Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / sfc / efx.c
blob449760642e31b16040c33fbf0ba247fed834e6f9
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include "net_driver.h"
23 #include "gmii.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
30 #include "workarounds.h"
31 #include "mac.h"
33 #define EFX_MAX_MTU (9 * 1024)
35 /* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
40 static struct workqueue_struct *refill_workqueue;
42 /**************************************************************************
44 * Configurable values
46 *************************************************************************/
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
54 static int lro = 1;
55 module_param(lro, int, 0644);
56 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
59 * Use separate channels for TX and RX events
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
67 static unsigned int separate_tx_and_rx_channels = 1;
69 /* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
72 static int napi_weight = 64;
74 /* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
78 unsigned int efx_monitor_interval = 1 * HZ;
80 /* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
83 static unsigned int monitor_reset = 1;
85 /* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
92 static unsigned int allow_bad_hwaddr;
94 /* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
100 static unsigned int rx_irq_mod_usec = 60;
102 /* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
111 static unsigned int tx_irq_mod_usec = 150;
113 /* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
118 static unsigned int interrupt_mode;
120 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
127 static unsigned int rss_cpus;
128 module_param(rss_cpus, uint, 0444);
129 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131 /**************************************************************************
133 * Utility functions and prototypes
135 *************************************************************************/
136 static void efx_remove_channel(struct efx_channel *channel);
137 static void efx_remove_port(struct efx_nic *efx);
138 static void efx_fini_napi(struct efx_nic *efx);
139 static void efx_fini_channels(struct efx_nic *efx);
141 #define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
145 ASSERT_RTNL(); \
146 } while (0)
148 /**************************************************************************
150 * Event queue processing
152 *************************************************************************/
154 /* Process channel's event queue
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
161 static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
163 int rxdmaqs;
164 struct efx_rx_queue *rx_queue;
166 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
167 !channel->enabled))
168 return rx_quota;
170 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
172 /* Deliver last RX packet. */
173 if (channel->rx_pkt) {
174 __efx_rx_packet(channel, channel->rx_pkt,
175 channel->rx_pkt_csummed);
176 channel->rx_pkt = NULL;
179 efx_flush_lro(channel);
180 efx_rx_strategy(channel);
182 /* Refill descriptor rings as necessary */
183 rx_queue = &channel->efx->rx_queue[0];
184 while (rxdmaqs) {
185 if (rxdmaqs & 0x01)
186 efx_fast_push_rx_descriptors(rx_queue);
187 rx_queue++;
188 rxdmaqs >>= 1;
191 return rx_quota;
194 /* Mark channel as finished processing
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
200 static inline void efx_channel_processed(struct efx_channel *channel)
202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
205 channel->work_pending = 0;
206 smp_wmb();
208 falcon_eventq_read_ack(channel);
211 /* NAPI poll handler
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
216 static int efx_poll(struct napi_struct *napi, int budget)
218 struct efx_channel *channel =
219 container_of(napi, struct efx_channel, napi_str);
220 struct net_device *napi_dev = channel->napi_dev;
221 int unused;
222 int rx_packets;
224 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
225 channel->channel, raw_smp_processor_id());
227 unused = efx_process_channel(channel, budget);
228 rx_packets = (budget - unused);
230 if (rx_packets < budget) {
231 /* There is no race here; although napi_disable() will
232 * only wait for netif_rx_complete(), this isn't a problem
233 * since efx_channel_processed() will have no effect if
234 * interrupts have already been disabled.
236 netif_rx_complete(napi_dev, napi);
237 efx_channel_processed(channel);
240 return rx_packets;
243 /* Process the eventq of the specified channel immediately on this CPU
245 * Disable hardware generated interrupts, wait for any existing
246 * processing to finish, then directly poll (and ack ) the eventq.
247 * Finally reenable NAPI and interrupts.
249 * Since we are touching interrupts the caller should hold the suspend lock
251 void efx_process_channel_now(struct efx_channel *channel)
253 struct efx_nic *efx = channel->efx;
255 BUG_ON(!channel->used_flags);
256 BUG_ON(!channel->enabled);
258 /* Disable interrupts and wait for ISRs to complete */
259 falcon_disable_interrupts(efx);
260 if (efx->legacy_irq)
261 synchronize_irq(efx->legacy_irq);
262 if (channel->has_interrupt && channel->irq)
263 synchronize_irq(channel->irq);
265 /* Wait for any NAPI processing to complete */
266 napi_disable(&channel->napi_str);
268 /* Poll the channel */
269 efx_process_channel(channel, efx->type->evq_size);
271 /* Ack the eventq. This may cause an interrupt to be generated
272 * when they are reenabled */
273 efx_channel_processed(channel);
275 napi_enable(&channel->napi_str);
276 falcon_enable_interrupts(efx);
279 /* Create event queue
280 * Event queue memory allocations are done only once. If the channel
281 * is reset, the memory buffer will be reused; this guards against
282 * errors during channel reset and also simplifies interrupt handling.
284 static int efx_probe_eventq(struct efx_channel *channel)
286 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
288 return falcon_probe_eventq(channel);
291 /* Prepare channel's event queue */
292 static int efx_init_eventq(struct efx_channel *channel)
294 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
296 channel->eventq_read_ptr = 0;
298 return falcon_init_eventq(channel);
301 static void efx_fini_eventq(struct efx_channel *channel)
303 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
305 falcon_fini_eventq(channel);
308 static void efx_remove_eventq(struct efx_channel *channel)
310 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
312 falcon_remove_eventq(channel);
315 /**************************************************************************
317 * Channel handling
319 *************************************************************************/
321 static int efx_probe_channel(struct efx_channel *channel)
323 struct efx_tx_queue *tx_queue;
324 struct efx_rx_queue *rx_queue;
325 int rc;
327 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
329 rc = efx_probe_eventq(channel);
330 if (rc)
331 goto fail1;
333 efx_for_each_channel_tx_queue(tx_queue, channel) {
334 rc = efx_probe_tx_queue(tx_queue);
335 if (rc)
336 goto fail2;
339 efx_for_each_channel_rx_queue(rx_queue, channel) {
340 rc = efx_probe_rx_queue(rx_queue);
341 if (rc)
342 goto fail3;
345 channel->n_rx_frm_trunc = 0;
347 return 0;
349 fail3:
350 efx_for_each_channel_rx_queue(rx_queue, channel)
351 efx_remove_rx_queue(rx_queue);
352 fail2:
353 efx_for_each_channel_tx_queue(tx_queue, channel)
354 efx_remove_tx_queue(tx_queue);
355 fail1:
356 return rc;
360 /* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
364 static int efx_init_channels(struct efx_nic *efx)
366 struct efx_tx_queue *tx_queue;
367 struct efx_rx_queue *rx_queue;
368 struct efx_channel *channel;
369 int rc = 0;
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
375 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377 efx->type->rx_buffer_padding);
378 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
380 /* Initialise the channels */
381 efx_for_each_channel(channel, efx) {
382 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
384 rc = efx_init_eventq(channel);
385 if (rc)
386 goto err;
388 efx_for_each_channel_tx_queue(tx_queue, channel) {
389 rc = efx_init_tx_queue(tx_queue);
390 if (rc)
391 goto err;
394 /* The rx buffer allocation strategy is MTU dependent */
395 efx_rx_strategy(channel);
397 efx_for_each_channel_rx_queue(rx_queue, channel) {
398 rc = efx_init_rx_queue(rx_queue);
399 if (rc)
400 goto err;
403 WARN_ON(channel->rx_pkt != NULL);
404 efx_rx_strategy(channel);
407 return 0;
409 err:
410 EFX_ERR(efx, "failed to initialise channel %d\n",
411 channel ? channel->channel : -1);
412 efx_fini_channels(efx);
413 return rc;
416 /* This enables event queue processing and packet transmission.
