Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / net / skfp / pcmplc.c
blob74e129f3ce92f32e2cb07673ebff0a79acd1414d
1 /******************************************************************************
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 * See the file "skfddi.c" for further information.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * The information in this file is provided "AS IS" without warranty.
15 ******************************************************************************/
18 PCM
19 Physical Connection Management
23 * Hardware independent state machine implemantation
24 * The following external SMT functions are referenced :
26 * queue_event()
27 * smt_timer_start()
28 * smt_timer_stop()
30 * The following external HW dependent functions are referenced :
31 * sm_pm_control()
32 * sm_ph_linestate()
33 * sm_pm_ls_latch()
35 * The following HW dependent events are required :
36 * PC_QLS
37 * PC_ILS
38 * PC_HLS
39 * PC_MLS
40 * PC_NSE
41 * PC_LEM
46 #include "h/types.h"
47 #include "h/fddi.h"
48 #include "h/smc.h"
49 #include "h/supern_2.h"
50 #define KERNEL
51 #include "h/smtstate.h"
53 #ifndef lint
54 static const char ID_sccs[] = "@(#)pcmplc.c 2.55 99/08/05 (C) SK " ;
55 #endif
57 #ifdef FDDI_MIB
58 extern int snmp_fddi_trap(
59 #ifdef ANSIC
60 struct s_smc * smc, int type, int index
61 #endif
63 #endif
64 #ifdef CONCENTRATOR
65 extern int plc_is_installed(
66 #ifdef ANSIC
67 struct s_smc *smc ,
68 int p
69 #endif
70 ) ;
71 #endif
73 * FSM Macros
75 #define AFLAG (0x20)
76 #define GO_STATE(x) (mib->fddiPORTPCMState = (x)|AFLAG)
77 #define ACTIONS_DONE() (mib->fddiPORTPCMState &= ~AFLAG)
78 #define ACTIONS(x) (x|AFLAG)
81 * PCM states
83 #define PC0_OFF 0
84 #define PC1_BREAK 1
85 #define PC2_TRACE 2
86 #define PC3_CONNECT 3
87 #define PC4_NEXT 4
88 #define PC5_SIGNAL 5
89 #define PC6_JOIN 6
90 #define PC7_VERIFY 7
91 #define PC8_ACTIVE 8
92 #define PC9_MAINT 9
94 #ifdef DEBUG
96 * symbolic state names
98 static const char * const pcm_states[] = {
99 "PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
100 "PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
104 * symbolic event names
106 static const char * const pcm_events[] = {
107 "NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
108 "PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
109 "PC_ENABLE","PC_DISABLE",
110 "PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
111 "PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
112 "PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
113 "PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
114 "PC_NSE","PC_LEM"
116 #endif
118 #ifdef MOT_ELM
120 * PCL-S control register
121 * this register in the PLC-S controls the scrambling parameters
123 #define PLCS_CONTROL_C_U 0
124 #define PLCS_CONTROL_C_S (PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
125 PL_C_CIPHER_ENABLE)
126 #define PLCS_FASSERT_U 0
127 #define PLCS_FASSERT_S 0xFd76 /* 52.0 us */
128 #define PLCS_FDEASSERT_U 0
129 #define PLCS_FDEASSERT_S 0
130 #else /* nMOT_ELM */
132 * PCL-S control register
133 * this register in the PLC-S controls the scrambling parameters
134 * can be patched for ANSI compliance if standard changes
136 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
137 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
139 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
140 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
141 #endif /* nMOT_ELM */
144 * external vars
146 /* struct definition see 'cmtdef.h' (also used by CFM) */
148 #define PS_OFF 0
149 #define PS_BIT3 1
150 #define PS_BIT4 2
151 #define PS_BIT7 3
152 #define PS_LCT 4
153 #define PS_BIT8 5
154 #define PS_JOIN 6
155 #define PS_ACTIVE 7
157 #define LCT_LEM_MAX 255
160 * PLC timing parameter
163 #define PLC_MS(m) ((int)((0x10000L-(m*100000L/2048))))
164 #define SLOW_TL_MIN PLC_MS(6)
165 #define SLOW_C_MIN PLC_MS(10)
167 static const struct plt {
168 int timer ; /* relative plc timer address */
169 int para ; /* default timing parameters */
170 } pltm[] = {
171 { PL_C_MIN, SLOW_C_MIN }, /* min t. to remain Connect State */
172 { PL_TL_MIN, SLOW_TL_MIN }, /* min t. to transmit a Line State */
173 { PL_TB_MIN, TP_TB_MIN }, /* min break time */
174 { PL_T_OUT, TP_T_OUT }, /* Signaling timeout */
175 { PL_LC_LENGTH, TP_LC_LENGTH }, /* Link Confidence Test Time */
176 { PL_T_SCRUB, TP_T_SCRUB }, /* Scrub Time == MAC TVX time ! */
177 { PL_NS_MAX, TP_NS_MAX }, /* max t. that noise is tolerated */
178 { 0,0 }
182 * interrupt mask
184 #ifdef SUPERNET_3
186 * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
187 * PLL bug?
189 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
190 PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
191 #else /* SUPERNET_3 */
193 * We do NOT need the elasticity buffer error during signaling.
195 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
196 PL_PCM_ENABLED | PL_SELF_TEST ;
197 #endif /* SUPERNET_3 */
198 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
199 PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
201 /* external functions */
202 void all_selection_criteria(struct s_smc *smc);
204 /* internal functions */
205 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
206 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
207 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
208 static void reset_lem_struct(struct s_phy *phy);
209 static void plc_init(struct s_smc *smc, int p);
210 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
211 static void sm_ph_lem_stop(struct s_smc *smc, int np);
212 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
213 static void real_init_plc(struct s_smc *smc);
216 * SMT timer interface
217 * start PCM timer 0
219 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
220 struct s_phy *phy)
222 phy->timer0_exp = FALSE ; /* clear timer event flag */
223 smt_timer_start(smc,&phy->pcm_timer0,value,
224 EV_TOKEN(EVENT_PCM+phy->np,event)) ;
227 * SMT timer interface
228 * stop PCM timer 0
230 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
232 if (phy->pcm_timer0.tm_active)
233 smt_timer_stop(smc,&phy->pcm_timer0) ;
237 init PCM state machine (called by driver)
238 clear all PCM vars and flags
240 void pcm_init(struct s_smc *smc)
242 int i ;
243 int np ;
244 struct s_phy *phy ;
245 struct fddi_mib_p *mib ;
