (i
= 0; i
< 8; i
++)
1699 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1701 /* Set the default rts frame length for the rings configured */
1702 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1703 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1704 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1706 /* Set the frame length for the configured rings
1707 * desired by the user
1709 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1710 /* If rts_frm_len[i] == 0 then it is assumed that user not
1711 * specified frame length steering.
1712 * If the user provides the frame length then program
1713 * the rts_frm_len register for those values or else
1714 * leave it as it is.
1716 if (rts_frm_len
[i
] != 0) {
1717 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1718 &bar0
->rts_frm_len_n
[i
]);
1722 /* Disable differentiated services steering logic */
1723 for (i
= 0; i
< 64; i
++) {
1724 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1725 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1727 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1732 /* Program statistics memory */
1733 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1735 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1736 val64
= STAT_BC(0x320);
1737 writeq(val64
, &bar0
->stat_byte_cnt
);
1741 * Initializing the sampling rate for the device to calculate the
1742 * bandwidth utilization.
1744 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1745 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1746 writeq(val64
, &bar0
->mac_link_util
);
1749 * Initializing the Transmit and Receive Traffic Interrupt
1753 /* Initialize TTI */
1754 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1757 /* RTI Initialization */
1758 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1760 * Programmed to generate Apprx 500 Intrs per
1763 int count
= (nic
->config
.bus_speed
* 125)/4;
1764 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1766 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1767 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1768 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1769 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1771 writeq(val64
, &bar0
->rti_data1_mem
);
1773 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1774 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1775 if (nic
->config
.intr_type
== MSI_X
)
1776 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1777 RTI_DATA2_MEM_RX_UFC_D(0x40));
1779 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1780 RTI_DATA2_MEM_RX_UFC_D(0x80));
1781 writeq(val64
, &bar0
->rti_data2_mem
);
1783 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1784 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1785 | RTI_CMD_MEM_OFFSET(i
);
1786 writeq(val64
, &bar0
->rti_command_mem
);
1789 * Once the operation completes, the Strobe bit of the
1790 * command register will be reset. We poll for this
1791 * particular condition. We wait for a maximum of 500ms
1792 * for the operation to complete, if it's not complete
1793 * by then we return error.
1797 val64
= readq(&bar0
->rti_command_mem
);
1798 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1802 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1812 * Initializing proper values as Pause threshold into all
1813 * the 8 Queues on Rx side.
1815 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1816 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1818 /* Disable RMAC PAD STRIPPING */
1819 add
= &bar0
->mac_cfg
;
1820 val64
= readq(&bar0
->mac_cfg
);
1821 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1822 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1823 writel((u32
) (val64
), add
);
1824 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1825 writel((u32
) (val64
>> 32), (add
+ 4));
1826 val64
= readq(&bar0
->mac_cfg
);
1828 /* Enable FCS stripping by adapter */
1829 add
= &bar0
->mac_cfg
;
1830 val64
= readq(&bar0
->mac_cfg
);
1831 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1832 if (nic
->device_type
== XFRAME_II_DEVICE
)
1833 writeq(val64
, &bar0
->mac_cfg
);
1835 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1836 writel((u32
) (val64
), add
);
1837 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1838 writel((u32
) (val64
>> 32), (add
+ 4));
1842 * Set the time value to be inserted in the pause frame
1843 * generated by xena.
1845 val64
= readq(&bar0
->rmac_pause_cfg
);
1846 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1847 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1848 writeq(val64
, &bar0
->rmac_pause_cfg
);
1851 * Set the Threshold Limit for Generating the pause frame
1852 * If the amount of data in any Queue exceeds ratio of
1853 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1854 * pause frame is generated
1857 for (i
= 0; i
< 4; i
++) {
1859 (((u64
) 0xFF00 | nic
->mac_control
.
1860 mc_pause_threshold_q0q3
)
1863 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1866 for (i
= 0; i
< 4; i
++) {
1868 (((u64
) 0xFF00 | nic
->mac_control
.
1869 mc_pause_threshold_q4q7
)
1872 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1875 * TxDMA will stop Read request if the number of read split has
1876 * exceeded the limit pointed by shared_splits
1878 val64
= readq(&bar0
->pic_control
);
1879 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1880 writeq(val64
, &bar0
->pic_control
);
1882 if (nic
->config
.bus_speed
== 266) {
1883 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1884 writeq(0x0, &bar0
->read_retry_delay
);
1885 writeq(0x0, &bar0
->write_retry_delay
);
1889 * Programming the Herc to split every write transaction
1890 * that does not start on an ADB to reduce disconnects.
1892 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1893 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1894 MISC_LINK_STABILITY_PRD(3);
1895 writeq(val64
, &bar0
->misc_control
);
1896 val64
= readq(&bar0
->pic_control2
);
1897 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1898 writeq(val64
, &bar0
->pic_control2
);
1900 if (strstr(nic
->product_name
, "CX4")) {
1901 val64
= TMAC_AVG_IPG(0x17);
1902 writeq(val64
, &bar0
->tmac_avg_ipg
);
1907 #define LINK_UP_DOWN_INTERRUPT 1
1908 #define MAC_RMAC_ERR_TIMER 2
1910 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1912 if (nic
->config
.intr_type
!= INTA
)
1913 return MAC_RMAC_ERR_TIMER
;
1914 if (nic
->device_type
== XFRAME_II_DEVICE
)
1915 return LINK_UP_DOWN_INTERRUPT
;
1917 return MAC_RMAC_ERR_TIMER
;
1921 * do_s2io_write_bits - update alarm bits in alarm register
1922 * @value: alarm bits
1923 * @flag: interrupt status
1924 * @addr: address value
1925 * Description: update alarm bits in alarm register
1929 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1933 temp64
= readq(addr
);
1935 if(flag
== ENABLE_INTRS
)
1936 temp64
&= ~((u64
) value
);
1938 temp64
|= ((u64
) value
);
1939 writeq(temp64
, addr
);
1942 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1944 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1945 register u64 gen_int_mask
= 0;
1947 if (mask
& TX_DMA_INTR
) {
1949 gen_int_mask
|= TXDMA_INT_M
;
1951 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1952 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1953 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1954 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1956 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1957 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1958 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1959 &bar0
->pfc_err_mask
);
1961 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1962 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1963 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1965 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1966 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1967 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1968 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1969 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1970 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1972 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1973 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1975 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1976 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1977 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1978 flag
, &bar0
->lso_err_mask
);
1980 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1981 flag
, &bar0
->tpa_err_mask
);
1983 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1987 if (mask
& TX_MAC_INTR
) {
1988 gen_int_mask
|= TXMAC_INT_M
;
1989 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1990 &bar0
->mac_int_mask
);
1991 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1992 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1993 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1994 flag
, &bar0
->mac_tmac_err_mask
);
1997 if (mask
& TX_XGXS_INTR
) {
1998 gen_int_mask
|= TXXGXS_INT_M
;
1999 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
2000 &bar0
->xgxs_int_mask
);
2001 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
2002 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
2003 flag
, &bar0
->xgxs_txgxs_err_mask
);
2006 if (mask
& RX_DMA_INTR
) {
2007 gen_int_mask
|= RXDMA_INT_M
;
2008 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
2009 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
2010 flag
, &bar0
->rxdma_int_mask
);
2011 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
2012 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
2013 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
2014 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
2015 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
2016 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
2017 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
2018 &bar0
->prc_pcix_err_mask
);
2019 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
2020 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
2021 &bar0
->rpa_err_mask
);
2022 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
2023 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
2024 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2025 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
2026 flag
, &bar0
->rda_err_mask
);
2027 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2028 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2029 flag
, &bar0
->rti_err_mask
);
2032 if (mask
& RX_MAC_INTR
) {
2033 gen_int_mask
|= RXMAC_INT_M
;
2034 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2035 &bar0
->mac_int_mask
);
2036 do_s2io_write_bits(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2037 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2038 RMAC_DOUBLE_ECC_ERR
|
2039 RMAC_LINK_STATE_CHANGE_INT
,
2040 flag
, &bar0
->mac_rmac_err_mask
);
2043 if (mask
& RX_XGXS_INTR
)
2045 gen_int_mask
|= RXXGXS_INT_M
;
2046 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2047 &bar0
->xgxs_int_mask
);
2048 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2049 &bar0
->xgxs_rxgxs_err_mask
);
2052 if (mask
& MC_INTR
) {
2053 gen_int_mask
|= MC_INT_M
;
2054 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
2055 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2056 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2057 &bar0
->mc_err_mask
);
2059 nic
->general_int_mask
= gen_int_mask
;
2061 /* Remove this line when alarm interrupts are enabled */
2062 nic
->general_int_mask
= 0;
2065 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2066 * @nic: device private variable,
2067 * @mask: A mask indicating which Intr block must be modified and,
2068 * @flag: A flag indicating whether to enable or disable the Intrs.
2069 * Description: This function will either disable or enable the interrupts
2070 * depending on the flag argument. The mask argument can be used to
2071 * enable/disable any Intr block.
2072 * Return Value: NONE.
2075 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2077 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2078 register u64 temp64
= 0, intr_mask
= 0;
2080 intr_mask
= nic
->general_int_mask
;
2082 /* Top level interrupt classification */
2083 /* PIC Interrupts */
2084 if (mask
& TX_PIC_INTR
) {
2085 /* Enable PIC Intrs in the general intr mask register */
2086 intr_mask
|= TXPIC_INT_M
;
2087 if (flag
== ENABLE_INTRS
) {
2089 * If Hercules adapter enable GPIO otherwise
2090 * disable all PCIX, Flash, MDIO, IIC and GPIO
2091 * interrupts for now.
2094 if (s2io_link_fault_indication(nic
) ==
2095 LINK_UP_DOWN_INTERRUPT
) {
2096 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2097 &bar0
->pic_int_mask
);
2098 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2099 &bar0
->gpio_int_mask
);
2101 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2102 } else if (flag
== DISABLE_INTRS
) {
2104 * Disable PIC Intrs in the general
2105 * intr mask register
2107 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2111 /* Tx traffic interrupts */
2112 if (mask
& TX_TRAFFIC_INTR
) {
2113 intr_mask
|= TXTRAFFIC_INT_M
;
2114 if (flag
== ENABLE_INTRS
) {
2116 * Enable all the Tx side interrupts
2117 * writing 0 Enables all 64 TX interrupt levels
2119 writeq(0x0, &bar0
->tx_traffic_mask
);
2120 } else if (flag
== DISABLE_INTRS
) {
2122 * Disable Tx Traffic Intrs in the general intr mask
2125 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2129 /* Rx traffic interrupts */
2130 if (mask
& RX_TRAFFIC_INTR
) {
2131 intr_mask
|= RXTRAFFIC_INT_M
;
2132 if (flag
== ENABLE_INTRS
) {
2133 /* writing 0 Enables all 8 RX interrupt levels */
2134 writeq(0x0, &bar0
->rx_traffic_mask
);
2135 } else if (flag
== DISABLE_INTRS
) {
2137 * Disable Rx Traffic Intrs in the general intr mask
2140 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2144 temp64
= readq(&bar0
->general_int_mask
);
2145 if (flag
== ENABLE_INTRS
)
2146 temp64
&= ~((u64
) intr_mask
);
2148 temp64
= DISABLE_ALL_INTRS
;
2149 writeq(temp64
, &bar0
->general_int_mask
);
2151 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2155 * verify_pcc_quiescent- Checks for PCC quiescent state
2156 * Return: 1 If PCC is quiescence
2157 * 0 If PCC is not quiescence
2159 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2162 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2163 u64 val64
= readq(&bar0
->adapter_status
);
2165 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2167 if (flag
== FALSE
) {
2168 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2169 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2172 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2176 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2177 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2178 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2181 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2182 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2190 * verify_xena_quiescence - Checks whether the H/W is ready
2191 * Description: Returns whether the H/W is ready to go or not. Depending
2192 * on whether adapter enable bit was written or not the comparison
2193 * differs and the calling function passes the input argument flag to
2195 * Return: 1 If xena is quiescence
2196 * 0 If Xena is not quiescence
2199 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2202 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2203 u64 val64
= readq(&bar0
->adapter_status
);
2204 mode
= s2io_verify_pci_mode(sp
);
2206 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2207 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2210 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2211 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2214 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2215 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2218 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2219 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2222 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2223 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2226 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2227 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2230 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2231 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2234 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2235 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2240 * In PCI 33 mode, the P_PLL is not used, and therefore,
2241 * the the P_PLL_LOCK bit in the adapter_status register will
2244 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2245 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2247 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2250 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2251 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2252 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2259 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2260 * @sp: Pointer to device specifc structure
2262 * New procedure to clear mac address reading problems on Alpha platforms
2266 static void fix_mac_address(struct s2io_nic
* sp
)
2268 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2272 while (fix_mac
[i
] != END_SIGN
) {
2273 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2275 val64
= readq(&bar0
->gpio_control
);
2280 * start_nic - Turns the device on
2281 * @nic : device private variable.
2283 * This function actually turns the device on. Before this function is
2284 * called,all Registers are configured from their reset states
2285 * and shared memory is allocated but the NIC is still quiescent. On
2286 * calling this function, the device interrupts are cleared and the NIC is
2287 * literally switched on by writing into the adapter control register.
2289 * SUCCESS on success and -1 on failure.
2292 static int start_nic(struct s2io_nic
*nic
)
2294 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2295 struct net_device
*dev
= nic
->dev
;
2296 register u64 val64
= 0;
2298 struct mac_info
*mac_control
;
2299 struct config_param
*config
;
2301 mac_control
= &nic
->mac_control
;
2302 config
= &nic
->config
;
2304 /* PRC Initialization and configuration */
2305 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2306 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2307 &bar0
->prc_rxd0_n
[i
]);
2309 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2310 if (nic
->rxd_mode
== RXD_MODE_1
)
2311 val64
|= PRC_CTRL_RC_ENABLED
;
2313 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2314 if (nic
->device_type
== XFRAME_II_DEVICE
)
2315 val64
|= PRC_CTRL_GROUP_READS
;
2316 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2317 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2318 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2321 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2322 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2323 val64
= readq(&bar0
->rx_pa_cfg
);
2324 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2325 writeq(val64
, &bar0
->rx_pa_cfg
);
2328 if (vlan_tag_strip
== 0) {
2329 val64
= readq(&bar0
->rx_pa_cfg
);
2330 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2331 writeq(val64
, &bar0
->rx_pa_cfg
);
2332 vlan_strip_flag
= 0;
2336 * Enabling MC-RLDRAM. After enabling the device, we timeout
2337 * for around 100ms, which is approximately the time required
2338 * for the device to be ready for operation.
2340 val64
= readq(&bar0
->mc_rldram_mrs
);
2341 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2342 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2343 val64
= readq(&bar0
->mc_rldram_mrs
);
2345 msleep(100); /* Delay by around 100 ms. */
2347 /* Enabling ECC Protection. */
2348 val64
= readq(&bar0
->adapter_control
);
2349 val64
&= ~ADAPTER_ECC_EN
;
2350 writeq(val64
, &bar0
->adapter_control
);
2353 * Verify if the device is ready to be enabled, if so enable
2356 val64
= readq(&bar0
->adapter_status
);
2357 if (!verify_xena_quiescence(nic
)) {
2358 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2359 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2360 (unsigned long long) val64
);
2365 * With some switches, link might be already up at this point.
2366 * Because of this weird behavior, when we enable laser,
2367 * we may not get link. We need to handle this. We cannot
2368 * figure out which switch is misbehaving. So we are forced to
2369 * make a global change.
2372 /* Enabling Laser. */
2373 val64
= readq(&bar0
->adapter_control
);
2374 val64
|= ADAPTER_EOI_TX_ON
;
2375 writeq(val64
, &bar0
->adapter_control
);
2377 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2379 * Dont see link state interrupts initally on some switches,
2380 * so directly scheduling the link state task here.
2382 schedule_work(&nic
->set_link_task
);
2384 /* SXE-002: Initialize link and activity LED */
2385 subid
= nic
->pdev
->subsystem_device
;
2386 if (((subid
& 0xFF) >= 0x07) &&
2387 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2388 val64
= readq(&bar0
->gpio_control
);
2389 val64
|= 0x0000800000000000ULL
;
2390 writeq(val64
, &bar0
->gpio_control
);
2391 val64
= 0x0411040400000000ULL
;
2392 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2398 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2400 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2401 TxD
*txdlp
, int get_off
)
2403 struct s2io_nic
*nic
= fifo_data
->nic
;
2404 struct sk_buff
*skb
;
2409 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2410 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2411 txds
->Buffer_Pointer
, sizeof(u64
),
2416 skb
= (struct sk_buff
*) ((unsigned long)
2417 txds
->Host_Control
);
2419 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2422 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2423 txds
->Buffer_Pointer
,
2424 skb
->len
- skb
->data_len
,
2426 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2429 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2430 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2431 if (!txds
->Buffer_Pointer
)
2433 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2434 txds
->Buffer_Pointer
,
2435 frag
->size
, PCI_DMA_TODEVICE
);
2438 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2443 * free_tx_buffers - Free all queued Tx buffers
2444 * @nic : device private variable.
2446 * Free all queued Tx buffers.
2447 * Return Value: void
2450 static void free_tx_buffers(struct s2io_nic
*nic
)
2452 struct net_device
*dev
= nic
->dev
;
2453 struct sk_buff
*skb
;
2456 struct mac_info
*mac_control
;
2457 struct config_param
*config
;
2460 mac_control
= &nic
->mac_control
;
2461 config
= &nic
->config
;
2463 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2464 unsigned long flags
;
2465 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
);
2466 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
; j
++) {
2467 txdp
= (struct TxD
*) \
2468 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2469 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2471 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2478 "%s:forcibly freeing %d skbs on FIFO%d\n",
2480 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2481 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2482 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
, flags
);
2487 * stop_nic - To stop the nic
2488 * @nic ; device private variable.
2490 * This function does exactly the opposite of what the start_nic()
2491 * function does. This function is called to stop the device.
2496 static void stop_nic(struct s2io_nic
*nic
)
2498 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2499 register u64 val64
= 0;
2501 struct mac_info
*mac_control
;
2502 struct config_param
*config
;
2504 mac_control
= &nic
->mac_control
;
2505 config
= &nic
->config
;
2507 /* Disable all interrupts */
2508 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2509 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2510 interruptible
|= TX_PIC_INTR
;
2511 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2513 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2514 val64
= readq(&bar0
->adapter_control
);
2515 val64
&= ~(ADAPTER_CNTL_EN
);
2516 writeq(val64
, &bar0
->adapter_control
);
2520 * fill_rx_buffers - Allocates the Rx side skbs
2521 * @ring_info: per ring structure
2523 * The function allocates Rx side skbs and puts the physical
2524 * address of these buffers into the RxD buffer pointers, so that the NIC
2525 * can DMA the received frame into these locations.
2526 * The NIC supports 3 receive modes, viz
2528 * 2. three buffer and
2529 * 3. Five buffer modes.
2530 * Each mode defines how many fragments the received frame will be split
2531 * up into by the NIC. The frame is split into L3 header, L4 Header,
2532 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2533 * is split into 3 fragments. As of now only single buffer mode is
2536 * SUCCESS on success or an appropriate -ve value on failure.
