1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
23 #include "falcon_hwdefs.h"
24 #include "falcon_io.h"
28 #include "workarounds.h"
30 /* Falcon hardware control.
31 * Falcon is the internal codename for the SFC4000 controller that is
32 * present in SFE400X evaluation boards
36 * struct falcon_nic_data - Falcon NIC state
37 * @next_buffer_table: First available buffer table id
38 * @pci_dev2: The secondary PCI device if present
40 struct falcon_nic_data
{
41 unsigned next_buffer_table
;
42 struct pci_dev
*pci_dev2
;
45 /**************************************************************************
49 **************************************************************************
52 static int disable_dma_stats
;
54 /* This is set to 16 for a good reason. In summary, if larger than
55 * 16, the descriptor cache holds more than a default socket
56 * buffer's worth of packets (for UDP we can only have at most one
57 * socket buffer's worth outstanding). This combined with the fact
58 * that we only get 1 TX event per descriptor cache means the NIC
61 #define TX_DC_ENTRIES 16
62 #define TX_DC_ENTRIES_ORDER 0
63 #define TX_DC_BASE 0x130000
65 #define RX_DC_ENTRIES 64
66 #define RX_DC_ENTRIES_ORDER 2
67 #define RX_DC_BASE 0x100000
69 /* RX FIFO XOFF watermark
71 * When the amount of the RX FIFO increases used increases past this
72 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
73 * This also has an effect on RX/TX arbitration
75 static int rx_xoff_thresh_bytes
= -1;
76 module_param(rx_xoff_thresh_bytes
, int, 0644);
77 MODULE_PARM_DESC(rx_xoff_thresh_bytes
, "RX fifo XOFF threshold");
79 /* RX FIFO XON watermark
81 * When the amount of the RX FIFO used decreases below this
82 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
83 * This also has an effect on RX/TX arbitration
85 static int rx_xon_thresh_bytes
= -1;
86 module_param(rx_xon_thresh_bytes
, int, 0644);
87 MODULE_PARM_DESC(rx_xon_thresh_bytes
, "RX fifo XON threshold");
89 /* TX descriptor ring size - min 512 max 4k */
90 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
91 #define FALCON_TXD_RING_SIZE 1024
92 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
94 /* RX descriptor ring size - min 512 max 4k */
95 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
96 #define FALCON_RXD_RING_SIZE 1024
97 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
99 /* Event queue size - max 32k */
100 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
101 #define FALCON_EVQ_SIZE 4096
102 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
104 /* Max number of internal errors. After this resets will not be performed */
105 #define FALCON_MAX_INT_ERRORS 4
107 /* Maximum period that we wait for flush events. If the flush event
108 * doesn't arrive in this period of time then we check if the queue
109 * was disabled anyway. */
110 #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
112 /**************************************************************************
116 **************************************************************************
119 /* DMA address mask */
120 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
122 /* TX DMA length mask (13-bit) */
123 #define FALCON_TX_DMA_MASK (4096 - 1)
125 /* Size and alignment of special buffers (4KB) */
126 #define FALCON_BUF_SIZE 4096
128 /* Dummy SRAM size code */
129 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
131 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
132 #define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
133 #define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
134 #define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
135 #define PCI_EXP_LNKSTA_LNK_WID 0x3f0
136 #define PCI_EXP_LNKSTA_LNK_WID_LBN 4
138 #define FALCON_IS_DUAL_FUNC(efx) \
139 (falcon_rev(efx) < FALCON_REV_B0)
141 /**************************************************************************
143 * Falcon hardware access
145 **************************************************************************/
147 /* Read the current event from the event queue */
148 static inline efx_qword_t
*falcon_event(struct efx_channel
*channel
,
151 return (((efx_qword_t
*) (channel
->eventq
.addr
)) + index
);
154 /* See if an event is present
156 * We check both the high and low dword of the event for all ones. We
157 * wrote all ones when we cleared the event, and no valid event can
158 * have all ones in either its high or low dwords. This approach is
159 * robust against reordering.
161 * Note that using a single 64-bit comparison is incorrect; even
162 * though the CPU read will be atomic, the DMA write may not be.
164 static inline int falcon_event_present(efx_qword_t
*event
)
166 return (!(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
167 EFX_DWORD_IS_ALL_ONES(event
->dword
[1])));
170 /**************************************************************************
172 * I2C bus - this is a bit-bashing interface using GPIO pins
173 * Note that it uses the output enables to tristate the outputs
174 * SDA is the data pin and SCL is the clock
176 **************************************************************************
178 static void falcon_setsdascl(struct efx_i2c_interface
*i2c
)
182 falcon_read(i2c
->efx
, ®
, GPIO_CTL_REG_KER
);
183 EFX_SET_OWORD_FIELD(reg
, GPIO0_OEN
, (i2c
->scl
? 0 : 1));
184 EFX_SET_OWORD_FIELD(reg
, GPIO3_OEN
, (i2c
->sda
? 0 : 1));
185 falcon_write(i2c
->efx
, ®
, GPIO_CTL_REG_KER
);
188 static int falcon_getsda(struct efx_i2c_interface
*i2c
)
192 falcon_read(i2c
->efx
, ®
, GPIO_CTL_REG_KER
);
193 return EFX_OWORD_FIELD(reg
, GPIO3_IN
);
196 static int falcon_getscl(struct efx_i2c_interface
*i2c
)
200 falcon_read(i2c
->efx
, ®
, GPIO_CTL_REG_KER
);
201 return EFX_DWORD_FIELD(reg
, GPIO0_IN
);
204 static struct efx_i2c_bit_operations falcon_i2c_bit_operations
= {
205 .setsda
= falcon_setsdascl
,
206 .setscl
= falcon_setsdascl
,
207 .getsda
= falcon_getsda
,
208 .getscl
= falcon_getscl
,
213 /**************************************************************************
215 * Falcon special buffer handling
216 * Special buffers are used for event queues and the TX and RX
219 *************************************************************************/
222 * Initialise a Falcon special buffer
224 * This will define a buffer (previously allocated via
225 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
226 * it to be used for event queues, descriptor rings etc.
229 falcon_init_special_buffer(struct efx_nic
*efx
,
230 struct efx_special_buffer
*buffer
)
232 efx_qword_t buf_desc
;
237 EFX_BUG_ON_PARANOID(!buffer
->addr
);
239 /* Write buffer descriptors to NIC */
240 for (i
= 0; i
< buffer
->entries
; i
++) {
241 index
= buffer
->index
+ i
;
242 dma_addr
= buffer
->dma_addr
+ (i
* 4096);
243 EFX_LOG(efx
, "mapping special buffer %d at %llx\n",
244 index
, (unsigned long long)dma_addr
);
245 EFX_POPULATE_QWORD_4(buf_desc
,
246 IP_DAT_BUF_SIZE
, IP_DAT_BUF_SIZE_4K
,
248 BUF_ADR_FBUF
, (dma_addr
>> 12),
249 BUF_OWNER_ID_FBUF
, 0);
250 falcon_write_sram(efx
, &buf_desc
, index
);
256 /* Unmaps a buffer from Falcon and clears the buffer table entries */
258 falcon_fini_special_buffer(struct efx_nic
*efx
,
259 struct efx_special_buffer
*buffer
)
261 efx_oword_t buf_tbl_upd
;
262 unsigned int start
= buffer
->index
;
263 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
265 if (!buffer
->entries
)
268 EFX_LOG(efx
, "unmapping special buffers %d-%d\n",
269 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
271 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
275 BUF_CLR_START_ID
, start
);
276 falcon_write(efx
, &buf_tbl_upd
, BUF_TBL_UPD_REG_KER
);
280 * Allocate a new Falcon special buffer
282 * This allocates memory for a new buffer, clears it and allocates a
283 * new buffer ID range. It does not write into Falcon's buffer table.
285 * This call will allocate 4KB buffers, since Falcon can't use 8KB
286 * buffers for event queues and descriptor rings.
288 static int falcon_alloc_special_buffer(struct efx_nic
*efx
,
289 struct efx_special_buffer
*buffer
,
292 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
294 len
= ALIGN(len
, FALCON_BUF_SIZE
);
296 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
301 buffer
->entries
= len
/ FALCON_BUF_SIZE
;
302 BUG_ON(buffer
->dma_addr
& (FALCON_BUF_SIZE
- 1));
304 /* All zeros is a potentially valid event so memset to 0xff */
305 memset(buffer
->addr
, 0xff, len
);
307 /* Select new buffer ID */
308 buffer
->index
= nic_data
->next_buffer_table
;
309 nic_data
->next_buffer_table
+= buffer
->entries
;
311 EFX_LOG(efx
, "allocating special buffers %d-%d at %llx+%x "
312 "(virt %p phys %lx)\n", buffer
->index
,
313 buffer
->index
+ buffer
->entries
- 1,
314 (unsigned long long)buffer
->dma_addr
, len
,
315 buffer
->addr
, virt_to_phys(buffer
->addr
));
320 static void falcon_free_special_buffer(struct efx_nic
*efx
,
321 struct efx_special_buffer
*buffer
)
326 EFX_LOG(efx
, "deallocating special buffers %d-%d at %llx+%x "
327 "(virt %p phys %lx)\n", buffer
->index
,
328 buffer
->index
+ buffer
->entries
- 1,
329 (unsigned long long)buffer
->dma_addr
, buffer
->len
,
330 buffer
->addr
, virt_to_phys(buffer
->addr
));
332 pci_free_consistent(efx
->pci_dev
, buffer
->len
, buffer
->addr
,
338 /**************************************************************************
340 * Falcon generic buffer handling
341 * These buffers are used for interrupt status and MAC stats
343 **************************************************************************/
345 static int falcon_alloc_buffer(struct efx_nic
*efx
,
346 struct efx_buffer
*buffer
, unsigned int len
)
348 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
353 memset(buffer
->addr
, 0, len
);
357 static void falcon_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
360 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
361 buffer
->addr
, buffer
->dma_addr
);
366 /**************************************************************************
370 **************************************************************************/
372 /* Returns a pointer to the specified transmit descriptor in the TX
373 * descriptor queue belonging to the specified channel.