247 for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
248 /* Indicates the type of PHY being used */
249 mib = phy->mib ;
250 mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
251 phy->np = np ;
252 switch (smc->s.sas) {
253 #ifdef CONCENTRATOR
254 case SMT_SAS :
255 mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
256 break ;
257 case SMT_DAS :
258 mib->fddiPORTMy_Type = (np == PA) ? TA :
259 (np == PB) ? TB : TM ;
260 break ;
261 case SMT_NAC :
262 mib->fddiPORTMy_Type = TM ;
263 break;
264 #else
265 case SMT_SAS :
266 mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
267 mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
268 FALSE ;
269 #ifndef SUPERNET_3
270 smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
271 #else
272 smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
273 #endif
274 break ;
275 case SMT_DAS :
276 mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
277 break ;
278 #endif
281 * set PMD-type
283 phy->pmd_scramble = 0 ;
284 switch (phy->pmd_type[PMD_SK_PMD]) {
285 case 'P' :
286 mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
287 break ;
288 case 'L' :
289 mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
290 break ;
291 case 'D' :
292 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
293 break ;
294 case 'S' :
295 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
296 phy->pmd_scramble = TRUE ;
297 break ;
298 case 'U' :
299 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
300 phy->pmd_scramble = TRUE ;
301 break ;
302 case '1' :
303 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
304 break ;
305 case '2' :
306 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
307 break ;
308 case '3' :
309 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
310 break ;
311 case '4' :
312 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
313 break ;
314 case 'H' :
315 mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
316 break ;
317 case 'I' :
318 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
319 break ;
320 case 'G' :
321 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
322 break ;
323 default:
324 mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
325 break ;
328 * A and B port can be on primary and secondary path
330 switch (mib->fddiPORTMy_Type) {
331 case TA :
332 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
333 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
334 mib->fddiPORTRequestedPaths[2] =
335 MIB_P_PATH_LOCAL |
336 MIB_P_PATH_CON_ALTER |
337 MIB_P_PATH_SEC_PREFER ;
338 mib->fddiPORTRequestedPaths[3] =
339 MIB_P_PATH_LOCAL |
340 MIB_P_PATH_CON_ALTER |
341 MIB_P_PATH_SEC_PREFER |
342 MIB_P_PATH_THRU ;
343 break ;
344 case TB :
345 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
346 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
347 mib->fddiPORTRequestedPaths[2] =
348 MIB_P_PATH_LOCAL |
349 MIB_P_PATH_PRIM_PREFER ;
350 mib->fddiPORTRequestedPaths[3] =
351 MIB_P_PATH_LOCAL |
352 MIB_P_PATH_PRIM_PREFER |
353 MIB_P_PATH_CON_PREFER |
354 MIB_P_PATH_THRU ;
355 break ;
356 case TS :
357 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
358 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
359 mib->fddiPORTRequestedPaths[2] =
360 MIB_P_PATH_LOCAL |
361 MIB_P_PATH_CON_ALTER |
362 MIB_P_PATH_PRIM_PREFER ;
363 mib->fddiPORTRequestedPaths[3] =
364 MIB_P_PATH_LOCAL |
365 MIB_P_PATH_CON_ALTER |
366 MIB_P_PATH_PRIM_PREFER ;
367 break ;
368 case TM :
369 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
370 mib->fddiPORTRequestedPaths[2] =
371 MIB_P_PATH_LOCAL |
372 MIB_P_PATH_SEC_ALTER |
373 MIB_P_PATH_PRIM_ALTER ;
374 mib->fddiPORTRequestedPaths[3] = 0 ;
375 break ;
378 phy->pc_lem_fail = FALSE ;
379 mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
380 mib->fddiPORTLCTFail_Ct = 0 ;
381 mib->fddiPORTBS_Flag = 0 ;
382 mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
383 mib->fddiPORTNeighborType = TNONE ;
384 phy->ls_flag = 0 ;
385 phy->rc_flag = 0 ;
386 phy->tc_flag = 0 ;
387 phy->td_flag = 0 ;
388 if (np >= PM)
389 phy->phy_name = '0' + np - PM ;
390 else
391 phy->phy_name = 'A' + np ;
392 phy->wc_flag = FALSE ; /* set by SMT */
393 memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
394 reset_lem_struct(phy) ;
395 memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
396 phy->plc.p_state = PS_OFF ;
397 for (i = 0 ; i < NUMBITS ; i++) {
398 phy->t_next[i] = 0 ;
401 real_init_plc(smc) ;
404 void init_plc(struct s_smc *smc)
406 SK_UNUSED(smc) ;
409 * dummy
410 * this is an obsolete public entry point that has to remain
411 * for compat. It is used by various drivers.
412 * the work is now done in real_init_plc()
413 * which is called from pcm_init() ;
417 static void real_init_plc(struct s_smc *smc)
419 int p ;
421 for (p = 0 ; p < NUMPHYS ; p++)
422 plc_init(smc,p) ;
425 static void plc_init(struct s_smc *smc, int p)
427 int i ;
428 #ifndef MOT_ELM
429 int rev ; /* Revision of PLC-x */
430 #endif /* MOT_ELM */
432 /* transit PCM state machine to MAINT state */
433 outpw(PLC(p,PL_CNTRL_B),0) ;
434 outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
435 outpw(PLC(p,PL_CNTRL_A),0) ;
438 * if PLC-S then set control register C
440 #ifndef MOT_ELM
441 rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
442 if (rev != PLC_REVISION_A)
443 #endif /* MOT_ELM */
445 if (smc->y[p].pmd_scramble) {
446 outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
447 #ifdef MOT_ELM
448 outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
449 outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
450 #endif /* MOT_ELM */
452 else {
453 outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
454 #ifdef MOT_ELM
455 outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
456 outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
457 #endif /* MOT_ELM */
462 * set timer register
464 for ( i = 0 ; pltm[i].timer; i++) /* set timer parameter reg */
465 outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
467 (void)inpw(PLC(p,PL_INTR_EVENT)) ; /* clear interrupt event reg */
468 plc_clear_irq(smc,p) ;
469 outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
472 * if PCM is configured for class s, it will NOT go to the
473 * REMOVE state if offline (page 3-36;)
474 * in the concentrator, all inactive PHYS always must be in
475 * the remove state
476 * there's no real need to use this feature at all ..