2539 static int fill_rx_buffers(struct ring_info
*ring
)
2541 struct sk_buff
*skb
;
2543 int off
, size
, block_no
, block_no1
;
2548 struct RxD_t
*first_rxdp
= NULL
;
2549 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2553 struct swStat
*stats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2555 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2557 block_no1
= ring
->rx_curr_get_info
.block_index
;
2558 while (alloc_tab
< alloc_cnt
) {
2559 block_no
= ring
->rx_curr_put_info
.block_index
;
2561 off
= ring
->rx_curr_put_info
.offset
;
2563 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2565 rxd_index
= off
+ 1;
2567 rxd_index
+= (block_no
* ring
->rxd_count
);
2569 if ((block_no
== block_no1
) &&
2570 (off
== ring
->rx_curr_get_info
.offset
) &&
2571 (rxdp
->Host_Control
)) {
2572 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2574 DBG_PRINT(INTR_DBG
, " info equated\n");
2577 if (off
&& (off
== ring
->rxd_count
)) {
2578 ring
->rx_curr_put_info
.block_index
++;
2579 if (ring
->rx_curr_put_info
.block_index
==
2581 ring
->rx_curr_put_info
.block_index
= 0;
2582 block_no
= ring
->rx_curr_put_info
.block_index
;
2584 ring
->rx_curr_put_info
.offset
= off
;
2585 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2586 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2587 ring
->dev
->name
, rxdp
);
2591 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2592 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2593 (rxdp
->Control_2
& s2BIT(0)))) {
2594 ring
->rx_curr_put_info
.offset
= off
;
2597 /* calculate size of skb based on ring mode */
2598 size
= ring
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2599 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2600 if (ring
->rxd_mode
== RXD_MODE_1
)
2601 size
+= NET_IP_ALIGN
;
2603 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2606 skb
= dev_alloc_skb(size
);
2608 DBG_PRINT(INFO_DBG
, "%s: Out of ", ring
->dev
->name
);
2609 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2612 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2614 stats
->mem_alloc_fail_cnt
++;
2618 stats
->mem_allocated
+= skb
->truesize
;
2620 if (ring
->rxd_mode
== RXD_MODE_1
) {
2621 /* 1 buffer mode - normal operation mode */
2622 rxdp1
= (struct RxD1
*)rxdp
;
2623 memset(rxdp
, 0, sizeof(struct RxD1
));
2624 skb_reserve(skb
, NET_IP_ALIGN
);
2625 rxdp1
->Buffer0_ptr
= pci_map_single
2626 (ring
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2627 PCI_DMA_FROMDEVICE
);
2628 if( (rxdp1
->Buffer0_ptr
== 0) ||
2629 (rxdp1
->Buffer0_ptr
==
2631 goto pci_map_failed
;
2634 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2635 rxdp
->Host_Control
= (unsigned long) (skb
);
2636 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2639 * 2 buffer mode provides 128
2640 * byte aligned receive buffers.
2643 rxdp3
= (struct RxD3
*)rxdp
;
2644 /* save buffer pointers to avoid frequent dma mapping */
2645 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2646 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2647 memset(rxdp
, 0, sizeof(struct RxD3
));
2648 /* restore the buffer pointers for dma sync*/
2649 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2650 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2652 ba
= &ring
->ba
[block_no
][off
];
2653 skb_reserve(skb
, BUF0_LEN
);
2654 tmp
= (u64
)(unsigned long) skb
->data
;
2657 skb
->data
= (void *) (unsigned long)tmp
;
2658 skb_reset_tail_pointer(skb
);
2660 if (!(rxdp3
->Buffer0_ptr
))
2661 rxdp3
->Buffer0_ptr
=
2662 pci_map_single(ring
->pdev
, ba
->ba_0
,
2663 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2665 pci_dma_sync_single_for_device(ring
->pdev
,
2666 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2667 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2668 if( (rxdp3
->Buffer0_ptr
== 0) ||
2669 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
))
2670 goto pci_map_failed
;
2672 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2673 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2674 /* Two buffer mode */
2677 * Buffer2 will have L3/L4 header plus
2680 rxdp3
->Buffer2_ptr
= pci_map_single
2681 (ring
->pdev
, skb
->data
, ring
->mtu
+ 4,
2682 PCI_DMA_FROMDEVICE
);
2684 if( (rxdp3
->Buffer2_ptr
== 0) ||
2685 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
))
2686 goto pci_map_failed
;
2688 if (!rxdp3
->Buffer1_ptr
)
2689 rxdp3
->Buffer1_ptr
=
2690 pci_map_single(ring
->pdev
,
2692 PCI_DMA_FROMDEVICE
);
2694 if( (rxdp3
->Buffer1_ptr
== 0) ||
2695 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
2698 (dma_addr_t
)(unsigned long)
2701 PCI_DMA_FROMDEVICE
);
2702 goto pci_map_failed
;
2704 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2705 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2708 rxdp
->Control_2
|= s2BIT(0);
2709 rxdp
->Host_Control
= (unsigned long) (skb
);
2711 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2712 rxdp
->Control_1
|= RXD_OWN_XENA
;
2714 if (off
== (ring
->rxd_count
+ 1))
2716 ring
->rx_curr_put_info
.offset
= off
;
2718 rxdp
->Control_2
|= SET_RXD_MARKER
;
2719 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2722 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2726 ring
->rx_bufs_left
+= 1;
2731 /* Transfer ownership of first descriptor to adapter just before
2732 * exiting. Before that, use memory barrier so that ownership
2733 * and other fields are seen by adapter correctly.
2737 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2742 stats
->pci_map_fail_cnt
++;
2743 stats
->mem_freed
+= skb
->truesize
;
2744 dev_kfree_skb_irq(skb
);
2748 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2750 struct net_device
*dev
= sp
->dev
;
2752 struct sk_buff
*skb
;
2754 struct mac_info
*mac_control
;
2759 mac_control
= &sp
->mac_control
;
2760 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2761 rxdp
= mac_control
->rings
[ring_no
].
2762 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2763 skb
= (struct sk_buff
*)
2764 ((unsigned long) rxdp
->Host_Control
);
2768 if (sp
->rxd_mode
== RXD_MODE_1
) {
2769 rxdp1
= (struct RxD1
*)rxdp
;
2770 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2773 HEADER_ETHERNET_II_802_3_SIZE
2774 + HEADER_802_2_SIZE
+
2776 PCI_DMA_FROMDEVICE
);
2777 memset(rxdp
, 0, sizeof(struct RxD1
));
2778 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2779 rxdp3
= (struct RxD3
*)rxdp
;
2780 ba
= &mac_control
->rings
[ring_no
].
2782 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2785 PCI_DMA_FROMDEVICE
);
2786 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2789 PCI_DMA_FROMDEVICE
);
2790 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2793 PCI_DMA_FROMDEVICE
);
2794 memset(rxdp
, 0, sizeof(struct RxD3
));
2796 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2798 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2803 * free_rx_buffers - Frees all Rx buffers
2804 * @sp: device private variable.
2806 * This function will free all Rx buffers allocated by host.
2811 static void free_rx_buffers(struct s2io_nic
*sp
)
2813 struct net_device
*dev
= sp
->dev
;
2814 int i
, blk
= 0, buf_cnt
= 0;
2815 struct mac_info
*mac_control
;
2816 struct config_param
*config
;
2818 mac_control
= &sp
->mac_control
;
2819 config
= &sp
->config
;
2821 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2822 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2823 free_rxd_blk(sp
,i
,blk
);
2825 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2826 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2827 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2828 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2829 mac_control
->rings
[i
].rx_bufs_left
= 0;
2830 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2831 dev
->name
, buf_cnt
, i
);
2835 static int s2io_chk_rx_buffers(struct ring_info
*ring
)
2837 if (fill_rx_buffers(ring
) == -ENOMEM
) {
2838 DBG_PRINT(INFO_DBG
, "%s:Out of memory", ring
->dev
->name
);
2839 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
2845 * s2io_poll - Rx interrupt handler for NAPI support
2846 * @napi : pointer to the napi structure.
2847 * @budget : The number of packets that were budgeted to be processed
2848 * during one pass through the 'Poll" function.
2850 * Comes into picture only if NAPI support has been incorporated. It does
2851 * the same thing that rx_intr_handler does, but not in a interrupt context
2852 * also It will process only a given number of packets.
2854 * 0 on success and 1 if there are No Rx packets to be processed.
2857 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2859 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2860 struct net_device
*dev
= ring
->dev
;
2861 struct config_param
*config
;
2862 struct mac_info
*mac_control
;
2863 int pkts_processed
= 0;
2864 u8 __iomem
*addr
= NULL
;
2866 struct s2io_nic
*nic
= dev
->priv
;
2867 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2868 int budget_org
= budget
;
2870 config
= &nic
->config
;
2871 mac_control
= &nic
->mac_control
;
2873 if (unlikely(!is_s2io_card_up(nic
)))
2876 pkts_processed
= rx_intr_handler(ring
, budget
);
2877 s2io_chk_rx_buffers(ring
);
2879 if (pkts_processed
< budget_org
) {
2880 netif_rx_complete(dev
, napi
);
2881 /*Re Enable MSI-Rx Vector*/
2882 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2883 addr
+= 7 - ring
->ring_no
;
2884 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2888 return pkts_processed
;
2890 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2892 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2893 struct ring_info
*ring
;
2894 struct net_device
*dev
= nic
->dev
;
2895 struct config_param
*config
;
2896 struct mac_info
*mac_control
;
2897 int pkts_processed
= 0;
2898 int ring_pkts_processed
, i
;
2899 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2900 int budget_org
= budget
;
2902 config
= &nic
->config
;
2903 mac_control
= &nic
->mac_control
;
2905 if (unlikely(!is_s2io_card_up(nic
)))
2908 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2909 ring
= &mac_control
->rings
[i
];
2910 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2911 s2io_chk_rx_buffers(ring
);
2912 pkts_processed
+= ring_pkts_processed
;
2913 budget
-= ring_pkts_processed
;
2917 if (pkts_processed
< budget_org
) {
2918 netif_rx_complete(dev
, napi
);
2919 /* Re enable the Rx interrupts for the ring */
2920 writeq(0, &bar0
->rx_traffic_mask
);
2921 readl(&bar0
->rx_traffic_mask
);
2923 return pkts_processed
;
2926 #ifdef CONFIG_NET_POLL_CONTROLLER
2928 * s2io_netpoll - netpoll event handler entry point
2929 * @dev : pointer to the device structure.
2931 * This function will be called by upper layer to check for events on the
2932 * interface in situations where interrupts are disabled. It is used for
2933 * specific in-kernel networking tasks, such as remote consoles and kernel
2934 * debugging over the network (example netdump in RedHat).
2936 static void s2io_netpoll(struct net_device
*dev
)
2938 struct s2io_nic
*nic
= dev
->priv
;
2939 struct mac_info
*mac_control
;
2940 struct config_param
*config
;
2941 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2942 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2945 if (pci_channel_offline(nic
->pdev
))
2948 disable_irq(dev
->irq
);
2950 mac_control
= &nic
->mac_control
;
2951 config
= &nic
->config
;
2953 writeq(val64
, &bar0
->rx_traffic_int
);
2954 writeq(val64
, &bar0
->tx_traffic_int
);
2956 /* we need to free up the transmitted skbufs or else netpoll will
2957 * run out of skbs and will fail and eventually netpoll application such
2958 * as netdump will fail.
2960 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2961 tx_intr_handler(&mac_control
->fifos
[i
]);
2963 /* check for received packet and indicate up to network */
2964 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2965 rx_intr_handler(&mac_control
->rings
[i
], 0);
2967 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2968 if (fill_rx_buffers(&mac_control
->rings
[i
]) == -ENOMEM
) {
2969 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2970 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2974 enable_irq(dev
->irq
);
2980 * rx_intr_handler - Rx interrupt handler
2981 * @ring_info: per ring structure.
2982 * @budget: budget for napi processing.
2984 * If the interrupt is because of a received frame or if the
2985 * receive ring contains fresh as yet un-processed frames,this function is
2986 * called. It picks out the RxD at which place the last Rx processing had
2987 * stopped and sends the skb to the OSM's Rx handler and then increments
2990 * No. of napi packets processed.
2992 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2994 int get_block
, put_block
;
2995 struct rx_curr_get_info get_info
, put_info
;
2997 struct sk_buff
*skb
;
2998 int pkt_cnt
= 0, napi_pkts
= 0;
3003 get_info
= ring_data
->rx_curr_get_info
;
3004 get_block
= get_info
.block_index
;
3005 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
3006 put_block
= put_info
.block_index
;
3007 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
3009 while (RXD_IS_UP2DT(rxdp
)) {
3011 * If your are next to put index then it's
3012 * FIFO full condition
3014 if ((get_block
== put_block
) &&
3015 (get_info
.offset
+ 1) == put_info
.offset
) {
3016 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
3017 ring_data
->dev
->name
);
3020 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
3022 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
3023 ring_data
->dev
->name
);
3024 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
3027 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
3028 rxdp1
= (struct RxD1
*)rxdp
;
3029 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3032 HEADER_ETHERNET_II_802_3_SIZE
+
3035 PCI_DMA_FROMDEVICE
);
3036 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3037 rxdp3
= (struct RxD3
*)rxdp
;
3038 pci_dma_sync_single_for_cpu(ring_data
->pdev
, (dma_addr_t
)
3040 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
3041 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3044 PCI_DMA_FROMDEVICE
);
3046 prefetch(skb
->data
);
3047 rx_osm_handler(ring_data
, rxdp
);
3049 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3050 rxdp
= ring_data
->rx_blocks
[get_block
].
3051 rxds
[get_info
.offset
].virt_addr
;
3052 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3053 get_info
.offset
= 0;
3054 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3056 if (get_block
== ring_data
->block_count
)
3058 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3059 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3062 if (ring_data
->nic
->config
.napi
) {
3069 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3072 if (ring_data
->lro
) {
3073 /* Clear all LRO sessions before exiting */
3074 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
3075 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3077 update_L3L4_header(ring_data
->nic
, lro
);
3078 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3079 clear_lro_session(lro
);
3087 * tx_intr_handler - Transmit interrupt handler
3088 * @nic : device private variable
3090 * If an interrupt was raised to indicate DMA complete of the
3091 * Tx packet, this function is called. It identifies the last TxD
3092 * whose buffer was freed and frees all skbs whose data have already
3093 * DMA'ed into the NICs internal memory.
3098 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3100 struct s2io_nic
*nic
= fifo_data
->nic
;
3101 struct tx_curr_get_info get_info
, put_info
;
3102 struct sk_buff
*skb
= NULL
;
3105 unsigned long flags
= 0;
3108 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3111 get_info
= fifo_data
->tx_curr_get_info
;
3112 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3113 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
3115 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3116 (get_info
.offset
!= put_info
.offset
) &&
3117 (txdlp
->Host_Control
)) {
3118 /* Check for TxD errors */
3119 if (txdlp
->Control_1
& TXD_T_CODE
) {
3120 unsigned long long err
;
3121 err
= txdlp
->Control_1
& TXD_T_CODE
;
3123 nic
->mac_control
.stats_info
->sw_stat
.
3127 /* update t_code statistics */
3128 err_mask
= err
>> 48;
3131 nic
->mac_control
.stats_info
->sw_stat
.
3136 nic
->mac_control
.stats_info
->sw_stat
.
3137 tx_desc_abort_cnt
++;
3141 nic
->mac_control
.stats_info
->sw_stat
.
3142 tx_parity_err_cnt
++;
3146 nic
->mac_control
.stats_info
->sw_stat
.
3151 nic
->mac_control
.stats_info
->sw_stat
.
3152 tx_list_proc_err_cnt
++;
3157 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3159 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3160 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
3162 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
3167 /* Updating the statistics block */
3168 nic
->stats
.tx_bytes
+= skb
->len
;
3169 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
3170 dev_kfree_skb_irq(skb
);
3173 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3174 get_info
.offset
= 0;
3175 txdlp
= (struct TxD
*) fifo_data
->list_info
3176 [get_info
.offset
].list_virt_addr
;
3177 fifo_data
->tx_curr_get_info
.offset
=
3181 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3183 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3187 * s2io_mdio_write - Function to write in to MDIO registers
3188 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3189 * @addr : address value
3190 * @value : data value
3191 * @dev : pointer to net_device structure
3193 * This function is used to write values to the MDIO registers
3196 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3199 struct s2io_nic
*sp
= dev
->priv
;
3200 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3202 //address transaction
3203 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3204 | MDIO_MMD_DEV_ADDR(mmd_type
)
3205 | MDIO_MMS_PRT_ADDR(0x0);
3206 writeq(val64
, &bar0
->mdio_control
);
3207 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3208 writeq(val64
, &bar0
->mdio_control
);
3213 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3214 | MDIO_MMD_DEV_ADDR(mmd_type
)
3215 | MDIO_MMS_PRT_ADDR(0x0)
3216 | MDIO_MDIO_DATA(value
)
3217 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3218 writeq(val64
, &bar0
->mdio_control
);
3219 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3220 writeq(val64
, &bar0
->mdio_control
);
3224 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3225 | MDIO_MMD_DEV_ADDR(mmd_type
)
3226 | MDIO_MMS_PRT_ADDR(0x0)
3227 | MDIO_OP(MDIO_OP_READ_TRANS
);
3228 writeq(val64
, &bar0
->mdio_control
);
3229 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3230 writeq(val64
, &bar0
->mdio_control
);
3236 * s2io_mdio_read - Function to write in to MDIO registers
3237 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3238 * @addr : address value
3239 * @dev : pointer to net_device structure
3241 * This function is used to read values to the MDIO registers
3244 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3248 struct s2io_nic
*sp
= dev
->priv
;
3249 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3251 /* address transaction */
3252 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3253 | MDIO_MMD_DEV_ADDR(mmd_type
)
3254 | MDIO_MMS_PRT_ADDR(0x0);
3255 writeq(val64
, &bar0
->mdio_control
);
3256 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3257 writeq(val64
, &bar0
->mdio_control
);
3260 /* Data transaction */
3262 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3263 | MDIO_MMD_DEV_ADDR(mmd_type
)
3264 | MDIO_MMS_PRT_ADDR(0x0)
3265 | MDIO_OP(MDIO_OP_READ_TRANS
);
3266 writeq(val64
, &bar0
->mdio_control
);
3267 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3268 writeq(val64
, &bar0
->mdio_control
);
3271 /* Read the value from regs */
3272 rval64
= readq(&bar0
->mdio_control
);
3273 rval64
= rval64
& 0xFFFF0000;
3274 rval64
= rval64
>> 16;
3278 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3279 * @counter : couter value to be updated
3280 * @flag : flag to indicate the status
3281 * @type : counter type
3283 * This function is to check the status of the xpak counters value
3287 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3292 for(i
= 0; i
<index
; i
++)
3297 *counter
= *counter
+ 1;
3298 val64
= *regs_stat
& mask
;
3299 val64
= val64
>> (index
* 0x2);
3306 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3307 "service. Excessive temperatures may "
3308 "result in premature transceiver "
3312 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3313 "service Excessive bias currents may "
3314 "indicate imminent laser diode "
3318 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3319 "service Excessive laser output "
3320 "power may saturate far-end "
3324 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3329 val64
= val64
<< (index
* 0x2);
3330 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3333 *regs_stat
= *regs_stat
& (~mask
);
3338 * s2io_updt_xpak_counter - Function to update the xpak counters
3339 * @dev : pointer to net_device struct
3341 * This function is to upate the status of the xpak counters value
3344 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3352 struct s2io_nic
*sp
= dev
->priv
;
3353 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3355 /* Check the communication with the MDIO slave */
3358 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3359 if((val64
== 0xFFFF) || (val64
== 0x0000))
3361 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3362 "Returned %llx\n", (unsigned long long)val64
);
3366 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3369 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3370 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3371 (unsigned long long)val64
);
3375 /* Loading the DOM register to MDIO register */
3377 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3378 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3380 /* Reading the Alarm flags */
3383 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3385 flag
= CHECKBIT(val64
, 0x7);
3387 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3388 &stat_info
->xpak_stat
.xpak_regs_stat
,
3391 if(CHECKBIT(val64
, 0x6))
3392 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3394 flag
= CHECKBIT(val64
, 0x3);
3396 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3397 &stat_info
->xpak_stat
.xpak_regs_stat
,
3400 if(CHECKBIT(val64
, 0x2))
3401 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3403 flag
= CHECKBIT(val64
, 0x1);
3405 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3406 &stat_info
->xpak_stat
.xpak_regs_stat
,
3409 if(CHECKBIT(val64
, 0x0))
3410 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3412 /* Reading the Warning flags */
3415 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3417 if(CHECKBIT(val64
, 0x7))
3418 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3420 if(CHECKBIT(val64
, 0x6))
3421 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3423 if(CHECKBIT(val64
, 0x3))
3424 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3426 if(CHECKBIT(val64
, 0x2))
3427 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3429 if(CHECKBIT(val64
, 0x1))
3430 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3432 if(CHECKBIT(val64
, 0x0))
3433 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3437 * wait_for_cmd_complete - waits for a command to complete.