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
421 static void efx_start_channel(struct efx_channel *channel)
423 struct efx_rx_queue *rx_queue;
425 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
427 if (!(channel->efx->net_dev->flags & IFF_UP))
428 netif_napi_add(channel->napi_dev, &channel->napi_str,
429 efx_poll, napi_weight);
431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
434 channel->work_pending = 0;
435 channel->enabled = 1;
436 smp_wmb();
438 napi_enable(&channel->napi_str);
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue, channel)
442 efx_fast_push_rx_descriptors(rx_queue);
445 /* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
449 static void efx_stop_channel(struct efx_channel *channel)
451 struct efx_rx_queue *rx_queue;
453 if (!channel->enabled)
454 return;
456 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
458 channel->enabled = 0;
459 napi_disable(&channel->napi_str);
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue, channel) {
463 spin_lock_bh(&rx_queue->add_lock);
464 spin_unlock_bh(&rx_queue->add_lock);
468 static void efx_fini_channels(struct efx_nic *efx)
470 struct efx_channel *channel;
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
477 efx_for_each_channel(channel, efx) {
478 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
480 efx_for_each_channel_rx_queue(rx_queue, channel)
481 efx_fini_rx_queue(rx_queue);
482 efx_for_each_channel_tx_queue(tx_queue, channel)
483 efx_fini_tx_queue(tx_queue);
486 /* Do the event queues last so that we can handle flush events
487 * for all DMA queues. */
488 efx_for_each_channel(channel, efx) {
489 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
491 efx_fini_eventq(channel);
495 static void efx_remove_channel(struct efx_channel *channel)
497 struct efx_tx_queue *tx_queue;
498 struct efx_rx_queue *rx_queue;
500 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
502 efx_for_each_channel_rx_queue(rx_queue, channel)
503 efx_remove_rx_queue(rx_queue);
504 efx_for_each_channel_tx_queue(tx_queue, channel)
505 efx_remove_tx_queue(tx_queue);
506 efx_remove_eventq(channel);
508 channel->used_flags = 0;
511 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
513 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
516 /**************************************************************************
518 * Port handling
520 **************************************************************************/
522 /* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
526 static void efx_link_status_changed(struct efx_nic *efx)
528 int carrier_ok;
530 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
531 * that no events are triggered between unregister_netdev() and the
532 * driver unloading. A more general condition is that NETDEV_CHANGE
533 * can only be generated between NETDEV_UP and NETDEV_DOWN */
534 if (!netif_running(efx->net_dev))
535 return;
537 carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
538 if (efx->link_up != carrier_ok) {
539 efx->n_link_state_changes++;
541 if (efx->link_up)
542 netif_carrier_on(efx->net_dev);
543 else
544 netif_carrier_off(efx->net_dev);
547 /* Status message for kernel log */
548 if (efx->link_up) {
549 struct mii_if_info *gmii = &efx->mii;
550 unsigned adv, lpa;
551 /* NONE here means direct XAUI from the controller, with no
552 * MDIO-attached device we can query. */
553 if (efx->phy_type != PHY_TYPE_NONE) {
554 adv = gmii_advertised(gmii);
555 lpa = gmii_lpa(gmii);
556 } else {
557 lpa = GM_LPA_10000 | LPA_DUPLEX;
558 adv = lpa;
560 EFX_INFO(efx, "link up at %dMbps %s-duplex "
561 "(adv %04x lpa %04x) (MTU %d)%s\n",
562 (efx->link_options & GM_LPA_10000 ? 10000 :
563 (efx->link_options & GM_LPA_1000 ? 1000 :
564 (efx->link_options & GM_LPA_100 ? 100 :
565 10))),
566 (efx->link_options & GM_LPA_DUPLEX ?
567 "full" : "half"),
568 adv, lpa,
569 efx->net_dev->mtu,
570 (efx->promiscuous ? " [PROMISC]" : ""));
571 } else {
572 EFX_INFO(efx, "link down\n");
577 /* This call reinitialises the MAC to pick up new PHY settings. The
578 * caller must hold the mac_lock */
579 static void __efx_reconfigure_port(struct efx_nic *efx)
581 WARN_ON(!mutex_is_locked(&efx->mac_lock));
583 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
584 raw_smp_processor_id());
586 falcon_reconfigure_xmac(efx);
588 /* Inform kernel of loss/gain of carrier */
589 efx_link_status_changed(efx);
592 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
593 * disabled. */
594 void efx_reconfigure_port(struct efx_nic *efx)
596 EFX_ASSERT_RESET_SERIALISED(efx);
598 mutex_lock(&efx->mac_lock);
599 __efx_reconfigure_port(efx);
600 mutex_unlock(&efx->mac_lock);
603 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
604 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
605 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
606 static void efx_reconfigure_work(struct work_struct *data)
608 struct efx_nic *efx = container_of(data, struct efx_nic,
609 reconfigure_work);
611 mutex_lock(&efx->mac_lock);
612 if (efx->port_enabled)
613 __efx_reconfigure_port(efx);
614 mutex_unlock(&efx->mac_lock);
617 static int efx_probe_port(struct efx_nic *efx)
619 int rc;
621 EFX_LOG(efx, "create port\n");
623 /* Connect up MAC/PHY operations table and read MAC address */
624 rc = falcon_probe_port(efx);
625 if (rc)
626 goto err;
628 /* Sanity check MAC address */
629 if (is_valid_ether_addr(efx->mac_address)) {
630 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
631 } else {
632 DECLARE_MAC_BUF(mac);
634 EFX_ERR(efx, "invalid MAC address %s\n",
635 print_mac(mac, efx->mac_address));
636 if (!allow_bad_hwaddr) {
637 rc = -EINVAL;
638 goto err;
640 random_ether_addr(efx->net_dev->dev_addr);
641 EFX_INFO(efx, "using locally-generated MAC %s\n",
642 print_mac(mac, efx->net_dev->dev_addr));
645 return 0;
647 err:
648 efx_remove_port(efx);
649 return rc;
652 static int efx_init_port(struct efx_nic *efx)
654 int rc;
656 EFX_LOG(efx, "init port\n");
658 /* Initialise the MAC and PHY */
659 rc = falcon_init_xmac(efx);
660 if (rc)
661 return rc;
663 efx->port_initialized = 1;
665 /* Reconfigure port to program MAC registers */
666 falcon_reconfigure_xmac(efx);
668 return 0;
671 /* Allow efx_reconfigure_port() to be scheduled, and close the window
672 * between efx_stop_port and efx_flush_all whereby a previously scheduled
673 * efx_reconfigure_port() may have been cancelled */
674 static void efx_start_port(struct efx_nic *efx)
676 EFX_LOG(efx, "start port\n");
677 BUG_ON(efx->port_enabled);
679 mutex_lock(&efx->mac_lock);
680 efx->port_enabled = 1;
681 __efx_reconfigure_port(efx);
682 mutex_unlock(&efx->mac_lock);
685 /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
686 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
687 * efx_reconfigure_work can still be scheduled via NAPI processing
688 * until efx_flush_all() is called */
689 static void efx_stop_port(struct efx_nic *efx)
691 EFX_LOG(efx, "stop port\n");
693 mutex_lock(&efx->mac_lock);
694 efx->port_enabled = 0;
695 mutex_unlock(&efx->mac_lock);
697 /* Serialise against efx_set_multicast_list() */
698 if (efx_dev_registered(efx)) {
699 netif_tx_lock_bh(efx->net_dev);
700 netif_tx_unlock_bh(efx->net_dev);
704 static void efx_fini_port(struct efx_nic *efx)
706 EFX_LOG(efx, "shut down port\n");
708 if (!efx->port_initialized)
709 return;
711 falcon_fini_xmac(efx);
712 efx->port_initialized = 0;
714 efx->link_up = 0;
715 efx_link_status_changed(efx);
718 static void efx_remove_port(struct efx_nic *efx)
720 EFX_LOG(efx, "destroying port\n");
722 falcon_remove_port(efx);
725 /**************************************************************************
727 * NIC handling
729 **************************************************************************/
731 /* This configures the PCI device to enable I/O and DMA. */
732 static int efx_init_io(struct efx_nic *efx)
734 struct pci_dev *pci_dev = efx->pci_dev;
735 dma_addr_t dma_mask = efx->type->max_dma_mask;
736 int rc;
738 EFX_LOG(efx, "initialising I/O\n");
740 rc = pci_enable_device(pci_dev);
741 if (rc) {
742 EFX_ERR(efx, "failed to enable PCI device\n");
743 goto fail1;
746 pci_set_master(pci_dev);
748 /* Set the PCI DMA mask. Try all possibilities from our
749 * genuine mask down to 32 bits, because some architectures
750 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
751 * masks event though they reject 46 bit masks.