478 #ifndef CONCENTRATOR
479 if ((smc->s.sas == SMT_SAS) && (p == PS)) {
480 outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
482 #endif
486 * control PCM state machine
488 static void plc_go_state(struct s_smc *smc, int p, int state)
490 HW_PTR port ;
491 int val ;
493 SK_UNUSED(smc) ;
495 port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
496 val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
497 outpw(port,val) ;
498 outpw(port,val | state) ;
502 * read current line state (called by ECM & PCM)
504 int sm_pm_get_ls(struct s_smc *smc, int phy)
506 int state ;
508 #ifdef CONCENTRATOR
509 if (!plc_is_installed(smc,phy))
510 return(PC_QLS) ;
511 #endif
513 state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
514 switch(state) {
515 case PL_L_QLS:
516 state = PC_QLS ;
517 break ;
518 case PL_L_MLS:
519 state = PC_MLS ;
520 break ;
521 case PL_L_HLS:
522 state = PC_HLS ;
523 break ;
524 case PL_L_ILS4:
525 case PL_L_ILS16:
526 state = PC_ILS ;
527 break ;
528 case PL_L_ALS:
529 state = PC_LS_PDR ;
530 break ;
531 default :
532 state = PC_LS_NONE ;
534 return(state) ;
537 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
539 int np = phy->np ; /* PHY index */
540 int n ;
541 int i ;
543 SK_UNUSED(smc) ;
545 /* create bit vector */
546 for (i = len-1,n = 0 ; i >= 0 ; i--) {
547 n = (n<<1) | phy->t_val[phy->bitn+i] ;
549 if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
550 #if 0
551 printf("PL_PCM_SIGNAL is set\n") ;
552 #endif
553 return(1) ;
555 /* write bit[n] & length = 1 to regs */
556 outpw(PLC(np,PL_VECTOR_LEN),len-1) ; /* len=nr-1 */
557 outpw(PLC(np,PL_XMIT_VECTOR),n) ;
558 #ifdef DEBUG
559 #if 1
560 #ifdef DEBUG_BRD
561 if (smc->debug.d_plc & 0x80)
562 #else
563 if (debug.d_plc & 0x80)
564 #endif
565 printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
566 #endif
567 #endif
568 return(0) ;
572 * config plc muxes
574 void plc_config_mux(struct s_smc *smc, int mux)
576 if (smc->s.sas != SMT_DAS)
577 return ;
578 if (mux == MUX_WRAPB) {
579 SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
580 SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
582 else {
583 CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
584 CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
586 CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
587 CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
591 PCM state machine
592 called by dispatcher & fddi_init() (driver)
594 display state change
595 process event
596 until SM is stable
598 void pcm(struct s_smc *smc, const int np, int event)
600 int state ;
601 int oldstate ;
602 struct s_phy *phy ;
603 struct fddi_mib_p *mib ;
605 #ifndef CONCENTRATOR
607 * ignore 2nd PHY if SAS
609 if ((np != PS) && (smc->s.sas == SMT_SAS))
610 return ;
611 #endif
612 phy = &smc->y[np] ;
613 mib = phy->mib ;
614 oldstate = mib->fddiPORTPCMState ;
615 do {
616 DB_PCM("PCM %c: state %s",
617 phy->phy_name,
618 (mib->fddiPORTPCMState & AFLAG) ? "ACTIONS " : "") ;
619 DB_PCM("%s, event %s\n",
620 pcm_states[mib->fddiPORTPCMState & ~AFLAG],
621 pcm_events[event]) ;
622 state = mib->fddiPORTPCMState ;
623 pcm_fsm(smc,phy,event) ;
624 event = 0 ;
625 } while (state != mib->fddiPORTPCMState) ;
627 * because the PLC does the bit signaling for us,
628 * we're always in SIGNAL state
629 * the MIB want's to see CONNECT
630 * we therefore fake an entry in the MIB
632 if (state == PC5_SIGNAL)
633 mib->fddiPORTPCMStateX = PC3_CONNECT ;
634 else
635 mib->fddiPORTPCMStateX = state ;
637 #ifndef SLIM_SMT
639 * path change
641 if ( mib->fddiPORTPCMState != oldstate &&
642 ((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
643 smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
644 (int) (INDEX_PORT+ phy->np),0) ;
646 #endif
648 #ifdef FDDI_MIB
649 /* check whether a snmp-trap has to be sent */
651 if ( mib->fddiPORTPCMState != oldstate ) {
652 /* a real state change took place */
653 DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
654 if ( mib->fddiPORTPCMState == PC0_OFF ) {
655 /* send first trap */
656 snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
657 } else if ( oldstate == PC0_OFF ) {
658 /* send second trap */
659 snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
660 } else if ( mib->fddiPORTPCMState != PC2_TRACE &&
661 oldstate == PC8_ACTIVE ) {
662 /* send third trap */
663 snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
664 } else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
665 /* send fourth trap */
666 snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
669 #endif
671 pcm_state_change(smc,np,state) ;
675 * PCM state machine
677 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
679 int i ;
680 int np = phy->np ; /* PHY index */
681 struct s_plc *plc ;
682 struct fddi_mib_p *mib ;
683 #ifndef MOT_ELM
684 u_short plc_rev ; /* Revision of the plc */
685 #endif /* nMOT_ELM */
687 plc = &phy->plc ;
688 mib = phy->mib ;
691 * general transitions independent of state
693 switch (cmd) {
694 case PC_STOP :
695 /*PC00-PC80*/
696 if (mib->fddiPORTPCMState != PC9_MAINT) {
697 GO_STATE(PC0_OFF) ;
698 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
699 FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
700 smt_get_port_event_word(smc));
702 return ;
703 case PC_START :
704 /*PC01-PC81*/
705 if (mib->fddiPORTPCMState != PC9_MAINT)
706 GO_STATE(PC1_BREAK) ;
707 return ;
708 case PC_DISABLE :
709 /* PC09-PC99 */
710 GO_STATE(PC9_MAINT) ;
711 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
712 FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
713 smt_get_port_event_word(smc));
714 return ;
715 case PC_TIMEOUT_LCT :
716 /* if long or extended LCT */
717 stop_pcm_timer0(smc,phy) ;
718 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
719 /* end of LCT is indicate by PCM_CODE (initiate PCM event) */
720 return ;
723 switch(mib->fddiPORTPCMState) {
724 case ACTIONS(PC0_OFF) :
725 stop_pcm_timer0(smc,phy) ;
726 outpw(PLC(np,PL_CNTRL_A),0) ;
727 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
728 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
729 sm_ph_lem_stop(smc,np) ; /* disable LEM */
730 phy->cf_loop = FALSE ;
731 phy->cf_join = FALSE ;
732 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
733 plc_go_state(smc,np,PL_PCM_STOP) ;
734 mib->fddiPORTConnectState = PCM_DISABLED ;
735 ACTIONS_DONE() ;
736 break ;
737 case PC0_OFF:
738 /*PC09*/
739 if (cmd == PC_MAINT) {
740 GO_STATE(PC9_MAINT) ;
741 break ;
743 break ;
744 case ACTIONS(PC1_BREAK) :
745 /* Stop the LCT timer if we came from Signal state */
746 stop_pcm_timer0(smc,phy) ;
747 ACTIONS_DONE() ;
748 plc_go_state(smc,np,0) ;
749 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
750 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
751 sm_ph_lem_stop(smc,np) ; /* disable LEM */
753 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
755 #if 0
756 if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
757 plc_go_state(smc,np,PL_PCM_STOP) ;
758 /* TB_MIN ? */
760 #endif
762 * Go to OFF state in any case.
764 plc_go_state(smc,np,PL_PCM_STOP) ;
766 if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
767 mib->fddiPORTConnectState = PCM_CONNECTING ;
768 phy->cf_loop = FALSE ;
769 phy->cf_join = FALSE ;
770 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
771 phy->ls_flag = FALSE ;
772 phy->pc_mode = PM_NONE ; /* needed by CFM */
773 phy->bitn = 0 ; /* bit signaling start bit */
774 for (i = 0 ; i < 3 ; i++)
775 pc_tcode_actions(smc,i,phy) ;
777 /* Set the non-active interrupt mask register */
778 outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
781 * If the LCT was stopped. There might be a
782 * PCM_CODE interrupt event present.
783 * This must be cleared.
785 (void)inpw(PLC(np,PL_INTR_EVENT)) ;
786 #ifndef MOT_ELM
787 /* Get the plc revision for revision dependent code */
788 plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
790 if (plc_rev != PLC_REV_SN3)
791 #endif /* MOT_ELM */
794 * No supernet III PLC, so set Xmit verctor and
795 * length BEFORE starting the state machine.
797 if (plc_send_bits(smc,phy,3)) {
798 return ;
803 * Now give the Start command.
804 * - The start command shall be done before setting the bits
805 * to be signaled. (In PLC-S description and PLCS in SN3.
806 * - The start command shall be issued AFTER setting the
807 * XMIT vector and the XMIT length register.
809 * We do it exactly according this specs for the old PLC and
810 * the new PLCS inside the SN3.
811 * For the usual PLCS we try it the way it is done for the
812 * old PLC and set the XMIT registers again, if the PLC is
813 * not in SIGNAL state. This is done according to an PLCS
814 * errata workaround.
817 plc_go_state(smc,np,PL_PCM_START) ;
820 * workaround for PLC-S eng. sample errata
822 #ifdef MOT_ELM
823 if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
824 #else /* nMOT_ELM */
825 if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
826 PLC_REVISION_A) &&
827 !(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
828 #endif /* nMOT_ELM */
831 * Set register again (PLCS errata) or the first time
832 * (new SN3 PLCS).
