2 * Aic94xx SAS/SATA driver hardware interface.
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <linux/pci.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
30 #include <linux/firmware.h>
33 #include "aic94xx_reg.h"
34 #include "aic94xx_hwi.h"
35 #include "aic94xx_seq.h"
36 #include "aic94xx_dump.h"
40 /* ---------- Initialization ---------- */
42 static int asd_get_user_sas_addr(struct asd_ha_struct
*asd_ha
)
44 /* adapter came with a sas address */
45 if (asd_ha
->hw_prof
.sas_addr
[0])
48 return sas_request_addr(asd_ha
->sas_ha
.core
.shost
,
49 asd_ha
->hw_prof
.sas_addr
);
52 static void asd_propagate_sas_addr(struct asd_ha_struct
*asd_ha
)
56 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
57 if (asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
[0] == 0)
59 /* Set a phy's address only if it has none.
61 ASD_DPRINTK("setting phy%d addr to %llx\n", i
,
62 SAS_ADDR(asd_ha
->hw_prof
.sas_addr
));
63 memcpy(asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
,
64 asd_ha
->hw_prof
.sas_addr
, SAS_ADDR_SIZE
);
68 /* ---------- PHY initialization ---------- */
70 static void asd_init_phy_identify(struct asd_phy
*phy
)
72 phy
->identify_frame
= phy
->id_frm_tok
->vaddr
;
74 memset(phy
->identify_frame
, 0, sizeof(*phy
->identify_frame
));
76 phy
->identify_frame
->dev_type
= SAS_END_DEV
;
77 if (phy
->sas_phy
.role
& PHY_ROLE_INITIATOR
)
78 phy
->identify_frame
->initiator_bits
= phy
->sas_phy
.iproto
;
79 if (phy
->sas_phy
.role
& PHY_ROLE_TARGET
)
80 phy
->identify_frame
->target_bits
= phy
->sas_phy
.tproto
;
81 memcpy(phy
->identify_frame
->sas_addr
, phy
->phy_desc
->sas_addr
,
83 phy
->identify_frame
->phy_id
= phy
->sas_phy
.id
;
86 static int asd_init_phy(struct asd_phy
*phy
)
88 struct asd_ha_struct
*asd_ha
= phy
->sas_phy
.ha
->lldd_ha
;
89 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
93 sas_phy
->iproto
= SAS_PROTOCOL_ALL
;
95 sas_phy
->type
= PHY_TYPE_PHYSICAL
;
96 sas_phy
->role
= PHY_ROLE_INITIATOR
;
97 sas_phy
->oob_mode
= OOB_NOT_CONNECTED
;
98 sas_phy
->linkrate
= SAS_LINK_RATE_UNKNOWN
;
100 phy
->id_frm_tok
= asd_alloc_coherent(asd_ha
,
101 sizeof(*phy
->identify_frame
),
103 if (!phy
->id_frm_tok
) {
104 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy
->id
);
107 asd_init_phy_identify(phy
);
109 memset(phy
->frame_rcvd
, 0, sizeof(phy
->frame_rcvd
));
114 static void asd_init_ports(struct asd_ha_struct
*asd_ha
)
118 spin_lock_init(&asd_ha
->asd_ports_lock
);
119 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
120 struct asd_port
*asd_port
= &asd_ha
->asd_ports
[i
];
122 memset(asd_port
->sas_addr
, 0, SAS_ADDR_SIZE
);
123 memset(asd_port
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
124 asd_port
->phy_mask
= 0;
125 asd_port
->num_phys
= 0;
129 static int asd_init_phys(struct asd_ha_struct
*asd_ha
)
132 u8 phy_mask
= asd_ha
->hw_prof
.enabled_phys
;
134 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
135 struct asd_phy
*phy
= &asd_ha
->phys
[i
];
137 phy
->phy_desc
= &asd_ha
->hw_prof
.phy_desc
[i
];
138 phy
->asd_port
= NULL
;
140 phy
->sas_phy
.enabled
= 0;
142 phy
->sas_phy
.sas_addr
= &phy
->phy_desc
->sas_addr
[0];
143 phy
->sas_phy
.frame_rcvd
= &phy
->frame_rcvd
[0];
144 phy
->sas_phy
.ha
= &asd_ha
->sas_ha
;
145 phy
->sas_phy
.lldd_phy
= phy
;
148 /* Now enable and initialize only the enabled phys. */
149 for_each_phy(phy_mask
, phy_mask
, i
) {
150 int err
= asd_init_phy(&asd_ha
->phys
[i
]);
158 /* ---------- Sliding windows ---------- */
160 static int asd_init_sw(struct asd_ha_struct
*asd_ha
)
162 struct pci_dev
*pcidev
= asd_ha
->pcidev
;
167 err
= pci_read_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, &v
);
169 asd_printk("couldn't access conf. space of %s\n",
174 err
= pci_write_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, v
);
176 asd_printk("couldn't write to MBAR_KEY of %s\n",
181 /* Set sliding windows A, B and C to point to proper internal
184 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWA
, REG_BASE_ADDR
);
185 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWB
,
186 REG_BASE_ADDR_CSEQCIO
);
187 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWC
, REG_BASE_ADDR_EXSI
);
188 asd_ha
->io_handle
[0].swa_base
= REG_BASE_ADDR
;
189 asd_ha
->io_handle
[0].swb_base
= REG_BASE_ADDR_CSEQCIO
;
190 asd_ha
->io_handle
[0].swc_base
= REG_BASE_ADDR_EXSI
;
191 MBAR0_SWB_SIZE
= asd_ha
->io_handle
[0].len
- 0x80;
192 if (!asd_ha
->iospace
) {
193 /* MBAR1 will point to OCM (On Chip Memory) */
194 pci_write_config_dword(pcidev
, PCI_CONF_MBAR1
, OCM_BASE_ADDR
);
195 asd_ha
->io_handle
[1].swa_base
= OCM_BASE_ADDR
;
197 spin_lock_init(&asd_ha
->iolock
);
202 /* ---------- SCB initialization ---------- */
205 * asd_init_scbs - manually allocate the first SCB.