753 while (dma_mask > 0x7fffffffUL) {
754 if (pci_dma_supported(pci_dev, dma_mask) &&
755 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
756 break;
757 dma_mask >>= 1;
759 if (rc) {
760 EFX_ERR(efx, "could not find a suitable DMA mask\n");
761 goto fail2;
763 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
764 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
765 if (rc) {
766 /* pci_set_consistent_dma_mask() is not *allowed* to
767 * fail with a mask that pci_set_dma_mask() accepted,
768 * but just in case...
770 EFX_ERR(efx, "failed to set consistent DMA mask\n");
771 goto fail2;
774 efx->membase_phys = pci_resource_start(efx->pci_dev,
775 efx->type->mem_bar);
776 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
777 if (rc) {
778 EFX_ERR(efx, "request for memory BAR failed\n");
779 rc = -EIO;
780 goto fail3;
782 efx->membase = ioremap_nocache(efx->membase_phys,
783 efx->type->mem_map_size);
784 if (!efx->membase) {
785 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
786 efx->type->mem_bar,
787 (unsigned long long)efx->membase_phys,
788 efx->type->mem_map_size);
789 rc = -ENOMEM;
790 goto fail4;
792 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
793 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
794 efx->type->mem_map_size, efx->membase);
796 return 0;
798 fail4:
799 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
800 fail3:
801 efx->membase_phys = 0;
802 fail2:
803 pci_disable_device(efx->pci_dev);
804 fail1:
805 return rc;
808 static void efx_fini_io(struct efx_nic *efx)
810 EFX_LOG(efx, "shutting down I/O\n");
812 if (efx->membase) {
813 iounmap(efx->membase);
814 efx->membase = NULL;
817 if (efx->membase_phys) {
818 pci_release_region(efx->pci_dev, efx->type->mem_bar);
819 efx->membase_phys = 0;
822 pci_disable_device(efx->pci_dev);
825 /* Probe the number and type of interrupts we are able to obtain. */
826 static void efx_probe_interrupts(struct efx_nic *efx)
828 int max_channel = efx->type->phys_addr_channels - 1;
829 struct msix_entry xentries[EFX_MAX_CHANNELS];
830 int rc, i;
832 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
833 BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
835 efx->rss_queues = rss_cpus ? rss_cpus : num_online_cpus();
836 efx->rss_queues = min(efx->rss_queues, max_channel + 1);
837 efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
839 /* Request maximum number of MSI interrupts, and fill out
840 * the channel interrupt information the allowed allocation */
841 for (i = 0; i < efx->rss_queues; i++)
842 xentries[i].entry = i;
843 rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
844 if (rc > 0) {
845 EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
846 efx->rss_queues = rc;
847 rc = pci_enable_msix(efx->pci_dev, xentries,
848 efx->rss_queues);
851 if (rc == 0) {
852 for (i = 0; i < efx->rss_queues; i++) {
853 efx->channel[i].has_interrupt = 1;
854 efx->channel[i].irq = xentries[i].vector;
856 } else {
857 /* Fall back to single channel MSI */
858 efx->interrupt_mode = EFX_INT_MODE_MSI;
859 EFX_ERR(efx, "could not enable MSI-X\n");
863 /* Try single interrupt MSI */
864 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
865 efx->rss_queues = 1;
866 rc = pci_enable_msi(efx->pci_dev);
867 if (rc == 0) {
868 efx->channel[0].irq = efx->pci_dev->irq;
869 efx->channel[0].has_interrupt = 1;
870 } else {
871 EFX_ERR(efx, "could not enable MSI\n");
872 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
876 /* Assume legacy interrupts */
877 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
878 efx->rss_queues = 1;
879 /* Every channel is interruptible */
880 for (i = 0; i < EFX_MAX_CHANNELS; i++)
881 efx->channel[i].has_interrupt = 1;
882 efx->legacy_irq = efx->pci_dev->irq;
886 static void efx_remove_interrupts(struct efx_nic *efx)
888 struct efx_channel *channel;
890 /* Remove MSI/MSI-X interrupts */
891 efx_for_each_channel_with_interrupt(channel, efx)
892 channel->irq = 0;
893 pci_disable_msi(efx->pci_dev);
894 pci_disable_msix(efx->pci_dev);
896 /* Remove legacy interrupt */
897 efx->legacy_irq = 0;
900 /* Select number of used resources
901 * Should be called after probe_interrupts()
903 static void efx_select_used(struct efx_nic *efx)
905 struct efx_tx_queue *tx_queue;
906 struct efx_rx_queue *rx_queue;
907 int i;
909 /* TX queues. One per port per channel with TX capability
910 * (more than one per port won't work on Linux, due to out
911 * of order issues... but will be fine on Solaris)
913 tx_queue = &efx->tx_queue[0];
915 /* Perform this for each channel with TX capabilities.