834 (void) plc_send_bits(smc,phy,3) ;
837 * end of workaround
840 GO_STATE(PC5_SIGNAL) ;
841 plc->p_state = PS_BIT3 ;
842 plc->p_bits = 3 ;
843 plc->p_start = 0 ;
845 break ;
846 case PC1_BREAK :
847 break ;
848 case ACTIONS(PC2_TRACE) :
849 plc_go_state(smc,np,PL_PCM_TRACE) ;
850 ACTIONS_DONE() ;
851 break ;
852 case PC2_TRACE :
853 break ;
855 case PC3_CONNECT : /* these states are done by hardware */
856 case PC4_NEXT :
857 break ;
859 case ACTIONS(PC5_SIGNAL) :
860 ACTIONS_DONE() ;
861 case PC5_SIGNAL :
862 if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
863 break ;
864 switch (plc->p_state) {
865 case PS_BIT3 :
866 for (i = 0 ; i <= 2 ; i++)
867 pc_rcode_actions(smc,i,phy) ;
868 pc_tcode_actions(smc,3,phy) ;
869 plc->p_state = PS_BIT4 ;
870 plc->p_bits = 1 ;
871 plc->p_start = 3 ;
872 phy->bitn = 3 ;
873 if (plc_send_bits(smc,phy,1)) {
874 return ;
876 break ;
877 case PS_BIT4 :
878 pc_rcode_actions(smc,3,phy) ;
879 for (i = 4 ; i <= 6 ; i++)
880 pc_tcode_actions(smc,i,phy) ;
881 plc->p_state = PS_BIT7 ;
882 plc->p_bits = 3 ;
883 plc->p_start = 4 ;
884 phy->bitn = 4 ;
885 if (plc_send_bits(smc,phy,3)) {
886 return ;
888 break ;
889 case PS_BIT7 :
890 for (i = 3 ; i <= 6 ; i++)
891 pc_rcode_actions(smc,i,phy) ;
892 plc->p_state = PS_LCT ;
893 plc->p_bits = 0 ;
894 plc->p_start = 7 ;
895 phy->bitn = 7 ;
896 sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
897 /* start LCT */
898 i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
899 outpw(PLC(np,PL_CNTRL_B),i) ; /* must be cleared */
900 outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
901 break ;
902 case PS_LCT :
903 /* check for local LCT failure */
904 pc_tcode_actions(smc,7,phy) ;
906 * set tval[7]
908 plc->p_state = PS_BIT8 ;
909 plc->p_bits = 1 ;
910 plc->p_start = 7 ;
911 phy->bitn = 7 ;
912 if (plc_send_bits(smc,phy,1)) {
913 return ;
915 break ;
916 case PS_BIT8 :
917 /* check for remote LCT failure */
918 pc_rcode_actions(smc,7,phy) ;
919 if (phy->t_val[7] || phy->r_val[7]) {
920 plc_go_state(smc,np,PL_PCM_STOP) ;
921 GO_STATE(PC1_BREAK) ;
922 break ;
924 for (i = 8 ; i <= 9 ; i++)
925 pc_tcode_actions(smc,i,phy) ;
926 plc->p_state = PS_JOIN ;
927 plc->p_bits = 2 ;
928 plc->p_start = 8 ;
929 phy->bitn = 8 ;
930 if (plc_send_bits(smc,phy,2)) {
931 return ;
933 break ;
934 case PS_JOIN :
935 for (i = 8 ; i <= 9 ; i++)
936 pc_rcode_actions(smc,i,phy) ;
937 plc->p_state = PS_ACTIVE ;
938 GO_STATE(PC6_JOIN) ;
939 break ;
941 break ;
943 case ACTIONS(PC6_JOIN) :
945 * prevent mux error when going from WRAP_A to WRAP_B
947 if (smc->s.sas == SMT_DAS && np == PB &&
948 (smc->y[PA].pc_mode == PM_TREE ||
949 smc->y[PB].pc_mode == PM_TREE)) {
950 SETMASK(PLC(np,PL_CNTRL_A),
951 PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
952 SETMASK(PLC(np,PL_CNTRL_B),
953 PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
955 SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
956 SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
957 ACTIONS_DONE() ;
958 cmd = 0 ;
959 /* fall thru */
960 case PC6_JOIN :
961 switch (plc->p_state) {
962 case PS_ACTIVE:
963 /*PC88b*/
964 if (!phy->cf_join) {
965 phy->cf_join = TRUE ;
966 queue_event(smc,EVENT_CFM,CF_JOIN+np) ; ;
968 if (cmd == PC_JOIN)
969 GO_STATE(PC8_ACTIVE) ;
970 /*PC82*/
971 if (cmd == PC_TRACE) {
972 GO_STATE(PC2_TRACE) ;
973 break ;
975 break ;
977 break ;
979 case PC7_VERIFY :
980 break ;
982 case ACTIONS(PC8_ACTIVE) :
984 * start LEM for SMT
986 sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
988 phy->tr_flag = FALSE ;
989 mib->fddiPORTConnectState = PCM_ACTIVE ;
991 /* Set the active interrupt mask register */
992 outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
994 ACTIONS_DONE() ;
995 break ;
996 case PC8_ACTIVE :
997 /*PC81 is done by PL_TNE_EXPIRED irq */
998 /*PC82*/
999 if (cmd == PC_TRACE) {
1000 GO_STATE(PC2_TRACE) ;
1001 break ;
1003 /*PC88c: is done by TRACE_PROP irq */
1005 break ;
1006 case ACTIONS(PC9_MAINT) :
1007 stop_pcm_timer0(smc,phy) ;
1008 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
1009 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
1010 CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ; /* disable LEM int. */
1011 sm_ph_lem_stop(smc,np) ; /* disable LEM */
1012 phy->cf_loop = FALSE ;
1013 phy->cf_join = FALSE ;
1014 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1015 plc_go_state(smc,np,PL_PCM_STOP) ;
1016 mib->fddiPORTConnectState = PCM_DISABLED ;
1017 SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
1018 sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1019 outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
1020 ACTIONS_DONE() ;
1021 break ;
1022 case PC9_MAINT :
1023 DB_PCMN(1,"PCM %c : MAINT\n",phy->phy_name,0) ;
1024 /*PC90*/
1025 if (cmd == PC_ENABLE) {
1026 GO_STATE(PC0_OFF) ;
1027 break ;
1029 break ;
1031 default:
1032 SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
1033 break ;
1038 * force line state on a PHY output (only in MAINT state)
1040 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1042 int cntrl ;
1044 SK_UNUSED(smc) ;
1046 cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1047 PL_PCM_STOP | PL_MAINT ;
1048 switch(ls) {
1049 case PC_QLS: /* Force Quiet */
1050 cntrl |= PL_M_QUI0 ;
1051 break ;
1052 case PC_MLS: /* Force Master */
1053 cntrl |= PL_M_MASTR ;
1054 break ;
1055 case PC_HLS: /* Force Halt */
1056 cntrl |= PL_M_HALT ;
1057 break ;
1058 default :
1059 case PC_ILS: /* Force Idle */
1060 cntrl |= PL_M_IDLE ;
1061 break ;
1062 case PC_LS_PDR: /* Enable repeat filter */
1063 cntrl |= PL_M_TPDR ;
1064 break ;
1066 outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1069 static void reset_lem_struct(struct s_phy *phy)
1071 struct lem_counter *lem = &phy->lem ;
1073 phy->mib->fddiPORTLer_Estimate = 15 ;
1074 lem->lem_float_ber = 15 * 100 ;
1078 * link error monitor
1080 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1082 int ber ;
1083 u_long errors ;
1084 struct lem_counter *lem = &phy->lem ;
1085 struct fddi_mib_p *mib ;
1086 int cond ;
1088 mib = phy->mib ;
1090 if (!lem->lem_on)
1091 return ;
1093 errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1094 lem->lem_errors += errors ;
1095 mib->fddiPORTLem_Ct += errors ;
1097 errors = lem->lem_errors ;
1099 * calculation is called on a intervall of 8 seconds
1100 * -> this means, that one error in 8 sec. is one of 8*125*10E6
1101 * the same as BER = 10E-9
1102 * Please note:
1103 * -> 9 errors in 8 seconds mean:
1104 * BER = 9 * 10E-9 and this is
1105 * < 10E-8, so the limit of 10E-8 is not reached!