375 static inline efx_qword_t
*falcon_tx_desc(struct efx_tx_queue
*tx_queue
,
378 return (((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
);
381 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
382 static inline void falcon_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
387 write_ptr
= tx_queue
->write_count
& FALCON_TXD_RING_MASK
;
388 EFX_POPULATE_DWORD_1(reg
, TX_DESC_WPTR_DWORD
, write_ptr
);
389 falcon_writel_page(tx_queue
->efx
, ®
,
390 TX_DESC_UPD_REG_KER_DWORD
, tx_queue
->queue
);
394 /* For each entry inserted into the software descriptor ring, create a
395 * descriptor in the hardware TX descriptor ring (in host memory), and
398 void falcon_push_buffers(struct efx_tx_queue
*tx_queue
)
401 struct efx_tx_buffer
*buffer
;
405 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
408 write_ptr
= tx_queue
->write_count
& FALCON_TXD_RING_MASK
;
409 buffer
= &tx_queue
->buffer
[write_ptr
];
410 txd
= falcon_tx_desc(tx_queue
, write_ptr
);
411 ++tx_queue
->write_count
;
413 /* Create TX descriptor ring entry */
414 EFX_POPULATE_QWORD_5(*txd
,
416 TX_KER_CONT
, buffer
->continuation
,
417 TX_KER_BYTE_CNT
, buffer
->len
,
418 TX_KER_BUF_REGION
, 0,
419 TX_KER_BUF_ADR
, buffer
->dma_addr
);
420 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
422 wmb(); /* Ensure descriptors are written before they are fetched */
423 falcon_notify_tx_desc(tx_queue
);
426 /* Allocate hardware resources for a TX queue */
427 int falcon_probe_tx(struct efx_tx_queue
*tx_queue
)
429 struct efx_nic
*efx
= tx_queue
->efx
;
430 return falcon_alloc_special_buffer(efx
, &tx_queue
->txd
,
431 FALCON_TXD_RING_SIZE
*
432 sizeof(efx_qword_t
));
435 int falcon_init_tx(struct efx_tx_queue
*tx_queue
)
437 efx_oword_t tx_desc_ptr
;
438 struct efx_nic
*efx
= tx_queue
->efx
;
441 /* Pin TX descriptor ring */
442 rc
= falcon_init_special_buffer(efx
, &tx_queue
->txd
);
446 /* Push TX descriptor ring to card */
447 EFX_POPULATE_OWORD_10(tx_desc_ptr
,
451 TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
452 TX_DESCQ_EVQ_ID
, tx_queue
->channel
->evqnum
,
453 TX_DESCQ_OWNER_ID
, 0,
454 TX_DESCQ_LABEL
, tx_queue
->queue
,
455 TX_DESCQ_SIZE
, FALCON_TXD_RING_ORDER
,
457 TX_NON_IP_DROP_DIS_B0
, 1);
459 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
460 int csum
= !(efx
->net_dev
->features
& NETIF_F_IP_CSUM
);
461 EFX_SET_OWORD_FIELD(tx_desc_ptr
, TX_IP_CHKSM_DIS_B0
, csum
);
462 EFX_SET_OWORD_FIELD(tx_desc_ptr
, TX_TCP_CHKSM_DIS_B0
, csum
);
465 falcon_write_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
468 if (falcon_rev(efx
) < FALCON_REV_B0
) {
471 BUG_ON(tx_queue
->queue
>= 128); /* HW limit */
473 falcon_read(efx
, ®
, TX_CHKSM_CFG_REG_KER_A1
);
474 if (efx
->net_dev
->features
& NETIF_F_IP_CSUM
)
475 clear_bit_le(tx_queue
->queue
, (void *)®
);
477 set_bit_le(tx_queue
->queue
, (void *)®
);
478 falcon_write(efx
, ®
, TX_CHKSM_CFG_REG_KER_A1
);
484 static int falcon_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
486 struct efx_nic
*efx
= tx_queue
->efx
;
487 struct efx_channel
*channel
= &efx
->channel
[0];
488 efx_oword_t tx_flush_descq
;
489 unsigned int read_ptr
, i
;
491 /* Post a flush command */
492 EFX_POPULATE_OWORD_2(tx_flush_descq
,
493 TX_FLUSH_DESCQ_CMD
, 1,
494 TX_FLUSH_DESCQ
, tx_queue
->queue
);
495 falcon_write(efx
, &tx_flush_descq
, TX_FLUSH_DESCQ_REG_KER
);
496 msleep(FALCON_FLUSH_TIMEOUT
);
498 if (EFX_WORKAROUND_7803(efx
))
501 /* Look for a flush completed event */
502 read_ptr
= channel
->eventq_read_ptr
;
503 for (i
= 0; i
< FALCON_EVQ_SIZE
; ++i
) {
504 efx_qword_t
*event
= falcon_event(channel
, read_ptr
);
505 int ev_code
, ev_sub_code
, ev_queue
;
506 if (!falcon_event_present(event
))
509 ev_code
= EFX_QWORD_FIELD(*event
, EV_CODE
);
510 ev_sub_code
= EFX_QWORD_FIELD(*event
, DRIVER_EV_SUB_CODE
);
511 ev_queue
= EFX_QWORD_FIELD(*event
, DRIVER_EV_TX_DESCQ_ID
);
512 if ((ev_sub_code
== TX_DESCQ_FLS_DONE_EV_DECODE
) &&
513 (ev_queue
== tx_queue
->queue
)) {
514 EFX_LOG(efx
, "tx queue %d flush command succesful\n",
519 read_ptr
= (read_ptr
+ 1) & FALCON_EVQ_MASK
;
522 if (EFX_WORKAROUND_11557(efx
)) {
526 falcon_read_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
528 enabled
= EFX_OWORD_FIELD(reg
, TX_DESCQ_EN
);
530 EFX_LOG(efx
, "tx queue %d disabled without a "
531 "flush event seen\n", tx_queue
->queue
);
536 EFX_ERR(efx
, "tx queue %d flush command timed out\n", tx_queue
->queue
);
540 void falcon_fini_tx(struct efx_tx_queue
*tx_queue
)
542 struct efx_nic
*efx
= tx_queue
->efx
;
543 efx_oword_t tx_desc_ptr
;
545 /* Stop the hardware using the queue */
546 if (falcon_flush_tx_queue(tx_queue
))
547 EFX_ERR(efx
, "failed to flush tx queue %d\n", tx_queue
->queue
);
549 /* Remove TX descriptor ring from card */
550 EFX_ZERO_OWORD(tx_desc_ptr
);
551 falcon_write_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
554 /* Unpin TX descriptor ring */
555 falcon_fini_special_buffer(efx
, &tx_queue
->txd
);
558 /* Free buffers backing TX queue */
559 void falcon_remove_tx(struct efx_tx_queue
*tx_queue
)
561 falcon_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
564 /**************************************************************************
568 **************************************************************************/
570 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
571 static inline efx_qword_t
*falcon_rx_desc(struct efx_rx_queue
*rx_queue
,
574 return (((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
);
577 /* This creates an entry in the RX descriptor queue */
578 static inline void falcon_build_rx_desc(struct efx_rx_queue
*rx_queue
,
581 struct efx_rx_buffer
*rx_buf
;
584 rxd
= falcon_rx_desc(rx_queue
, index
);
585 rx_buf
= efx_rx_buffer(rx_queue
, index
);
586 EFX_POPULATE_QWORD_3(*rxd
,
589 rx_queue
->efx
->type
->rx_buffer_padding
,
590 RX_KER_BUF_REGION
, 0,
591 RX_KER_BUF_ADR
, rx_buf
->dma_addr
);
594 /* This writes to the RX_DESC_WPTR register for the specified receive
597 void falcon_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
602 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
603 falcon_build_rx_desc(rx_queue
,
604 rx_queue
->notified_count
&
605 FALCON_RXD_RING_MASK
);
606 ++rx_queue
->notified_count
;
610 write_ptr
= rx_queue
->added_count
& FALCON_RXD_RING_MASK
;
611 EFX_POPULATE_DWORD_1(reg
, RX_DESC_WPTR_DWORD
, write_ptr
);
612 falcon_writel_page(rx_queue
->efx
, ®
,
613 RX_DESC_UPD_REG_KER_DWORD
, rx_queue
->queue
);
616 int falcon_probe_rx(struct efx_rx_queue
*rx_queue
)
618 struct efx_nic
*efx
= rx_queue
->efx
;
619 return falcon_alloc_special_buffer(efx
, &rx_queue
->rxd
,
620 FALCON_RXD_RING_SIZE
*
621 sizeof(efx_qword_t
));
624 int falcon_init_rx(struct efx_rx_queue
*rx_queue
)
626 efx_oword_t rx_desc_ptr
;
627 struct efx_nic
*efx
= rx_queue
->efx
;
629 int is_b0
= falcon_rev(efx
) >= FALCON_REV_B0
;
630 int iscsi_digest_en
= is_b0
;
632 EFX_LOG(efx
, "RX queue %d ring in special buffers %d-%d\n",
633 rx_queue
->queue
, rx_queue
->rxd
.index
,
634 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
636 /* Pin RX descriptor ring */
637 rc
= falcon_init_special_buffer(efx
, &rx_queue
->rxd
);
641 /* Push RX descriptor ring to card */
642 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
643 RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
644 RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
645 RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
646 RX_DESCQ_EVQ_ID
, rx_queue
->channel
->evqnum
,
647 RX_DESCQ_OWNER_ID
, 0,
648 RX_DESCQ_LABEL
, rx_queue
->queue
,
649 RX_DESCQ_SIZE
, FALCON_RXD_RING_ORDER
,
650 RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
651 /* For >=B0 this is scatter so disable */
652 RX_DESCQ_JUMBO
, !is_b0
,
654 falcon_write_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
659 static int falcon_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
661 struct efx_nic
*efx
= rx_queue
->efx
;
662 struct efx_channel
*channel
= &efx
->channel
[0];
663 unsigned int read_ptr
, i
;
664 efx_oword_t rx_flush_descq
;
666 /* Post a flush command */
667 EFX_POPULATE_OWORD_2(rx_flush_descq
,
668 RX_FLUSH_DESCQ_CMD
, 1,
669 RX_FLUSH_DESCQ
, rx_queue
->queue
);
670 falcon_write(efx
, &rx_flush_descq
, RX_FLUSH_DESCQ_REG_KER
);
671 msleep(FALCON_FLUSH_TIMEOUT
);
673 if (EFX_WORKAROUND_7803(efx
))
676 /* Look for a flush completed event */
677 read_ptr
= channel
->eventq_read_ptr
;
678 for (i
= 0; i
< FALCON_EVQ_SIZE
; ++i
) {
679 efx_qword_t
*event
= falcon_event(channel
, read_ptr
);
680 int ev_code
, ev_sub_code
, ev_queue
, ev_failed
;
681 if (!falcon_event_present(event
))
684 ev_code
= EFX_QWORD_FIELD(*event
, EV_CODE
);
685 ev_sub_code
= EFX_QWORD_FIELD(*event
, DRIVER_EV_SUB_CODE
);
686 ev_queue
= EFX_QWORD_FIELD(*event
, DRIVER_EV_RX_DESCQ_ID
);
687 ev_failed
= EFX_QWORD_FIELD(*event
, DRIVER_EV_RX_FLUSH_FAIL
);
689 if ((ev_sub_code
== RX_DESCQ_FLS_DONE_EV_DECODE
) &&
690 (ev_queue
== rx_queue
->queue
)) {
692 EFX_INFO(efx
, "rx queue %d flush command "
693 "failed\n", rx_queue
->queue
);
696 EFX_LOG(efx
, "rx queue %d flush command "
697 "succesful\n", rx_queue
->queue
);
702 read_ptr
= (read_ptr
+ 1) & FALCON_EVQ_MASK
;
705 if (EFX_WORKAROUND_11557(efx
)) {
709 falcon_read_table(efx
, ®
, efx
->type
->rxd_ptr_tbl_base
,
711 enabled
= EFX_OWORD_FIELD(reg
, RX_DESCQ_EN
);
713 EFX_LOG(efx
, "rx queue %d disabled without a "
714 "flush event seen\n", rx_queue
->queue
);
719 EFX_ERR(efx
, "rx queue %d flush command timed out\n", rx_queue
->queue
);
723 void falcon_fini_rx(struct efx_rx_queue
*rx_queue
)
725 efx_oword_t rx_desc_ptr
;
726 struct efx_nic
*efx
= rx_queue
->efx
;
729 /* Try and flush the rx queue. This may need to be repeated */
730 for (i
= 0; i
< 5; i
++) {
731 rc
= falcon_flush_rx_queue(rx_queue
);
737 EFX_ERR(efx
, "failed to flush rx queue %d\n", rx_queue
->queue
);
739 /* Remove RX descriptor ring from card */
740 EFX_ZERO_OWORD(rx_desc_ptr
);
741 falcon_write_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
744 /* Unpin RX descriptor ring */
745 falcon_fini_special_buffer(efx
, &rx_queue
->rxd
);
748 /* Free buffers backing RX queue */
749 void falcon_remove_rx(struct efx_rx_queue
*rx_queue
)
751 falcon_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
754 /**************************************************************************
756 * Falcon event queue processing
757 * Event queues are processed by per-channel tasklets.