916 * At the moment, we only support a single TX queue
918 tx_queue->used = 1;
919 if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
920 tx_queue->channel = &efx->channel[1];
921 else
922 tx_queue->channel = &efx->channel[0];
923 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
924 tx_queue++;
926 /* RX queues. Each has a dedicated channel. */
927 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
928 rx_queue = &efx->rx_queue[i];
930 if (i < efx->rss_queues) {
931 rx_queue->used = 1;
932 /* If we allow multiple RX queues per channel
933 * we need to decide that here
935 rx_queue->channel = &efx->channel[rx_queue->queue];
936 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
937 rx_queue++;
942 static int efx_probe_nic(struct efx_nic *efx)
944 int rc;
946 EFX_LOG(efx, "creating NIC\n");
948 /* Carry out hardware-type specific initialisation */
949 rc = falcon_probe_nic(efx);
950 if (rc)
951 return rc;
953 /* Determine the number of channels and RX queues by trying to hook
954 * in MSI-X interrupts. */
955 efx_probe_interrupts(efx);
957 /* Determine number of RX queues and TX queues */
958 efx_select_used(efx);
960 /* Initialise the interrupt moderation settings */
961 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
963 return 0;
966 static void efx_remove_nic(struct efx_nic *efx)
968 EFX_LOG(efx, "destroying NIC\n");
970 efx_remove_interrupts(efx);
971 falcon_remove_nic(efx);
974 /**************************************************************************
976 * NIC startup/shutdown
978 *************************************************************************/
980 static int efx_probe_all(struct efx_nic *efx)
982 struct efx_channel *channel;
983 int rc;
985 /* Create NIC */
986 rc = efx_probe_nic(efx);
987 if (rc) {
988 EFX_ERR(efx, "failed to create NIC\n");
989 goto fail1;
992 /* Create port */
993 rc = efx_probe_port(efx);
994 if (rc) {
995 EFX_ERR(efx, "failed to create port\n");
996 goto fail2;
999 /* Create channels */
1000 efx_for_each_channel(channel, efx) {
1001 rc = efx_probe_channel(channel);
1002 if (rc) {
1003 EFX_ERR(efx, "failed to create channel %d\n",
1004 channel->channel);
1005 goto fail3;
1009 return 0;
1011 fail3:
1012 efx_for_each_channel(channel, efx)
1013 efx_remove_channel(channel);
1014 efx_remove_port(efx);
1015 fail2:
1016 efx_remove_nic(efx);
1017 fail1:
1018 return rc;
1021 /* Called after previous invocation(s) of efx_stop_all, restarts the
1022 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1023 * and ensures that the port is scheduled to be reconfigured.
1024 * This function is safe to call multiple times when the NIC is in any
1025 * state. */
1026 static void efx_start_all(struct efx_nic *efx)
1028 struct efx_channel *channel;
1030 EFX_ASSERT_RESET_SERIALISED(efx);
1032 /* Check that it is appropriate to restart the interface. All
1033 * of these flags are safe to read under just the rtnl lock */
1034 if (efx->port_enabled)
1035 return;
1036 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1037 return;
1038 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1039 return;
1041 /* Mark the port as enabled so port reconfigurations can start, then
1042 * restart the transmit interface early so the watchdog timer stops */
1043 efx_start_port(efx);
1044 efx_wake_queue(efx);
1046 efx_for_each_channel(channel, efx)
1047 efx_start_channel(channel);
1049 falcon_enable_interrupts(efx);
1051 /* Start hardware monitor if we're in RUNNING */
1052 if (efx->state == STATE_RUNNING)
1053 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1054 efx_monitor_interval);
1057 /* Flush all delayed work. Should only be called when no more delayed work
1058 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1059 * since we're holding the rtnl_lock at this point. */
1060 static void efx_flush_all(struct efx_nic *efx)
1062 struct efx_rx_queue *rx_queue;
1064 /* Make sure the hardware monitor is stopped */
1065 cancel_delayed_work_sync(&efx->monitor_work);
1067 /* Ensure that all RX slow refills are complete. */
1068 efx_for_each_rx_queue(rx_queue, efx)
1069 cancel_delayed_work_sync(&rx_queue->work);
1071 /* Stop scheduled port reconfigurations */
1072 cancel_work_sync(&efx->reconfigure_work);
1076 /* Quiesce hardware and software without bringing the link down.
1077 * Safe to call multiple times, when the nic and interface is in any
1078 * state. The caller is guaranteed to subsequently be in a position
1079 * to modify any hardware and software state they see fit without
1080 * taking locks. */
1081 static void efx_stop_all(struct efx_nic *efx)
1083 struct efx_channel *channel;
1085 EFX_ASSERT_RESET_SERIALISED(efx);
1087 /* port_enabled can be read safely under the rtnl lock */
1088 if (!efx->port_enabled)
1089 return;
1091 /* Disable interrupts and wait for ISR to complete */
1092 falcon_disable_interrupts(efx);
1093 if (efx->legacy_irq)
1094 synchronize_irq(efx->legacy_irq);
1095 efx_for_each_channel_with_interrupt(channel, efx) {
1096 if (channel->irq)
1097 synchronize_irq(channel->irq);
1100 /* Stop all NAPI processing and synchronous rx refills */
1101 efx_for_each_channel(channel, efx)
1102 efx_stop_channel(channel);
1104 /* Stop all asynchronous port reconfigurations. Since all
1105 * event processing has already been stopped, there is no
1106 * window to loose phy events */
1107 efx_stop_port(efx);
1109 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1110 efx_flush_all(efx);
1112 /* Isolate the MAC from the TX and RX engines, so that queue
1113 * flushes will complete in a timely fashion. */
1114 falcon_deconfigure_mac_wrapper(efx);
1115 falcon_drain_tx_fifo(efx);
1117 /* Stop the kernel transmit interface late, so the watchdog
1118 * timer isn't ticking over the flush */
1119 efx_stop_queue(efx);
1120 if (efx_dev_registered(efx)) {
1121 netif_tx_lock_bh(efx->net_dev);
1122 netif_tx_unlock_bh(efx->net_dev);
1126 static void efx_remove_all(struct efx_nic *efx)
1128 struct efx_channel *channel;
1130 efx_for_each_channel(channel, efx)
1131 efx_remove_channel(channel);
1132 efx_remove_port(efx);
1133 efx_remove_nic(efx);
1136 /* A convinience function to safely flush all the queues */
1137 int efx_flush_queues(struct efx_nic *efx)
1139 int rc;
1141 EFX_ASSERT_RESET_SERIALISED(efx);
1143 efx_stop_all(efx);
1145 efx_fini_channels(efx);
1146 rc = efx_init_channels(efx);
1147 if (rc) {
1148 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1149 return rc;
1152 efx_start_all(efx);
1154 return 0;
1157 /**************************************************************************
1159 * Interrupt moderation
1161 **************************************************************************/
1163 /* Set interrupt moderation parameters */
1164 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1166 struct efx_tx_queue *tx_queue;
1167 struct efx_rx_queue *rx_queue;
1169 EFX_ASSERT_RESET_SERIALISED(efx);
1171 efx_for_each_tx_queue(tx_queue, efx)
1172 tx_queue->channel->irq_moderation = tx_usecs;
1174 efx_for_each_rx_queue(rx_queue, efx)
1175 rx_queue->channel->irq_moderation = rx_usecs;
1178 /**************************************************************************
1180 * Hardware monitor
1182 **************************************************************************/
1184 /* Run periodically off the general workqueue. Serialised against
1185 * efx_reconfigure_port via the mac_lock */
1186 static void efx_monitor(struct work_struct *data)
1188 struct efx_nic *efx = container_of(data, struct efx_nic,
1189 monitor_work.work);
1190 int rc = 0;
1192 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1193 raw_smp_processor_id());
1196 /* If the mac_lock is already held then it is likely a port
1197 * reconfiguration is already in place, which will likely do
1198 * most of the work of check_hw() anyway. */
1199 if (!mutex_trylock(&efx->mac_lock)) {
1200 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1201 efx_monitor_interval);
1202 return;
1205 if (efx->port_enabled)
1206 rc = falcon_check_xmac(efx);
1207 mutex_unlock(&efx->mac_lock);
1209 if (rc) {
1210 if (monitor_reset) {
1211 EFX_ERR(efx, "hardware monitor detected a fault: "
1212 "triggering reset\n");
1213 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1214 } else {
1215 EFX_ERR(efx, "hardware monitor detected a fault, "
1216 "skipping reset\n");
1220 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1221 efx_monitor_interval);
1224 /**************************************************************************
1226 * ioctls
1228 *************************************************************************/
1230 /* Net device ioctl
1231 * Context: process, rtnl_lock() held.