1108 if (!errors) ber = 15 ;
1109 else if (errors <= 9) ber = 9 ;
1110 else if (errors <= 99) ber = 8 ;
1111 else if (errors <= 999) ber = 7 ;
1112 else if (errors <= 9999) ber = 6 ;
1113 else if (errors <= 99999) ber = 5 ;
1114 else if (errors <= 999999) ber = 4 ;
1115 else if (errors <= 9999999) ber = 3 ;
1116 else if (errors <= 99999999) ber = 2 ;
1117 else if (errors <= 999999999) ber = 1 ;
1118 else ber = 0 ;
1121 * weighted average
1123 ber *= 100 ;
1124 lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1125 lem->lem_float_ber /= 10 ;
1126 mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1127 if (mib->fddiPORTLer_Estimate < 4) {
1128 mib->fddiPORTLer_Estimate = 4 ;
1131 if (lem->lem_errors) {
1132 DB_PCMN(1,"LEM %c :\n",phy->np == PB? 'B' : 'A',0) ;
1133 DB_PCMN(1,"errors : %ld\n",lem->lem_errors,0) ;
1134 DB_PCMN(1,"sum_errors : %ld\n",mib->fddiPORTLem_Ct,0) ;
1135 DB_PCMN(1,"current BER : 10E-%d\n",ber/100,0) ;
1136 DB_PCMN(1,"float BER : 10E-(%d/100)\n",lem->lem_float_ber,0) ;
1137 DB_PCMN(1,"avg. BER : 10E-%d\n",
1138 mib->fddiPORTLer_Estimate,0) ;
1141 lem->lem_errors = 0L ;
1143 #ifndef SLIM_SMT
1144 cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1145 TRUE : FALSE ;
1146 #ifdef SMT_EXT_CUTOFF
1147 smt_ler_alarm_check(smc,phy,cond) ;
1148 #endif /* nSMT_EXT_CUTOFF */
1149 if (cond != mib->fddiPORTLerFlag) {
1150 smt_srf_event(smc,SMT_COND_PORT_LER,
1151 (int) (INDEX_PORT+ phy->np) ,cond) ;
1153 #endif
1155 if ( mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1156 phy->pc_lem_fail = TRUE ; /* flag */
1157 mib->fddiPORTLem_Reject_Ct++ ;
1159 * "forgive 10e-2" if we cutoff so we can come
1160 * up again ..
1162 lem->lem_float_ber += 2*100 ;
1164 /*PC81b*/
1165 #ifdef CONCENTRATOR
1166 DB_PCMN(1,"PCM: LER cutoff on port %d cutoff %d\n",
1167 phy->np, mib->fddiPORTLer_Cutoff) ;
1168 #endif
1169 #ifdef SMT_EXT_CUTOFF
1170 smt_port_off_event(smc,phy->np);
1171 #else /* nSMT_EXT_CUTOFF */
1172 queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1173 #endif /* nSMT_EXT_CUTOFF */
1178 * called by SMT to calculate LEM bit error rate
1180 void sm_lem_evaluate(struct s_smc *smc)
1182 int np ;
1184 for (np = 0 ; np < NUMPHYS ; np++)
1185 lem_evaluate(smc,&smc->y[np]) ;
1188 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1190 struct lem_counter *lem = &phy->lem ;
1191 struct fddi_mib_p *mib ;
1192 int errors ;
1194 mib = phy->mib ;
1196 phy->pc_lem_fail = FALSE ; /* flag */
1197 errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1198 lem->lem_errors += errors ;
1199 mib->fddiPORTLem_Ct += errors ;
1200 if (lem->lem_errors) {
1201 switch(phy->lc_test) {
1202 case LC_SHORT:
1203 if (lem->lem_errors >= smc->s.lct_short)
1204 phy->pc_lem_fail = TRUE ;
1205 break ;
1206 case LC_MEDIUM:
1207 if (lem->lem_errors >= smc->s.lct_medium)
1208 phy->pc_lem_fail = TRUE ;
1209 break ;
1210 case LC_LONG:
1211 if (lem->lem_errors >= smc->s.lct_long)
1212 phy->pc_lem_fail = TRUE ;
1213 break ;
1214 case LC_EXTENDED:
1215 if (lem->lem_errors >= smc->s.lct_extended)
1216 phy->pc_lem_fail = TRUE ;
1217 break ;
1219 DB_PCMN(1," >>errors : %d\n",lem->lem_errors,0) ;
1221 if (phy->pc_lem_fail) {
1222 mib->fddiPORTLCTFail_Ct++ ;
1223 mib->fddiPORTLem_Reject_Ct++ ;
1225 else
1226 mib->fddiPORTLCTFail_Ct = 0 ;
1230 * LEM functions
1232 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1234 struct lem_counter *lem = &smc->y[np].lem ;
1236 lem->lem_on = 1 ;
1237 lem->lem_errors = 0L ;
1239 /* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1240 * often.