3438 * @sp : private member of the device structure, which is a pointer to the
3439 * s2io_nic structure.
3440 * Description: Function that waits for a command to Write into RMAC
3441 * ADDR DATA registers to be completed and returns either success or
3442 * error depending on whether the command was complete or not.
3444 * SUCCESS on success and FAILURE on failure.
3447 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3450 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3453 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3457 val64
= readq(addr
);
3458 if (bit_state
== S2IO_BIT_RESET
) {
3459 if (!(val64
& busy_bit
)) {
3464 if (!(val64
& busy_bit
)) {
3481 * check_pci_device_id - Checks if the device id is supported
3483 * Description: Function to check if the pci device id is supported by driver.
3484 * Return value: Actual device id if supported else PCI_ANY_ID
3486 static u16
check_pci_device_id(u16 id
)
3489 case PCI_DEVICE_ID_HERC_WIN
:
3490 case PCI_DEVICE_ID_HERC_UNI
:
3491 return XFRAME_II_DEVICE
;
3492 case PCI_DEVICE_ID_S2IO_UNI
:
3493 case PCI_DEVICE_ID_S2IO_WIN
:
3494 return XFRAME_I_DEVICE
;
3501 * s2io_reset - Resets the card.
3502 * @sp : private member of the device structure.
3503 * Description: Function to Reset the card. This function then also
3504 * restores the previously saved PCI configuration space registers as
3505 * the card reset also resets the configuration space.
3510 static void s2io_reset(struct s2io_nic
* sp
)
3512 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3517 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3518 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3520 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3521 __FUNCTION__
, sp
->dev
->name
);
3523 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3524 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3526 val64
= SW_RESET_ALL
;
3527 writeq(val64
, &bar0
->sw_reset
);
3528 if (strstr(sp
->product_name
, "CX4")) {
3532 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3534 /* Restore the PCI state saved during initialization. */
3535 pci_restore_state(sp
->pdev
);
3536 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3537 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3542 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3543 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3546 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3550 /* Set swapper to enable I/O register access */
3551 s2io_set_swapper(sp
);
3553 /* restore mac_addr entries */
3554 do_s2io_restore_unicast_mc(sp
);
3556 /* Restore the MSIX table entries from local variables */
3557 restore_xmsi_data(sp
);
3559 /* Clear certain PCI/PCI-X fields after reset */
3560 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3561 /* Clear "detected parity error" bit */
3562 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3564 /* Clearing PCIX Ecc status register */
3565 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3567 /* Clearing PCI_STATUS error reflected here */
3568 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3571 /* Reset device statistics maintained by OS */
3572 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3574 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3575 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3576 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3577 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3578 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3579 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3580 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3581 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3582 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3583 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3584 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3585 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3586 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3587 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3588 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3589 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3590 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3591 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3592 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3594 /* SXE-002: Configure link and activity LED to turn it off */
3595 subid
= sp
->pdev
->subsystem_device
;
3596 if (((subid
& 0xFF) >= 0x07) &&
3597 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3598 val64
= readq(&bar0
->gpio_control
);
3599 val64
|= 0x0000800000000000ULL
;
3600 writeq(val64
, &bar0
->gpio_control
);
3601 val64
= 0x0411040400000000ULL
;
3602 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3606 * Clear spurious ECC interrupts that would have occured on
3607 * XFRAME II cards after reset.
3609 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3610 val64
= readq(&bar0
->pcc_err_reg
);
3611 writeq(val64
, &bar0
->pcc_err_reg
);
3614 sp
->device_enabled_once
= FALSE
;
3618 * s2io_set_swapper - to set the swapper controle on the card
3619 * @sp : private member of the device structure,
3620 * pointer to the s2io_nic structure.
3621 * Description: Function to set the swapper control on the card
3622 * correctly depending on the 'endianness' of the system.
3624 * SUCCESS on success and FAILURE on failure.
3627 static int s2io_set_swapper(struct s2io_nic
* sp
)
3629 struct net_device
*dev
= sp
->dev
;
3630 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3631 u64 val64
, valt
, valr
;
3634 * Set proper endian settings and verify the same by reading
3635 * the PIF Feed-back register.
3638 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3639 if (val64
!= 0x0123456789ABCDEFULL
) {
3641 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3642 0x8100008181000081ULL
, /* FE=1, SE=0 */
3643 0x4200004242000042ULL
, /* FE=0, SE=1 */
3644 0}; /* FE=0, SE=0 */
3647 writeq(value
[i
], &bar0
->swapper_ctrl
);
3648 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3649 if (val64
== 0x0123456789ABCDEFULL
)
3654 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3656 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3657 (unsigned long long) val64
);
3662 valr
= readq(&bar0
->swapper_ctrl
);
3665 valt
= 0x0123456789ABCDEFULL
;
3666 writeq(valt
, &bar0
->xmsi_address
);
3667 val64
= readq(&bar0
->xmsi_address
);
3671 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3672 0x0081810000818100ULL
, /* FE=1, SE=0 */
3673 0x0042420000424200ULL
, /* FE=0, SE=1 */
3674 0}; /* FE=0, SE=0 */
3677 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3678 writeq(valt
, &bar0
->xmsi_address
);
3679 val64
= readq(&bar0
->xmsi_address
);
3685 unsigned long long x
= val64
;
3686 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3687 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3691 val64
= readq(&bar0
->swapper_ctrl
);
3692 val64
&= 0xFFFF000000000000ULL
;
3696 * The device by default set to a big endian format, so a
3697 * big endian driver need not set anything.
3699 val64
|= (SWAPPER_CTRL_TXP_FE
|
3700 SWAPPER_CTRL_TXP_SE
|
3701 SWAPPER_CTRL_TXD_R_FE
|
3702 SWAPPER_CTRL_TXD_W_FE
|
3703 SWAPPER_CTRL_TXF_R_FE
|
3704 SWAPPER_CTRL_RXD_R_FE
|
3705 SWAPPER_CTRL_RXD_W_FE
|
3706 SWAPPER_CTRL_RXF_W_FE
|
3707 SWAPPER_CTRL_XMSI_FE
|
3708 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3709 if (sp
->config
.intr_type
== INTA
)
3710 val64
|= SWAPPER_CTRL_XMSI_SE
;
3711 writeq(val64
, &bar0
->swapper_ctrl
);
3714 * Initially we enable all bits to make it accessible by the
3715 * driver, then we selectively enable only those bits that
3718 val64
|= (SWAPPER_CTRL_TXP_FE
|
3719 SWAPPER_CTRL_TXP_SE
|
3720 SWAPPER_CTRL_TXD_R_FE
|
3721 SWAPPER_CTRL_TXD_R_SE
|
3722 SWAPPER_CTRL_TXD_W_FE
|
3723 SWAPPER_CTRL_TXD_W_SE
|
3724 SWAPPER_CTRL_TXF_R_FE
|
3725 SWAPPER_CTRL_RXD_R_FE
|
3726 SWAPPER_CTRL_RXD_R_SE
|
3727 SWAPPER_CTRL_RXD_W_FE
|
3728 SWAPPER_CTRL_RXD_W_SE
|
3729 SWAPPER_CTRL_RXF_W_FE
|
3730 SWAPPER_CTRL_XMSI_FE
|
3731 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3732 if (sp
->config
.intr_type
== INTA
)
3733 val64
|= SWAPPER_CTRL_XMSI_SE
;
3734 writeq(val64
, &bar0
->swapper_ctrl
);
3736 val64
= readq(&bar0
->swapper_ctrl
);
3739 * Verifying if endian settings are accurate by reading a
3740 * feedback register.
3742 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3743 if (val64
!= 0x0123456789ABCDEFULL
) {
3744 /* Endian settings are incorrect, calls for another dekko. */
3745 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3747 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3748 (unsigned long long) val64
);
3755 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3757 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3759 int ret
= 0, cnt
= 0;
3762 val64
= readq(&bar0
->xmsi_access
);
3763 if (!(val64
& s2BIT(15)))
3769 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3776 static void restore_xmsi_data(struct s2io_nic
*nic
)
3778 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3783 if (nic
->device_type
== XFRAME_I_DEVICE
)
3786 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3787 msix_index
= (i
) ? ((i
-1) * 8 + 1): 0;
3788 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3789 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3790 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3791 writeq(val64
, &bar0
->xmsi_access
);
3792 if (wait_for_msix_trans(nic
, msix_index
)) {
3793 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3799 static void store_xmsi_data(struct s2io_nic
*nic
)
3801 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3802 u64 val64
, addr
, data
;
3805 if (nic
->device_type
== XFRAME_I_DEVICE
)
3808 /* Store and display */
3809 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3810 msix_index
= (i
) ? ((i
-1) * 8 + 1): 0;
3811 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3812 writeq(val64
, &bar0
->xmsi_access
);
3813 if (wait_for_msix_trans(nic
, msix_index
)) {
3814 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3817 addr
= readq(&bar0
->xmsi_address
);
3818 data
= readq(&bar0
->xmsi_data
);
3820 nic
->msix_info
[i
].addr
= addr
;
3821 nic
->msix_info
[i
].data
= data
;
3826 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3828 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3830 u16 msi_control
; /* Temp variable */
3831 int ret
, i
, j
, msix_indx
= 1;
3833 nic
->entries
= kmalloc(nic
->num_entries
* sizeof(struct msix_entry
),
3835 if (!nic
->entries
) {
3836 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3838 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3841 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3842 += (nic
->num_entries
* sizeof(struct msix_entry
));
3844 memset(nic
->entries
, 0, nic
->num_entries
* sizeof(struct msix_entry
));
3847 kmalloc(nic
->num_entries
* sizeof(struct s2io_msix_entry
),
3849 if (!nic
->s2io_entries
) {
3850 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3852 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3853 kfree(nic
->entries
);
3854 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3855 += (nic
->num_entries
* sizeof(struct msix_entry
));
3858 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3859 += (nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3860 memset(nic
->s2io_entries
, 0,
3861 nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3863 nic
->entries
[0].entry
= 0;
3864 nic
->s2io_entries
[0].entry
= 0;
3865 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3866 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3867 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3869 for (i
= 1; i
< nic
->num_entries
; i
++) {
3870 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3871 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3872 nic
->s2io_entries
[i
].arg
= NULL
;
3873 nic
->s2io_entries
[i
].in_use
= 0;
3876 rx_mat
= readq(&bar0
->rx_mat
);
3877 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3878 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3879 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3880 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3881 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3884 writeq(rx_mat
, &bar0
->rx_mat
);
3885 readq(&bar0
->rx_mat
);
3887 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3888 /* We fail init if error or we get less vectors than min required */
3890 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3891 kfree(nic
->entries
);
3892 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3893 += (nic
->num_entries
* sizeof(struct msix_entry
));
3894 kfree(nic
->s2io_entries
);
3895 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3896 += (nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3897 nic
->entries
= NULL
;
3898 nic
->s2io_entries
= NULL
;
3903 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3904 * in the herc NIC. (Temp change, needs to be removed later)
3906 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3907 msi_control
|= 0x1; /* Enable MSI */
3908 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3913 /* Handle software interrupt used during MSI(X) test */
3914 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3916 struct s2io_nic
*sp
= dev_id
;
3918 sp
->msi_detected
= 1;
3919 wake_up(&sp
->msi_wait
);
3924 /* Test interrupt path by forcing a a software IRQ */
3925 static int s2io_test_msi(struct s2io_nic
*sp
)
3927 struct pci_dev
*pdev
= sp
->pdev
;
3928 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3932 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3935 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3936 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3940 init_waitqueue_head (&sp
->msi_wait
);
3941 sp
->msi_detected
= 0;
3943 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3944 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3945 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3946 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3947 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3949 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3951 if (!sp
->msi_detected
) {
3952 /* MSI(X) test failed, go back to INTx mode */
3953 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3954 "using MSI(X) during test\n", sp
->dev
->name
,
3960 free_irq(sp
->entries
[1].vector
, sp
);
3962 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3967 static void remove_msix_isr(struct s2io_nic
*sp
)
3972 for (i
= 0; i
< sp
->num_entries
; i
++) {
3973 if (sp
->s2io_entries
[i
].in_use
==
3974 MSIX_REGISTERED_SUCCESS
) {
3975 int vector
= sp
->entries
[i
].vector
;
3976 void *arg
= sp
->s2io_entries
[i
].arg
;
3977 free_irq(vector
, arg
);
3982 kfree(sp
->s2io_entries
);
3984 sp
->s2io_entries
= NULL
;
3986 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3987 msi_control
&= 0xFFFE; /* Disable MSI */
3988 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3990 pci_disable_msix(sp
->pdev
);
3993 static void remove_inta_isr(struct s2io_nic
*sp
)
3995 struct net_device
*dev
= sp
->dev
;
3997 free_irq(sp
->pdev
->irq
, dev
);
4000 /* ********************************************************* *
4001 * Functions defined below concern the OS part of the driver *
4002 * ********************************************************* */
4005 * s2io_open - open entry point of the driver
4006 * @dev : pointer to the device structure.
4008 * This function is the open entry point of the driver. It mainly calls a
4009 * function to allocate Rx buffers and inserts them into the buffer
4010 * descriptors and then enables the Rx part of the NIC.
4012 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4016 static int s2io_open(struct net_device
*dev
)
4018 struct s2io_nic
*sp
= dev
->priv
;
4022 * Make sure you have link off by default every time
4023 * Nic is initialized
4025 netif_carrier_off(dev
);
4026 sp
->last_link_state
= 0;
4028 /* Initialize H/W and enable interrupts */
4029 err
= s2io_card_up(sp
);
4031 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
4033 goto hw_init_failed
;
4036 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4037 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4040 goto hw_init_failed
;
4042 s2io_start_all_tx_queue(sp
);
4046 if (sp
->config
.intr_type
== MSI_X
) {
4049 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4050 += (sp
->num_entries
* sizeof(struct msix_entry
));
4052 if (sp
->s2io_entries
) {
4053 kfree(sp
->s2io_entries
);
4054 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4055 += (sp
->num_entries
* sizeof(struct s2io_msix_entry
));
4062 * s2io_close -close entry point of the driver
4063 * @dev : device pointer.
4065 * This is the stop entry point of the driver. It needs to undo exactly
4066 * whatever was done by the open entry point,thus it's usually referred to
4067 * as the close function.Among other things this function mainly stops the
4068 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4070 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4074 static int s2io_close(struct net_device
*dev
)
4076 struct s2io_nic
*sp
= dev
->priv
;
4077 struct config_param
*config
= &sp
->config
;
4081 /* Return if the device is already closed *
4082 * Can happen when s2io_card_up failed in change_mtu *
4084 if (!is_s2io_card_up(sp
))
4087 s2io_stop_all_tx_queue(sp
);
4088 /* delete all populated mac entries */
4089 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4090 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4091 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4092 do_s2io_delete_unicast_mc(sp
, tmp64
);
4101 * s2io_xmit - Tx entry point of te driver
4102 * @skb : the socket buffer containing the Tx data.
4103 * @dev : device pointer.
4105 * This function is the Tx entry point of the driver. S2IO NIC supports
4106 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4107 * NOTE: when device cant queue the pkt,just the trans_start variable will
4110 * 0 on success & 1 on failure.