1233 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1235 struct efx_nic *efx = net_dev->priv;
1237 EFX_ASSERT_RESET_SERIALISED(efx);
1239 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1242 /**************************************************************************
1244 * NAPI interface
1246 **************************************************************************/
1248 static int efx_init_napi(struct efx_nic *efx)
1250 struct efx_channel *channel;
1251 int rc;
1253 efx_for_each_channel(channel, efx) {
1254 channel->napi_dev = efx->net_dev;
1255 rc = efx_lro_init(&channel->lro_mgr, efx);
1256 if (rc)
1257 goto err;
1259 return 0;
1260 err:
1261 efx_fini_napi(efx);
1262 return rc;
1265 static void efx_fini_napi(struct efx_nic *efx)
1267 struct efx_channel *channel;
1269 efx_for_each_channel(channel, efx) {
1270 efx_lro_fini(&channel->lro_mgr);
1271 channel->napi_dev = NULL;
1275 /**************************************************************************
1277 * Kernel netpoll interface
1279 *************************************************************************/
1281 #ifdef CONFIG_NET_POLL_CONTROLLER
1283 /* Although in the common case interrupts will be disabled, this is not
1284 * guaranteed. However, all our work happens inside the NAPI callback,
1285 * so no locking is required.
1287 static void efx_netpoll(struct net_device *net_dev)
1289 struct efx_nic *efx = net_dev->priv;
1290 struct efx_channel *channel;
1292 efx_for_each_channel_with_interrupt(channel, efx)
1293 efx_schedule_channel(channel);
1296 #endif
1298 /**************************************************************************
1300 * Kernel net device interface
1302 *************************************************************************/
1304 /* Context: process, rtnl_lock() held. */
1305 static int efx_net_open(struct net_device *net_dev)
1307 struct efx_nic *efx = net_dev->priv;
1308 EFX_ASSERT_RESET_SERIALISED(efx);
1310 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1311 raw_smp_processor_id());
1313 efx_start_all(efx);
1314 return 0;
1317 /* Context: process, rtnl_lock() held.
1318 * Note that the kernel will ignore our return code; this method
1319 * should really be a void.
1321 static int efx_net_stop(struct net_device *net_dev)
1323 struct efx_nic *efx = net_dev->priv;
1324 int rc;
1326 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1327 raw_smp_processor_id());
1329 /* Stop the device and flush all the channels */
1330 efx_stop_all(efx);
1331 efx_fini_channels(efx);
1332 rc = efx_init_channels(efx);
1333 if (rc)
1334 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1336 return 0;
1339 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1340 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1342 struct efx_nic *efx = net_dev->priv;
1343 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1344 struct net_device_stats *stats = &net_dev->stats;
1346 /* Update stats if possible, but do not wait if another thread
1347 * is updating them (or resetting the NIC); slightly stale
1348 * stats are acceptable.
1350 if (!spin_trylock(&efx->stats_lock))
1351 return stats;
1352 if (efx->state == STATE_RUNNING) {
1353 falcon_update_stats_xmac(efx);
1354 falcon_update_nic_stats(efx);
1356 spin_unlock(&efx->stats_lock);
1358 stats->rx_packets = mac_stats->rx_packets;
1359 stats->tx_packets = mac_stats->tx_packets;
1360 stats->rx_bytes = mac_stats->rx_bytes;
1361 stats->tx_bytes = mac_stats->tx_bytes;
1362 stats->multicast = mac_stats->rx_multicast;
1363 stats->collisions = mac_stats->tx_collision;
1364 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1365 mac_stats->rx_length_error);
1366 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1367 stats->rx_crc_errors = mac_stats->rx_bad;
1368 stats->rx_frame_errors = mac_stats->rx_align_error;
1369 stats->rx_fifo_errors = mac_stats->rx_overflow;
1370 stats->rx_missed_errors = mac_stats->rx_missed;
1371 stats->tx_window_errors = mac_stats->tx_late_collision;
1373 stats->rx_errors = (stats->rx_length_errors +
1374 stats->rx_over_errors +
1375 stats->rx_crc_errors +
1376 stats->rx_frame_errors +
1377 stats->rx_fifo_errors +
1378 stats->rx_missed_errors +
1379 mac_stats->rx_symbol_error);
1380 stats->tx_errors = (stats->tx_window_errors +
1381 mac_stats->tx_bad);
1383 return stats;
1386 /* Context: netif_tx_lock held, BHs disabled. */
1387 static void efx_watchdog(struct net_device *net_dev)
1389 struct efx_nic *efx = net_dev->priv;
1391 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1392 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1393 monitor_reset ? "resetting channels" : "skipping reset");
1395 if (monitor_reset)
1396 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1400 /* Context: process, rtnl_lock() held. */
1401 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1403 struct efx_nic *efx = net_dev->priv;
1404 int rc = 0;
1406 EFX_ASSERT_RESET_SERIALISED(efx);
1408 if (new_mtu > EFX_MAX_MTU)
1409 return -EINVAL;
1411 efx_stop_all(efx);
1413 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1415 efx_fini_channels(efx);
1416 net_dev->mtu = new_mtu;
1417 rc = efx_init_channels(efx);
1418 if (rc)
1419 goto fail;
1421 efx_start_all(efx);
1422 return rc;
1424 fail:
1425 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1426 return rc;
1429 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1431 struct efx_nic *efx = net_dev->priv;
1432 struct sockaddr *addr = data;
1433 char *new_addr = addr->sa_data;
1435 EFX_ASSERT_RESET_SERIALISED(efx);
1437 if (!is_valid_ether_addr(new_addr)) {
1438 DECLARE_MAC_BUF(mac);
1439 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1440 print_mac(mac, new_addr));
1441 return -EINVAL;
1444 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1446 /* Reconfigure the MAC */
1447 efx_reconfigure_port(efx);
1449 return 0;
1452 /* Context: netif_tx_lock held, BHs disabled. */
1453 static void efx_set_multicast_list(struct net_device *net_dev)
1455 struct efx_nic *efx = net_dev->priv;
1456 struct dev_mc_list *mc_list = net_dev->mc_list;
1457 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1458 int promiscuous;
1459 u32 crc;
1460 int bit;
1461 int i;
1463 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1464 promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
1465 if (efx->promiscuous != promiscuous) {
1466 efx->promiscuous = promiscuous;
1467 /* Close the window between efx_stop_port() and efx_flush_all()
1468 * by only queuing work when the port is enabled. */
1469 if (efx->port_enabled)
1470 queue_work(efx->workqueue, &efx->reconfigure_work);
1473 /* Build multicast hash table */