759 **************************************************************************/
761 /* Update a channel's event queue's read pointer (RPTR) register
763 * This writes the EVQ_RPTR_REG register for the specified channel's
766 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
767 * whereas channel->eventq_read_ptr contains the index of the "next to
770 void falcon_eventq_read_ack(struct efx_channel
*channel
)
773 struct efx_nic
*efx
= channel
->efx
;
775 EFX_POPULATE_DWORD_1(reg
, EVQ_RPTR_DWORD
, channel
->eventq_read_ptr
);
776 falcon_writel_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
780 /* Use HW to insert a SW defined event */
781 void falcon_generate_event(struct efx_channel
*channel
, efx_qword_t
*event
)
783 efx_oword_t drv_ev_reg
;
785 EFX_POPULATE_OWORD_2(drv_ev_reg
,
786 DRV_EV_QID
, channel
->evqnum
,
788 EFX_QWORD_FIELD64(*event
, WHOLE_EVENT
));
789 falcon_write(channel
->efx
, &drv_ev_reg
, DRV_EV_REG_KER
);
792 /* Handle a transmit completion event
794 * Falcon batches TX completion events; the message we receive is of
795 * the form "complete all TX events up to this index".
797 static inline void falcon_handle_tx_event(struct efx_channel
*channel
,
800 unsigned int tx_ev_desc_ptr
;
801 unsigned int tx_ev_q_label
;
802 struct efx_tx_queue
*tx_queue
;
803 struct efx_nic
*efx
= channel
->efx
;
805 if (likely(EFX_QWORD_FIELD(*event
, TX_EV_COMP
))) {
806 /* Transmit completion */
807 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, TX_EV_DESC_PTR
);
808 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, TX_EV_Q_LABEL
);
809 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
810 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
811 } else if (EFX_QWORD_FIELD(*event
, TX_EV_WQ_FF_FULL
)) {
812 /* Rewrite the FIFO write pointer */
813 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, TX_EV_Q_LABEL
);
814 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
816 if (efx_dev_registered(efx
))
817 netif_tx_lock(efx
->net_dev
);
818 falcon_notify_tx_desc(tx_queue
);
819 if (efx_dev_registered(efx
))
820 netif_tx_unlock(efx
->net_dev
);
821 } else if (EFX_QWORD_FIELD(*event
, TX_EV_PKT_ERR
) &&
822 EFX_WORKAROUND_10727(efx
)) {
823 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
825 EFX_ERR(efx
, "channel %d unexpected TX event "
826 EFX_QWORD_FMT
"\n", channel
->channel
,
827 EFX_QWORD_VAL(*event
));
831 /* Check received packet's destination MAC address. */
832 static int check_dest_mac(struct efx_rx_queue
*rx_queue
,
833 const efx_qword_t
*event
)
835 struct efx_rx_buffer
*rx_buf
;
836 struct efx_nic
*efx
= rx_queue
->efx
;
840 if (efx
->promiscuous
)
843 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, RX_EV_DESC_PTR
);
844 rx_buf
= efx_rx_buffer(rx_queue
, rx_ev_desc_ptr
);
845 eh
= (struct ethhdr
*)rx_buf
->data
;
846 if (memcmp(eh
->h_dest
, efx
->net_dev
->dev_addr
, ETH_ALEN
))
851 /* Detect errors included in the rx_evt_pkt_ok bit. */
852 static void falcon_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
853 const efx_qword_t
*event
,
854 unsigned *rx_ev_pkt_ok
,
855 int *discard
, int byte_count
)
857 struct efx_nic
*efx
= rx_queue
->efx
;
858 unsigned rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
859 unsigned rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
860 unsigned rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
861 unsigned rx_ev_pkt_type
, rx_ev_other_err
, rx_ev_pause_frm
;
862 unsigned rx_ev_ip_frag_err
, rx_ev_hdr_type
, rx_ev_mcast_pkt
;
865 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, RX_EV_HDR_TYPE
);
866 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, RX_EV_MCAST_PKT
);
867 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, RX_EV_TOBE_DISC
);
868 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, RX_EV_PKT_TYPE
);
869 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
870 RX_EV_BUF_OWNER_ID_ERR
);
871 rx_ev_ip_frag_err
= EFX_QWORD_FIELD(*event
, RX_EV_IF_FRAG_ERR
);
872 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
873 RX_EV_IP_HDR_CHKSUM_ERR
);
874 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
875 RX_EV_TCP_UDP_CHKSUM_ERR
);
876 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, RX_EV_ETH_CRC_ERR
);
877 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, RX_EV_FRM_TRUNC
);
878 rx_ev_drib_nib
= ((falcon_rev(efx
) >= FALCON_REV_B0
) ?
879 0 : EFX_QWORD_FIELD(*event
, RX_EV_DRIB_NIB
));
880 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, RX_EV_PAUSE_FRM_ERR
);
882 /* Every error apart from tobe_disc and pause_frm */
883 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
884 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
885 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
887 snap
= (rx_ev_pkt_type
== RX_EV_PKT_TYPE_LLC_DECODE
) ||
888 (rx_ev_pkt_type
== RX_EV_PKT_TYPE_VLAN_LLC_DECODE
);
889 non_ip
= (rx_ev_hdr_type
== RX_EV_HDR_TYPE_NON_IP_DECODE
);
891 /* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the
892 * length field of an LLC frame, which sets TOBE_DISC. We could set
893 * PASS_LEN_ERR, but we want the MAC to filter out short frames (to
894 * protect the RX block).
896 * bug5475 - LLC/SNAP: Falcon identifies SNAP packets.
897 * bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag.
898 * LLC can't encapsulate IP, so by definition
899 * these packets are NON_IP.
901 * Unicast mismatch will also cause TOBE_DISC, so the driver needs
904 if (EFX_WORKAROUND_5475(efx
) && rx_ev_tobe_disc
&& (snap
|| non_ip
)) {
905 /* If all the other flags are zero then we can state the
906 * entire packet is ok, which will flag to the kernel not
907 * to recalculate checksums.
909 if (!(non_ip
| rx_ev_other_err
| rx_ev_pause_frm
))
914 /* TOBE_DISC is set for unicast mismatch. But given that
915 * we can't trust TOBE_DISC here, we must validate the dest
916 * MAC address ourselves.
918 if (!rx_ev_mcast_pkt
&& !check_dest_mac(rx_queue
, event
))
922 /* Count errors that are not in MAC stats. */
924 ++rx_queue
->channel
->n_rx_frm_trunc
;
925 else if (rx_ev_tobe_disc
)
926 ++rx_queue
->channel
->n_rx_tobe_disc
;
927 else if (rx_ev_ip_hdr_chksum_err
)
928 ++rx_queue
->channel
->n_rx_ip_hdr_chksum_err
;
929 else if (rx_ev_tcp_udp_chksum_err
)
930 ++rx_queue
->channel
->n_rx_tcp_udp_chksum_err
;
931 if (rx_ev_ip_frag_err
)
932 ++rx_queue
->channel
->n_rx_ip_frag_err
;
934 /* The frame must be discarded if any of these are true. */
935 *discard
= (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
936 rx_ev_tobe_disc
| rx_ev_pause_frm
);
938 /* TOBE_DISC is expected on unicast mismatches; don't print out an
939 * error message. FRM_TRUNC indicates RXDP dropped the packet due
940 * to a FIFO overflow.
942 #ifdef EFX_ENABLE_DEBUG
943 if (rx_ev_other_err
) {
944 EFX_INFO_RL(efx
, " RX queue %d unexpected RX event "
945 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s%s\n",
946 rx_queue
->queue
, EFX_QWORD_VAL(*event
),
947 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
948 rx_ev_ip_hdr_chksum_err
?
949 " [IP_HDR_CHKSUM_ERR]" : "",
950 rx_ev_tcp_udp_chksum_err
?
951 " [TCP_UDP_CHKSUM_ERR]" : "",
952 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
953 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
954 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
955 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
956 rx_ev_pause_frm
? " [PAUSE]" : "",
957 snap
? " [SNAP/LLC]" : "");
961 if (unlikely(rx_ev_eth_crc_err
&& EFX_WORKAROUND_10750(efx
) &&
962 efx
->phy_type
== PHY_TYPE_10XPRESS
))
963 tenxpress_crc_err(efx
);
966 /* Handle receive events that are not in-order. */
967 static void falcon_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
,
970 struct efx_nic
*efx
= rx_queue
->efx
;
971 unsigned expected
, dropped
;
973 expected
= rx_queue
->removed_count
& FALCON_RXD_RING_MASK
;
974 dropped
= ((index
+ FALCON_RXD_RING_SIZE
- expected
) &
975 FALCON_RXD_RING_MASK
);
976 EFX_INFO(efx
, "dropped %d events (index=%d expected=%d)\n",
977 dropped
, index
, expected
);
979 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
980 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
983 /* Handle a packet received event
985 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
986 * wrong destination address
987 * Also "is multicast" and "matches multicast filter" flags can be used to
988 * discard non-matching multicast packets.
990 static inline int falcon_handle_rx_event(struct efx_channel
*channel
,
991 const efx_qword_t
*event
)
993 unsigned int rx_ev_q_label
, rx_ev_desc_ptr
, rx_ev_byte_cnt
;
994 unsigned int rx_ev_pkt_ok
, rx_ev_hdr_type
, rx_ev_mcast_pkt
;
995 unsigned expected_ptr
;
996 int discard
= 0, checksummed
;
997 struct efx_rx_queue
*rx_queue
;
998 struct efx_nic
*efx
= channel
->efx
;
1000 /* Basic packet information */
1001 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, RX_EV_BYTE_CNT
);
1002 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, RX_EV_PKT_OK
);
1003 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, RX_EV_HDR_TYPE
);
1004 WARN_ON(EFX_QWORD_FIELD(*event
, RX_EV_JUMBO_CONT
));
1005 WARN_ON(EFX_QWORD_FIELD(*event
, RX_EV_SOP
) != 1);
1007 rx_ev_q_label
= EFX_QWORD_FIELD(*event
, RX_EV_Q_LABEL
);
1008 rx_queue
= &efx
->rx_queue
[rx_ev_q_label
];
1010 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, RX_EV_DESC_PTR
);
1011 expected_ptr
= rx_queue
->removed_count
& FALCON_RXD_RING_MASK
;
1012 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
)) {
1013 falcon_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
1014 return rx_ev_q_label
;
1017 if (likely(rx_ev_pkt_ok
)) {
1018 /* If packet is marked as OK and packet type is TCP/IPv4 or
1019 * UDP/IPv4, then we can rely on the hardware checksum.
1021 checksummed
= RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type
);
1023 falcon_handle_rx_not_ok(rx_queue
, event
, &rx_ev_pkt_ok
,
1024 &discard
, rx_ev_byte_cnt
);
1028 /* Detect multicast packets that didn't match the filter */
1029 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, RX_EV_MCAST_PKT
);
1030 if (rx_ev_mcast_pkt
) {
1031 unsigned int rx_ev_mcast_hash_match
=
1032 EFX_QWORD_FIELD(*event
, RX_EV_MCAST_HASH_MATCH
);
1034 if (unlikely(!rx_ev_mcast_hash_match
))
1038 /* Handle received packet */
1039 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
,
1040 checksummed
, discard
);
1042 return rx_ev_q_label
;
1045 /* Global events are basically PHY events */
1046 static void falcon_handle_global_event(struct efx_channel
*channel
,
1049 struct efx_nic
*efx
= channel
->efx
;
1050 int is_phy_event
= 0, handled
= 0;
1052 /* Check for interrupt on either port. Some boards have a
1053 * single PHY wired to the interrupt line for port 1. */
1054 if (EFX_QWORD_FIELD(*event
, G_PHY0_INTR
) ||
1055 EFX_QWORD_FIELD(*event
, G_PHY1_INTR
) ||
1056 EFX_QWORD_FIELD(*event
, XG_PHY_INTR
))
1059 if ((falcon_rev(efx
) >= FALCON_REV_B0
) &&
1060 EFX_OWORD_FIELD(*event
, XG_MNT_INTR_B0
))
1064 efx
->phy_op
->clear_interrupt(efx
);
1065 queue_work(efx
->workqueue
, &efx
->reconfigure_work
);
1069 if (EFX_QWORD_FIELD_VER(efx
, *event
, RX_RECOVERY
)) {
1070 EFX_ERR(efx
, "channel %d seen global RX_RESET "
1071 "event. Resetting.\n", channel
->channel
);
1073 atomic_inc(&efx
->rx_reset
);
1074 efx_schedule_reset(efx
, EFX_WORKAROUND_6555(efx
) ?