206 * @asd_ha: pointer to host adapter structure
208 * This allocates the very first SCB which would be sent to the
209 * sequencer for execution. Its bus address is written to
210 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
211 * the _next_ scb to be DMA-ed to the host adapter is read from the last
212 * SCB DMA-ed to the host adapter, we have to always stay one step
213 * ahead of the sequencer and keep one SCB already allocated.
215 static int asd_init_scbs(struct asd_ha_struct
*asd_ha
)
217 struct asd_seq_data
*seq
= &asd_ha
->seq
;
220 /* allocate the index array and bitmap */
221 asd_ha
->seq
.tc_index_bitmap_bits
= asd_ha
->hw_prof
.max_scbs
;
222 asd_ha
->seq
.tc_index_array
= kzalloc(asd_ha
->seq
.tc_index_bitmap_bits
*
223 sizeof(void *), GFP_KERNEL
);
224 if (!asd_ha
->seq
.tc_index_array
)
227 bitmap_bytes
= (asd_ha
->seq
.tc_index_bitmap_bits
+7)/8;
228 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
229 asd_ha
->seq
.tc_index_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
230 if (!asd_ha
->seq
.tc_index_bitmap
)
233 spin_lock_init(&seq
->tc_index_lock
);
235 seq
->next_scb
.size
= sizeof(struct scb
);
236 seq
->next_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
, GFP_KERNEL
,
237 &seq
->next_scb
.dma_handle
);
238 if (!seq
->next_scb
.vaddr
) {
239 kfree(asd_ha
->seq
.tc_index_bitmap
);
240 kfree(asd_ha
->seq
.tc_index_array
);
241 asd_ha
->seq
.tc_index_bitmap
= NULL
;
242 asd_ha
->seq
.tc_index_array
= NULL
;
247 spin_lock_init(&seq
->pend_q_lock
);
248 INIT_LIST_HEAD(&seq
->pend_q
);
253 static void asd_get_max_scb_ddb(struct asd_ha_struct
*asd_ha
)
255 asd_ha
->hw_prof
.max_scbs
= asd_get_cmdctx_size(asd_ha
)/ASD_SCB_SIZE
;
256 asd_ha
->hw_prof
.max_ddbs
= asd_get_devctx_size(asd_ha
)/ASD_DDB_SIZE
;
257 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
258 asd_ha
->hw_prof
.max_scbs
,
259 asd_ha
->hw_prof
.max_ddbs
);
262 /* ---------- Done List initialization ---------- */
264 static void asd_dl_tasklet_handler(unsigned long);
266 static int asd_init_dl(struct asd_ha_struct
*asd_ha
)
268 asd_ha
->seq
.actual_dl
269 = asd_alloc_coherent(asd_ha
,
270 ASD_DL_SIZE
* sizeof(struct done_list_struct
),
272 if (!asd_ha
->seq
.actual_dl
)
274 asd_ha
->seq
.dl
= asd_ha
->seq
.actual_dl
->vaddr
;
275 asd_ha
->seq
.dl_toggle
= ASD_DEF_DL_TOGGLE
;
276 asd_ha
->seq
.dl_next
= 0;
277 tasklet_init(&asd_ha
->seq
.dl_tasklet
, asd_dl_tasklet_handler
,
278 (unsigned long) asd_ha
);
283 /* ---------- EDB and ESCB init ---------- */
285 static int asd_alloc_edbs(struct asd_ha_struct
*asd_ha
, gfp_t gfp_flags
)
287 struct asd_seq_data
*seq
= &asd_ha
->seq
;
290 seq
->edb_arr
= kmalloc(seq
->num_edbs
*sizeof(*seq
->edb_arr
), gfp_flags
);
294 for (i
= 0; i
< seq
->num_edbs
; i
++) {
295 seq
->edb_arr
[i
] = asd_alloc_coherent(asd_ha
, ASD_EDB_SIZE
,
297 if (!seq
->edb_arr
[i
])
299 memset(seq
->edb_arr
[i
]->vaddr
, 0, ASD_EDB_SIZE
);
302 ASD_DPRINTK("num_edbs:%d\n", seq
->num_edbs
);
307 for (i
-- ; i
>= 0; i
--)
308 asd_free_coherent(asd_ha
, seq
->edb_arr
[i
]);
315 static int asd_alloc_escbs(struct asd_ha_struct
*asd_ha
,
318 struct asd_seq_data
*seq
= &asd_ha
->seq
;
319 struct asd_ascb
*escb
;
322 seq
->escb_arr
= kmalloc(seq
->num_escbs
*sizeof(*seq