1474 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1475 memset(mc_hash, 0xff, sizeof(*mc_hash));
1476 } else {
1477 memset(mc_hash, 0x00, sizeof(*mc_hash));
1478 for (i = 0; i < net_dev->mc_count; i++) {
1479 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1480 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1481 set_bit_le(bit, mc_hash->byte);
1482 mc_list = mc_list->next;
1486 /* Create and activate new global multicast hash table */
1487 falcon_set_multicast_hash(efx);
1490 static int efx_netdev_event(struct notifier_block *this,
1491 unsigned long event, void *ptr)
1493 struct net_device *net_dev = ptr;
1495 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
1496 struct efx_nic *efx = net_dev->priv;
1498 strcpy(efx->name, net_dev->name);
1501 return NOTIFY_DONE;
1504 static struct notifier_block efx_netdev_notifier = {
1505 .notifier_call = efx_netdev_event,
1508 static int efx_register_netdev(struct efx_nic *efx)
1510 struct net_device *net_dev = efx->net_dev;
1511 int rc;
1513 net_dev->watchdog_timeo = 5 * HZ;
1514 net_dev->irq = efx->pci_dev->irq;
1515 net_dev->open = efx_net_open;
1516 net_dev->stop = efx_net_stop;
1517 net_dev->get_stats = efx_net_stats;
1518 net_dev->tx_timeout = &efx_watchdog;
1519 net_dev->hard_start_xmit = efx_hard_start_xmit;
1520 net_dev->do_ioctl = efx_ioctl;
1521 net_dev->change_mtu = efx_change_mtu;
1522 net_dev->set_mac_address = efx_set_mac_address;
1523 net_dev->set_multicast_list = efx_set_multicast_list;
1524 #ifdef CONFIG_NET_POLL_CONTROLLER
1525 net_dev->poll_controller = efx_netpoll;
1526 #endif
1527 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1528 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1530 /* Always start with carrier off; PHY events will detect the link */
1531 netif_carrier_off(efx->net_dev);
1533 /* Clear MAC statistics */
1534 falcon_update_stats_xmac(efx);
1535 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1537 rc = register_netdev(net_dev);
1538 if (rc) {
1539 EFX_ERR(efx, "could not register net dev\n");
1540 return rc;
1542 strcpy(efx->name, net_dev->name);
1544 return 0;
1547 static void efx_unregister_netdev(struct efx_nic *efx)
1549 struct efx_tx_queue *tx_queue;
1551 if (!efx->net_dev)
1552 return;
1554 BUG_ON(efx->net_dev->priv != efx);
1556 /* Free up any skbs still remaining. This has to happen before
1557 * we try to unregister the netdev as running their destructors
1558 * may be needed to get the device ref. count to 0. */
1559 efx_for_each_tx_queue(tx_queue, efx)
1560 efx_release_tx_buffers(tx_queue);
1562 if (efx_dev_registered(efx)) {
1563 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1564 unregister_netdev(efx->net_dev);
1568 /**************************************************************************
1570 * Device reset and suspend
1572 **************************************************************************/
1574 /* The final hardware and software finalisation before reset. */
1575 static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1577 int rc;
1579 EFX_ASSERT_RESET_SERIALISED(efx);
1581 rc = falcon_xmac_get_settings(efx, ecmd);
1582 if (rc) {
1583 EFX_ERR(efx, "could not back up PHY settings\n");
1584 goto fail;
1587 efx_fini_channels(efx);
1588 return 0;
1590 fail:
1591 return rc;
1594 /* The first part of software initialisation after a hardware reset
1595 * This function does not handle serialisation with the kernel, it
1596 * assumes the caller has done this */
1597 static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1599 int rc;
1601 rc = efx_init_channels(efx);
1602 if (rc)
1603 goto fail1;
1605 /* Restore MAC and PHY settings. */
1606 rc = falcon_xmac_set_settings(efx, ecmd);
1607 if (rc) {
1608 EFX_ERR(efx, "could not restore PHY settings\n");
1609 goto fail2;
1612 return 0;
1614 fail2:
1615 efx_fini_channels(efx);
1616 fail1:
1617 return rc;
1620 /* Reset the NIC as transparently as possible. Do not reset the PHY
1621 * Note that the reset may fail, in which case the card will be left
1622 * in a most-probably-unusable state.
1624 * This function will sleep. You cannot reset from within an atomic
1625 * state; use efx_schedule_reset() instead.
1627 * Grabs the rtnl_lock.
1629 static int efx_reset(struct efx_nic *efx)
1631 struct ethtool_cmd ecmd;
1632 enum reset_type method = efx->reset_pending;
1633 int rc;
1635 /* Serialise with kernel interfaces */
1636 rtnl_lock();
1638 /* If we're not RUNNING then don't reset. Leave the reset_pending
1639 * flag set so that efx_pci_probe_main will be retried */
1640 if (efx->state != STATE_RUNNING) {
1641 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1642 goto unlock_rtnl;
1645 efx->state = STATE_RESETTING;
1646 EFX_INFO(efx, "resetting (%d)\n", method);
1648 /* The net_dev->get_stats handler is quite slow, and will fail
1649 * if a fetch is pending over reset. Serialise against it. */
1650 spin_lock(&efx->stats_lock);
1651 spin_unlock(&efx->stats_lock);
1653 efx_stop_all(efx);
1654 mutex_lock(&efx->mac_lock);
1656 rc = efx_reset_down(efx, &ecmd);
1657 if (rc)
1658 goto fail1;
1660 rc = falcon_reset_hw(efx, method);
1661 if (rc) {
1662 EFX_ERR(efx, "failed to reset hardware\n");
1663 goto fail2;
1666 /* Allow resets to be rescheduled. */
1667 efx->reset_pending = RESET_TYPE_NONE;
1669 /* Reinitialise bus-mastering, which may have been turned off before
1670 * the reset was scheduled. This is still appropriate, even in the
1671 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1672 * can respond to requests. */
1673 pci_set_master(efx->pci_dev);
1675 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1676 * case so the driver can talk to external SRAM */
1677 rc = falcon_init_nic(efx);
1678 if (rc) {
1679 EFX_ERR(efx, "failed to initialise NIC\n");
1680 goto fail3;
1683 /* Leave device stopped if necessary */
1684 if (method == RESET_TYPE_DISABLE) {
1685 /* Reinitialise the device anyway so the driver unload sequence
1686 * can talk to the external SRAM */
1687 falcon_init_nic(efx);
1688 rc = -EIO;
1689 goto fail4;
1692 rc = efx_reset_up(efx, &ecmd);
1693 if (rc)
1694 goto fail5;
1696 mutex_unlock(&efx->mac_lock);
1697 EFX_LOG(efx, "reset complete\n");
1699 efx->state = STATE_RUNNING;
1700 efx_start_all(efx);
1702 unlock_rtnl:
1703 rtnl_unlock();
1704 return 0;
1706 fail5:
1707 fail4:
1708 fail3:
1709 fail2:
1710 fail1:
1711 EFX_ERR(efx, "has been disabled\n");
1712 efx->state = STATE_DISABLED;
1714 mutex_unlock(&efx->mac_lock);
1715 rtnl_unlock();
1716 efx_unregister_netdev(efx);
1717 efx_fini_port(efx);
1718 return rc;
1721 /* The worker thread exists so that code that cannot sleep can
1722 * schedule a reset for later.