1075 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
1080 EFX_ERR(efx
, "channel %d unknown global event "
1081 EFX_QWORD_FMT
"\n", channel
->channel
,
1082 EFX_QWORD_VAL(*event
));
1085 static void falcon_handle_driver_event(struct efx_channel
*channel
,
1088 struct efx_nic
*efx
= channel
->efx
;
1089 unsigned int ev_sub_code
;
1090 unsigned int ev_sub_data
;
1092 ev_sub_code
= EFX_QWORD_FIELD(*event
, DRIVER_EV_SUB_CODE
);
1093 ev_sub_data
= EFX_QWORD_FIELD(*event
, DRIVER_EV_SUB_DATA
);
1095 switch (ev_sub_code
) {
1096 case TX_DESCQ_FLS_DONE_EV_DECODE
:
1097 EFX_TRACE(efx
, "channel %d TXQ %d flushed\n",
1098 channel
->channel
, ev_sub_data
);
1100 case RX_DESCQ_FLS_DONE_EV_DECODE
:
1101 EFX_TRACE(efx
, "channel %d RXQ %d flushed\n",
1102 channel
->channel
, ev_sub_data
);
1104 case EVQ_INIT_DONE_EV_DECODE
:
1105 EFX_LOG(efx
, "channel %d EVQ %d initialised\n",
1106 channel
->channel
, ev_sub_data
);
1108 case SRM_UPD_DONE_EV_DECODE
:
1109 EFX_TRACE(efx
, "channel %d SRAM update done\n",
1112 case WAKE_UP_EV_DECODE
:
1113 EFX_TRACE(efx
, "channel %d RXQ %d wakeup event\n",
1114 channel
->channel
, ev_sub_data
);
1116 case TIMER_EV_DECODE
:
1117 EFX_TRACE(efx
, "channel %d RX queue %d timer expired\n",
1118 channel
->channel
, ev_sub_data
);
1120 case RX_RECOVERY_EV_DECODE
:
1121 EFX_ERR(efx
, "channel %d seen DRIVER RX_RESET event. "
1122 "Resetting.\n", channel
->channel
);
1123 atomic_inc(&efx
->rx_reset
);
1124 efx_schedule_reset(efx
,
1125 EFX_WORKAROUND_6555(efx
) ?
1126 RESET_TYPE_RX_RECOVERY
:
1127 RESET_TYPE_DISABLE
);
1129 case RX_DSC_ERROR_EV_DECODE
:
1130 EFX_ERR(efx
, "RX DMA Q %d reports descriptor fetch error."
1131 " RX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
1132 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
1134 case TX_DSC_ERROR_EV_DECODE
:
1135 EFX_ERR(efx
, "TX DMA Q %d reports descriptor fetch error."
1136 " TX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
1137 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
1140 EFX_TRACE(efx
, "channel %d unknown driver event code %d "
1141 "data %04x\n", channel
->channel
, ev_sub_code
,
1147 int falcon_process_eventq(struct efx_channel
*channel
, int *rx_quota
)
1149 unsigned int read_ptr
;
1150 efx_qword_t event
, *p_event
;
1155 read_ptr
= channel
->eventq_read_ptr
;
1158 p_event
= falcon_event(channel
, read_ptr
);
1161 if (!falcon_event_present(&event
))
1165 EFX_TRACE(channel
->efx
, "channel %d event is "EFX_QWORD_FMT
"\n",
1166 channel
->channel
, EFX_QWORD_VAL(event
));
1168 /* Clear this event by marking it all ones */
1169 EFX_SET_QWORD(*p_event
);
1171 ev_code
= EFX_QWORD_FIELD(event
, EV_CODE
);
1174 case RX_IP_EV_DECODE
:
1175 rxq
= falcon_handle_rx_event(channel
, &event
);
1176 rxdmaqs
|= (1 << rxq
);
1179 case TX_IP_EV_DECODE
:
1180 falcon_handle_tx_event(channel
, &event
);
1182 case DRV_GEN_EV_DECODE
:
1183 channel
->eventq_magic
1184 = EFX_QWORD_FIELD(event
, EVQ_MAGIC
);
1185 EFX_LOG(channel
->efx
, "channel %d received generated "
1186 "event "EFX_QWORD_FMT
"\n", channel
->channel
,
1187 EFX_QWORD_VAL(event
));
1189 case GLOBAL_EV_DECODE
:
1190 falcon_handle_global_event(channel
, &event
);
1192 case DRIVER_EV_DECODE
:
1193 falcon_handle_driver_event(channel
, &event
);
1196 EFX_ERR(channel
->efx
, "channel %d unknown event type %d"
1197 " (data " EFX_QWORD_FMT
")\n", channel
->channel
,
1198 ev_code
, EFX_QWORD_VAL(event
));
1201 /* Increment read pointer */
1202 read_ptr
= (read_ptr
+ 1) & FALCON_EVQ_MASK
;
1204 } while (*rx_quota
);
1206 channel
->eventq_read_ptr
= read_ptr
;
1210 void falcon_set_int_moderation(struct efx_channel
*channel
)
1212 efx_dword_t timer_cmd
;
1213 struct efx_nic
*efx
= channel
->efx
;
1215 /* Set timer register */
1216 if (channel
->irq_moderation
) {
1217 /* Round to resolution supported by hardware. The value we
1218 * program is based at 0. So actual interrupt moderation
1219 * achieved is ((x + 1) * res).
1221 unsigned int res
= 5;
1222 channel
->irq_moderation
-= (channel
->irq_moderation
% res
);
1223 if (channel
->irq_moderation
< res
)
1224 channel
->irq_moderation
= res
;
1225 EFX_POPULATE_DWORD_2(timer_cmd
,
1226 TIMER_MODE
, TIMER_MODE_INT_HLDOFF
,
1228 (channel
->irq_moderation
/ res
) - 1);
1230 EFX_POPULATE_DWORD_2(timer_cmd
,
1231 TIMER_MODE
, TIMER_MODE_DIS
,
1234 falcon_writel_page_locked(efx
, &timer_cmd
, TIMER_CMD_REG_KER
,
1239 /* Allocate buffer table entries for event queue */
1240 int falcon_probe_eventq(struct efx_channel
*channel
)
1242 struct efx_nic
*efx
= channel
->efx
;
1243 unsigned int evq_size
;
1245 evq_size
= FALCON_EVQ_SIZE
* sizeof(efx_qword_t
);
1246 return falcon_alloc_special_buffer(efx
, &channel
->eventq
, evq_size
);
1249 int falcon_init_eventq(struct efx_channel
*channel
)
1251 efx_oword_t evq_ptr
;
1252 struct efx_nic
*efx
= channel
->efx
;
1255 EFX_LOG(efx
, "channel %d event queue in special buffers %d-%d\n",
1256 channel
->channel
, channel
->eventq
.index
,
1257 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1259 /* Pin event queue buffer */
1260 rc
= falcon_init_special_buffer(efx
, &channel
->eventq
);
1264 /* Fill event queue with all ones (i.e. empty events) */
1265 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1267 /* Push event queue to card */
1268 EFX_POPULATE_OWORD_3(evq_ptr
,
1270 EVQ_SIZE
, FALCON_EVQ_ORDER
,
1271 EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1272 falcon_write_table(efx
, &evq_ptr
, efx
->type
->evq_ptr_tbl_base
,
1275 falcon_set_int_moderation(channel
);
1280 void falcon_fini_eventq(struct efx_channel
*channel
)
1282 efx_oword_t eventq_ptr
;
1283 struct efx_nic
*efx
= channel
->efx
;
1285 /* Remove event queue from card */
1286 EFX_ZERO_OWORD(eventq_ptr
);
1287 falcon_write_table(efx
, &eventq_ptr
, efx
->type
->evq_ptr_tbl_base
,
1290 /* Unpin event queue */
1291 falcon_fini_special_buffer(efx
, &channel
->eventq
);
1294 /* Free buffers backing event queue */
1295 void falcon_remove_eventq(struct efx_channel
*channel
)
1297 falcon_free_special_buffer(channel
->efx
, &channel
->eventq
);
1301 /* Generates a test event on the event queue. A subsequent call to
1302 * process_eventq() should pick up the event and place the value of
1303 * "magic" into channel->eventq_magic;
1305 void falcon_generate_test_event(struct efx_channel
*channel
, unsigned int magic
)
1307 efx_qword_t test_event
;
1309 EFX_POPULATE_QWORD_2(test_event
,
1310 EV_CODE
, DRV_GEN_EV_DECODE
,
1312 falcon_generate_event(channel
, &test_event
);
1316 /**************************************************************************
1318 * Falcon hardware interrupts
1319 * The hardware interrupt handler does very little work; all the event
1320 * queue processing is carried out by per-channel tasklets.
1322 **************************************************************************/
1324 /* Enable/disable/generate Falcon interrupts */
1325 static inline void falcon_interrupts(struct efx_nic
*efx
, int enabled
,
1328 efx_oword_t int_en_reg_ker
;
1330 EFX_POPULATE_OWORD_2(int_en_reg_ker
,
1332 DRV_INT_EN_KER
, enabled
);
1333 falcon_write(efx
, &int_en_reg_ker
, INT_EN_REG_KER
);
1336 void falcon_enable_interrupts(struct efx_nic
*efx
)
1338 efx_oword_t int_adr_reg_ker
;
1339 struct efx_channel
*channel
;
1341 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1342 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1344 /* Program address */
1345 EFX_POPULATE_OWORD_2(int_adr_reg_ker
,
1346 NORM_INT_VEC_DIS_KER
, EFX_INT_MODE_USE_MSI(efx
),
1347 INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1348 falcon_write(efx
, &int_adr_reg_ker
, INT_ADR_REG_KER
);
1350 /* Enable interrupts */
1351 falcon_interrupts(efx
, 1, 0);
1353 /* Force processing of all the channels to get the EVQ RPTRs up to
1355 efx_for_each_channel_with_interrupt(channel
, efx
)
1356 efx_schedule_channel(channel
);
1359 void falcon_disable_interrupts(struct efx_nic
*efx
)
1361 /* Disable interrupts */
1362 falcon_interrupts(efx
, 0, 0);
1365 /* Generate a Falcon test interrupt
1366 * Interrupt must already have been enabled, otherwise nasty things
1369 void falcon_generate_interrupt(struct efx_nic
*efx
)
1371 falcon_interrupts(efx
, 1, 1);
1374 /* Acknowledge a legacy interrupt from Falcon
1376 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1378 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1379 * BIU. Interrupt acknowledge is read sensitive so must write instead
1380 * (then read to ensure the BIU collector is flushed)
1382 * NB most hardware supports MSI interrupts
1384 static inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
1388 EFX_POPULATE_DWORD_1(reg
, INT_ACK_DUMMY_DATA
, 0xb7eb7e);
1389 falcon_writel(efx
, ®
, INT_ACK_REG_KER_A1
);
1390 falcon_readl(efx
, ®
, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1
);
1393 /* Process a fatal interrupt
1394 * Disable bus mastering ASAP and schedule a reset
1396 static irqreturn_t
falcon_fatal_interrupt(struct efx_nic
*efx
)
1398 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1399 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1400 efx_oword_t fatal_intr
;
1401 int error
, mem_perr
;
1402 static int n_int_errors
;
1404 falcon_read(efx
, &fatal_intr
, FATAL_INTR_REG_KER
);
1405 error
= EFX_OWORD_FIELD(fatal_intr
, INT_KER_ERROR
);
1407 EFX_ERR(efx
, "SYSTEM ERROR " EFX_OWORD_FMT
" status "
1408 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1409 EFX_OWORD_VAL(fatal_intr
),
1410 error
? "disabling bus mastering" : "no recognised error");
1414 /* If this is a memory parity error dump which blocks are offending */
1415 mem_perr
= EFX_OWORD_FIELD(fatal_intr
, MEM_PERR_INT_KER
);
1418 falcon_read(efx
, ®
, MEM_STAT_REG_KER
);
1419 EFX_ERR(efx
, "SYSTEM ERROR: memory parity error "
1420 EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
));
1423 /* Disable DMA bus mastering on both devices */
1424 pci_disable_device(efx
->pci_dev
);
1425 if (FALCON_IS_DUAL_FUNC(efx
))
1426 pci_disable_device(nic_data
->pci_dev2
);
1428 if (++n_int_errors
< FALCON_MAX_INT_ERRORS
) {
1429 EFX_ERR(efx
, "SYSTEM ERROR - reset scheduled\n");
1430 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1432 EFX_ERR(efx
, "SYSTEM ERROR - max number of errors seen."