4113 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4115 struct s2io_nic
*sp
= dev
->priv
;
4116 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4119 struct TxFIFO_element __iomem
*tx_fifo
;
4120 unsigned long flags
= 0;
4122 struct fifo_info
*fifo
= NULL
;
4123 struct mac_info
*mac_control
;
4124 struct config_param
*config
;
4125 int do_spin_lock
= 1;
4127 int enable_per_list_interrupt
= 0;
4128 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
4130 mac_control
= &sp
->mac_control
;
4131 config
= &sp
->config
;
4133 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4135 if (unlikely(skb
->len
<= 0)) {
4136 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4137 dev_kfree_skb_any(skb
);
4141 if (!is_s2io_card_up(sp
)) {
4142 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4149 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4150 vlan_tag
= vlan_tx_tag_get(skb
);
4151 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4152 if (skb
->protocol
== htons(ETH_P_IP
)) {
4157 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4158 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4161 if (ip
->protocol
== IPPROTO_TCP
) {
4162 queue_len
= sp
->total_tcp_fifos
;
4163 queue
= (ntohs(th
->source
) +
4165 sp
->fifo_selector
[queue_len
- 1];
4166 if (queue
>= queue_len
)
4167 queue
= queue_len
- 1;
4168 } else if (ip
->protocol
== IPPROTO_UDP
) {
4169 queue_len
= sp
->total_udp_fifos
;
4170 queue
= (ntohs(th
->source
) +
4172 sp
->fifo_selector
[queue_len
- 1];
4173 if (queue
>= queue_len
)
4174 queue
= queue_len
- 1;
4175 queue
+= sp
->udp_fifo_idx
;
4176 if (skb
->len
> 1024)
4177 enable_per_list_interrupt
= 1;
4182 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4183 /* get fifo number based on skb->priority value */
4184 queue
= config
->fifo_mapping
4185 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4186 fifo
= &mac_control
->fifos
[queue
];
4189 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4191 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4192 return NETDEV_TX_LOCKED
;
4195 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4196 if (sp
->config
.multiq
) {
4197 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4198 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4199 return NETDEV_TX_BUSY
;
4203 if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4204 if (netif_queue_stopped(dev
)) {
4205 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4206 return NETDEV_TX_BUSY
;
4210 put_off
= (u16
) fifo
->tx_curr_put_info
.offset
;
4211 get_off
= (u16
) fifo
->tx_curr_get_info
.offset
;
4212 txdp
= (struct TxD
*) fifo
->list_info
[put_off
].list_virt_addr
;
4214 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4215 /* Avoid "put" pointer going beyond "get" pointer */
4216 if (txdp
->Host_Control
||
4217 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4218 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4219 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4221 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4225 offload_type
= s2io_offload_type(skb
);
4226 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4227 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4228 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4230 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4232 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4235 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4236 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4237 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4238 if (enable_per_list_interrupt
)
4239 if (put_off
& (queue_len
>> 5))
4240 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4242 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4243 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4246 frg_len
= skb
->len
- skb
->data_len
;
4247 if (offload_type
== SKB_GSO_UDP
) {
4250 ufo_size
= s2io_udp_mss(skb
);
4252 txdp
->Control_1
|= TXD_UFO_EN
;
4253 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4254 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4256 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4257 fifo
->ufo_in_band_v
[put_off
] =
4258 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4260 fifo
->ufo_in_band_v
[put_off
] =
4261 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4263 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4264 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4265 fifo
->ufo_in_band_v
,
4266 sizeof(u64
), PCI_DMA_TODEVICE
);
4267 if((txdp
->Buffer_Pointer
== 0) ||
4268 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4269 goto pci_map_failed
;
4273 txdp
->Buffer_Pointer
= pci_map_single
4274 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4275 if((txdp
->Buffer_Pointer
== 0) ||
4276 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4277 goto pci_map_failed
;
4279 txdp
->Host_Control
= (unsigned long) skb
;
4280 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4281 if (offload_type
== SKB_GSO_UDP
)
4282 txdp
->Control_1
|= TXD_UFO_EN
;
4284 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4285 /* For fragmented SKB. */
4286 for (i
= 0; i
< frg_cnt
; i
++) {
4287 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4288 /* A '0' length fragment will be ignored */
4292 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4293 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4294 frag
->size
, PCI_DMA_TODEVICE
);
4295 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4296 if (offload_type
== SKB_GSO_UDP
)
4297 txdp
->Control_1
|= TXD_UFO_EN
;
4299 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4301 if (offload_type
== SKB_GSO_UDP
)
4302 frg_cnt
++; /* as Txd0 was used for inband header */
4304 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4305 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4306 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4308 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4311 val64
|= TX_FIFO_SPECIAL_FUNC
;
4313 writeq(val64
, &tx_fifo
->List_Control
);
4318 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4320 fifo
->tx_curr_put_info
.offset
= put_off
;
4322 /* Avoid "put" pointer going beyond "get" pointer */
4323 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4324 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4326 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4328 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4330 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4331 dev
->trans_start
= jiffies
;
4332 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4334 if (sp
->config
.intr_type
== MSI_X
)
4335 tx_intr_handler(fifo
);
4339 stats
->pci_map_fail_cnt
++;
4340 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4341 stats
->mem_freed
+= skb
->truesize
;
4343 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4348 s2io_alarm_handle(unsigned long data
)
4350 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4351 struct net_device
*dev
= sp
->dev
;
4353 s2io_handle_errors(dev
);
4354 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4357 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4359 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4360 struct s2io_nic
*sp
= ring
->nic
;
4361 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4362 struct net_device
*dev
= sp
->dev
;
4364 if (unlikely(!is_s2io_card_up(sp
)))
4367 if (sp
->config
.napi
) {
4368 u8 __iomem
*addr
= NULL
;
4371 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4372 addr
+= (7 - ring
->ring_no
);
4373 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4376 netif_rx_schedule(dev
, &ring
->napi
);
4378 rx_intr_handler(ring
, 0);
4379 s2io_chk_rx_buffers(ring
);
4385 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4388 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4389 struct s2io_nic
*sp
= fifos
->nic
;
4390 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4391 struct config_param
*config
= &sp
->config
;
4394 if (unlikely(!is_s2io_card_up(sp
)))
4397 reason
= readq(&bar0
->general_int_status
);
4398 if (unlikely(reason
== S2IO_MINUS_ONE
))
4399 /* Nothing much can be done. Get out */
4402 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4404 if (reason
& GEN_INTR_TXTRAFFIC
)
4405 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4407 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4408 tx_intr_handler(&fifos
[i
]);
4410 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4411 readl(&bar0
->general_int_status
);
4416 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4418 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4421 val64
= readq(&bar0
->pic_int_status
);
4422 if (val64
& PIC_INT_GPIO
) {
4423 val64
= readq(&bar0
->gpio_int_reg
);
4424 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4425 (val64
& GPIO_INT_REG_LINK_UP
)) {
4427 * This is unstable state so clear both up/down
4428 * interrupt and adapter to re-evaluate the link state.
4430 val64
|= GPIO_INT_REG_LINK_DOWN
;
4431 val64
|= GPIO_INT_REG_LINK_UP
;
4432 writeq(val64
, &bar0
->gpio_int_reg
);
4433 val64
= readq(&bar0
->gpio_int_mask
);
4434 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4435 GPIO_INT_MASK_LINK_DOWN
);
4436 writeq(val64
, &bar0
->gpio_int_mask
);
4438 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4439 val64
= readq(&bar0
->adapter_status
);
4440 /* Enable Adapter */
4441 val64
= readq(&bar0
->adapter_control
);
4442 val64
|= ADAPTER_CNTL_EN
;
4443 writeq(val64
, &bar0
->adapter_control
);
4444 val64
|= ADAPTER_LED_ON
;
4445 writeq(val64
, &bar0
->adapter_control
);
4446 if (!sp
->device_enabled_once
)
4447 sp
->device_enabled_once
= 1;
4449 s2io_link(sp
, LINK_UP
);
4451 * unmask link down interrupt and mask link-up
4454 val64
= readq(&bar0
->gpio_int_mask
);
4455 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4456 val64
|= GPIO_INT_MASK_LINK_UP
;
4457 writeq(val64
, &bar0
->gpio_int_mask
);
4459 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4460 val64
= readq(&bar0
->adapter_status
);
4461 s2io_link(sp
, LINK_DOWN
);
4462 /* Link is down so unmaks link up interrupt */
4463 val64
= readq(&bar0
->gpio_int_mask
);
4464 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4465 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4466 writeq(val64
, &bar0
->gpio_int_mask
);
4469 val64
= readq(&bar0
->adapter_control
);
4470 val64
= val64
&(~ADAPTER_LED_ON
);
4471 writeq(val64
, &bar0
->adapter_control
);
4474 val64
= readq(&bar0
->gpio_int_mask
);
4478 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4479 * @value: alarm bits
4480 * @addr: address value
4481 * @cnt: counter variable
4482 * Description: Check for alarm and increment the counter
4484 * 1 - if alarm bit set
4485 * 0 - if alarm bit is not set
4487 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4488 unsigned long long *cnt
)
4491 val64
= readq(addr
);
4492 if ( val64
& value
) {
4493 writeq(val64
, addr
);
4502 * s2io_handle_errors - Xframe error indication handler
4503 * @nic: device private variable
4504 * Description: Handle alarms such as loss of link, single or
4505 * double ECC errors, critical and serious errors.
4509 static void s2io_handle_errors(void * dev_id
)
4511 struct net_device
*dev
= (struct net_device
*) dev_id
;
4512 struct s2io_nic
*sp
= dev
->priv
;
4513 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4514 u64 temp64
= 0,val64
=0;
4517 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4518 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4520 if (!is_s2io_card_up(sp
))
4523 if (pci_channel_offline(sp
->pdev
))
4526 memset(&sw_stat
->ring_full_cnt
, 0,
4527 sizeof(sw_stat
->ring_full_cnt
));
4529 /* Handling the XPAK counters update */
4530 if(stats
->xpak_timer_count
< 72000) {
4531 /* waiting for an hour */
4532 stats
->xpak_timer_count
++;
4534 s2io_updt_xpak_counter(dev
);
4535 /* reset the count to zero */
4536 stats
->xpak_timer_count
= 0;
4539 /* Handling link status change error Intr */
4540 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4541 val64
= readq(&bar0
->mac_rmac_err_reg
);
4542 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4543 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4544 schedule_work(&sp
->set_link_task
);
4547 /* In case of a serious error, the device will be Reset. */
4548 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4549 &sw_stat
->serious_err_cnt
))
4552 /* Check for data parity error */
4553 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4554 &sw_stat
->parity_err_cnt
))
4557 /* Check for ring full counter */
4558 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4559 val64
= readq(&bar0
->ring_bump_counter1
);
4560 for (i
=0; i
<4; i
++) {
4561 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4562 temp64
>>= 64 - ((i
+1)*16);
4563 sw_stat
->ring_full_cnt
[i
] += temp64
;
4566 val64
= readq(&bar0
->ring_bump_counter2
);
4567 for (i
=0; i
<4; i
++) {
4568 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4569 temp64
>>= 64 - ((i
+1)*16);
4570 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4574 val64
= readq(&bar0
->txdma_int_status
);
4575 /*check for pfc_err*/
4576 if (val64
& TXDMA_PFC_INT
) {
4577 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4578 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4579 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4580 &sw_stat
->pfc_err_cnt
))
4582 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4583 &sw_stat
->pfc_err_cnt
);
4586 /*check for tda_err*/
4587 if (val64
& TXDMA_TDA_INT
) {
4588 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4589 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4590 &sw_stat
->tda_err_cnt
))
4592 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4593 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4595 /*check for pcc_err*/
4596 if (val64
& TXDMA_PCC_INT
) {
4597 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4598 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4599 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4600 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4601 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4602 &sw_stat
->pcc_err_cnt
))
4604 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4605 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4608 /*check for tti_err*/
4609 if (val64
& TXDMA_TTI_INT
) {
4610 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4611 &sw_stat
->tti_err_cnt
))
4613 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4614 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4617 /*check for lso_err*/
4618 if (val64
& TXDMA_LSO_INT
) {
4619 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4620 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4621 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4623 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4624 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4627 /*check for tpa_err*/
4628 if (val64
& TXDMA_TPA_INT
) {
4629 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4630 &sw_stat
->tpa_err_cnt
))
4632 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4633 &sw_stat
->tpa_err_cnt
);
4636 /*check for sm_err*/
4637 if (val64
& TXDMA_SM_INT
) {
4638 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4639 &sw_stat
->sm_err_cnt
))
4643 val64
= readq(&bar0
->mac_int_status
);
4644 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4645 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4646 &bar0
->mac_tmac_err_reg
,
4647 &sw_stat
->mac_tmac_err_cnt
))
4649 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4650 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4651 &bar0
->mac_tmac_err_reg
,
4652 &sw_stat
->mac_tmac_err_cnt
);
4655 val64
= readq(&bar0
->xgxs_int_status
);
4656 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4657 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4658 &bar0
->xgxs_txgxs_err_reg
,
4659 &sw_stat
->xgxs_txgxs_err_cnt
))
4661 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4662 &bar0
->xgxs_txgxs_err_reg
,
4663 &sw_stat
->xgxs_txgxs_err_cnt
);
4666 val64
= readq(&bar0
->rxdma_int_status
);
4667 if (val64
& RXDMA_INT_RC_INT_M
) {
4668 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4669 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4670 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4672 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4673 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4674 &sw_stat
->rc_err_cnt
);
4675 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4676 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4677 &sw_stat
->prc_pcix_err_cnt
))
4679 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4680 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4681 &sw_stat
->prc_pcix_err_cnt
);
4684 if (val64
& RXDMA_INT_RPA_INT_M
) {
4685 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4686 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4688 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4689 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4692 if (val64
& RXDMA_INT_RDA_INT_M
) {
4693 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4694 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4695 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4696 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4698 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4699 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4700 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4703 if (val64
& RXDMA_INT_RTI_INT_M
) {
4704 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4705 &sw_stat
->rti_err_cnt
))
4707 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4708 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4711 val64
= readq(&bar0
->mac_int_status
);
4712 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4713 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4714 &bar0
->mac_rmac_err_reg
,
4715 &sw_stat
->mac_rmac_err_cnt
))
4717 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4718 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4719 &sw_stat
->mac_rmac_err_cnt
);
4722 val64
= readq(&bar0
->xgxs_int_status
);
4723 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4724 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4725 &bar0
->xgxs_rxgxs_err_reg
,
4726 &sw_stat
->xgxs_rxgxs_err_cnt
))
4730 val64
= readq(&bar0
->mc_int_status
);
4731 if(val64
& MC_INT_STATUS_MC_INT
) {
4732 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4733 &sw_stat
->mc_err_cnt
))
4736 /* Handling Ecc errors */
4737 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4738 writeq(val64
, &bar0
->mc_err_reg
);
4739 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4740 sw_stat
->double_ecc_errs
++;
4741 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4743 * Reset XframeI only if critical error
4746 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4747 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4751 sw_stat
->single_ecc_errs
++;
4757 s2io_stop_all_tx_queue(sp
);
4758 schedule_work(&sp
->rst_timer_task
);
4759 sw_stat
->soft_reset_cnt
++;
4764 * s2io_isr - ISR handler of the device .
4765 * @irq: the irq of the device.
4766 * @dev_id: a void pointer to the dev structure of the NIC.
4767 * Description: This function is the ISR handler of the device. It
4768 * identifies the reason for the interrupt and calls the relevant
4769 * service routines. As a contongency measure, this ISR allocates the
4770 * recv buffers, if their numbers are below the panic value which is
4771 * presently set to 25% of the original number of rcv buffers allocated.
4773 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4774 * IRQ_NONE: will be returned if interrupt is not from our device
4776 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4778 struct net_device
*dev
= (struct net_device
*) dev_id
;
4779 struct s2io_nic
*sp
= dev
->priv
;
4780 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4783 struct mac_info
*mac_control
;
4784 struct config_param
*config
;
4786 /* Pretend we handled any irq's from a disconnected card */
4787 if (pci_channel_offline(sp
->pdev
))
4790 if (!is_s2io_card_up(sp
))
4793 mac_control
= &sp
->mac_control
;
4794 config
= &sp
->config
;
4797 * Identify the cause for interrupt and call the appropriate
4798 * interrupt handler. Causes for the interrupt could be;
4803 reason
= readq(&bar0
->general_int_status
);
4805 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4806 /* Nothing much can be done. Get out */
4810 if (reason
& (GEN_INTR_RXTRAFFIC
|
4811 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4813 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4816 if (reason
& GEN_INTR_RXTRAFFIC
) {
4817 netif_rx_schedule(dev
, &sp
->napi
);
4818 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4819 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4820 readl(&bar0
->rx_traffic_int
);
4824 * rx_traffic_int reg is an R1 register, writing all 1's
4825 * will ensure that the actual interrupt causing bit
4826 * get's cleared and hence a read can be avoided.
4828 if (reason
& GEN_INTR_RXTRAFFIC
)
4829 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4831 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4832 rx_intr_handler(&mac_control
->rings
[i
], 0);
4836 * tx_traffic_int reg is an R1 register, writing all 1's
4837 * will ensure that the actual interrupt causing bit get's
4838 * cleared and hence a read can be avoided.
4840 if (reason
& GEN_INTR_TXTRAFFIC
)
4841 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4843 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4844 tx_intr_handler(&mac_control
->fifos
[i
]);
4846 if (reason
& GEN_INTR_TXPIC
)
4847 s2io_txpic_intr_handle(sp
);
4850 * Reallocate the buffers from the interrupt handler itself.
4852 if (!config
->napi
) {
4853 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4854 s2io_chk_rx_buffers(&mac_control
->rings
[i
]);
4856 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4857 readl(&bar0
->general_int_status
);
4863 /* The interrupt was not raised by us */
4873 static void s2io_updt_stats(struct s2io_nic
*sp
)
4875 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4879 if (is_s2io_card_up(sp
)) {
4880 /* Apprx 30us on a 133 MHz bus */
4881 val64
= SET_UPDT_CLICKS(10) |
4882 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4883 writeq(val64
, &bar0
->stat_cfg
);
4886 val64
= readq(&bar0
->stat_cfg
);
4887 if (!(val64
& s2BIT(0)))
4891 break; /* Updt failed */
4897 * s2io_get_stats - Updates the device statistics structure.
4898 * @dev : pointer to the device structure.
4900 * This function updates the device statistics structure in the s2io_nic
4901 * structure and returns a pointer to the same.
4903 * pointer to the updated net_device_stats structure.
4906 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4908 struct s2io_nic
*sp
= dev
->priv
;
4909 struct mac_info
*mac_control
;
4910 struct config_param
*config
;
4914 mac_control
= &sp
->mac_control
;
4915 config
= &sp
->config
;
4917 /* Configure Stats for immediate updt */
4918 s2io_updt_stats(sp
);
4920 sp
->stats
.tx_packets
=
4921 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4922 sp
->stats
.tx_errors
=
4923 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4924 sp
->stats
.rx_errors
=
4925 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4926 sp
->stats
.multicast
=
4927 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4928 sp
->stats
.rx_length_errors
=
4929 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4931 /* collect per-ring rx_packets and rx_bytes */
4932 sp
->stats
.rx_packets
= sp
->stats
.rx_bytes
= 0;
4933 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4934 sp
->stats
.rx_packets
+= mac_control
->rings
[i
].rx_packets
;
4935 sp
->stats
.rx_bytes
+= mac_control
->rings
[i
].rx_bytes
;
4938 return (&sp
->stats
);
4942 * s2io_set_multicast - entry point for multicast address enable/disable.
4943 * @dev : pointer to the device structure
4945 * This function is a driver entry point which gets called by the kernel
4946 * whenever multicast addresses must be enabled/disabled. This also gets
4947 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4948 * determine, if multicast address must be enabled or if promiscuous mode
4949 * is to be disabled etc.