1724 static void efx_reset_work(struct work_struct *data)
1726 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1728 efx_reset(nic);
1731 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1733 enum reset_type method;
1735 if (efx->reset_pending != RESET_TYPE_NONE) {
1736 EFX_INFO(efx, "quenching already scheduled reset\n");
1737 return;
1740 switch (type) {
1741 case RESET_TYPE_INVISIBLE:
1742 case RESET_TYPE_ALL:
1743 case RESET_TYPE_WORLD:
1744 case RESET_TYPE_DISABLE:
1745 method = type;
1746 break;
1747 case RESET_TYPE_RX_RECOVERY:
1748 case RESET_TYPE_RX_DESC_FETCH:
1749 case RESET_TYPE_TX_DESC_FETCH:
1750 case RESET_TYPE_TX_SKIP:
1751 method = RESET_TYPE_INVISIBLE;
1752 break;
1753 default:
1754 method = RESET_TYPE_ALL;
1755 break;
1758 if (method != type)
1759 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1760 else
1761 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1763 efx->reset_pending = method;
1765 queue_work(efx->workqueue, &efx->reset_work);
1768 /**************************************************************************
1770 * List of NICs we support
1772 **************************************************************************/
1774 /* PCI device ID table */
1775 static struct pci_device_id efx_pci_table[] __devinitdata = {
1776 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1777 .driver_data = (unsigned long) &falcon_a_nic_type},
1778 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1779 .driver_data = (unsigned long) &falcon_b_nic_type},
1780 {0} /* end of list */
1783 /**************************************************************************
1785 * Dummy PHY/MAC/Board operations
1787 * Can be used where the MAC does not implement this operation
1788 * Needed so all function pointers are valid and do not have to be tested
1789 * before use
1791 **************************************************************************/
1792 int efx_port_dummy_op_int(struct efx_nic *efx)
1794 return 0;
1796 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1797 void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
1799 static struct efx_phy_operations efx_dummy_phy_operations = {
1800 .init = efx_port_dummy_op_int,
1801 .reconfigure = efx_port_dummy_op_void,
1802 .check_hw = efx_port_dummy_op_int,
1803 .fini = efx_port_dummy_op_void,
1804 .clear_interrupt = efx_port_dummy_op_void,
1805 .reset_xaui = efx_port_dummy_op_void,
1808 /* Dummy board operations */
1809 static int efx_nic_dummy_op_int(struct efx_nic *nic)
1811 return 0;
1814 static struct efx_board efx_dummy_board_info = {
1815 .init = efx_nic_dummy_op_int,
1816 .init_leds = efx_port_dummy_op_int,
1817 .set_fault_led = efx_port_dummy_op_blink,
1820 /**************************************************************************
1822 * Data housekeeping
1824 **************************************************************************/
1826 /* This zeroes out and then fills in the invariants in a struct
1827 * efx_nic (including all sub-structures).
1829 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1830 struct pci_dev *pci_dev, struct net_device *net_dev)
1832 struct efx_channel *channel;
1833 struct efx_tx_queue *tx_queue;
1834 struct efx_rx_queue *rx_queue;
1835 int i, rc;
1837 /* Initialise common structures */
1838 memset(efx, 0, sizeof(*efx));
1839 spin_lock_init(&efx->biu_lock);
1840 spin_lock_init(&efx->phy_lock);
1841 INIT_WORK(&efx->reset_work, efx_reset_work);
1842 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1843 efx->pci_dev = pci_dev;
1844 efx->state = STATE_INIT;
1845 efx->reset_pending = RESET_TYPE_NONE;
1846 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1847 efx->board_info = efx_dummy_board_info;
1849 efx->net_dev = net_dev;
1850 efx->rx_checksum_enabled = 1;
1851 spin_lock_init(&efx->netif_stop_lock);
1852 spin_lock_init(&efx->stats_lock);
1853 mutex_init(&efx->mac_lock);
1854 efx->phy_op = &efx_dummy_phy_operations;
1855 efx->mii.dev = net_dev;
1856 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1857 atomic_set(&efx->netif_stop_count, 1);
1859 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1860 channel = &efx->channel[i];
1861 channel->efx = efx;
1862 channel->channel = i;
1863 channel->evqnum = i;
1864 channel->work_pending = 0;
1866 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
1867 tx_queue = &efx->tx_queue[i];
1868 tx_queue->efx = efx;
1869 tx_queue->queue = i;
1870 tx_queue->buffer = NULL;
1871 tx_queue->channel = &efx->channel[0]; /* for safety */
1872 tx_queue->tso_headers_free = NULL;
1874 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1875 rx_queue = &efx->rx_queue[i];
1876 rx_queue->efx = efx;
1877 rx_queue->queue = i;
1878 rx_queue->channel = &efx->channel[0]; /* for safety */
1879 rx_queue->buffer = NULL;
1880 spin_lock_init(&rx_queue->add_lock);
1881 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1884 efx->type = type;
1886 /* Sanity-check NIC type */
1887 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1888 (efx->type->txd_ring_mask + 1));
1889 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1890 (efx->type->rxd_ring_mask + 1));
1891 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1892 (efx->type->evq_size - 1));
1893 /* As close as we can get to guaranteeing that we don't overflow */
1894 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1895 (efx->type->txd_ring_mask + 1 +
1896 efx->type->rxd_ring_mask + 1));
1897 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1899 /* Higher numbered interrupt modes are less capable! */
1900 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1901 interrupt_mode);
1903 efx->workqueue = create_singlethread_workqueue("sfc_work");
1904 if (!efx->workqueue) {
1905 rc = -ENOMEM;
1906 goto fail1;
1909 return 0;
1911 fail1:
1912 return rc;
1915 static void efx_fini_struct(struct efx_nic *efx)
1917 if (efx->workqueue) {
1918 destroy_workqueue(efx->workqueue);
1919 efx->workqueue = NULL;
1923 /**************************************************************************
1925 * PCI interface
1927 **************************************************************************/
1929 /* Main body of final NIC shutdown code
1930 * This is called only at module unload (or hotplug removal).
1932 static void efx_pci_remove_main(struct efx_nic *efx)
1934 EFX_ASSERT_RESET_SERIALISED(efx);
1936 /* Skip everything if we never obtained a valid membase */
1937 if (!efx->membase)
1938 return;
1940 efx_fini_channels(efx);
1941 efx_fini_port(efx);
1943 /* Shutdown the board, then the NIC and board state */
1944 falcon_fini_interrupt(efx);
1946 efx_fini_napi(efx);
1947 efx_remove_all(efx);
1950 /* Final NIC shutdown
1951 * This is called only at module unload (or hotplug removal).