1433 "NIC will be disabled\n");
1434 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1440 /* Handle a legacy interrupt from Falcon
1441 * Acknowledges the interrupt and schedule event queue processing.
1443 static irqreturn_t
falcon_legacy_interrupt_b0(int irq
, void *dev_id
)
1445 struct efx_nic
*efx
= dev_id
;
1446 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1447 struct efx_channel
*channel
;
1452 /* Read the ISR which also ACKs the interrupts */
1453 falcon_readl(efx
, ®
, INT_ISR0_B0
);
1454 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1456 /* Check to see if we have a serious error condition */
1457 syserr
= EFX_OWORD_FIELD(*int_ker
, FATAL_INT
);
1458 if (unlikely(syserr
))
1459 return falcon_fatal_interrupt(efx
);
1464 efx
->last_irq_cpu
= raw_smp_processor_id();
1465 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1466 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1468 /* Schedule processing of any interrupting queues */
1469 channel
= &efx
->channel
[0];
1472 efx_schedule_channel(channel
);
1481 static irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
1483 struct efx_nic
*efx
= dev_id
;
1484 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1485 struct efx_channel
*channel
;
1489 /* Check to see if this is our interrupt. If it isn't, we
1490 * exit without having touched the hardware.
1492 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
1493 EFX_TRACE(efx
, "IRQ %d on CPU %d not for me\n", irq
,
1494 raw_smp_processor_id());
1497 efx
->last_irq_cpu
= raw_smp_processor_id();
1498 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1499 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1501 /* Check to see if we have a serious error condition */
1502 syserr
= EFX_OWORD_FIELD(*int_ker
, FATAL_INT
);
1503 if (unlikely(syserr
))
1504 return falcon_fatal_interrupt(efx
);
1506 /* Determine interrupting queues, clear interrupt status
1507 * register and acknowledge the device interrupt.
1509 BUILD_BUG_ON(INT_EVQS_WIDTH
> EFX_MAX_CHANNELS
);
1510 queues
= EFX_OWORD_FIELD(*int_ker
, INT_EVQS
);
1511 EFX_ZERO_OWORD(*int_ker
);
1512 wmb(); /* Ensure the vector is cleared before interrupt ack */
1513 falcon_irq_ack_a1(efx
);
1515 /* Schedule processing of any interrupting queues */
1516 channel
= &efx
->channel
[0];
1519 efx_schedule_channel(channel
);
1527 /* Handle an MSI interrupt from Falcon
1529 * Handle an MSI hardware interrupt. This routine schedules event
1530 * queue processing. No interrupt acknowledgement cycle is necessary.
1531 * Also, we never need to check that the interrupt is for us, since
1532 * MSI interrupts cannot be shared.
1534 static irqreturn_t
falcon_msi_interrupt(int irq
, void *dev_id
)
1536 struct efx_channel
*channel
= dev_id
;
1537 struct efx_nic
*efx
= channel
->efx
;
1538 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1541 efx
->last_irq_cpu
= raw_smp_processor_id();
1542 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1543 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1545 /* Check to see if we have a serious error condition */
1546 syserr
= EFX_OWORD_FIELD(*int_ker
, FATAL_INT
);
1547 if (unlikely(syserr
))
1548 return falcon_fatal_interrupt(efx
);
1550 /* Schedule processing of the channel */
1551 efx_schedule_channel(channel
);
1557 /* Setup RSS indirection table.
1558 * This maps from the hash value of the packet to RXQ
1560 static void falcon_setup_rss_indir_table(struct efx_nic
*efx
)
1563 unsigned long offset
;
1566 if (falcon_rev(efx
) < FALCON_REV_B0
)
1569 for (offset
= RX_RSS_INDIR_TBL_B0
;
1570 offset
< RX_RSS_INDIR_TBL_B0
+ 0x800;
1572 EFX_POPULATE_DWORD_1(dword
, RX_RSS_INDIR_ENT_B0
,
1573 i
% efx
->rss_queues
);
1574 falcon_writel(efx
, &dword
, offset
);
1579 /* Hook interrupt handler(s)
1580 * Try MSI and then legacy interrupts.
1582 int falcon_init_interrupt(struct efx_nic
*efx
)
1584 struct efx_channel
*channel
;
1587 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1588 irq_handler_t handler
;
1589 if (falcon_rev(efx
) >= FALCON_REV_B0
)
1590 handler
= falcon_legacy_interrupt_b0
;
1592 handler
= falcon_legacy_interrupt_a1
;
1594 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1597 EFX_ERR(efx
, "failed to hook legacy IRQ %d\n",
1604 /* Hook MSI or MSI-X interrupt */
1605 efx_for_each_channel_with_interrupt(channel
, efx
) {
1606 rc
= request_irq(channel
->irq
, falcon_msi_interrupt
,
1607 IRQF_PROBE_SHARED
, /* Not shared */
1608 efx
->name
, channel
);
1610 EFX_ERR(efx
, "failed to hook IRQ %d\n", channel
->irq
);
1618 efx_for_each_channel_with_interrupt(channel
, efx
)
1619 free_irq(channel
->irq
, channel
);
1624 void falcon_fini_interrupt(struct efx_nic
*efx
)
1626 struct efx_channel
*channel
;
1629 /* Disable MSI/MSI-X interrupts */
1630 efx_for_each_channel_with_interrupt(channel
, efx
) {
1632 free_irq(channel
->irq
, channel
);
1635 /* ACK legacy interrupt */
1636 if (falcon_rev(efx
) >= FALCON_REV_B0
)
1637 falcon_read(efx
, ®
, INT_ISR0_B0
);
1639 falcon_irq_ack_a1(efx
);
1641 /* Disable legacy interrupt */
1642 if (efx
->legacy_irq
)
1643 free_irq(efx
->legacy_irq
, efx
);
1646 /**************************************************************************
1650 **************************************************************************
1653 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1655 /* Wait for SPI command completion */
1656 static int falcon_spi_wait(struct efx_nic
*efx
)
1659 int cmd_en
, timer_active
;
1664 falcon_read(efx
, ®
, EE_SPI_HCMD_REG_KER
);
1665 cmd_en
= EFX_OWORD_FIELD(reg
, EE_SPI_HCMD_CMD_EN
);
1666 timer_active
= EFX_OWORD_FIELD(reg
, EE_WR_TIMER_ACTIVE
);
1667 if (!cmd_en
&& !timer_active
)
1670 } while (++count
< 10000); /* wait upto 100msec */
1671 EFX_ERR(efx
, "timed out waiting for SPI\n");
1676 falcon_spi_read(struct efx_nic
*efx
, int device_id
, unsigned int command
,
1677 unsigned int address
, unsigned int addr_len
,
1678 void *data
, unsigned int len
)
1683 BUG_ON(len
> FALCON_SPI_MAX_LEN
);
1685 /* Check SPI not currently being accessed */
1686 rc
= falcon_spi_wait(efx
);
1690 /* Program address register */
1691 EFX_POPULATE_OWORD_1(reg
, EE_SPI_HADR_ADR
, address
);
1692 falcon_write(efx
, ®
, EE_SPI_HADR_REG_KER
);
1694 /* Issue read command */
1695 EFX_POPULATE_OWORD_7(reg
,
1696 EE_SPI_HCMD_CMD_EN
, 1,
1697 EE_SPI_HCMD_SF_SEL
, device_id
,
1698 EE_SPI_HCMD_DABCNT
, len
,
1699 EE_SPI_HCMD_READ
, EE_SPI_READ
,
1700 EE_SPI_HCMD_DUBCNT
, 0,
1701 EE_SPI_HCMD_ADBCNT
, addr_len
,
1702 EE_SPI_HCMD_ENC
, command
);
1703 falcon_write(efx
, ®
, EE_SPI_HCMD_REG_KER
);
1705 /* Wait for read to complete */
1706 rc
= falcon_spi_wait(efx
);
1711 falcon_read(efx
, ®
, EE_SPI_HDATA_REG_KER
);
1712 memcpy(data
, ®
, len
);
1716 /**************************************************************************
1720 **************************************************************************
1722 void falcon_drain_tx_fifo(struct efx_nic
*efx
)
1727 if ((falcon_rev(efx
) < FALCON_REV_B0
) ||
1728 (efx
->loopback_mode
!= LOOPBACK_NONE
))
1731 falcon_read(efx
, &temp
, MAC0_CTRL_REG_KER
);
1732 /* There is no point in draining more than once */
1733 if (EFX_OWORD_FIELD(temp
, TXFIFO_DRAIN_EN_B0
))
1736 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1737 * the drain sequence with the statistics fetch */
1738 spin_lock(&efx
->stats_lock
);
1740 EFX_SET_OWORD_FIELD(temp
, TXFIFO_DRAIN_EN_B0
, 1);
1741 falcon_write(efx
, &temp
, MAC0_CTRL_REG_KER
);
1743 /* Reset the MAC and EM block. */
1744 falcon_read(efx
, &temp
, GLB_CTL_REG_KER
);
1745 EFX_SET_OWORD_FIELD(temp
, RST_XGTX
, 1);
1746 EFX_SET_OWORD_FIELD(temp
, RST_XGRX
, 1);
1747 EFX_SET_OWORD_FIELD(temp
, RST_EM
, 1);
1748 falcon_write(efx
, &temp
, GLB_CTL_REG_KER
);
1752 falcon_read(efx
, &temp
, GLB_CTL_REG_KER
);
1753 if (!EFX_OWORD_FIELD(temp
, RST_XGTX
) &&
1754 !EFX_OWORD_FIELD(temp
, RST_XGRX
) &&
1755 !EFX_OWORD_FIELD(temp
, RST_EM
)) {
1756 EFX_LOG(efx
, "Completed MAC reset after %d loops\n",
1761 EFX_ERR(efx
, "MAC reset failed\n");
1768 spin_unlock(&efx
->stats_lock
);
1770 /* If we've reset the EM block and the link is up, then
1771 * we'll have to kick the XAUI link so the PHY can recover */
1772 if (efx
->link_up
&& EFX_WORKAROUND_5147(efx
))
1773 falcon_reset_xaui(efx
);
1776 void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
1780 if (falcon_rev(efx
) < FALCON_REV_B0
)
1783 /* Isolate the MAC -> RX */
1784 falcon_read(efx
, &temp
, RX_CFG_REG_KER
);
1785 EFX_SET_OWORD_FIELD(temp
, RX_INGR_EN_B0
, 0);
1786 falcon_write(efx
, &temp
, RX_CFG_REG_KER
);
1789 falcon_drain_tx_fifo(efx
);
1792 void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
1798 if (efx
->link_options
& GM_LPA_10000
)
1800 else if (efx
->link_options
& GM_LPA_1000
)
1802 else if (efx
->link_options
& GM_LPA_100
)
1806 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1807 * as advertised. Disable to ensure packets are not
1808 * indefinitely held and TX queue can be flushed at any point
1809 * while the link is down. */
1810 EFX_POPULATE_OWORD_5(reg
,
1811 MAC_XOFF_VAL
, 0xffff /* max pause time */,
1813 MAC_UC_PROM
, efx
->promiscuous
,
1814 MAC_LINK_STATUS
, 1, /* always set */
1815 MAC_SPEED