4954 static void s2io_set_multicast(struct net_device
*dev
)
4957 struct dev_mc_list
*mclist
;
4958 struct s2io_nic
*sp
= dev
->priv
;
4959 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4960 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4962 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4964 struct config_param
*config
= &sp
->config
;
4966 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4967 /* Enable all Multicast addresses */
4968 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4969 &bar0
->rmac_addr_data0_mem
);
4970 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4971 &bar0
->rmac_addr_data1_mem
);
4972 val64
= RMAC_ADDR_CMD_MEM_WE
|
4973 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4974 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4975 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4976 /* Wait till command completes */
4977 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4978 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4982 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4983 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4984 /* Disable all Multicast addresses */
4985 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4986 &bar0
->rmac_addr_data0_mem
);
4987 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4988 &bar0
->rmac_addr_data1_mem
);
4989 val64
= RMAC_ADDR_CMD_MEM_WE
|
4990 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4991 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4992 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4993 /* Wait till command completes */
4994 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4995 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4999 sp
->all_multi_pos
= 0;
5002 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5003 /* Put the NIC into promiscuous mode */
5004 add
= &bar0
->mac_cfg
;
5005 val64
= readq(&bar0
->mac_cfg
);
5006 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5008 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5009 writel((u32
) val64
, add
);
5010 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5011 writel((u32
) (val64
>> 32), (add
+ 4));
5013 if (vlan_tag_strip
!= 1) {
5014 val64
= readq(&bar0
->rx_pa_cfg
);
5015 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5016 writeq(val64
, &bar0
->rx_pa_cfg
);
5017 vlan_strip_flag
= 0;
5020 val64
= readq(&bar0
->mac_cfg
);
5021 sp
->promisc_flg
= 1;
5022 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5024 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5025 /* Remove the NIC from promiscuous mode */
5026 add
= &bar0
->mac_cfg
;
5027 val64
= readq(&bar0
->mac_cfg
);
5028 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5030 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5031 writel((u32
) val64
, add
);
5032 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5033 writel((u32
) (val64
>> 32), (add
+ 4));
5035 if (vlan_tag_strip
!= 0) {
5036 val64
= readq(&bar0
->rx_pa_cfg
);
5037 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5038 writeq(val64
, &bar0
->rx_pa_cfg
);
5039 vlan_strip_flag
= 1;
5042 val64
= readq(&bar0
->mac_cfg
);
5043 sp
->promisc_flg
= 0;
5044 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
5048 /* Update individual M_CAST address list */
5049 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
5051 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5052 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
5054 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
5055 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
5059 prev_cnt
= sp
->mc_addr_count
;
5060 sp
->mc_addr_count
= dev
->mc_count
;
5062 /* Clear out the previous list of Mc in the H/W. */
5063 for (i
= 0; i
< prev_cnt
; i
++) {
5064 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5065 &bar0
->rmac_addr_data0_mem
);
5066 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5067 &bar0
->rmac_addr_data1_mem
);
5068 val64
= RMAC_ADDR_CMD_MEM_WE
|
5069 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5070 RMAC_ADDR_CMD_MEM_OFFSET
5071 (config
->mc_start_offset
+ i
);
5072 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5074 /* Wait for command completes */
5075 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5076 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5078 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5080 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5085 /* Create the new Rx filter list and update the same in H/W. */
5086 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
5087 i
++, mclist
= mclist
->next
) {
5088 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
5091 for (j
= 0; j
< ETH_ALEN
; j
++) {
5092 mac_addr
|= mclist
->dmi_addr
[j
];
5096 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5097 &bar0
->rmac_addr_data0_mem
);
5098 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5099 &bar0
->rmac_addr_data1_mem
);
5100 val64
= RMAC_ADDR_CMD_MEM_WE
|
5101 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5102 RMAC_ADDR_CMD_MEM_OFFSET
5103 (i
+ config
->mc_start_offset
);
5104 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5106 /* Wait for command completes */
5107 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5108 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5110 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5112 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5119 /* read from CAM unicast & multicast addresses and store it in
5120 * def_mac_addr structure
5122 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5126 struct config_param
*config
= &sp
->config
;
5128 /* store unicast & multicast mac addresses */
5129 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5130 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5131 /* if read fails disable the entry */
5132 if (mac_addr
== FAILURE
)
5133 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5134 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5138 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5139 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5142 struct config_param
*config
= &sp
->config
;
5143 /* restore unicast mac address */
5144 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5145 do_s2io_prog_unicast(sp
->dev
,
5146 sp
->def_mac_addr
[offset
].mac_addr
);
5148 /* restore multicast mac address */
5149 for (offset
= config
->mc_start_offset
;
5150 offset
< config
->max_mc_addr
; offset
++)
5151 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5154 /* add a multicast MAC address to CAM */
5155 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5159 struct config_param
*config
= &sp
->config
;
5161 for (i
= 0; i
< ETH_ALEN
; i
++) {
5163 mac_addr
|= addr
[i
];
5165 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5168 /* check if the multicast mac already preset in CAM */
5169 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5171 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5172 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5175 if (tmp64
== mac_addr
)
5178 if (i
== config
->max_mc_addr
) {
5180 "CAM full no space left for multicast MAC\n");
5183 /* Update the internal structure with this new mac address */
5184 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5186 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5189 /* add MAC address to CAM */
5190 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5193 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5195 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5196 &bar0
->rmac_addr_data0_mem
);
5199 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5200 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5201 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5203 /* Wait till command completes */
5204 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5205 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5207 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5212 /* deletes a specified unicast/multicast mac entry from CAM */
5213 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5216 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5217 struct config_param
*config
= &sp
->config
;
5220 offset
< config
->max_mc_addr
; offset
++) {
5221 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5222 if (tmp64
== addr
) {
5223 /* disable the entry by writing 0xffffffffffffULL */
5224 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5226 /* store the new mac list from CAM */
5227 do_s2io_store_unicast_mc(sp
);
5231 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5232 (unsigned long long)addr
);
5236 /* read mac entries from CAM */
5237 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5239 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5240 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5244 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5245 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5246 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5248 /* Wait till command completes */
5249 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5250 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5252 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5255 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5256 return (tmp64
>> 16);
5260 * s2io_set_mac_addr driver entry point
5263 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5265 struct sockaddr
*addr
= p
;
5267 if (!is_valid_ether_addr(addr
->sa_data
))
5270 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5272 /* store the MAC address in CAM */
5273 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5276 * do_s2io_prog_unicast - Programs the Xframe mac address
5277 * @dev : pointer to the device structure.
5278 * @addr: a uchar pointer to the new mac address which is to be set.
5279 * Description : This procedure will program the Xframe to receive
5280 * frames with new Mac Address
5281 * Return value: SUCCESS on success and an appropriate (-)ve integer
5282 * as defined in errno.h file on failure.
5285 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5287 struct s2io_nic
*sp
= dev
->priv
;
5288 register u64 mac_addr
= 0, perm_addr
= 0;
5291 struct config_param
*config
= &sp
->config
;
5294 * Set the new MAC address as the new unicast filter and reflect this
5295 * change on the device address registered with the OS. It will be
5298 for (i
= 0; i
< ETH_ALEN
; i
++) {
5300 mac_addr
|= addr
[i
];
5302 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5305 /* check if the dev_addr is different than perm_addr */
5306 if (mac_addr
== perm_addr
)
5309 /* check if the mac already preset in CAM */
5310 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5311 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5312 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5315 if (tmp64
== mac_addr
) {
5317 "MAC addr:0x%llx already present in CAM\n",
5318 (unsigned long long)mac_addr
);
5322 if (i
== config
->max_mac_addr
) {
5323 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5326 /* Update the internal structure with this new mac address */
5327 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5328 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5332 * s2io_ethtool_sset - Sets different link parameters.
5333 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5334 * @info: pointer to the structure with parameters given by ethtool to set
5337 * The function sets different link parameters provided by the user onto
5343 static int s2io_ethtool_sset(struct net_device
*dev
,
5344 struct ethtool_cmd
*info
)
5346 struct s2io_nic
*sp
= dev
->priv
;
5347 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5348 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5351 s2io_close(sp
->dev
);
5359 * s2io_ethtol_gset - Return link specific information.
5360 * @sp : private member of the device structure, pointer to the
5361 * s2io_nic structure.
5362 * @info : pointer to the structure with parameters given by ethtool
5363 * to return link information.
5365 * Returns link specific information like speed, duplex etc.. to ethtool.
5367 * return 0 on success.
5370 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5372 struct s2io_nic
*sp
= dev
->priv
;
5373 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5374 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5375 info
->port
= PORT_FIBRE
;
5377 /* info->transceiver */
5378 info
->transceiver
= XCVR_EXTERNAL
;
5380 if (netif_carrier_ok(sp
->dev
)) {
5381 info
->speed
= 10000;
5382 info
->duplex
= DUPLEX_FULL
;
5388 info
->autoneg
= AUTONEG_DISABLE
;
5393 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5394 * @sp : private member of the device structure, which is a pointer to the
5395 * s2io_nic structure.
5396 * @info : pointer to the structure with parameters given by ethtool to
5397 * return driver information.
5399 * Returns driver specefic information like name, version etc.. to ethtool.
5404 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5405 struct ethtool_drvinfo
*info
)
5407 struct s2io_nic
*sp
= dev
->priv
;
5409 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5410 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5411 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5412 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5413 info
->regdump_len
= XENA_REG_SPACE
;
5414 info
->eedump_len
= XENA_EEPROM_SPACE
;
5418 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5419 * @sp: private member of the device structure, which is a pointer to the
5420 * s2io_nic structure.
5421 * @regs : pointer to the structure with parameters given by ethtool for
5422 * dumping the registers.
5423 * @reg_space: The input argumnet into which all the registers are dumped.
5425 * Dumps the entire register space of xFrame NIC into the user given
5431 static void s2io_ethtool_gregs(struct net_device
*dev
,
5432 struct ethtool_regs
*regs
, void *space
)
5436 u8
*reg_space
= (u8
*) space
;
5437 struct s2io_nic
*sp
= dev
->priv
;
5439 regs
->len
= XENA_REG_SPACE
;
5440 regs
->version
= sp
->pdev
->subsystem_device
;
5442 for (i
= 0; i
< regs
->len
; i
+= 8) {
5443 reg
= readq(sp
->bar0
+ i
);
5444 memcpy((reg_space
+ i
), ®
, 8);
5449 * s2io_phy_id - timer function that alternates adapter LED.
5450 * @data : address of the private member of the device structure, which
5451 * is a pointer to the s2io_nic structure, provided as an u32.
5452 * Description: This is actually the timer function that alternates the
5453 * adapter LED bit of the adapter control bit to set/reset every time on
5454 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5455 * once every second.
5457 static void s2io_phy_id(unsigned long data
)
5459 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5460 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5464 subid
= sp
->pdev
->subsystem_device
;
5465 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5466 ((subid
& 0xFF) >= 0x07)) {
5467 val64
= readq(&bar0
->gpio_control
);
5468 val64
^= GPIO_CTRL_GPIO_0
;
5469 writeq(val64
, &bar0
->gpio_control
);
5471 val64
= readq(&bar0
->adapter_control
);
5472 val64
^= ADAPTER_LED_ON
;
5473 writeq(val64
, &bar0
->adapter_control
);
5476 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5480 * s2io_ethtool_idnic - To physically identify the nic on the system.
5481 * @sp : private member of the device structure, which is a pointer to the
5482 * s2io_nic structure.
5483 * @id : pointer to the structure with identification parameters given by
5485 * Description: Used to physically identify the NIC on the system.
5486 * The Link LED will blink for a time specified by the user for
5488 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5489 * identification is possible only if it's link is up.
5491 * int , returns 0 on success
5494 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5496 u64 val64
= 0, last_gpio_ctrl_val
;
5497 struct s2io_nic
*sp
= dev
->priv
;
5498 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5501 subid
= sp
->pdev
->subsystem_device
;
5502 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5503 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5504 ((subid
& 0xFF) < 0x07)) {
5505 val64
= readq(&bar0
->adapter_control
);
5506 if (!(val64
& ADAPTER_CNTL_EN
)) {
5508 "Adapter Link down, cannot blink LED\n");
5512 if (sp
->id_timer
.function
== NULL
) {
5513 init_timer(&sp
->id_timer
);
5514 sp
->id_timer
.function
= s2io_phy_id
;
5515 sp
->id_timer
.data
= (unsigned long) sp
;
5517 mod_timer(&sp
->id_timer
, jiffies
);
5519 msleep_interruptible(data
* HZ
);
5521 msleep_interruptible(MAX_FLICKER_TIME
);
5522 del_timer_sync(&sp
->id_timer
);
5524 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5525 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5526 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5532 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5533 struct ethtool_ringparam
*ering
)
5535 struct s2io_nic
*sp
= dev
->priv
;
5536 int i
,tx_desc_count
=0,rx_desc_count
=0;
5538 if (sp
->rxd_mode
== RXD_MODE_1
)
5539 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5540 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5541 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5543 ering
->tx_max_pending
= MAX_TX_DESC
;
5544 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5545 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5547 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5548 ering
->tx_pending
= tx_desc_count
;
5550 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5551 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5553 ering
->rx_pending
= rx_desc_count
;
5555 ering
->rx_mini_max_pending
= 0;
5556 ering
->rx_mini_pending
= 0;
5557 if(sp
->rxd_mode
== RXD_MODE_1
)
5558 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5559 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5560 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5561 ering
->rx_jumbo_pending
= rx_desc_count
;
5565 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5566 * @sp : private member of the device structure, which is a pointer to the
5567 * s2io_nic structure.
5568 * @ep : pointer to the structure with pause parameters given by ethtool.
5570 * Returns the Pause frame generation and reception capability of the NIC.
5574 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5575 struct ethtool_pauseparam
*ep
)
5578 struct s2io_nic
*sp
= dev
->priv
;
5579 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5581 val64
= readq(&bar0
->rmac_pause_cfg
);
5582 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5583 ep
->tx_pause
= TRUE
;
5584 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5585 ep
->rx_pause
= TRUE
;
5586 ep
->autoneg
= FALSE
;
5590 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5591 * @sp : private member of the device structure, which is a pointer to the
5592 * s2io_nic structure.
5593 * @ep : pointer to the structure with pause parameters given by ethtool.
5595 * It can be used to set or reset Pause frame generation or reception
5596 * support of the NIC.
5598 * int, returns 0 on Success
5601 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5602 struct ethtool_pauseparam
*ep
)
5605 struct s2io_nic
*sp
= dev
->priv
;
5606 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5608 val64
= readq(&bar0
->rmac_pause_cfg
);
5610 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5612 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5614 val64
|= RMAC_PAUSE_RX_ENABLE
;
5616 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5617 writeq(val64
, &bar0
->rmac_pause_cfg
);
5622 * read_eeprom - reads 4 bytes of data from user given offset.
5623 * @sp : private member of the device structure, which is a pointer to the
5624 * s2io_nic structure.
5625 * @off : offset at which the data must be written
5626 * @data : Its an output parameter where the data read at the given
5629 * Will read 4 bytes of data from the user given offset and return the
5631 * NOTE: Will allow to read only part of the EEPROM visible through the
5634 * -1 on failure and 0 on success.
5637 #define S2IO_DEV_ID 5
5638 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5643 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5645 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5646 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5647 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5648 I2C_CONTROL_CNTL_START
;
5649 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5651 while (exit_cnt
< 5) {
5652 val64
= readq(&bar0
->i2c_control
);
5653 if (I2C_CONTROL_CNTL_END(val64
)) {
5654 *data
= I2C_CONTROL_GET_DATA(val64
);
5663 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5664 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5665 SPI_CONTROL_BYTECNT(0x3) |
5666 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5667 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5668 val64
|= SPI_CONTROL_REQ
;
5669 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5670 while (exit_cnt
< 5) {
5671 val64
= readq(&bar0
->spi_control
);
5672 if (val64
& SPI_CONTROL_NACK
) {
5675 } else if (val64
& SPI_CONTROL_DONE
) {
5676 *data
= readq(&bar0
->spi_data
);
5689 * write_eeprom - actually writes the relevant part of the data value.
5690 * @sp : private member of the device structure, which is a pointer to the
5691 * s2io_nic structure.
5692 * @off : offset at which the data must be written
5693 * @data : The data that is to be written
5694 * @cnt : Number of bytes of the data that are actually to be written into
5695 * the Eeprom. (max of 3)
5697 * Actually writes the relevant part of the data value into the Eeprom
5698 * through the I2C bus.
5700 * 0 on success, -1 on failure.
5703 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5705 int exit_cnt
= 0, ret
= -1;
5707 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5709 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5710 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5711 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5712 I2C_CONTROL_CNTL_START
;
5713 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5715 while (exit_cnt
< 5) {
5716 val64
= readq(&bar0
->i2c_control
);
5717 if (I2C_CONTROL_CNTL_END(val64
)) {
5718 if (!(val64
& I2C_CONTROL_NACK
))
5727 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5728 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5729 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5731 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5732 SPI_CONTROL_BYTECNT(write_cnt
) |
5733 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5734 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5735 val64
|= SPI_CONTROL_REQ
;
5736 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5737 while (exit_cnt
< 5) {
5738 val64
= readq(&bar0
->spi_control
);
5739 if (val64
& SPI_CONTROL_NACK
) {
5742 } else if (val64
& SPI_CONTROL_DONE
) {
5752 static void s2io_vpd_read(struct s2io_nic
*nic
)
5756 int i
=0, cnt
, fail
= 0;
5757 int vpd_addr
= 0x80;
5759 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5760 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5764 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5767 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5769 vpd_data
= kmalloc(256, GFP_KERNEL
);
5771 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5774 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5776 for (i
= 0; i
< 256; i
+=4 ) {
5777 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5778 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5779 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5780 for (cnt
= 0; cnt
<5; cnt
++) {
5782 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5787 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5791 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5792 (u32
*)&vpd_data
[i
]);
5796 /* read serial number of adapter */
5797 for (cnt
= 0; cnt
< 256; cnt
++) {
5798 if ((vpd_data
[cnt
] == 'S') &&
5799 (vpd_data
[cnt
+1] == 'N') &&
5800 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5801 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5802 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5809 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5810 memset(nic
->product_name
, 0, vpd_data
[1]);
5811 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5814 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5818 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5819 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5820 * @eeprom : pointer to the user level structure provided by ethtool,
5821 * containing all relevant information.
5822 * @data_buf : user defined value to be written into Eeprom.
5823 * Description: Reads the values stored in the Eeprom at given offset
5824 * for a given length. Stores these values int the input argument data
5825 * buffer 'data_buf' and returns these to the caller (ethtool.)
5830 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5831 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5835 struct s2io_nic
*sp
= dev
->priv
;
5837 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5839 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5840 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5842 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5843 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5844 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5848 memcpy((data_buf
+ i
), &valid
, 4);
5854 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5855 * @sp : private member of the device structure, which is a pointer to the
5856 * s2io_nic structure.
5857 * @eeprom : pointer to the user level structure provided by ethtool,
5858 * containing all relevant information.
5859 * @data_buf ; user defined value to be written into Eeprom.
5861 * Tries to write the user provided value in the Eeprom, at the offset
5862 * given by the user.
5864 * 0 on success, -EFAULT on failure.
5867 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5868 struct ethtool_eeprom
*eeprom
,
5871 int len
= eeprom
->len
, cnt
= 0;
5872 u64 valid
= 0, data
;
5873 struct s2io_nic
*sp
= dev
->priv
;
5875 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5877 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5878 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5884 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5886 valid
= (u32
) (data
<< 24);
5890 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5892 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5894 "write into the specified offset\n");
5905 * s2io_register_test - reads and writes into all clock domains.
5906 * @sp : private member of the device structure, which is a pointer to the
5907 * s2io_nic structure.
5908 * @data : variable that returns the result of each of the test conducted b
5911 * Read and write into all clock domains. The NIC has 3 clock domains,
5912 * see that registers in all the three regions are accessible.
5917 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5919 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5920 u64 val64
= 0, exp_val
;
5923 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5924 if (val64
!= 0x123456789abcdefULL
) {
5926 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5929 val64
= readq(&bar0
->rmac_pause_cfg
);
5930 if (val64
!= 0xc000ffff00000000ULL
) {
5932 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5935 val64
= readq(&bar0
->rx_queue_cfg
);
5936 if (sp
->device_type
== XFRAME_II_DEVICE
)
5937 exp_val
= 0x0404040404040404ULL
;
5939 exp_val
= 0x0808080808080808ULL
;
5940 if (val64
!= exp_val
) {
5942 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5945 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5946 if (val64
!= 0x000000001923141EULL
) {
5948 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5951 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5952 writeq(val64
, &bar0
->xmsi_data
);
5953 val64
= readq(&bar0
->xmsi_data
);
5954 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5956 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5959 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5960 writeq(val64
, &bar0
->xmsi_data
);
5961 val64
= readq(&bar0
->xmsi_data
);
5962 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5964 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5972 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5973 * @sp : private member of the device structure, which is a pointer to the
5974 * s2io_nic structure.