1953 static void efx_pci_remove(struct pci_dev *pci_dev)
1955 struct efx_nic *efx;
1957 efx = pci_get_drvdata(pci_dev);
1958 if (!efx)
1959 return;
1961 /* Mark the NIC as fini, then stop the interface */
1962 rtnl_lock();
1963 efx->state = STATE_FINI;
1964 dev_close(efx->net_dev);
1966 /* Allow any queued efx_resets() to complete */
1967 rtnl_unlock();
1969 if (efx->membase == NULL)
1970 goto out;
1972 efx_unregister_netdev(efx);
1974 /* Wait for any scheduled resets to complete. No more will be
1975 * scheduled from this point because efx_stop_all() has been
1976 * called, we are no longer registered with driverlink, and
1977 * the net_device's have been removed. */
1978 flush_workqueue(efx->workqueue);
1980 efx_pci_remove_main(efx);
1982 out:
1983 efx_fini_io(efx);
1984 EFX_LOG(efx, "shutdown successful\n");
1986 pci_set_drvdata(pci_dev, NULL);
1987 efx_fini_struct(efx);
1988 free_netdev(efx->net_dev);
1991 /* Main body of NIC initialisation
1992 * This is called at module load (or hotplug insertion, theoretically).
1994 static int efx_pci_probe_main(struct efx_nic *efx)
1996 int rc;
1998 /* Do start-of-day initialisation */
1999 rc = efx_probe_all(efx);
2000 if (rc)
2001 goto fail1;
2003 rc = efx_init_napi(efx);
2004 if (rc)
2005 goto fail2;
2007 /* Initialise the board */
2008 rc = efx->board_info.init(efx);
2009 if (rc) {
2010 EFX_ERR(efx, "failed to initialise board\n");
2011 goto fail3;
2014 rc = falcon_init_nic(efx);
2015 if (rc) {
2016 EFX_ERR(efx, "failed to initialise NIC\n");
2017 goto fail4;
2020 rc = efx_init_port(efx);
2021 if (rc) {
2022 EFX_ERR(efx, "failed to initialise port\n");
2023 goto fail5;
2026 rc = efx_init_channels(efx);
2027 if (rc)
2028 goto fail6;
2030 rc = falcon_init_interrupt(efx);
2031 if (rc)
2032 goto fail7;
2034 return 0;
2036 fail7:
2037 efx_fini_channels(efx);
2038 fail6:
2039 efx_fini_port(efx);
2040 fail5:
2041 fail4:
2042 fail3:
2043 efx_fini_napi(efx);
2044 fail2:
2045 efx_remove_all(efx);
2046 fail1:
2047 return rc;
2050 /* NIC initialisation
2052 * This is called at module load (or hotplug insertion,
2053 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2054 * sets up and registers the network devices with the kernel and hooks
2055 * the interrupt service routine. It does not prepare the device for
2056 * transmission; this is left to the first time one of the network
2057 * interfaces is brought up (i.e. efx_net_open).
2059 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2060 const struct pci_device_id *entry)
2062 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2063 struct net_device *net_dev;
2064 struct efx_nic *efx;
2065 int i, rc;
2067 /* Allocate and initialise a struct net_device and struct efx_nic */
2068 net_dev = alloc_etherdev(sizeof(*efx));
2069 if (!net_dev)
2070 return -ENOMEM;
2071 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2072 NETIF_F_HIGHDMA | NETIF_F_TSO);
2073 if (lro)
2074 net_dev->features |= NETIF_F_LRO;
2075 efx = net_dev->priv;
2076 pci_set_drvdata(pci_dev, efx);
2077 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2078 if (rc)
2079 goto fail1;
2081 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2083 /* Set up basic I/O (BAR mappings etc) */
2084 rc = efx_init_io(efx);
2085 if (rc)
2086 goto fail2;
2088 /* No serialisation is required with the reset path because
2089 * we're in STATE_INIT. */
2090 for (i = 0; i < 5; i++) {
2091 rc = efx_pci_probe_main(efx);
2092 if (rc == 0)
2093 break;
2095 /* Serialise against efx_reset(). No more resets will be
2096 * scheduled since efx_stop_all() has been called, and we
2097 * have not and never have been registered with either
2098 * the rtnetlink or driverlink layers. */
2099 cancel_work_sync(&efx->reset_work);
2101 /* Retry if a recoverably reset event has been scheduled */
2102 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2103 (efx->reset_pending != RESET_TYPE_ALL))
2104 goto fail3;
2106 efx->reset_pending = RESET_TYPE_NONE;
2109 if (rc) {
2110 EFX_ERR(efx, "Could not reset NIC\n");
2111 goto fail4;
2114 /* Switch to the running state before we expose the device to
2115 * the OS. This is to ensure that the initial gathering of
2116 * MAC stats succeeds. */
2117 rtnl_lock();
2118 efx->state = STATE_RUNNING;
2119 rtnl_unlock();
2121 rc = efx_register_netdev(efx);
2122 if (rc)
2123 goto fail5;
2125 EFX_LOG(efx, "initialisation successful\n");
2127 return 0;
2129 fail5:
2130 efx_pci_remove_main(efx);
2131 fail4:
2132 fail3:
2133 efx_fini_io(efx);
2134 fail2:
2135 efx_fini_struct(efx);
2136 fail1:
2137 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2138 free_netdev(net_dev);
2139 return rc;
2142 static struct pci_driver efx_pci_driver = {
2143 .name = EFX_DRIVER_NAME,
2144 .id_table = efx_pci_table,
2145 .probe = efx_pci_probe,
2146 .remove = efx_pci_remove,
2149 /**************************************************************************
2151 * Kernel module interface
2153 *************************************************************************/
2155 module_param(interrupt_mode, uint, 0444);
2156 MODULE_PARM_DESC(interrupt_mode,
2157 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2159 static int __init efx_init_module(void)
2161 int rc;
2163 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2165 rc = register_netdevice_notifier(&efx_netdev_notifier);
2166 if (rc)
2167 goto err_notifier;
2169 refill_workqueue = create_workqueue("sfc_refill");
2170 if (!refill_workqueue) {
2171 rc = -ENOMEM;
2172 goto err_refill;
2175 rc = pci_register_driver(&efx_pci_driver);
2176 if (rc < 0)
2177 goto err_pci;
2179 return 0;
2181 err_pci:
2182 destroy_workqueue(refill_workqueue);
2183 err_refill:
2184 unregister_netdevice_notifier(&efx_netdev_notifier);
2185 err_notifier:
2186 return rc;
2189 static void __exit efx_exit_module(void)
2191 printk(KERN_INFO "Solarflare NET driver unloading\n");
2193 pci_unregister_driver(&efx_pci_driver);
2194 destroy_workqueue(refill_workqueue);
2195 unregister_netdevice_notifier(&efx_netdev_notifier);
2199 module_init(efx_init_module);
2200 module_exit(efx_exit_module);
2202 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2203 "Solarflare Communications");
2204 MODULE_DESCRIPTION("Solarflare Communications network driver");
2205 MODULE_LICENSE("GPL");
2206 MODULE_DEVICE_TABLE(pci, efx_pci_table);