, link_speed
);
1816 /* On B0, MAC backpressure can be disabled and packets get
1818 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
1819 EFX_SET_OWORD_FIELD(reg
, TXFIFO_DRAIN_EN_B0
,
1823 falcon_write(efx
, ®
, MAC0_CTRL_REG_KER
);
1825 /* Restore the multicast hash registers. */
1826 falcon_set_multicast_hash(efx
);
1828 /* Transmission of pause frames when RX crosses the threshold is
1829 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1830 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1831 tx_fc
= (efx
->flow_control
& EFX_FC_TX
) ? 1 : 0;
1832 falcon_read(efx
, ®
, RX_CFG_REG_KER
);
1833 EFX_SET_OWORD_FIELD_VER(efx
, reg
, RX_XOFF_MAC_EN
, tx_fc
);
1835 /* Unisolate the MAC -> RX */
1836 if (falcon_rev(efx
) >= FALCON_REV_B0
)
1837 EFX_SET_OWORD_FIELD(reg
, RX_INGR_EN_B0
, 1);
1838 falcon_write(efx
, ®
, RX_CFG_REG_KER
);
1841 int falcon_dma_stats(struct efx_nic
*efx
, unsigned int done_offset
)
1847 if (disable_dma_stats
)
1850 /* Statistics fetch will fail if the MAC is in TX drain */
1851 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
1853 falcon_read(efx
, &temp
, MAC0_CTRL_REG_KER
);
1854 if (EFX_OWORD_FIELD(temp
, TXFIFO_DRAIN_EN_B0
))
1858 dma_done
= (efx
->stats_buffer
.addr
+ done_offset
);
1859 *dma_done
= FALCON_STATS_NOT_DONE
;
1860 wmb(); /* ensure done flag is clear */
1862 /* Initiate DMA transfer of stats */
1863 EFX_POPULATE_OWORD_2(reg
,
1864 MAC_STAT_DMA_CMD
, 1,
1866 efx
->stats_buffer
.dma_addr
);
1867 falcon_write(efx
, ®
, MAC0_STAT_DMA_REG_KER
);
1869 /* Wait for transfer to complete */
1870 for (i
= 0; i
< 400; i
++) {
1871 if (*(volatile u32
*)dma_done
== FALCON_STATS_DONE
)
1876 EFX_ERR(efx
, "timed out waiting for statistics\n");
1880 /**************************************************************************
1882 * PHY access via GMII
1884 **************************************************************************
1887 /* Use the top bit of the MII PHY id to indicate the PHY type
1888 * (1G/10G), with the remaining bits as the actual PHY id.
1890 * This allows us to avoid leaking information from the mii_if_info
1891 * structure into other data structures.
1893 #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
1894 #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
1895 #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
1896 #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
1897 #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
1900 /* Packing the clause 45 port and device fields into a single value */
1901 #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
1902 #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
1903 #define MD_DEV_ADR_COMP_LBN 0
1904 #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
1907 /* Wait for GMII access to complete */
1908 static int falcon_gmii_wait(struct efx_nic
*efx
)
1910 efx_dword_t md_stat
;
1913 for (count
= 0; count
< 1000; count
++) { /* wait upto 10ms */
1914 falcon_readl(efx
, &md_stat
, MD_STAT_REG_KER
);
1915 if (EFX_DWORD_FIELD(md_stat
, MD_BSY
) == 0) {
1916 if (EFX_DWORD_FIELD(md_stat
, MD_LNFL
) != 0 ||
1917 EFX_DWORD_FIELD(md_stat
, MD_BSERR
) != 0) {
1918 EFX_ERR(efx
, "error from GMII access "
1920 EFX_DWORD_VAL(md_stat
));
1927 EFX_ERR(efx
, "timed out waiting for GMII\n");
1931 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
1932 static void falcon_mdio_write(struct net_device
*net_dev
, int phy_id
,
1933 int addr
, int value
)
1935 struct efx_nic
*efx
= net_dev
->priv
;
1936 unsigned int phy_id2
= phy_id
& FALCON_PHY_ID_ID_MASK
;
1939 /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
1940 * chosen so that the only current user, Falcon, can take the
1941 * packed value and use them directly.
1942 * Fail to build if this assumption is broken.
1944 BUILD_BUG_ON(FALCON_PHY_ID_10G
!= MDIO45_XPRT_ID_IS10G
);
1945 BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH
!= MDIO45_PRT_DEV_WIDTH
);
1946 BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN
!= MDIO45_PRT_ID_COMP_LBN
);
1947 BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN
!= MDIO45_DEV_ID_COMP_LBN
);
1949 if (phy_id2
== PHY_ADDR_INVALID
)
1952 /* See falcon_mdio_read for an explanation. */
1953 if (!(phy_id
& FALCON_PHY_ID_10G
)) {
1954 int mmd
= ffs(efx
->phy_op
->mmds
) - 1;
1955 EFX_TRACE(efx
, "Fixing erroneous clause22 write\n");
1956 phy_id2
= mdio_clause45_pack(phy_id2
, mmd
)
1957 & FALCON_PHY_ID_ID_MASK
;
1960 EFX_REGDUMP(efx
, "writing GMII %d register %02x with %04x\n", phy_id
,
1963 spin_lock_bh(&efx
->phy_lock
);
1965 /* Check MII not currently being accessed */
1966 if (falcon_gmii_wait(efx
) != 0)
1969 /* Write the address/ID register */
1970 EFX_POPULATE_OWORD_1(reg
, MD_PHY_ADR
, addr
);
1971 falcon_write(efx
, ®
, MD_PHY_ADR_REG_KER
);
1973 EFX_POPULATE_OWORD_1(reg
, MD_PRT_DEV_ADR
, phy_id2
);
1974 falcon_write(efx
, ®
, MD_ID_REG_KER
);
1977 EFX_POPULATE_OWORD_1(reg
, MD_TXD
, value
);
1978 falcon_write(efx
, ®
, MD_TXD_REG_KER
);
1980 EFX_POPULATE_OWORD_2(reg
,
1983 falcon_write(efx
, ®
, MD_CS_REG_KER
);
1985 /* Wait for data to be written */
1986 if (falcon_gmii_wait(efx
) != 0) {
1987 /* Abort the write operation */
1988 EFX_POPULATE_OWORD_2(reg
,
1991 falcon_write(efx
, ®
, MD_CS_REG_KER
);
1996 spin_unlock_bh(&efx
->phy_lock
);
1999 /* Reads a GMII register from a PHY connected to Falcon. If no value
2000 * could be read, -1 will be returned. */
2001 static int falcon_mdio_read(struct net_device
*net_dev
, int phy_id
, int addr
)
2003 struct efx_nic
*efx
= net_dev
->priv
;
2004 unsigned int phy_addr
= phy_id
& FALCON_PHY_ID_ID_MASK
;
2008 if (phy_addr
== PHY_ADDR_INVALID
)
2011 /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2012 * but the generic Linux code does not make any distinction or have
2013 * any state for this.
2014 * We spot the case where someone tried to talk 22 to a 45 PHY and
2015 * redirect the request to the lowest numbered MMD as a clause45
2016 * request. This is enough to allow simple queries like id and link
2017 * state to succeed. TODO: We may need to do more in future.
2019 if (!(phy_id
& FALCON_PHY_ID_10G
)) {
2020 int mmd
= ffs(efx
->phy_op
->mmds
) - 1;
2021 EFX_TRACE(efx
, "Fixing erroneous clause22 read\n");
2022 phy_addr
= mdio_clause45_pack(phy_addr
, mmd
)
2023 & FALCON_PHY_ID_ID_MASK
;
2026 spin_lock_bh(&efx
->phy_lock
);
2028 /* Check MII not currently being accessed */
2029 if (falcon_gmii_wait(efx
) != 0)
2032 EFX_POPULATE_OWORD_1(reg
, MD_PHY_ADR
, addr
);
2033 falcon_write(efx
, ®
, MD_PHY_ADR_REG_KER
);
2035 EFX_POPULATE_OWORD_1(reg
, MD_PRT_DEV_ADR
, phy_addr
);
2036 falcon_write(efx
, ®
, MD_ID_REG_KER
);
2038 /* Request data to be read */
2039 EFX_POPULATE_OWORD_2(reg
, MD_RDC
, 1, MD_GC
, 0);
2040 falcon_write(efx
, ®
, MD_CS_REG_KER
);
2042 /* Wait for data to become available */
2043 value
= falcon_gmii_wait(efx
);
2045 falcon_read(efx
, ®
, MD_RXD_REG_KER
);
2046 value
= EFX_OWORD_FIELD(reg
, MD_RXD
);
2047 EFX_REGDUMP(efx
, "read from GMII %d register %02x, got %04x\n",
2048 phy_id
, addr
, value
);
2050 /* Abort the read operation */
2051 EFX_POPULATE_OWORD_2(reg
,
2054 falcon_write(efx
, ®
, MD_CS_REG_KER
);
2056 EFX_LOG(efx
, "read from GMII 0x%x register %02x, got "
2057 "error %d\n", phy_id
, addr
, value
);
2061 spin_unlock_bh(&efx
->phy_lock
);
2066 static void falcon_init_mdio(struct mii_if_info
*gmii
)
2068 gmii
->mdio_read
= falcon_mdio_read
;
2069 gmii
->mdio_write
= falcon_mdio_write
;
2070 gmii
->phy_id_mask
= FALCON_PHY_ID_MASK
;
2071 gmii
->reg_num_mask
= ((1 << EFX_WIDTH(MD_PHY_ADR
)) - 1);
2074 static int falcon_probe_phy(struct efx_nic
*efx
)
2076 switch (efx
->phy_type
) {
2077 case PHY_TYPE_10XPRESS
:
2078 efx
->phy_op
= &falcon_tenxpress_phy_ops
;
2081 efx
->phy_op
= &falcon_xfp_phy_ops
;
2084 EFX_ERR(efx
, "Unknown PHY type %d\n",
2089 efx
->loopback_modes
= LOOPBACKS_10G_INTERNAL
| efx
->phy_op
->loopbacks
;
2093 /* This call is responsible for hooking in the MAC and PHY operations */
2094 int falcon_probe_port(struct efx_nic
*efx
)
2098 /* Hook in PHY operations table */
2099 rc
= falcon_probe_phy(efx
);
2103 /* Set up GMII structure for PHY */
2104 efx
->mii
.supports_gmii
= 1;
2105 falcon_init_mdio(&efx
->mii
);
2107 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2108 if (falcon_rev(efx
) >= FALCON_REV_B0
)
2109 efx
->flow_control
= EFX_FC_RX
| EFX_FC_TX
;
2111 efx
->flow_control
= EFX_FC_RX
;
2113 /* Allocate buffer for stats */
2114 rc
= falcon_alloc_buffer(efx
, &efx
->stats_buffer
,
2115 FALCON_MAC_STATS_SIZE
);
2118 EFX_LOG(efx
, "stats buffer at %llx (virt %p phys %lx)\n",
2119 (unsigned long long)efx
->stats_buffer
.dma_addr
,
2120 efx
->stats_buffer
.addr
,
2121 virt_to_phys(efx
->stats_buffer
.addr
));
2126 void falcon_remove_port(struct efx_nic
*efx
)
2128 falcon_free_buffer(efx
, &efx
->stats_buffer
);
2131 /**************************************************************************
2133 * Multicast filtering
2135 **************************************************************************
2138 void falcon_set_multicast_hash(struct efx_nic
*efx
)
2140 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
2142 /* Broadcast packets go through the multicast hash filter.