1243 outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1244 (void)inpw(PLC(np,PL_LINK_ERR_CTR)) ; /* clear error counter */
1246 /* enable LE INT */
1247 SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1250 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1252 struct lem_counter *lem = &smc->y[np].lem ;
1254 lem->lem_on = 0 ;
1255 CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1258 /* ARGSUSED */
1259 void sm_pm_ls_latch(struct s_smc *smc, int phy, int on_off)
1260 /* int on_off; en- or disable ident. ls */
1262 SK_UNUSED(smc) ;
1264 phy = phy ; on_off = on_off ;
1269 * PCM pseudo code
1270 * receive actions are called AFTER the bit n is received,
1271 * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1275 * PCM pseudo code 5.1 .. 6.1
1277 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1279 struct fddi_mib_p *mib ;
1281 mib = phy->mib ;
1283 DB_PCMN(1,"SIG rec %x %x: \n", bit,phy->r_val[bit] ) ;
1284 bit++ ;
1286 switch(bit) {
1287 case 0:
1288 case 1:
1289 case 2:
1290 break ;
1291 case 3 :
1292 if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1293 mib->fddiPORTNeighborType = TA ;
1294 else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1295 mib->fddiPORTNeighborType = TB ;
1296 else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1297 mib->fddiPORTNeighborType = TS ;
1298 else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1299 mib->fddiPORTNeighborType = TM ;
1300 break ;
1301 case 4:
1302 if (mib->fddiPORTMy_Type == TM &&
1303 mib->fddiPORTNeighborType == TM) {
1304 DB_PCMN(1,"PCM %c : E100 withhold M-M\n",
1305 phy->phy_name,0) ;
1306 mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1307 RS_SET(smc,RS_EVENT) ;
1309 else if (phy->t_val[3] || phy->r_val[3]) {
1310 mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1311 if (mib->fddiPORTMy_Type == TM ||
1312 mib->fddiPORTNeighborType == TM)
1313 phy->pc_mode = PM_TREE ;
1314 else
1315 phy->pc_mode = PM_PEER ;
1317 /* reevaluate the selection criteria (wc_flag) */
1318 all_selection_criteria (smc);
1320 if (phy->wc_flag) {
1321 mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1324 else {
1325 mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1326 RS_SET(smc,RS_EVENT) ;
1327 DB_PCMN(1,"PCM %c : E101 withhold other\n",
1328 phy->phy_name,0) ;
1330 phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1331 (mib->fddiPORTMy_Type != TM) &&
1332 (mib->fddiPORTNeighborType ==
1333 mib->fddiPORTMy_Type)) ;
1334 if (phy->twisted) {
1335 DB_PCMN(1,"PCM %c : E102 !!! TWISTED !!!\n",
1336 phy->phy_name,0) ;
1338 break ;
1339 case 5 :
1340 break ;
1341 case 6:
1342 if (phy->t_val[4] || phy->r_val[4]) {
1343 if ((phy->t_val[4] && phy->t_val[5]) ||
1344 (phy->r_val[4] && phy->r_val[5]) )
1345 phy->lc_test = LC_EXTENDED ;
1346 else
1347 phy->lc_test = LC_LONG ;
1349 else if (phy->t_val[5] || phy->r_val[5])
1350 phy->lc_test = LC_MEDIUM ;
1351 else
1352 phy->lc_test = LC_SHORT ;
1353 switch (phy->lc_test) {
1354 case LC_SHORT : /* 50ms */
1355 outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1356 phy->t_next[7] = smc->s.pcm_lc_short ;
1357 break ;
1358 case LC_MEDIUM : /* 500ms */
1359 outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1360 phy->t_next[7] = smc->s.pcm_lc_medium ;
1361 break ;
1362 case LC_LONG :
1363 SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1364 phy->t_next[7] = smc->s.pcm_lc_long ;
1365 break ;
1366 case LC_EXTENDED :
1367 SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1368 phy->t_next[7] = smc->s.pcm_lc_extended ;
1369 break ;
1371 if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1372 start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1374 DB_PCMN(1,"LCT timer = %ld us\n", phy->t_next[7], 0) ;
1375 phy->t_next[9] = smc->s.pcm_t_next_9 ;
1376 break ;
1377 case 7:
1378 if (phy->t_val[6]) {
1379 phy->cf_loop = TRUE ;
1381 phy->td_flag = TRUE ;
1382 break ;
1383 case 8:
1384 if (phy->t_val[7] || phy->r_val[7]) {
1385 DB_PCMN(1,"PCM %c : E103 LCT fail %s\n",
1386 phy->phy_name,phy->t_val[7]? "local":"remote") ;
1387 queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1389 break ;
1390 case 9:
1391 if (phy->t_val[8] || phy->r_val[8]) {
1392 if (phy->t_val[8])
1393 phy->cf_loop = TRUE ;
1394 phy->td_flag = TRUE ;
1396 break ;
1397 case 10:
1398 if (phy->r_val[9]) {
1399 /* neighbor intends to have MAC on output */ ;
1400 mib->fddiPORTMacIndicated.R_val = TRUE ;
1402 else {
1403 /* neighbor does not intend to have MAC on output */ ;
1404 mib->fddiPORTMacIndicated.R_val = FALSE ;
1406 break ;
1411 * PCM pseudo code 5.1 .. 6.1
1413 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1415 int np = phy->np ;
1416 struct fddi_mib_p *mib ;
1418 mib = phy->mib ;
1420 switch(bit) {
1421 case 0:
1422 phy->t_val[0] = 0 ; /* no escape used */
1423 break ;
1424 case 1:
1425 if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1426 phy->t_val[1] = 1 ;
1427 else
1428 phy->t_val[1] = 0 ;
1429 break ;
1430 case 2 :
1431 if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1432 phy->t_val[2] = 1 ;
1433 else
1434 phy->t_val[2] = 0 ;
1435 break ;
1436 case 3:
1438 int type,ne ;
1439 int policy ;
1441 type = mib->fddiPORTMy_Type ;
1442 ne = mib->fddiPORTNeighborType ;
1443 policy = smc->mib.fddiSMTConnectionPolicy ;
1445 phy->t_val[3] = 1 ; /* Accept connection */
1446 switch (type) {
1447 case TA :
1448 if (
1449 ((policy & POLICY_AA) && ne == TA) ||
1450 ((policy & POLICY_AB) && ne == TB) ||
1451 ((policy & POLICY_AS) && ne == TS) ||
1452 ((policy & POLICY_AM) && ne == TM) )
1453 phy->t_val[3] = 0 ; /* Reject */
1454 break ;
1455 case TB :
1456 if (
1457 ((policy & POLICY_BA) && ne == TA) ||
1458 ((policy & POLICY_BB) && ne == TB) ||
1459 ((policy & POLICY_BS) && ne == TS) ||
1460 ((policy & POLICY_BM) && ne == TM) )
1461 phy->t_val[3] = 0 ; /* Reject */
1462 break ;
1463 case TS :
1464 if (
1465 ((policy & POLICY_SA) && ne == TA) ||
1466 ((policy & POLICY_SB) && ne == TB) ||
1467 ((policy & POLICY_SS) && ne == TS) ||
1468 ((policy & POLICY_SM) && ne == TM) )
1469 phy->t_val[3] = 0 ; /* Reject */
1470 break ;
1471 case TM :
1472 if ( ne == TM ||
1473 ((policy & POLICY_MA) && ne == TA) ||
1474 ((policy & POLICY_MB) && ne == TB) ||
1475 ((policy & POLICY_MS) && ne == TS) ||
1476 ((policy & POLICY_MM) && ne == TM) )
1477 phy->t_val[3] = 0 ; /* Reject */
1478 break ;
1480 #ifndef SLIM_SMT
1482 * detect undesirable connection attempt event
1484 if ( (type == TA && ne == TA ) ||
1485 (type == TA && ne == TS ) ||
1486 (type == TB && ne == TB ) ||
1487 (type == TB && ne == TS ) ||
1488 (type == TS && ne == TA ) ||
1489 (type == TS && ne == TB ) ) {
1490 smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1491 (int) (INDEX_PORT+ phy->np) ,0) ;
1493 #endif
1495 break ;
1496 case 4:
1497 if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1498 if (phy->pc_lem_fail) {
1499 phy->t_val[4] = 1 ; /* long */
1500 phy->t_val[5] = 0 ;
1502 else {
1503 phy->t_val[4] = 0 ;
1504 if (mib->fddiPORTLCTFail_Ct > 0)
1505 phy->t_val[5] = 1 ; /* medium */
1506 else
1507 phy->t_val[5] = 0 ; /* short */
1510 * Implementers choice: use medium
1511 * instead of short when undesired
1512 * connection attempt is made.