5975 * @data:variable that returns the result of each of the test conducted by
5978 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5984 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5987 u64 ret_data
, org_4F0
, org_7F0
;
5988 u8 saved_4F0
= 0, saved_7F0
= 0;
5989 struct net_device
*dev
= sp
->dev
;
5991 /* Test Write Error at offset 0 */
5992 /* Note that SPI interface allows write access to all areas
5993 * of EEPROM. Hence doing all negative testing only for Xframe I.
5995 if (sp
->device_type
== XFRAME_I_DEVICE
)
5996 if (!write_eeprom(sp
, 0, 0, 3))
5999 /* Save current values at offsets 0x4F0 and 0x7F0 */
6000 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6002 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6005 /* Test Write at offset 4f0 */
6006 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6008 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6011 if (ret_data
!= 0x012345) {
6012 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6013 "Data written %llx Data read %llx\n",
6014 dev
->name
, (unsigned long long)0x12345,
6015 (unsigned long long)ret_data
);
6019 /* Reset the EEPROM data go FFFF */
6020 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6022 /* Test Write Request Error at offset 0x7c */
6023 if (sp
->device_type
== XFRAME_I_DEVICE
)
6024 if (!write_eeprom(sp
, 0x07C, 0, 3))
6027 /* Test Write Request at offset 0x7f0 */
6028 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6030 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6033 if (ret_data
!= 0x012345) {
6034 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6035 "Data written %llx Data read %llx\n",
6036 dev
->name
, (unsigned long long)0x12345,
6037 (unsigned long long)ret_data
);
6041 /* Reset the EEPROM data go FFFF */
6042 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6044 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6045 /* Test Write Error at offset 0x80 */
6046 if (!write_eeprom(sp
, 0x080, 0, 3))
6049 /* Test Write Error at offset 0xfc */
6050 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6053 /* Test Write Error at offset 0x100 */
6054 if (!write_eeprom(sp
, 0x100, 0, 3))
6057 /* Test Write Error at offset 4ec */
6058 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6062 /* Restore values at offsets 0x4F0 and 0x7F0 */
6064 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6066 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6073 * s2io_bist_test - invokes the MemBist test of the card .
6074 * @sp : private member of the device structure, which is a pointer to the
6075 * s2io_nic structure.
6076 * @data:variable that returns the result of each of the test conducted by
6079 * This invokes the MemBist test of the card. We give around
6080 * 2 secs time for the Test to complete. If it's still not complete
6081 * within this peiod, we consider that the test failed.
6083 * 0 on success and -1 on failure.
6086 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
6089 int cnt
= 0, ret
= -1;
6091 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6092 bist
|= PCI_BIST_START
;
6093 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6096 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6097 if (!(bist
& PCI_BIST_START
)) {
6098 *data
= (bist
& PCI_BIST_CODE_MASK
);
6110 * s2io-link_test - verifies the link state of the nic
6111 * @sp ; private member of the device structure, which is a pointer to the
6112 * s2io_nic structure.
6113 * @data: variable that returns the result of each of the test conducted by
6116 * The function verifies the link state of the NIC and updates the input
6117 * argument 'data' appropriately.
6122 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
6124 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6127 val64
= readq(&bar0
->adapter_status
);
6128 if(!(LINK_IS_UP(val64
)))
6137 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6138 * @sp - private member of the device structure, which is a pointer to the
6139 * s2io_nic structure.
6140 * @data - variable that returns the result of each of the test
6141 * conducted by the driver.
6143 * This is one of the offline test that tests the read and write
6144 * access to the RldRam chip on the NIC.
6149 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
6151 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6153 int cnt
, iteration
= 0, test_fail
= 0;
6155 val64
= readq(&bar0
->adapter_control
);
6156 val64
&= ~ADAPTER_ECC_EN
;
6157 writeq(val64
, &bar0
->adapter_control
);
6159 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6160 val64
|= MC_RLDRAM_TEST_MODE
;
6161 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6163 val64
= readq(&bar0
->mc_rldram_mrs
);
6164 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6165 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6167 val64
|= MC_RLDRAM_MRS_ENABLE
;
6168 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6170 while (iteration
< 2) {
6171 val64
= 0x55555555aaaa0000ULL
;
6172 if (iteration
== 1) {
6173 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6175 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6177 val64
= 0xaaaa5a5555550000ULL
;
6178 if (iteration
== 1) {
6179 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6181 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6183 val64
= 0x55aaaaaaaa5a0000ULL
;
6184 if (iteration
== 1) {
6185 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6187 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6189 val64
= (u64
) (0x0000003ffffe0100ULL
);
6190 writeq(val64
, &bar0
->mc_rldram_test_add
);
6192 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
6194 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6196 for (cnt
= 0; cnt
< 5; cnt
++) {
6197 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6198 if (val64
& MC_RLDRAM_TEST_DONE
)
6206 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6207 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6209 for (cnt
= 0; cnt
< 5; cnt
++) {
6210 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6211 if (val64
& MC_RLDRAM_TEST_DONE
)
6219 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6220 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6228 /* Bring the adapter out of test mode */
6229 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6235 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6236 * @sp : private member of the device structure, which is a pointer to the
6237 * s2io_nic structure.
6238 * @ethtest : pointer to a ethtool command specific structure that will be
6239 * returned to the user.
6240 * @data : variable that returns the result of each of the test
6241 * conducted by the driver.
6243 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6244 * the health of the card.
6249 static void s2io_ethtool_test(struct net_device
*dev
,
6250 struct ethtool_test
*ethtest
,
6253 struct s2io_nic
*sp
= dev
->priv
;
6254 int orig_state
= netif_running(sp
->dev
);
6256 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6257 /* Offline Tests. */
6259 s2io_close(sp
->dev
);
6261 if (s2io_register_test(sp
, &data
[0]))
6262 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6266 if (s2io_rldram_test(sp
, &data
[3]))
6267 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6271 if (s2io_eeprom_test(sp
, &data
[1]))
6272 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6274 if (s2io_bist_test(sp
, &data
[4]))
6275 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6285 "%s: is not up, cannot run test\n",
6294 if (s2io_link_test(sp
, &data
[2]))
6295 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6304 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6305 struct ethtool_stats
*estats
,
6309 struct s2io_nic
*sp
= dev
->priv
;
6310 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6312 s2io_updt_stats(sp
);
6314 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6315 le32_to_cpu(stat_info
->tmac_frms
);
6317 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6318 le32_to_cpu(stat_info
->tmac_data_octets
);
6319 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6321 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6322 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6324 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6325 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6326 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6328 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6329 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6331 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6332 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6334 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6335 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6337 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6338 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6339 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6340 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6342 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6343 le32_to_cpu(stat_info
->tmac_vld_ip
);
6345 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6346 le32_to_cpu(stat_info
->tmac_drop_ip
);
6348 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6349 le32_to_cpu(stat_info
->tmac_icmp
);
6351 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6352 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6353 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6354 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6355 le32_to_cpu(stat_info
->tmac_udp
);
6357 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6358 le32_to_cpu(stat_info
->rmac_vld_frms
);
6360 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6361 le32_to_cpu(stat_info
->rmac_data_octets
);
6362 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6363 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6365 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6366 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6368 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6369 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6370 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6371 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6372 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6373 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6374 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6376 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6377 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6379 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6380 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6382 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6383 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6385 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6386 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6388 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6389 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6390 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6391 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6393 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6394 le32_to_cpu(stat_info
->rmac_usized_frms
);
6396 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6397 le32_to_cpu(stat_info
->rmac_osized_frms
);
6399 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6400 le32_to_cpu(stat_info
->rmac_frag_frms
);
6402 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6403 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6404 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6405 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6406 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6407 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6408 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6409 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6411 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6412 le32_to_cpu(stat_info
->rmac_ip
);
6413 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6414 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6416 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6417 le32_to_cpu(stat_info
->rmac_drop_ip
);
6419 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6420 le32_to_cpu(stat_info
->rmac_icmp
);
6421 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6423 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6424 le32_to_cpu(stat_info
->rmac_udp
);
6426 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6427 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6428 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6429 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6430 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6431 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6432 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6433 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6434 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6435 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6436 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6437 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6438 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6439 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6440 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6441 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6442 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6443 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6444 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6446 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6447 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6448 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6449 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6451 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6452 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6453 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6454 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6455 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6456 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6457 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6458 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6459 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6460 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6461 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6462 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6463 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6464 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6465 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6466 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6467 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6468 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6469 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6470 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6471 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6473 /* Enhanced statistics exist only for Hercules */
6474 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6476 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6478 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6480 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6481 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6482 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6483 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6484 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6485 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6486 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6487 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6488 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6489 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6490 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6491 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6492 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6493 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6497 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6498 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6499 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6500 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6501 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6502 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6503 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6504 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6505 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6506 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6507 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6508 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6509 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6510 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6511 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6512 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6513 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6514 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6515 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6516 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6517 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6518 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6519 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6520 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6521 if (stat_info
->sw_stat
.num_aggregations
) {
6522 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6525 * Since 64-bit divide does not work on all platforms,
6526 * do repeated subtraction.
6528 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6529 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6532 tmp_stats
[i
++] = count
;
6536 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6537 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6538 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6539 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6540 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6541 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6542 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6543 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6544 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6546 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6547 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6548 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6549 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6550 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6552 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6553 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6554 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6555 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6556 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6557 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6558 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6559 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6560 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6561 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6562 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6563 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6564 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6565 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6566 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6567 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6568 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6569 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6570 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6571 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6572 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6573 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6574 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6575 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6576 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6577 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6580 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6582 return (XENA_REG_SPACE
);
6586 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6588 struct s2io_nic
*sp
= dev
->priv
;
6590 return (sp
->rx_csum
);
6593 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6595 struct s2io_nic
*sp
= dev
->priv
;
6605 static int s2io_get_eeprom_len(struct net_device
*dev
)
6607 return (XENA_EEPROM_SPACE
);
6610 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6612 struct s2io_nic
*sp
= dev
->priv
;
6616 return S2IO_TEST_LEN
;
6618 switch(sp
->device_type
) {
6619 case XFRAME_I_DEVICE
:
6620 return XFRAME_I_STAT_LEN
;
6621 case XFRAME_II_DEVICE
:
6622 return XFRAME_II_STAT_LEN
;
6631 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6632 u32 stringset
, u8
* data
)
6635 struct s2io_nic
*sp
= dev
->priv
;
6637 switch (stringset
) {
6639 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6642 stat_size
= sizeof(ethtool_xena_stats_keys
);
6643 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6644 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6645 memcpy(data
+ stat_size
,
6646 ðtool_enhanced_stats_keys
,
6647 sizeof(ethtool_enhanced_stats_keys
));
6648 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6651 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6652 sizeof(ethtool_driver_stats_keys
));
6656 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6659 dev
->features
|= NETIF_F_IP_CSUM
;
6661 dev
->features
&= ~NETIF_F_IP_CSUM
;
6666 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6668 return (dev
->features
& NETIF_F_TSO
) != 0;
6670 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6673 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6675 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6680 static const struct ethtool_ops netdev_ethtool_ops
= {
6681 .get_settings
= s2io_ethtool_gset
,
6682 .set_settings
= s2io_ethtool_sset
,
6683 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6684 .get_regs_len
= s2io_ethtool_get_regs_len
,
6685 .get_regs
= s2io_ethtool_gregs
,
6686 .get_link
= ethtool_op_get_link
,
6687 .get_eeprom_len
= s2io_get_eeprom_len
,
6688 .get_eeprom
= s2io_ethtool_geeprom
,
6689 .set_eeprom
= s2io_ethtool_seeprom
,
6690 .get_ringparam
= s2io_ethtool_gringparam
,
6691 .get_pauseparam
= s2io_ethtool_getpause_data
,
6692 .set_pauseparam
= s2io_ethtool_setpause_data
,
6693 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6694 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6695 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6696 .set_sg
= ethtool_op_set_sg
,
6697 .get_tso
= s2io_ethtool_op_get_tso
,
6698 .set_tso
= s2io_ethtool_op_set_tso
,
6699 .set_ufo
= ethtool_op_set_ufo
,
6700 .self_test
= s2io_ethtool_test
,
6701 .get_strings
= s2io_ethtool_get_strings
,
6702 .phys_id
= s2io_ethtool_idnic
,
6703 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6704 .get_sset_count
= s2io_get_sset_count
,
6708 * s2io_ioctl - Entry point for the Ioctl
6709 * @dev : Device pointer.
6710 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6711 * a proprietary structure used to pass information to the driver.
6712 * @cmd : This is used to distinguish between the different commands that
6713 * can be passed to the IOCTL functions.
6715 * Currently there are no special functionality supported in IOCTL, hence
6716 * function always return EOPNOTSUPPORTED
6719 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6725 * s2io_change_mtu - entry point to change MTU size for the device.
6726 * @dev : device pointer.
6727 * @new_mtu : the new MTU size for the device.
6728 * Description: A driver entry point to change MTU size for the device.
6729 * Before changing the MTU the device must be stopped.
6731 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6735 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6737 struct s2io_nic
*sp
= dev
->priv
;
6740 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6741 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6747 if (netif_running(dev
)) {
6748 s2io_stop_all_tx_queue(sp
);
6750 ret
= s2io_card_up(sp
);
6752 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6756 s2io_wake_all_tx_queue(sp
);
6757 } else { /* Device is down */
6758 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6759 u64 val64
= new_mtu
;
6761 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6768 * s2io_set_link - Set the LInk status
6769 * @data: long pointer to device private structue
6770 * Description: Sets the link status for the adapter
6773 static void s2io_set_link(struct work_struct
*work
)
6775 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6776 struct net_device
*dev
= nic
->dev
;
6777 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6783 if (!netif_running(dev
))
6786 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6787 /* The card is being reset, no point doing anything */
6791 subid
= nic
->pdev
->subsystem_device
;
6792 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6794 * Allow a small delay for the NICs self initiated
6795 * cleanup to complete.
6800 val64
= readq(&bar0
->adapter_status
);
6801 if (LINK_IS_UP(val64
)) {
6802 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6803 if (verify_xena_quiescence(nic
)) {
6804 val64
= readq(&bar0
->adapter_control
);
6805 val64
|= ADAPTER_CNTL_EN
;
6806 writeq(val64
, &bar0
->adapter_control
);
6807 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6808 nic
->device_type
, subid
)) {
6809 val64
= readq(&bar0
->gpio_control
);
6810 val64
|= GPIO_CTRL_GPIO_0
;
6811 writeq(val64
, &bar0
->gpio_control
);
6812 val64
= readq(&bar0
->gpio_control
);
6814 val64
|= ADAPTER_LED_ON
;
6815 writeq(val64
, &bar0
->adapter_control
);
6817 nic
->device_enabled_once
= TRUE
;
6819 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6820 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6821 s2io_stop_all_tx_queue(nic
);
6824 val64
= readq(&bar0
->adapter_control
);
6825 val64
|= ADAPTER_LED_ON
;
6826 writeq(val64
, &bar0
->adapter_control
);
6827 s2io_link(nic
, LINK_UP
);
6829 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6831 val64
= readq(&bar0
->gpio_control
);
6832 val64
&= ~GPIO_CTRL_GPIO_0
;
6833 writeq(val64
, &bar0
->gpio_control
);
6834 val64
= readq(&bar0
->gpio_control
);
6837 val64
= readq(&bar0
->adapter_control
);
6838 val64
= val64
&(~ADAPTER_LED_ON
);
6839 writeq(val64
, &bar0
->adapter_control
);
6840 s2io_link(nic
, LINK_DOWN
);
6842 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6848 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6850 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6851 u64
*temp2
, int size
)
6853 struct net_device
*dev
= sp
->dev
;
6854 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6856 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6857 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6860 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6862 * As Rx frame are not going to be processed,
6863 * using same mapped address for the Rxd
6866 rxdp1
->Buffer0_ptr
= *temp0
;
6868 *skb
= dev_alloc_skb(size
);
6870 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6871 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6872 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6873 sp
->mac_control
.stats_info
->sw_stat
. \
6874 mem_alloc_fail_cnt
++;
6877 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6878 += (*skb
)->truesize
;
6879 /* storing the mapped addr in a temp variable
6880 * such it will be used for next rxd whose
6881 * Host Control is NULL
6883 rxdp1
->Buffer0_ptr
= *temp0
=
6884 pci_map_single( sp
->pdev
, (*skb
)->data
,
6885 size
- NET_IP_ALIGN
,
6886 PCI_DMA_FROMDEVICE
);
6887 if( (rxdp1
->Buffer0_ptr
== 0) ||
6888 (rxdp1
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6889 goto memalloc_failed
;
6891 rxdp
->Host_Control
= (unsigned long) (*skb
);
6893 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6894 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6895 /* Two buffer Mode */
6897 rxdp3
->Buffer2_ptr
= *temp2
;
6898 rxdp3
->Buffer0_ptr
= *temp0
;
6899 rxdp3
->Buffer1_ptr
= *temp1
;
6901 *skb
= dev_alloc_skb(size
);
6903 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6904 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6905 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6906 sp
->mac_control
.stats_info
->sw_stat
. \
6907 mem_alloc_fail_cnt
++;
6910 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6911 += (*skb
)->truesize
;
6912 rxdp3
->Buffer2_ptr
= *temp2
=
6913 pci_map_single(sp
->pdev
, (*skb
)->data
,
6915 PCI_DMA_FROMDEVICE
);
6916 if( (rxdp3
->Buffer2_ptr
== 0) ||
6917 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
)) {
6918 goto memalloc_failed
;
6920 rxdp3
->Buffer0_ptr
= *temp0
=
6921 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6922 PCI_DMA_FROMDEVICE
);
6923 if( (rxdp3
->Buffer0_ptr
== 0) ||
6924 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6925 pci_unmap_single (sp
->pdev
,
6926 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6927 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6928 goto memalloc_failed
;
6930 rxdp
->Host_Control
= (unsigned long) (*skb
);
6932 /* Buffer-1 will be dummy buffer not used */
6933 rxdp3
->Buffer1_ptr
= *temp1
=
6934 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6935 PCI_DMA_FROMDEVICE
);
6936 if( (rxdp3
->Buffer1_ptr
== 0) ||
6937 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
6938 pci_unmap_single (sp
->pdev
,
6939 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6940 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6941 pci_unmap_single (sp
->pdev
,
6942 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6943 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6944 goto memalloc_failed
;
6950 stats
->pci_map_fail_cnt
++;
6951 stats
->mem_freed
+= (*skb
)->truesize
;
6952 dev_kfree_skb(*skb
);
6956 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6959 struct net_device
*dev
= sp
->dev
;
6960 if (sp
->rxd_mode
== RXD_MODE_1
) {
6961 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6962 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6963 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6964 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6965 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6969 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6971 int i
, j
, k
, blk_cnt
= 0, size
;
6972 struct mac_info
* mac_control
= &sp
->mac_control
;
6973 struct config_param
*config
= &sp
->config
;
6974 struct net_device
*dev
= sp
->dev
;
6975 struct RxD_t
*rxdp
= NULL
;
6976 struct sk_buff
*skb
= NULL
;
6977 struct buffAdd
*ba
= NULL
;
6978 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6980 /* Calculate the size based on ring mode */
6981 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6982 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6983 if (sp
->rxd_mode
== RXD_MODE_1
)
6984 size
+= NET_IP_ALIGN
;
6985 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6986 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6988 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6989 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6990 (rxd_count
[sp
->rxd_mode
] +1);
6992 for (j
= 0; j
< blk_cnt
; j
++) {
6993 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6994 rxdp
= mac_control
->rings
[i
].