2143 * ether_crc_le() of the broadcast address is 0xbe2612ff
2144 * so we always add bit 0xff to the mask.
2146 set_bit_le(0xff, mc_hash
->byte
);
2148 falcon_write(efx
, &mc_hash
->oword
[0], MAC_MCAST_HASH_REG0_KER
);
2149 falcon_write(efx
, &mc_hash
->oword
[1], MAC_MCAST_HASH_REG1_KER
);
2152 /**************************************************************************
2156 **************************************************************************
2159 /* Resets NIC to known state. This routine must be called in process
2160 * context and is allowed to sleep. */
2161 int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
2163 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2164 efx_oword_t glb_ctl_reg_ker
;
2167 EFX_LOG(efx
, "performing hardware reset (%d)\n", method
);
2169 /* Initiate device reset */
2170 if (method
== RESET_TYPE_WORLD
) {
2171 rc
= pci_save_state(efx
->pci_dev
);
2173 EFX_ERR(efx
, "failed to backup PCI state of primary "
2174 "function prior to hardware reset\n");
2177 if (FALCON_IS_DUAL_FUNC(efx
)) {
2178 rc
= pci_save_state(nic_data
->pci_dev2
);
2180 EFX_ERR(efx
, "failed to backup PCI state of "
2181 "secondary function prior to "
2182 "hardware reset\n");
2187 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
2188 EXT_PHY_RST_DUR
, 0x7,
2191 int reset_phy
= (method
== RESET_TYPE_INVISIBLE
?
2192 EXCLUDE_FROM_RESET
: 0);
2194 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
2195 EXT_PHY_RST_CTL
, reset_phy
,
2196 PCIE_CORE_RST_CTL
, EXCLUDE_FROM_RESET
,
2197 PCIE_NSTCK_RST_CTL
, EXCLUDE_FROM_RESET
,
2198 PCIE_SD_RST_CTL
, EXCLUDE_FROM_RESET
,
2199 EE_RST_CTL
, EXCLUDE_FROM_RESET
,
2200 EXT_PHY_RST_DUR
, 0x7 /* 10ms */,
2203 falcon_write(efx
, &glb_ctl_reg_ker
, GLB_CTL_REG_KER
);
2205 EFX_LOG(efx
, "waiting for hardware reset\n");
2206 schedule_timeout_uninterruptible(HZ
/ 20);
2208 /* Restore PCI configuration if needed */
2209 if (method
== RESET_TYPE_WORLD
) {
2210 if (FALCON_IS_DUAL_FUNC(efx
)) {
2211 rc
= pci_restore_state(nic_data
->pci_dev2
);
2213 EFX_ERR(efx
, "failed to restore PCI config for "
2214 "the secondary function\n");
2218 rc
= pci_restore_state(efx
->pci_dev
);
2220 EFX_ERR(efx
, "failed to restore PCI config for the "
2221 "primary function\n");
2224 EFX_LOG(efx
, "successfully restored PCI config\n");
2227 /* Assert that reset complete */
2228 falcon_read(efx
, &glb_ctl_reg_ker
, GLB_CTL_REG_KER
);
2229 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, SWRST
) != 0) {
2231 EFX_ERR(efx
, "timed out waiting for hardware reset\n");
2234 EFX_LOG(efx
, "hardware reset complete\n");
2238 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2241 pci_restore_state(efx
->pci_dev
);
2248 /* Zeroes out the SRAM contents. This routine must be called in
2249 * process context and is allowed to sleep.
2251 static int falcon_reset_sram(struct efx_nic
*efx
)
2253 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
2256 /* Set the SRAM wake/sleep GPIO appropriately. */
2257 falcon_read(efx
, &gpio_cfg_reg_ker
, GPIO_CTL_REG_KER
);
2258 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, GPIO1_OEN
, 1);
2259 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, GPIO1_OUT
, 1);
2260 falcon_write(efx
, &gpio_cfg_reg_ker
, GPIO_CTL_REG_KER
);
2262 /* Initiate SRAM reset */
2263 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
2264 SRAM_OOB_BT_INIT_EN
, 1,
2265 SRM_NUM_BANKS_AND_BANK_SIZE
, 0);
2266 falcon_write(efx
, &srm_cfg_reg_ker
, SRM_CFG_REG_KER
);
2268 /* Wait for SRAM reset to complete */
2271 EFX_LOG(efx
, "waiting for SRAM reset (attempt %d)...\n", count
);
2273 /* SRAM reset is slow; expect around 16ms */
2274 schedule_timeout_uninterruptible(HZ
/ 50);
2276 /* Check for reset complete */
2277 falcon_read(efx
, &srm_cfg_reg_ker
, SRM_CFG_REG_KER
);
2278 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, SRAM_OOB_BT_INIT_EN
)) {
2279 EFX_LOG(efx
, "SRAM reset complete\n");
2283 } while (++count
< 20); /* wait upto 0.4 sec */
2285 EFX_ERR(efx
, "timed out waiting for SRAM reset\n");
2289 /* Extract non-volatile configuration */
2290 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
2292 struct falcon_nvconfig
*nvconfig
;
2293 efx_oword_t nic_stat
;
2297 int magic_num
, struct_ver
, board_rev
;
2300 /* Find the boot device. */
2301 falcon_read(efx
, &nic_stat
, NIC_STAT_REG
);
2302 if (EFX_OWORD_FIELD(nic_stat
, SF_PRST
)) {
2303 device_id
= EE_SPI_FLASH
;
2305 } else if (EFX_OWORD_FIELD(nic_stat
, EE_PRST
)) {
2306 device_id
= EE_SPI_EEPROM
;
2312 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
2314 /* Read the whole configuration structure into memory. */
2315 for (offset
= 0; offset
< sizeof(*nvconfig
); offset
+= len
) {
2316 len
= min(sizeof(*nvconfig
) - offset
,
2317 (size_t) FALCON_SPI_MAX_LEN
);
2318 rc
= falcon_spi_read(efx
, device_id
, SPI_READ
,
2319 NVCONFIG_BASE
+ offset
, addr_len
,
2320 (char *)nvconfig
+ offset
, len
);
2325 /* Read the MAC addresses */
2326 memcpy(efx
->mac_address
, nvconfig
->mac_address
[0], ETH_ALEN
);
2328 /* Read the board configuration. */
2329 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
2330 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
2332 if (magic_num
!= NVCONFIG_BOARD_MAGIC_NUM
|| struct_ver
< 2) {
2333 EFX_ERR(efx
, "Non volatile memory bad magic=%x ver=%x "
2334 "therefore using defaults\n", magic_num
, struct_ver
);
2335 efx
->phy_type
= PHY_TYPE_NONE
;
2336 efx
->mii
.phy_id
= PHY_ADDR_INVALID
;
2339 struct falcon_nvconfig_board_v2
*v2
= &nvconfig
->board_v2
;
2341 efx
->phy_type
= v2
->port0_phy_type
;
2342 efx
->mii
.phy_id
= v2
->port0_phy_addr
;
2343 board_rev
= le16_to_cpu(v2
->board_revision
);
2346 EFX_LOG(efx
, "PHY is %d phy_id %d\n", efx
->phy_type
, efx
->mii
.phy_id
);
2348 efx_set_board_info(efx
, board_rev
);
2355 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2356 * count, port speed). Set workaround and feature flags accordingly.
2358 static int falcon_probe_nic_variant(struct efx_nic
*efx
)
2360 efx_oword_t altera_build
;
2362 falcon_read(efx
, &altera_build
, ALTERA_BUILD_REG_KER
);
2363 if (EFX_OWORD_FIELD(altera_build
, VER_ALL
)) {
2364 EFX_ERR(efx
, "Falcon FPGA not supported\n");
2368 switch (falcon_rev(efx
)) {
2371 EFX_ERR(efx
, "Falcon rev A0 not supported\n");
2374 case FALCON_REV_A1
:{
2375 efx_oword_t nic_stat
;
2377 falcon_read(efx
, &nic_stat
, NIC_STAT_REG
);
2379 if (EFX_OWORD_FIELD(nic_stat
, STRAP_PCIE
) == 0) {
2380 EFX_ERR(efx
, "Falcon rev A1 PCI-X not supported\n");
2383 if (!EFX_OWORD_FIELD(nic_stat
, STRAP_10G
)) {
2384 EFX_ERR(efx
, "1G mode not supported\n");
2394 EFX_ERR(efx
, "Unknown Falcon rev %d\n", falcon_rev(efx
));
2401 int falcon_probe_nic(struct efx_nic
*efx
)
2403 struct falcon_nic_data
*nic_data
;
2406 /* Initialise I2C interface state */
2408 efx
->i2c
.op
= &falcon_i2c_bit_operations
;
2412 /* Allocate storage for hardware specific data */
2413 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
2414 efx
->nic_data
= nic_data
;
2416 /* Determine number of ports etc. */
2417 rc
= falcon_probe_nic_variant(efx
);
2421 /* Probe secondary function if expected */
2422 if (FALCON_IS_DUAL_FUNC(efx
)) {
2423 struct pci_dev
*dev
= pci_dev_get(efx
->pci_dev
);
2425 while ((dev
= pci_get_device(EFX_VENDID_SFC
, FALCON_A_S_DEVID
,
2427 if (dev
->bus
== efx
->pci_dev
->bus
&&
2428 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
2429 nic_data
->pci_dev2
= dev
;
2433 if (!nic_data
->pci_dev2
) {
2434 EFX_ERR(efx
, "failed to find secondary function\n");
2440 /* Now we can reset the NIC */
2441 rc
= falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2443 EFX_ERR(efx
, "failed to reset NIC\n");
2447 /* Allocate memory for INT_KER */
2448 rc
= falcon_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
));
2451 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
2453 EFX_LOG(efx
, "INT_KER at %llx (virt %p phys %lx)\n",
2454 (unsigned long long)efx
->irq_status
.dma_addr
,
2455 efx
->irq_status
.addr
, virt_to_phys(efx
->irq_status
.addr
));
2457 /* Read in the non-volatile configuration */
2458 rc
= falcon_probe_nvconfig(efx
);
2465 falcon_free_buffer(efx
, &efx
->irq_status
);
2468 if (nic_data
->pci_dev2
) {
2469 pci_dev_put(nic_data
->pci_dev2
);
2470 nic_data
->pci_dev2
= NULL
;
2474 kfree(efx
->nic_data
);
2478 /* This call performs hardware-specific global initialisation, such as
2479 * defining the descriptor cache sizes and number of RSS channels.
2480 * It does not set up any buffers, descriptor rings or event queues.