1514 if (phy->wc_flag)
1515 phy->t_val[5] = 1 ; /* medium */
1517 mib->fddiPORTConnectState = PCM_CONNECTING ;
1519 else {
1520 mib->fddiPORTConnectState = PCM_STANDBY ;
1521 phy->t_val[4] = 1 ; /* extended */
1522 phy->t_val[5] = 1 ;
1524 break ;
1525 case 5:
1526 break ;
1527 case 6:
1528 /* we do NOT have a MAC for LCT */
1529 phy->t_val[6] = 0 ;
1530 break ;
1531 case 7:
1532 phy->cf_loop = FALSE ;
1533 lem_check_lct(smc,phy) ;
1534 if (phy->pc_lem_fail) {
1535 DB_PCMN(1,"PCM %c : E104 LCT failed\n",
1536 phy->phy_name,0) ;
1537 phy->t_val[7] = 1 ;
1539 else
1540 phy->t_val[7] = 0 ;
1541 break ;
1542 case 8:
1543 phy->t_val[8] = 0 ; /* Don't request MAC loopback */
1544 break ;
1545 case 9:
1546 phy->cf_loop = 0 ;
1547 if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1548 ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1549 queue_event(smc,EVENT_PCM+np,PC_START) ;
1550 break ;
1552 phy->t_val[9] = FALSE ;
1553 switch (smc->s.sas) {
1554 case SMT_DAS :
1556 * MAC intended on output
1558 if (phy->pc_mode == PM_TREE) {
1559 if ((np == PB) || ((np == PA) &&
1560 (smc->y[PB].mib->fddiPORTConnectState !=
1561 PCM_ACTIVE)))
1562 phy->t_val[9] = TRUE ;
1564 else {
1565 if (np == PB)
1566 phy->t_val[9] = TRUE ;
1568 break ;
1569 case SMT_SAS :
1570 if (np == PS)
1571 phy->t_val[9] = TRUE ;
1572 break ;
1573 #ifdef CONCENTRATOR
1574 case SMT_NAC :
1576 * MAC intended on output
1578 if (np == PB)
1579 phy->t_val[9] = TRUE ;
1580 break ;
1581 #endif
1583 mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1584 break ;
1586 DB_PCMN(1,"SIG snd %x %x: \n", bit,phy->t_val[bit] ) ;
1590 * return status twisted (called by SMT)
1592 int pcm_status_twisted(struct s_smc *smc)
1594 int twist = 0 ;
1595 if (smc->s.sas != SMT_DAS)
1596 return(0) ;
1597 if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1598 twist |= 1 ;
1599 if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1600 twist |= 2 ;
1601 return(twist) ;
1605 * return status (called by SMT)
1606 * type
1607 * state
1608 * remote phy type
1609 * remote mac yes/no
1611 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1612 int *remote, int *mac)
1614 struct s_phy *phy = &smc->y[np] ;
1615 struct fddi_mib_p *mib ;
1617 mib = phy->mib ;
1619 /* remote PHY type and MAC - set only if active */
1620 *mac = 0 ;
1621 *type = mib->fddiPORTMy_Type ; /* our PHY type */
1622 *state = mib->fddiPORTConnectState ;
1623 *remote = mib->fddiPORTNeighborType ;
1625 switch(mib->fddiPORTPCMState) {
1626 case PC8_ACTIVE :
1627 *mac = mib->fddiPORTMacIndicated.R_val ;
1628 break ;
1633 * return rooted station status (called by SMT)
1635 int pcm_rooted_station(struct s_smc *smc)
1637 int n ;
1639 for (n = 0 ; n < NUMPHYS ; n++) {
1640 if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1641 smc->y[n].mib->fddiPORTNeighborType == TM)
1642 return(0) ;
1644 return(1) ;
1648 * Interrupt actions for PLC & PCM events
1650 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1651 /* int np; PHY index */
1653 struct s_phy *phy = &smc->y[np] ;
1654 struct s_plc *plc = &phy->plc ;
1655 int n ;
1656 #ifdef SUPERNET_3
1657 int corr_mask ;
1658 #endif /* SUPERNET_3 */
1659 int i ;
1661 if (np >= smc->s.numphys) {
1662 plc->soft_err++ ;
1663 return ;
1665 if (cmd & PL_EBUF_ERR) { /* elastic buff. det. over-|underflow*/
1667 * Check whether the SRF Condition occurred.
1669 if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1671 * This is the real Elasticity Error.
1672 * More than one in a row are treated as a
1673 * single one.
1674 * Only count this in the active state.
1676 phy->mib->fddiPORTEBError_Ct ++ ;
1680 plc->ebuf_err++ ;
1681 if (plc->ebuf_cont <= 1000) {
1683 * Prevent counter from being wrapped after
1684 * hanging years in that interrupt.
1686 plc->ebuf_cont++ ; /* Ebuf continous error */
1689 #ifdef SUPERNET_3
1690 if (plc->ebuf_cont == 1000 &&
1691 ((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1692 PLC_REV_SN3)) {
1694 * This interrupt remeained high for at least
1695 * 1000 consecutive interrupt calls.
1697 * This is caused by a hardware error of the
1698 * ORION part of the Supernet III chipset.
1700 * Disable this bit from the mask.
1702 corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1703 outpw(PLC(np,PL_INTR_MASK),corr_mask);
1706 * Disconnect from the ring.
1707 * Call the driver with the reset indication.
1709 queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1712 * Make an error log entry.
1714 SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1717 * Indicate the Reset.
1719 drv_reset_indication(smc) ;
1721 #endif /* SUPERNET_3 */
1722 } else {
1723 /* Reset the continous error variable */
1724 plc->ebuf_cont = 0 ; /* reset Ebuf continous error */
1726 if (cmd & PL_PHYINV) { /* physical layer invalid signal */
1727 plc->phyinv++ ;
1729 if (cmd & PL_VSYM_CTR) { /* violation symbol counter has incr.*/
1730 plc->vsym_ctr++ ;
1732 if (cmd & PL_MINI_CTR) { /* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1733 plc->mini_ctr++ ;
1735 if (cmd & PL_LE_CTR) { /* link error event counter */
1736 int j ;
1739 * note: PL_LINK_ERR_CTR MUST be read to clear it
1741 j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1742 i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1744 if (i < j) {
1745 /* wrapped around */
1746 i += 256 ;
1749 if (phy->lem.lem_on) {
1750 /* Note: Lem errors shall only be counted when
1751 * link is ACTIVE or LCT is active.
1753 phy->lem.lem_errors += i ;
1754 phy->mib->fddiPORTLem_Ct += i ;
1757 if (cmd & PL_TPC_EXPIRED) { /* TPC timer reached zero */
1758 if (plc->p_state == PS_LCT) {
1760 * end of LCT
1764 plc->tpc_exp++ ;
1766 if (cmd & PL_LS_MATCH) { /* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1767 switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1768 case PL_I_IDLE : phy->curr_ls = PC_ILS ; break ;
1769 case PL_I_HALT : phy->curr_ls = PC_HLS ; break ;
1770 case PL_I_MASTR : phy->curr_ls = PC_MLS ; break ;
1771 case PL_I_QUIET : phy->curr_ls = PC_QLS ; break ;
1774 if (cmd & PL_PCM_BREAK) { /* PCM has entered the BREAK state */
1775 int reason;
1777 reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1779 switch (reason) {
1780 case PL_B_PCS : plc->b_pcs++ ; break ;
1781 case PL_B_TPC : plc->b_tpc++ ; break ;
1782 case PL_B_TNE : plc->b_tne++ ; break ;
1783 case PL_B_QLS : plc->b_qls++ ; break ;
1784 case PL_B_ILS : plc->b_ils++ ; break ;
1785 case PL_B_HLS : plc->b_hls++ ; break ;
1788 /*jd 05-Aug-1999 changed: Bug #10419 */
1789 DB_PCMN(1,"PLC %d: MDcF = %x\n", np, smc->e.DisconnectFlag);
1790 if (smc->e.DisconnectFlag == FALSE) {
1791 DB_PCMN(1,"PLC %d: restart (reason %x)\n", np, reason);
1792 queue_event(smc,EVENT_PCM+np,PC_START) ;
1794 else {
1795 DB_PCMN(1,"PLC %d: NO!! restart (reason %x)\n", np, reason);
1797 return ;
1800 * If both CODE & ENABLE are set ignore enable
1802 if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1803 queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1804 n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1805 for (i = 0 ; i < plc->p_bits ; i++) {
1806 phy->r_val[plc->p_start+i] = n & 1 ;
1807 n >>= 1 ;
1810 else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1811 queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1813 if (cmd & PL_TRACE_PROP) { /* MLS while PC8_ACTIV || PC2_TRACE */
1814 /*PC22b*/
1815 if (!phy->tr_flag) {
1816 DB_PCMN(1,"PCM : irq TRACE_PROP %d %d\n",
1817 np,smc->mib.fddiSMTECMState) ;
1818 phy->tr_flag = TRUE ;
1819 smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1820 queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1824 * filter PLC glitch ???