6995 rx_blocks
[j
].rxds
[k
].virt_addr
;
6996 if(sp
->rxd_mode
== RXD_MODE_3B
)
6997 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6998 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6999 &skb
,(u64
*)&temp0_64
,
7006 set_rxd_buffer_size(sp
, rxdp
, size
);
7008 /* flip the Ownership bit to Hardware */
7009 rxdp
->Control_1
|= RXD_OWN_XENA
;
7017 static int s2io_add_isr(struct s2io_nic
* sp
)
7020 struct net_device
*dev
= sp
->dev
;
7023 if (sp
->config
.intr_type
== MSI_X
)
7024 ret
= s2io_enable_msi_x(sp
);
7026 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7027 sp
->config
.intr_type
= INTA
;
7030 /* Store the values of the MSIX table in the struct s2io_nic structure */
7031 store_xmsi_data(sp
);
7033 /* After proper initialization of H/W, register ISR */
7034 if (sp
->config
.intr_type
== MSI_X
) {
7035 int i
, msix_rx_cnt
= 0;
7037 for (i
= 0; i
< sp
->num_entries
; i
++) {
7038 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7039 if (sp
->s2io_entries
[i
].type
==
7041 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7043 err
= request_irq(sp
->entries
[i
].vector
,
7044 s2io_msix_ring_handle
, 0,
7046 sp
->s2io_entries
[i
].arg
);
7047 } else if (sp
->s2io_entries
[i
].type
==
7049 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7051 err
= request_irq(sp
->entries
[i
].vector
,
7052 s2io_msix_fifo_handle
, 0,
7054 sp
->s2io_entries
[i
].arg
);
7057 /* if either data or addr is zero print it. */
7058 if (!(sp
->msix_info
[i
].addr
&&
7059 sp
->msix_info
[i
].data
)) {
7061 "%s @Addr:0x%llx Data:0x%llx\n",
7063 (unsigned long long)
7064 sp
->msix_info
[i
].addr
,
7065 (unsigned long long)
7066 ntohl(sp
->msix_info
[i
].data
));
7070 remove_msix_isr(sp
);
7073 "%s:MSI-X-%d registration "
7074 "failed\n", dev
->name
, i
);
7077 "%s: Defaulting to INTA\n",
7079 sp
->config
.intr_type
= INTA
;
7082 sp
->s2io_entries
[i
].in_use
=
7083 MSIX_REGISTERED_SUCCESS
;
7087 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
7089 DBG_PRINT(INFO_DBG
, "MSI-X-TX entries enabled"
7090 " through alarm vector\n");
7093 if (sp
->config
.intr_type
== INTA
) {
7094 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7097 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7104 static void s2io_rem_isr(struct s2io_nic
* sp
)
7106 if (sp
->config
.intr_type
== MSI_X
)
7107 remove_msix_isr(sp
);
7109 remove_inta_isr(sp
);
7112 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
7115 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7116 register u64 val64
= 0;
7117 struct config_param
*config
;
7118 config
= &sp
->config
;
7120 if (!is_s2io_card_up(sp
))
7123 del_timer_sync(&sp
->alarm_timer
);
7124 /* If s2io_set_link task is executing, wait till it completes. */
7125 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
7128 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7131 if (sp
->config
.napi
) {
7133 if (config
->intr_type
== MSI_X
) {
7134 for (; off
< sp
->config
.rx_ring_num
; off
++)
7135 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7138 napi_disable(&sp
->napi
);
7141 /* disable Tx and Rx traffic on the NIC */
7147 /* Check if the device is Quiescent and then Reset the NIC */
7149 /* As per the HW requirement we need to replenish the
7150 * receive buffer to avoid the ring bump. Since there is
7151 * no intention of processing the Rx frame at this pointwe are
7152 * just settting the ownership bit of rxd in Each Rx
7153 * ring to HW and set the appropriate buffer size
7154 * based on the ring mode
7156 rxd_owner_bit_reset(sp
);
7158 val64
= readq(&bar0
->adapter_status
);
7159 if (verify_xena_quiescence(sp
)) {
7160 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7168 "s2io_close:Device not Quiescent ");
7169 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
7170 (unsigned long long) val64
);
7177 /* Free all Tx buffers */
7178 free_tx_buffers(sp
);
7180 /* Free all Rx buffers */
7181 free_rx_buffers(sp
);
7183 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7186 static void s2io_card_down(struct s2io_nic
* sp
)
7188 do_s2io_card_down(sp
, 1);
7191 static int s2io_card_up(struct s2io_nic
* sp
)
7194 struct mac_info
*mac_control
;
7195 struct config_param
*config
;
7196 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7199 /* Initialize the H/W I/O registers */
7202 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7210 * Initializing the Rx buffers. For now we are considering only 1
7211 * Rx ring and initializing buffers into 30 Rx blocks
7213 mac_control
= &sp
->mac_control
;
7214 config
= &sp
->config
;
7216 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7217 mac_control
->rings
[i
].mtu
= dev
->mtu
;
7218 ret
= fill_rx_buffers(&mac_control
->rings
[i
]);
7220 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7223 free_rx_buffers(sp
);
7226 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7227 mac_control
->rings
[i
].rx_bufs_left
);
7230 /* Initialise napi */
7233 if (config
->intr_type
== MSI_X
) {
7234 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7235 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7237 napi_enable(&sp
->napi
);
7241 /* Maintain the state prior to the open */
7242 if (sp
->promisc_flg
)
7243 sp
->promisc_flg
= 0;
7244 if (sp
->m_cast_flg
) {
7246 sp
->all_multi_pos
= 0;
7249 /* Setting its receive mode */
7250 s2io_set_multicast(dev
);
7253 /* Initialize max aggregatable pkts per session based on MTU */
7254 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7255 /* Check if we can use(if specified) user provided value */
7256 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7257 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7260 /* Enable Rx Traffic and interrupts on the NIC */
7261 if (start_nic(sp
)) {
7262 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7264 free_rx_buffers(sp
);
7268 /* Add interrupt service routine */
7269 if (s2io_add_isr(sp
) != 0) {
7270 if (sp
->config
.intr_type
== MSI_X
)
7273 free_rx_buffers(sp
);
7277 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7279 /* Enable select interrupts */
7280 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7281 if (sp
->config
.intr_type
!= INTA
)
7282 en_dis_able_nic_intrs(sp
, TX_TRAFFIC_INTR
, ENABLE_INTRS
);
7284 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7285 interruptible
|= TX_PIC_INTR
;
7286 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7289 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7294 * s2io_restart_nic - Resets the NIC.
7295 * @data : long pointer to the device private structure
7297 * This function is scheduled to be run by the s2io_tx_watchdog
7298 * function after 0.5 secs to reset the NIC. The idea is to reduce
7299 * the run time of the watch dog routine which is run holding a
7303 static void s2io_restart_nic(struct work_struct
*work
)
7305 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7306 struct net_device
*dev
= sp
->dev
;
7310 if (!netif_running(dev
))
7314 if (s2io_card_up(sp
)) {
7315 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7318 s2io_wake_all_tx_queue(sp
);
7319 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7326 * s2io_tx_watchdog - Watchdog for transmit side.
7327 * @dev : Pointer to net device structure
7329 * This function is triggered if the Tx Queue is stopped
7330 * for a pre-defined amount of time when the Interface is still up.
7331 * If the Interface is jammed in such a situation, the hardware is
7332 * reset (by s2io_close) and restarted again (by s2io_open) to
7333 * overcome any problem that might have been caused in the hardware.
7338 static void s2io_tx_watchdog(struct net_device
*dev
)
7340 struct s2io_nic
*sp
= dev
->priv
;
7342 if (netif_carrier_ok(dev
)) {
7343 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7344 schedule_work(&sp
->rst_timer_task
);
7345 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7350 * rx_osm_handler - To perform some OS related operations on SKB.
7351 * @sp: private member of the device structure,pointer to s2io_nic structure.
7352 * @skb : the socket buffer pointer.
7353 * @len : length of the packet
7354 * @cksum : FCS checksum of the frame.
7355 * @ring_no : the ring from which this RxD was extracted.
7357 * This function is called by the Rx interrupt serivce routine to perform
7358 * some OS related operations on the SKB before passing it to the upper
7359 * layers. It mainly checks if the checksum is OK, if so adds it to the
7360 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7361 * to the upper layer. If the checksum is wrong, it increments the Rx
7362 * packet error count, frees the SKB and returns error.
7364 * SUCCESS on success and -1 on failure.
7366 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7368 struct s2io_nic
*sp
= ring_data
->nic
;
7369 struct net_device
*dev
= (struct net_device
*) ring_data
->dev
;
7370 struct sk_buff
*skb
= (struct sk_buff
*)
7371 ((unsigned long) rxdp
->Host_Control
);
7372 int ring_no
= ring_data
->ring_no
;
7373 u16 l3_csum
, l4_csum
;
7374 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7381 /* Check for parity error */
7383 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7385 err_mask
= err
>> 48;
7388 sp
->mac_control
.stats_info
->sw_stat
.
7389 rx_parity_err_cnt
++;
7393 sp
->mac_control
.stats_info
->sw_stat
.
7398 sp
->mac_control
.stats_info
->sw_stat
.
7399 rx_parity_abort_cnt
++;
7403 sp
->mac_control
.stats_info
->sw_stat
.
7408 sp
->mac_control
.stats_info
->sw_stat
.
7413 sp
->mac_control
.stats_info
->sw_stat
.
7418 sp
->mac_control
.stats_info
->sw_stat
.
7419 rx_buf_size_err_cnt
++;
7423 sp
->mac_control
.stats_info
->sw_stat
.
7424 rx_rxd_corrupt_cnt
++;
7428 sp
->mac_control
.stats_info
->sw_stat
.
7433 * Drop the packet if bad transfer code. Exception being
7434 * 0x5, which could be due to unsupported IPv6 extension header.
7435 * In this case, we let stack handle the packet.
7436 * Note that in this case, since checksum will be incorrect,
7437 * stack will validate the same.
7439 if (err_mask
!= 0x5) {
7440 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7441 dev
->name
, err_mask
);
7442 sp
->stats
.rx_crc_errors
++;
7443 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7446 ring_data
->rx_bufs_left
-= 1;
7447 rxdp
->Host_Control
= 0;
7452 /* Updating statistics */
7453 ring_data
->rx_packets
++;
7454 rxdp
->Host_Control
= 0;
7455 if (sp
->rxd_mode
== RXD_MODE_1
) {
7456 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7458 ring_data
->rx_bytes
+= len
;
7461 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7462 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7463 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7464 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7465 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7466 unsigned char *buff
= skb_push(skb
, buf0_len
);
7468 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7469 ring_data
->rx_bytes
+= buf0_len
+ buf2_len
;
7470 memcpy(buff
, ba
->ba_0
, buf0_len
);
7471 skb_put(skb
, buf2_len
);
7474 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!ring_data
->lro
) ||
7475 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7477 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7478 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7479 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7481 * NIC verifies if the Checksum of the received
7482 * frame is Ok or not and accordingly returns
7483 * a flag in the RxD.
7485 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7486 if (ring_data
->lro
) {
7491 ret
= s2io_club_tcp_session(ring_data
,
7492 skb
->data
, &tcp
, &tcp_len
, &lro
,
7495 case 3: /* Begin anew */
7498 case 1: /* Aggregate */
7500 lro_append_pkt(sp
, lro
,
7504 case 4: /* Flush session */
7506 lro_append_pkt(sp
, lro
,
7508 queue_rx_frame(lro
->parent
,
7510 clear_lro_session(lro
);
7511 sp
->mac_control
.stats_info
->
7512 sw_stat
.flush_max_pkts
++;
7515 case 2: /* Flush both */
7516 lro
->parent
->data_len
=
7518 sp
->mac_control
.stats_info
->
7519 sw_stat
.sending_both
++;
7520 queue_rx_frame(lro
->parent
,
7522 clear_lro_session(lro
);
7524 case 0: /* sessions exceeded */
7525 case -1: /* non-TCP or not
7529 * First pkt in session not
7530 * L3/L4 aggregatable
7535 "%s: Samadhana!!\n",
7542 * Packet with erroneous checksum, let the
7543 * upper layers deal with it.
7545 skb
->ip_summed
= CHECKSUM_NONE
;
7548 skb
->ip_summed
= CHECKSUM_NONE
;
7550 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7552 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7553 dev
->last_rx
= jiffies
;
7555 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7560 * s2io_link - stops/starts the Tx queue.
7561 * @sp : private member of the device structure, which is a pointer to the
7562 * s2io_nic structure.
7563 * @link : inidicates whether link is UP/DOWN.
7565 * This function stops/starts the Tx queue depending on whether the link
7566 * status of the NIC is is down or up. This is called by the Alarm
7567 * interrupt handler whenever a link change interrupt comes up.
7572 static void s2io_link(struct s2io_nic
* sp
, int link
)
7574 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7576 if (link
!= sp
->last_link_state
) {
7578 if (link
== LINK_DOWN
) {
7579 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7580 s2io_stop_all_tx_queue(sp
);
7581 netif_carrier_off(dev
);
7582 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7583 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7584 jiffies
- sp
->start_time
;
7585 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7587 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7588 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7589 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7590 jiffies
- sp
->start_time
;
7591 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7592 netif_carrier_on(dev
);
7593 s2io_wake_all_tx_queue(sp
);
7596 sp
->last_link_state
= link
;
7597 sp
->start_time
= jiffies
;
7601 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7602 * @sp : private member of the device structure, which is a pointer to the
7603 * s2io_nic structure.
7605 * This function initializes a few of the PCI and PCI-X configuration registers
7606 * with recommended values.
7611 static void s2io_init_pci(struct s2io_nic
* sp
)
7613 u16 pci_cmd
= 0, pcix_cmd
= 0;
7615 /* Enable Data Parity Error Recovery in PCI-X command register. */
7616 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7618 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7620 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7623 /* Set the PErr Response bit in PCI command register. */
7624 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7625 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7626 (pci_cmd
| PCI_COMMAND_PARITY
));
7627 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7630 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7633 if ((tx_fifo_num
> MAX_TX_FIFOS
) ||
7634 (tx_fifo_num
< 1)) {
7635 DBG_PRINT(ERR_DBG
, "s2io: Requested number of tx fifos "
7636 "(%d) not supported\n", tx_fifo_num
);
7638 if (tx_fifo_num
< 1)
7641 tx_fifo_num
= MAX_TX_FIFOS
;
7643 DBG_PRINT(ERR_DBG
, "s2io: Default to %d ", tx_fifo_num
);
7644 DBG_PRINT(ERR_DBG
, "tx fifos\n");
7647 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7649 DBG_PRINT(ERR_DBG
, "s2io: Multiqueue support not enabled\n");
7654 *dev_multiq
= multiq
;
7656 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7657 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7659 "s2io: Tx steering is not supported with "
7660 "one fifo. Disabling Tx steering.\n");
7661 tx_steering_type
= NO_STEERING
;
7664 if ((tx_steering_type
< NO_STEERING
) ||
7665 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7666 DBG_PRINT(ERR_DBG
, "s2io: Requested transmit steering not "
7668 DBG_PRINT(ERR_DBG
, "s2io: Disabling transmit steering\n");
7669 tx_steering_type
= NO_STEERING
;
7672 if (rx_ring_num
> MAX_RX_RINGS
) {
7673 DBG_PRINT(ERR_DBG
, "s2io: Requested number of rx rings not "
7675 DBG_PRINT(ERR_DBG
, "s2io: Default to %d rx rings\n",
7677 rx_ring_num
= MAX_RX_RINGS
;
7680 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7681 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7682 "Defaulting to INTA\n");
7683 *dev_intr_type
= INTA
;
7686 if ((*dev_intr_type
== MSI_X
) &&
7687 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7688 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7689 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7690 "Defaulting to INTA\n");
7691 *dev_intr_type
= INTA
;
7694 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7695 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7696 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7703 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7704 * or Traffic class respectively.
7705 * @nic: device private variable
7706 * Description: The function configures the receive steering to
7707 * desired receive ring.
7708 * Return Value: SUCCESS on success and
7709 * '-1' on failure (endian settings incorrect).
7711 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7713 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7714 register u64 val64
= 0;
7716 if (ds_codepoint
> 63)
7719 val64
= RTS_DS_MEM_DATA(ring
);
7720 writeq(val64
, &bar0
->rts_ds_mem_data
);
7722 val64
= RTS_DS_MEM_CTRL_WE
|
7723 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7724 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7726 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7728 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7729 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7734 * s2io_init_nic - Initialization of the adapter .
7735 * @pdev : structure containing the PCI related information of the device.
7736 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7738 * The function initializes an adapter identified by the pci_dec structure.
7739 * All OS related initialization including memory and device structure and
7740 * initlaization of the device private variable is done. Also the swapper
7741 * control register is initialized to enable read and write into the I/O
7742 * registers of the device.
7744 * returns 0 on success and negative on failure.
7747 static int __devinit
7748 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7750 struct s2io_nic
*sp
;
7751 struct net_device
*dev
;
7753 int dma_flag
= FALSE
;
7754 u32 mac_up
, mac_down
;
7755 u64 val64
= 0, tmp64
= 0;
7756 struct XENA_dev_config __iomem
*bar0
= NULL
;
7758 struct mac_info
*mac_control
;
7759 struct config_param
*config
;
7761 u8 dev_intr_type
= intr_type
;
7763 DECLARE_MAC_BUF(mac
);
7765 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7769 if ((ret
= pci_enable_device(pdev
))) {
7771 "s2io_init_nic: pci_enable_device failed\n");
7775 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7776 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7778 if (pci_set_consistent_dma_mask
7779 (pdev
, DMA_64BIT_MASK
)) {
7781 "Unable to obtain 64bit DMA for \
7782 consistent allocations\n");
7783 pci_disable_device(pdev
);
7786 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7787 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7789 pci_disable_device(pdev
);
7792 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7793 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7794 pci_disable_device(pdev
);
7797 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7799 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7802 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7804 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7805 pci_disable_device(pdev
);
7806 pci_release_regions(pdev
);
7810 pci_set_master(pdev
);
7811 pci_set_drvdata(pdev
, dev
);
7812 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7814 /* Private member variable initialized to s2io NIC structure */
7816 memset(sp
, 0, sizeof(struct s2io_nic
));
7819 sp
->high_dma_flag
= dma_flag
;
7820 sp
->device_enabled_once
= FALSE
;
7821 if (rx_ring_mode
== 1)
7822 sp
->rxd_mode
= RXD_MODE_1
;
7823 if (rx_ring_mode
== 2)
7824 sp
->rxd_mode
= RXD_MODE_3B
;
7826 sp
->config
.intr_type
= dev_intr_type
;
7828 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7829 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7830 sp
->device_type
= XFRAME_II_DEVICE
;
7832 sp
->device_type
= XFRAME_I_DEVICE
;
7834 sp
->lro
= lro_enable
;
7836 /* Initialize some PCI/PCI-X fields of the NIC. */
7840 * Setting the device configuration parameters.