2482 int falcon_init_nic(struct efx_nic
*efx
)
2488 /* Set up the address region register. This is only needed
2489 * for the B0 FPGA, but since we are just pushing in the
2490 * reset defaults this may as well be unconditional. */
2491 EFX_POPULATE_OWORD_4(temp
, ADR_REGION0
, 0,
2492 ADR_REGION1
, (1 << 16),
2493 ADR_REGION2
, (2 << 16),
2494 ADR_REGION3
, (3 << 16));
2495 falcon_write(efx
, &temp
, ADR_REGION_REG_KER
);
2497 /* Use on-chip SRAM */
2498 falcon_read(efx
, &temp
, NIC_STAT_REG
);
2499 EFX_SET_OWORD_FIELD(temp
, ONCHIP_SRAM
, 1);
2500 falcon_write(efx
, &temp
, NIC_STAT_REG
);
2502 /* Set buffer table mode */
2503 EFX_POPULATE_OWORD_1(temp
, BUF_TBL_MODE
, BUF_TBL_MODE_FULL
);
2504 falcon_write(efx
, &temp
, BUF_TBL_CFG_REG_KER
);
2506 rc
= falcon_reset_sram(efx
);
2510 /* Set positions of descriptor caches in SRAM. */
2511 EFX_POPULATE_OWORD_1(temp
, SRM_TX_DC_BASE_ADR
, TX_DC_BASE
/ 8);
2512 falcon_write(efx
, &temp
, SRM_TX_DC_CFG_REG_KER
);
2513 EFX_POPULATE_OWORD_1(temp
, SRM_RX_DC_BASE_ADR
, RX_DC_BASE
/ 8);
2514 falcon_write(efx
, &temp
, SRM_RX_DC_CFG_REG_KER
);
2516 /* Set TX descriptor cache size. */
2517 BUILD_BUG_ON(TX_DC_ENTRIES
!= (16 << TX_DC_ENTRIES_ORDER
));
2518 EFX_POPULATE_OWORD_1(temp
, TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
2519 falcon_write(efx
, &temp
, TX_DC_CFG_REG_KER
);
2521 /* Set RX descriptor cache size. Set low watermark to size-8, as
2522 * this allows most efficient prefetching.
2524 BUILD_BUG_ON(RX_DC_ENTRIES
!= (16 << RX_DC_ENTRIES_ORDER
));
2525 EFX_POPULATE_OWORD_1(temp
, RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
2526 falcon_write(efx
, &temp
, RX_DC_CFG_REG_KER
);
2527 EFX_POPULATE_OWORD_1(temp
, RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
2528 falcon_write(efx
, &temp
, RX_DC_PF_WM_REG_KER
);
2530 /* Clear the parity enables on the TX data fifos as
2531 * they produce false parity errors because of timing issues
2533 if (EFX_WORKAROUND_5129(efx
)) {
2534 falcon_read(efx
, &temp
, SPARE_REG_KER
);
2535 EFX_SET_OWORD_FIELD(temp
, MEM_PERR_EN_TX_DATA
, 0);
2536 falcon_write(efx
, &temp
, SPARE_REG_KER
);
2539 /* Enable all the genuinely fatal interrupts. (They are still
2540 * masked by the overall interrupt mask, controlled by
2541 * falcon_interrupts()).
2543 * Note: All other fatal interrupts are enabled
2545 EFX_POPULATE_OWORD_3(temp
,
2546 ILL_ADR_INT_KER_EN
, 1,
2547 RBUF_OWN_INT_KER_EN
, 1,
2548 TBUF_OWN_INT_KER_EN
, 1);
2549 EFX_INVERT_OWORD(temp
);
2550 falcon_write(efx
, &temp
, FATAL_INTR_REG_KER
);
2552 /* Set number of RSS queues for receive path. */
2553 falcon_read(efx
, &temp
, RX_FILTER_CTL_REG
);
2554 if (falcon_rev(efx
) >= FALCON_REV_B0
)
2555 EFX_SET_OWORD_FIELD(temp
, NUM_KER
, 0);
2557 EFX_SET_OWORD_FIELD(temp
, NUM_KER
, efx
->rss_queues
- 1);
2558 if (EFX_WORKAROUND_7244(efx
)) {
2559 EFX_SET_OWORD_FIELD(temp
, UDP_FULL_SRCH_LIMIT
, 8);
2560 EFX_SET_OWORD_FIELD(temp
, UDP_WILD_SRCH_LIMIT
, 8);
2561 EFX_SET_OWORD_FIELD(temp
, TCP_FULL_SRCH_LIMIT
, 8);
2562 EFX_SET_OWORD_FIELD(temp
, TCP_WILD_SRCH_LIMIT
, 8);
2564 falcon_write(efx
, &temp
, RX_FILTER_CTL_REG
);
2566 falcon_setup_rss_indir_table(efx
);
2568 /* Setup RX. Wait for descriptor is broken and must
2569 * be disabled. RXDP recovery shouldn't be needed, but is.
2571 falcon_read(efx
, &temp
, RX_SELF_RST_REG_KER
);
2572 EFX_SET_OWORD_FIELD(temp
, RX_NODESC_WAIT_DIS
, 1);
2573 EFX_SET_OWORD_FIELD(temp
, RX_RECOVERY_EN
, 1);
2574 if (EFX_WORKAROUND_5583(efx
))
2575 EFX_SET_OWORD_FIELD(temp
, RX_ISCSI_DIS
, 1);
2576 falcon_write(efx
, &temp
, RX_SELF_RST_REG_KER
);
2578 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2579 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2581 falcon_read(efx
, &temp
, TX_CFG2_REG_KER
);
2582 EFX_SET_OWORD_FIELD(temp
, TX_RX_SPACER
, 0xfe);
2583 EFX_SET_OWORD_FIELD(temp
, TX_RX_SPACER_EN
, 1);
2584 EFX_SET_OWORD_FIELD(temp
, TX_ONE_PKT_PER_Q
, 1);
2585 EFX_SET_OWORD_FIELD(temp
, TX_CSR_PUSH_EN
, 0);
2586 EFX_SET_OWORD_FIELD(temp
, TX_DIS_NON_IP_EV
, 1);
2587 /* Enable SW_EV to inherit in char driver - assume harmless here */
2588 EFX_SET_OWORD_FIELD(temp
, TX_SW_EV_EN
, 1);
2589 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2590 EFX_SET_OWORD_FIELD(temp
, TX_PREF_THRESHOLD
, 2);
2591 /* Squash TX of packets of 16 bytes or less */
2592 if (falcon_rev(efx
) >= FALCON_REV_B0
&& EFX_WORKAROUND_9141(efx
))
2593 EFX_SET_OWORD_FIELD(temp
, TX_FLUSH_MIN_LEN_EN_B0
, 1);
2594 falcon_write(efx
, &temp
, TX_CFG2_REG_KER
);
2596 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2597 * descriptors (which is bad).
2599 falcon_read(efx
, &temp
, TX_CFG_REG_KER
);
2600 EFX_SET_OWORD_FIELD(temp
, TX_NO_EOP_DISC_EN
, 0);
2601 falcon_write(efx
, &temp
, TX_CFG_REG_KER
);
2604 falcon_read(efx
, &temp
, RX_CFG_REG_KER
);
2605 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_DESC_PUSH_EN
, 0);
2606 if (EFX_WORKAROUND_7575(efx
))
2607 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_USR_BUF_SIZE
,
2609 if (falcon_rev(efx
) >= FALCON_REV_B0
)
2610 EFX_SET_OWORD_FIELD(temp
, RX_INGR_EN_B0
, 1);
2612 /* RX FIFO flow control thresholds */
2613 thresh
= ((rx_xon_thresh_bytes
>= 0) ?
2614 rx_xon_thresh_bytes
: efx
->type
->rx_xon_thresh
);
2615 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_XON_MAC_TH
, thresh
/ 256);
2616 thresh
= ((rx_xoff_thresh_bytes
>= 0) ?
2617 rx_xoff_thresh_bytes
: efx
->type
->rx_xoff_thresh
);
2618 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_XOFF_MAC_TH
, thresh
/ 256);
2619 /* RX control FIFO thresholds [32 entries] */
2620 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_XON_TX_TH
, 25);
2621 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_XOFF_TX_TH
, 20);
2622 falcon_write(efx
, &temp
, RX_CFG_REG_KER
);
2624 /* Set destination of both TX and RX Flush events */
2625 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
2626 EFX_POPULATE_OWORD_1(temp
, FLS_EVQ_ID
, 0);
2627 falcon_write(efx
, &temp
, DP_CTRL_REG
);
2633 void falcon_remove_nic(struct efx_nic
*efx
)
2635 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2637 falcon_free_buffer(efx
, &efx
->irq_status
);
2639 falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2641 /* Release the second function after the reset */
2642 if (nic_data
->pci_dev2
) {
2643 pci_dev_put(nic_data
->pci_dev2
);
2644 nic_data
->pci_dev2
= NULL
;
2647 /* Tear down the private nic state */
2648 kfree(efx
->nic_data
);
2649 efx
->nic_data
= NULL
;
2652 void falcon_update_nic_stats(struct efx_nic
*efx
)
2656 falcon_read(efx
, &cnt
, RX_NODESC_DROP_REG_KER
);
2657 efx
->n_rx_nodesc_drop_cnt
+= EFX_OWORD_FIELD(cnt
, RX_NODESC_DROP_CNT
);
2660 /**************************************************************************
2662 * Revision-dependent attributes used by efx.c
2664 **************************************************************************
2667 struct efx_nic_type falcon_a_nic_type
= {
2669 .mem_map_size
= 0x20000,
2670 .txd_ptr_tbl_base
= TX_DESC_PTR_TBL_KER_A1
,
2671 .rxd_ptr_tbl_base
= RX_DESC_PTR_TBL_KER_A1
,
2672 .buf_tbl_base
= BUF_TBL_KER_A1
,
2673 .evq_ptr_tbl_base
= EVQ_PTR_TBL_KER_A1
,
2674 .evq_rptr_tbl_base
= EVQ_RPTR_REG_KER_A1
,
2675 .txd_ring_mask
= FALCON_TXD_RING_MASK
,
2676 .rxd_ring_mask
= FALCON_RXD_RING_MASK
,
2677 .evq_size
= FALCON_EVQ_SIZE
,
2678 .max_dma_mask
= FALCON_DMA_MASK
,
2679 .tx_dma_mask
= FALCON_TX_DMA_MASK
,
2680 .bug5391_mask
= 0xf,
2681 .rx_xoff_thresh
= 2048,
2682 .rx_xon_thresh
= 512,
2683 .rx_buffer_padding
= 0x24,
2684 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
2685 .phys_addr_channels
= 4,
2688 struct efx_nic_type falcon_b_nic_type
= {
2690 /* Map everything up to and including the RSS indirection
2691 * table. Don't map MSI-X table, MSI-X PBA since Linux
2692 * requires that they not be mapped. */
2693 .mem_map_size
= RX_RSS_INDIR_TBL_B0
+ 0x800,
2694 .txd_ptr_tbl_base
= TX_DESC_PTR_TBL_KER_B0
,
2695 .rxd_ptr_tbl_base
= RX_DESC_PTR_TBL_KER_B0
,
2696 .buf_tbl_base
= BUF_TBL_KER_B0
,
2697 .evq_ptr_tbl_base
= EVQ_PTR_TBL_KER_B0
,
2698 .evq_rptr_tbl_base
= EVQ_RPTR_REG_KER_B0
,
2699 .txd_ring_mask
= FALCON_TXD_RING_MASK
,
2700 .rxd_ring_mask
= FALCON_RXD_RING_MASK
,
2701 .evq_size
= FALCON_EVQ_SIZE
,
2702 .max_dma_mask
= FALCON_DMA_MASK
,
2703 .tx_dma_mask
= FALCON_TX_DMA_MASK
,
2705 .rx_xoff_thresh
= 54272, /* ~80Kb - 3*max MTU */
2706 .rx_xon_thresh
= 27648, /* ~3*max MTU */
2707 .rx_buffer_padding
= 0,
2708 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
2709 .phys_addr_channels
= 32, /* Hardware limit is 64, but the legacy
2710 * interrupt handler only supports 32