1825 * QLS || HLS only while in PC2_TRACE state
1827 if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1828 /*PC22a*/
1829 if (smc->e.path_test == PT_PASSED) {
1830 DB_PCMN(1,"PCM : state = %s %d\n", get_pcmstate(smc,np),
1831 phy->mib->fddiPORTPCMState) ;
1833 smc->e.path_test = PT_PENDING ;
1834 queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1837 if (cmd & PL_TNE_EXPIRED) { /* TNE: length of noise events */
1838 /* break_required (TNE > NS_Max) */
1839 if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1840 if (!phy->tr_flag) {
1841 DB_PCMN(1,"PCM %c : PC81 %s\n",phy->phy_name,"NSE");
1842 queue_event(smc,EVENT_PCM+np,PC_START) ;
1843 return ;
1847 #if 0
1848 if (cmd & PL_NP_ERR) { /* NP has requested to r/w an inv reg*/
1850 * It's a bug by AMD
1852 plc->np_err++ ;
1854 /* pin inactiv (GND) */
1855 if (cmd & PL_PARITY_ERR) { /* p. error dedected on TX9-0 inp */
1856 plc->parity_err++ ;
1858 if (cmd & PL_LSDO) { /* carrier detected */
1861 #endif
1864 #ifdef DEBUG
1866 * fill state struct
1868 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1870 struct s_phy *phy ;
1871 struct pcm_state *pcs ;
1872 int i ;
1873 int ii ;
1874 short rbits ;
1875 short tbits ;
1876 struct fddi_mib_p *mib ;
1878 for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1879 i++ , phy++, pcs++ ) {
1880 mib = phy->mib ;
1881 pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1882 pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1883 pcs->pcm_mode = phy->pc_mode ;
1884 pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1885 pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1886 pcs->pcm_lsf = phy->ls_flag ;
1887 pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1888 pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1889 for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1890 rbits <<= 1 ;
1891 tbits <<= 1 ;
1892 if (phy->r_val[NUMBITS-1-ii])
1893 rbits |= 1 ;
1894 if (phy->t_val[NUMBITS-1-ii])
1895 tbits |= 1 ;
1897 pcs->pcm_r_val = rbits ;
1898 pcs->pcm_t_val = tbits ;
1902 int get_pcm_state(struct s_smc *smc, int np)
1904 int pcs ;
1906 SK_UNUSED(smc) ;
1908 switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1909 case PL_PC0 : pcs = PC_STOP ; break ;
1910 case PL_PC1 : pcs = PC_START ; break ;
1911 case PL_PC2 : pcs = PC_TRACE ; break ;
1912 case PL_PC3 : pcs = PC_SIGNAL ; break ;
1913 case PL_PC4 : pcs = PC_SIGNAL ; break ;
1914 case PL_PC5 : pcs = PC_SIGNAL ; break ;
1915 case PL_PC6 : pcs = PC_JOIN ; break ;
1916 case PL_PC7 : pcs = PC_JOIN ; break ;
1917 case PL_PC8 : pcs = PC_ENABLE ; break ;
1918 case PL_PC9 : pcs = PC_MAINT ; break ;
1919 default : pcs = PC_DISABLE ; break ;
1921 return(pcs) ;
1924 char *get_linestate(struct s_smc *smc, int np)
1926 char *ls = "" ;
1928 SK_UNUSED(smc) ;
1930 switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1931 case PL_L_NLS : ls = "NOISE" ; break ;
1932 case PL_L_ALS : ls = "ACTIV" ; break ;
1933 case PL_L_UND : ls = "UNDEF" ; break ;
1934 case PL_L_ILS4: ls = "ILS 4" ; break ;
1935 case PL_L_QLS : ls = "QLS" ; break ;
1936 case PL_L_MLS : ls = "MLS" ; break ;
1937 case PL_L_HLS : ls = "HLS" ; break ;
1938 case PL_L_ILS16:ls = "ILS16" ; break ;
1939 #ifdef lint
1940 default: ls = "unknown" ; break ;
1941 #endif
1943 return(ls) ;
1946 char *get_pcmstate(struct s_smc *smc, int np)
1948 char *pcs ;
1950 SK_UNUSED(smc) ;
1952 switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1953 case PL_PC0 : pcs = "OFF" ; break ;
1954 case PL_PC1 : pcs = "BREAK" ; break ;
1955 case PL_PC2 : pcs = "TRACE" ; break ;
1956 case PL_PC3 : pcs = "CONNECT"; break ;
1957 case PL_PC4 : pcs = "NEXT" ; break ;
1958 case PL_PC5 : pcs = "SIGNAL" ; break ;
1959 case PL_PC6 : pcs = "JOIN" ; break ;
1960 case PL_PC7 : pcs = "VERIFY" ; break ;
1961 case PL_PC8 : pcs = "ACTIV" ; break ;
1962 case PL_PC9 : pcs = "MAINT" ; break ;
1963 default : pcs = "UNKNOWN" ; break ;
1965 return(pcs) ;
1968 void list_phy(struct s_smc *smc)
1970 struct s_plc *plc ;
1971 int np ;
1973 for (np = 0 ; np < NUMPHYS ; np++) {
1974 plc = &smc->y[np].plc ;
1975 printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1976 printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1977 plc->soft_err,plc->b_pcs);
1978 printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1979 plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1980 printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1981 plc->ebuf_err,plc->b_tne) ;
1982 printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1983 plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1984 printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1985 plc->vsym_ctr,plc->b_ils) ;
1986 printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1987 plc->mini_ctr,plc->b_hls) ;
1988 printf("\tnodepr_err: %ld\n",plc->np_err) ;
1989 printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1990 printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1995 #ifdef CONCENTRATOR
1996 void pcm_lem_dump(struct s_smc *smc)
1998 int i ;
1999 struct s_phy *phy ;
2000 struct fddi_mib_p *mib ;
2002 char *entostring() ;
2004 printf("PHY errors BER\n") ;
2005 printf("----------------------\n") ;
2006 for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
2007 if (!plc_is_installed(smc,i))
2008 continue ;
2009 mib = phy->mib ;
2010 printf("%s\t%ld\t10E-%d\n",
2011 entostring(smc,ENTITY_PHY(i)),
2012 mib->fddiPORTLem_Ct,
2013 mib->fddiPORTLer_Estimate) ;
2016 #endif
2017 #endif