7841 * Most of these parameters can be specified by the user during
7842 * module insertion as they are module loadable parameters. If
7843 * these parameters are not not specified during load time, they
7844 * are initialized with default values.
7846 mac_control
= &sp
->mac_control
;
7847 config
= &sp
->config
;
7849 config
->napi
= napi
;
7850 config
->tx_steering_type
= tx_steering_type
;
7852 /* Tx side parameters. */
7853 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7854 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7856 config
->tx_fifo_num
= tx_fifo_num
;
7858 /* Initialize the fifos used for tx steering */
7859 if (config
->tx_fifo_num
< 5) {
7860 if (config
->tx_fifo_num
== 1)
7861 sp
->total_tcp_fifos
= 1;
7863 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7864 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7865 sp
->total_udp_fifos
= 1;
7866 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7868 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7869 FIFO_OTHER_MAX_NUM
);
7870 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7871 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7872 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7875 config
->multiq
= dev_multiq
;
7876 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7877 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7878 config
->tx_cfg
[i
].fifo_priority
= i
;
7881 /* mapping the QoS priority to the configured fifos */
7882 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7883 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7885 /* map the hashing selector table to the configured fifos */
7886 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7887 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7890 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7891 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7892 config
->tx_cfg
[i
].f_no_snoop
=
7893 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7894 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7895 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7899 /* + 2 because one Txd for skb->data and one Txd for UFO */
7900 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7902 /* Rx side parameters. */
7903 config
->rx_ring_num
= rx_ring_num
;
7904 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7905 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7906 (rxd_count
[sp
->rxd_mode
] + 1);
7907 config
->rx_cfg
[i
].ring_priority
= i
;
7908 mac_control
->rings
[i
].rx_bufs_left
= 0;
7909 mac_control
->rings
[i
].rxd_mode
= sp
->rxd_mode
;
7910 mac_control
->rings
[i
].rxd_count
= rxd_count
[sp
->rxd_mode
];
7911 mac_control
->rings
[i
].pdev
= sp
->pdev
;
7912 mac_control
->rings
[i
].dev
= sp
->dev
;
7915 for (i
= 0; i
< rx_ring_num
; i
++) {
7916 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7917 config
->rx_cfg
[i
].f_no_snoop
=
7918 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7921 /* Setting Mac Control parameters */
7922 mac_control
->rmac_pause_time
= rmac_pause_time
;
7923 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7924 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7927 /* initialize the shared memory used by the NIC and the host */
7928 if (init_shared_mem(sp
)) {
7929 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7932 goto mem_alloc_failed
;
7935 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7936 pci_resource_len(pdev
, 0));
7938 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7941 goto bar0_remap_failed
;
7944 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7945 pci_resource_len(pdev
, 2));
7947 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7950 goto bar1_remap_failed
;
7953 dev
->irq
= pdev
->irq
;
7954 dev
->base_addr
= (unsigned long) sp
->bar0
;
7956 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7957 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7958 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7959 (sp
->bar1
+ (j
* 0x00020000));
7962 /* Driver entry points */
7963 dev
->open
= &s2io_open
;
7964 dev
->stop
= &s2io_close
;
7965 dev
->hard_start_xmit
= &s2io_xmit
;
7966 dev
->get_stats
= &s2io_get_stats
;
7967 dev
->set_multicast_list
= &s2io_set_multicast
;
7968 dev
->do_ioctl
= &s2io_ioctl
;
7969 dev
->set_mac_address
= &s2io_set_mac_addr
;
7970 dev
->change_mtu
= &s2io_change_mtu
;
7971 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7972 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7973 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7974 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
7977 * will use eth_mac_addr() for dev->set_mac_address
7978 * mac address will be set every time dev->open() is called
7980 #ifdef CONFIG_NET_POLL_CONTROLLER
7981 dev
->poll_controller
= s2io_netpoll
;
7984 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7985 if (sp
->high_dma_flag
== TRUE
)
7986 dev
->features
|= NETIF_F_HIGHDMA
;
7987 dev
->features
|= NETIF_F_TSO
;
7988 dev
->features
|= NETIF_F_TSO6
;
7989 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7990 dev
->features
|= NETIF_F_UFO
;
7991 dev
->features
|= NETIF_F_HW_CSUM
;
7993 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7995 dev
->features
|= NETIF_F_MULTI_QUEUE
;
7997 dev
->tx_timeout
= &s2io_tx_watchdog
;
7998 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7999 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
8000 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
8002 pci_save_state(sp
->pdev
);
8004 /* Setting swapper control on the NIC, for proper reset operation */
8005 if (s2io_set_swapper(sp
)) {
8006 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
8009 goto set_swap_failed
;
8012 /* Verify if the Herc works on the slot its placed into */
8013 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8014 mode
= s2io_verify_pci_mode(sp
);
8016 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
8017 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8019 goto set_swap_failed
;
8023 if (sp
->config
.intr_type
== MSI_X
) {
8024 sp
->num_entries
= config
->rx_ring_num
+ 1;
8025 ret
= s2io_enable_msi_x(sp
);
8028 ret
= s2io_test_msi(sp
);
8029 /* rollback MSI-X, will re-enable during add_isr() */
8030 remove_msix_isr(sp
);
8035 "%s: MSI-X requested but failed to enable\n",
8037 sp
->config
.intr_type
= INTA
;
8041 if (config
->intr_type
== MSI_X
) {
8042 for (i
= 0; i
< config
->rx_ring_num
; i
++)
8043 netif_napi_add(dev
, &mac_control
->rings
[i
].napi
,
8044 s2io_poll_msix
, 64);
8046 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8049 /* Not needed for Herc */
8050 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8052 * Fix for all "FFs" MAC address problems observed on
8055 fix_mac_address(sp
);
8060 * MAC address initialization.
8061 * For now only one mac address will be read and used.
8064 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8065 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8066 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8067 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8068 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
8069 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8070 mac_down
= (u32
) tmp64
;
8071 mac_up
= (u32
) (tmp64
>> 32);
8073 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8074 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8075 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8076 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8077 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8078 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8080 /* Set the factory defined MAC address initially */
8081 dev
->addr_len
= ETH_ALEN
;
8082 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8083 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8085 /* initialize number of multicast & unicast MAC entries variables */
8086 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8087 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8088 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8089 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8090 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8091 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8092 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8093 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8096 /* store mac addresses from CAM to s2io_nic structure */
8097 do_s2io_store_unicast_mc(sp
);
8099 /* Configure MSIX vector for number of rings configured plus one */
8100 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8101 (config
->intr_type
== MSI_X
))
8102 sp
->num_entries
= config
->rx_ring_num
+ 1;
8104 /* Store the values of the MSIX table in the s2io_nic structure */
8105 store_xmsi_data(sp
);
8106 /* reset Nic and bring it to known state */
8110 * Initialize link state flags
8111 * and the card state parameter
8115 /* Initialize spinlocks */
8116 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8117 spin_lock_init(&mac_control
->fifos
[i
].tx_lock
);
8120 * SXE-002: Configure link and activity LED to init state
8123 subid
= sp
->pdev
->subsystem_device
;
8124 if ((subid
& 0xFF) >= 0x07) {
8125 val64
= readq(&bar0
->gpio_control
);
8126 val64
|= 0x0000800000000000ULL
;
8127 writeq(val64
, &bar0
->gpio_control
);
8128 val64
= 0x0411040400000000ULL
;
8129 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
8130 val64
= readq(&bar0
->gpio_control
);
8133 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8135 if (register_netdev(dev
)) {
8136 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8138 goto register_failed
;
8141 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8142 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
8143 sp
->product_name
, pdev
->revision
);
8144 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8145 s2io_driver_version
);
8146 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
8147 dev
->name
, print_mac(mac
, dev
->dev_addr
));
8148 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
8149 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8150 mode
= s2io_print_pci_mode(sp
);
8152 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8154 unregister_netdev(dev
);
8155 goto set_swap_failed
;
8158 switch(sp
->rxd_mode
) {
8160 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8164 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8169 switch (sp
->config
.napi
) {
8171 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8174 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8178 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8179 sp
->config
.tx_fifo_num
);
8181 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8182 sp
->config
.rx_ring_num
);
8184 switch(sp
->config
.intr_type
) {
8186 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8189 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8192 if (sp
->config
.multiq
) {
8193 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8194 mac_control
->fifos
[i
].multiq
= config
->multiq
;
8195 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8198 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8201 switch (sp
->config
.tx_steering_type
) {
8203 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for"
8204 " transmit\n", dev
->name
);
8206 case TX_PRIORITY_STEERING
:
8207 DBG_PRINT(ERR_DBG
, "%s: Priority steering enabled for"
8208 " transmit\n", dev
->name
);
8210 case TX_DEFAULT_STEERING
:
8211 DBG_PRINT(ERR_DBG
, "%s: Default steering enabled for"
8212 " transmit\n", dev
->name
);
8216 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8219 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
8220 " enabled\n", dev
->name
);
8221 /* Initialize device name */
8222 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8225 * Make Link state as off at this point, when the Link change
8226 * interrupt comes the state will be automatically changed to
8229 netif_carrier_off(dev
);
8240 free_shared_mem(sp
);
8241 pci_disable_device(pdev
);
8242 pci_release_regions(pdev
);
8243 pci_set_drvdata(pdev
, NULL
);
8250 * s2io_rem_nic - Free the PCI device
8251 * @pdev: structure containing the PCI related information of the device.
8252 * Description: This function is called by the Pci subsystem to release a
8253 * PCI device and free up all resource held up by the device. This could
8254 * be in response to a Hot plug event or when the driver is to be removed
8258 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8260 struct net_device
*dev
=
8261 (struct net_device
*) pci_get_drvdata(pdev
);
8262 struct s2io_nic
*sp
;
8265 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8269 flush_scheduled_work();
8272 unregister_netdev(dev
);
8274 free_shared_mem(sp
);
8277 pci_release_regions(pdev
);
8278 pci_set_drvdata(pdev
, NULL
);
8280 pci_disable_device(pdev
);
8284 * s2io_starter - Entry point for the driver
8285 * Description: This function is the entry point for the driver. It verifies
8286 * the module loadable parameters and initializes PCI configuration space.
8289 static int __init
s2io_starter(void)
8291 return pci_register_driver(&s2io_driver
);
8295 * s2io_closer - Cleanup routine for the driver
8296 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8299 static __exit
void s2io_closer(void)
8301 pci_unregister_driver(&s2io_driver
);
8302 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8305 module_init(s2io_starter
);
8306 module_exit(s2io_closer
);
8308 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8309 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8310 struct s2io_nic
*sp
)
8313 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8315 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8316 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8321 /* Checking for DIX type or DIX type with VLAN */
8323 || (l2_type
== 4)) {
8324 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8326 * If vlan stripping is disabled and the frame is VLAN tagged,
8327 * shift the offset by the VLAN header size bytes.
8329 if ((!vlan_strip_flag
) &&
8330 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8331 ip_off
+= HEADER_VLAN_SIZE
;
8333 /* LLC, SNAP etc are considered non-mergeable */
8337 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8338 ip_len
= (u8
)((*ip
)->ihl
);
8340 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8345 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8348 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8349 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8350 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8355 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8357 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8360 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8361 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
, u16 vlan_tag
)
8363 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8367 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8368 lro
->tcp_ack
= tcp
->ack_seq
;
8370 lro
->total_len
= ntohs(ip
->tot_len
);
8372 lro
->vlan_tag
= vlan_tag
;
8374 * check if we saw TCP timestamp. Other consistency checks have
8375 * already been done.
8377 if (tcp
->doff
== 8) {
8379 ptr
= (__be32
*)(tcp
+1);
8381 lro
->cur_tsval
= ntohl(*(ptr
+1));
8382 lro
->cur_tsecr
= *(ptr
+2);
8387 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8389 struct iphdr
*ip
= lro
->iph
;
8390 struct tcphdr
*tcp
= lro
->tcph
;
8392 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8393 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8395 /* Update L3 header */
8396 ip
->tot_len
= htons(lro
->total_len
);
8398 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8401 /* Update L4 header */
8402 tcp
->ack_seq
= lro
->tcp_ack
;
8403 tcp
->window
= lro
->window
;
8405 /* Update tsecr field if this session has timestamps enabled */
8407 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8408 *(ptr
+2) = lro
->cur_tsecr
;
8411 /* Update counters required for calculation of
8412 * average no. of packets aggregated.
8414 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8415 statinfo
->sw_stat
.num_aggregations
++;
8418 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8419 struct tcphdr
*tcp
, u32 l4_pyld
)
8421 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8422 lro
->total_len
+= l4_pyld
;
8423 lro
->frags_len
+= l4_pyld
;
8424 lro
->tcp_next_seq
+= l4_pyld
;
8427 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8428 lro
->tcp_ack
= tcp
->ack_seq
;
8429 lro
->window
= tcp
->window
;
8433 /* Update tsecr and tsval from this packet */
8434 ptr
= (__be32
*)(tcp
+1);
8435 lro
->cur_tsval
= ntohl(*(ptr
+1));
8436 lro
->cur_tsecr
= *(ptr
+ 2);
8440 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8441 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8445 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8447 if (!tcp_pyld_len
) {
8448 /* Runt frame or a pure ack */
8452 if (ip
->ihl
!= 5) /* IP has options */
8455 /* If we see CE codepoint in IP header, packet is not mergeable */
8456 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8459 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8460 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8461 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8463 * Currently recognize only the ack control word and
8464 * any other control field being set would result in
8465 * flushing the LRO session
8471 * Allow only one TCP timestamp option. Don't aggregate if
8472 * any other options are detected.
8474 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8477 if (tcp
->doff
== 8) {
8478 ptr
= (u8
*)(tcp
+ 1);
8479 while (*ptr
== TCPOPT_NOP
)
8481 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8484 /* Ensure timestamp value increases monotonically */
8486 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8489 /* timestamp echo reply should be non-zero */
8490 if (*((__be32
*)(ptr
+6)) == 0)
8498 s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
, u8
**tcp
,
8499 u32
*tcp_len
, struct lro
**lro
, struct RxD_t
*rxdp
,
8500 struct s2io_nic
*sp
)
8503 struct tcphdr
*tcph
;
8507 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8509 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8510 ip
->saddr
, ip
->daddr
);
8514 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8515 tcph
= (struct tcphdr
*)*tcp
;
8516 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8517 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8518 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8519 if (l_lro
->in_use
) {
8520 if (check_for_socket_match(l_lro
, ip
, tcph
))
8522 /* Sock pair matched */
8525 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8526 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8527 "0x%x, actual 0x%x\n", __FUNCTION__
,
8528 (*lro
)->tcp_next_seq
,
8531 sp
->mac_control
.stats_info
->
8532 sw_stat
.outof_sequence_pkts
++;
8537 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8538 ret
= 1; /* Aggregate */
8540 ret
= 2; /* Flush both */
8546 /* Before searching for available LRO objects,
8547 * check if the pkt is L3/L4 aggregatable. If not
8548 * don't create new LRO session. Just send this
8551 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8555 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8556 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8557 if (!(l_lro
->in_use
)) {
8559 ret
= 3; /* Begin anew */
8565 if (ret
== 0) { /* sessions exceeded */
8566 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8574 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8578 update_L3L4_header(sp
, *lro
);
8581 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8582 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8583 update_L3L4_header(sp
, *lro
);
8584 ret
= 4; /* Flush the LRO */
8588 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8596 static void clear_lro_session(struct lro
*lro
)
8598 static u16 lro_struct_size
= sizeof(struct lro
);
8600 memset(lro
, 0, lro_struct_size
);
8603 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8605 struct net_device
*dev
= skb
->dev
;
8606 struct s2io_nic
*sp
= dev
->priv
;
8608 skb
->protocol
= eth_type_trans(skb
, dev
);
8609 if (sp
->vlgrp
&& vlan_tag
8610 && (vlan_strip_flag
)) {
8611 /* Queueing the vlan frame to the upper layer */
8612 if (sp
->config
.napi
)
8613 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8615 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8617 if (sp
->config
.napi
)
8618 netif_receive_skb(skb
);
8624 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8625 struct sk_buff
*skb
,
8628 struct sk_buff
*first
= lro
->parent
;
8630 first
->len
+= tcp_len
;
8631 first
->data_len
= lro
->frags_len
;
8632 skb_pull(skb
, (skb
->len
- tcp_len
));
8633 if (skb_shinfo(first
)->frag_list
)
8634 lro
->last_frag
->next
= skb
;
8636 skb_shinfo(first
)->frag_list
= skb
;
8637 first
->truesize
+= skb
->truesize
;
8638 lro
->last_frag
= skb
;
8639 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8644 * s2io_io_error_detected - called when PCI error is detected
8645 * @pdev: Pointer to PCI device
8646 * @state: The current pci connection state
8648 * This function is called after a PCI bus error affecting
8649 * this device has been detected.
8651 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8652 pci_channel_state_t state
)
8654 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8655 struct s2io_nic
*sp
= netdev
->priv
;
8657 netif_device_detach(netdev
);
8659 if (netif_running(netdev
)) {
8660 /* Bring down the card, while avoiding PCI I/O */
8661 do_s2io_card_down(sp
, 0);
8663 pci_disable_device(pdev
);
8665 return PCI_ERS_RESULT_NEED_RESET
;
8669 * s2io_io_slot_reset - called after the pci bus has been reset.
8670 * @pdev: Pointer to PCI device
8672 * Restart the card from scratch, as if from a cold-boot.
8673 * At this point, the card has exprienced a hard reset,
8674 * followed by fixups by BIOS, and has its config space
8675 * set up identically to what it was at cold boot.
8677 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8679 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8680 struct s2io_nic
*sp
= netdev
->priv
;
8682 if (pci_enable_device(pdev
)) {
8683 printk(KERN_ERR
"s2io: "
8684 "Cannot re-enable PCI device after reset.\n");
8685 return PCI_ERS_RESULT_DISCONNECT
;
8688 pci_set_master(pdev
);
8691 return PCI_ERS_RESULT_RECOVERED
;
8695 * s2io_io_resume - called when traffic can start flowing again.
8696 * @pdev: Pointer to PCI device
8698 * This callback is called when the error recovery driver tells
8699 * us that its OK to resume normal operation.
8701 static void s2io_io_resume(struct pci_dev
*pdev
)
8703 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8704 struct s2io_nic
*sp
= netdev
->priv
;
8706 if (netif_running(netdev
)) {
8707 if (s2io_card_up(sp
)) {
8708 printk(KERN_ERR
"s2io: "
8709 "Can't bring device back up after reset.\n");
8713 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8715 printk(KERN_ERR
"s2io: "
8716 "Can't resetore mac addr after reset.\n");
8721 netif_device_attach(netdev
);
8722 netif_wake_queue(netdev
);