->escb_arr
),
327 escbs
= seq
->num_escbs
;
328 escb
= asd_ascb_alloc_list(asd_ha
, &escbs
, gfp_flags
);
330 asd_printk("couldn't allocate list of escbs\n");
333 seq
->num_escbs
-= escbs
; /* subtract what was not allocated */
334 ASD_DPRINTK("num_escbs:%d\n", seq
->num_escbs
);
336 for (i
= 0; i
< seq
->num_escbs
; i
++, escb
= list_entry(escb
->list
.next
,
339 seq
->escb_arr
[i
] = escb
;
340 escb
->scb
->header
.opcode
= EMPTY_SCB
;
345 kfree(seq
->escb_arr
);
346 seq
->escb_arr
= NULL
;
351 static void asd_assign_edbs2escbs(struct asd_ha_struct
*asd_ha
)
353 struct asd_seq_data
*seq
= &asd_ha
->seq
;
356 for (i
= 0; i
< seq
->num_escbs
; i
++) {
357 struct asd_ascb
*ascb
= seq
->escb_arr
[i
];
358 struct empty_scb
*escb
= &ascb
->scb
->escb
;
362 escb
->num_valid
= ASD_EDBS_PER_SCB
;
364 for (k
= 0; k
< ASD_EDBS_PER_SCB
; k
++) {
365 struct sg_el
*eb
= &escb
->eb
[k
];
366 struct asd_dma_tok
*edb
= seq
->edb_arr
[z
++];
368 memset(eb
, 0, sizeof(*eb
));
369 eb
->bus_addr
= cpu_to_le64(((u64
) edb
->dma_handle
));
370 eb
->size
= cpu_to_le32(((u32
) edb
->size
));
376 * asd_init_escbs -- allocate and initialize empty scbs
377 * @asd_ha: pointer to host adapter structure
379 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
380 * They transport sense data, etc.
382 static int asd_init_escbs(struct asd_ha_struct
*asd_ha
)
384 struct asd_seq_data
*seq
= &asd_ha
->seq
;
387 /* Allocate two empty data buffers (edb) per sequencer. */
388 int edbs
= 2*(1+asd_ha
->hw_prof
.num_phys
);
390 seq
->num_escbs
= (edbs
+ASD_EDBS_PER_SCB
-1)/ASD_EDBS_PER_SCB
;
391 seq
->num_edbs
= seq
->num_escbs
* ASD_EDBS_PER_SCB
;
393 err
= asd_alloc_edbs(asd_ha
, GFP_KERNEL
);
395 asd_printk("couldn't allocate edbs\n");
399 err
= asd_alloc_escbs(asd_ha
, GFP_KERNEL
);
401 asd_printk("couldn't allocate escbs\n");
405 asd_assign_edbs2escbs(asd_ha
);
406 /* In order to insure that normal SCBs do not overfill sequencer
407 * memory and leave no space for escbs (halting condition),
408 * we increment pending here by the number of escbs. However,
409 * escbs are never pending.
411 seq
->pending
= seq
->num_escbs
;
412 seq
->can_queue
= 1 + (asd_ha
->hw_prof
.max_scbs
- seq
->pending
)/2;
417 /* ---------- HW initialization ---------- */
420 * asd_chip_hardrst -- hard reset the chip
421 * @asd_ha: pointer to host adapter structure
423 * This takes 16 cycles and is synchronous to CFCLK, which runs
424 * at 200 MHz, so this should take at most 80 nanoseconds.
426 int asd_chip_hardrst(struct asd_ha_struct
*asd_ha
)
432 for (i
= 0 ; i
< 4 ; i
++) {
433 asd_write_reg_dword(asd_ha
, COMBIST
, HARDRST
);
438 reg
= asd_read_reg_dword(asd_ha
, CHIMINT
);
439 if (reg
& HARDRSTDET
) {
440 asd_write_reg_dword(asd_ha
, CHIMINT
,
441 HARDRSTDET
|PORRSTDET
);
444 } while (--count
> 0);
450 * asd_init_chip -- initialize the chip
451 * @asd_ha: pointer to host adapter structure
453 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
454 * microcode and starts the sequencers. The caller has to explicitly
455 * enable HA interrupts with asd_enable_ints(asd_ha).
457 static int asd_init_chip(struct asd_ha_struct
*asd_ha
)
461 err
= asd_chip_hardrst(asd_ha
);
463 asd_printk("couldn't hard reset %s\n",
464 pci_name(asd_ha
->pcidev
));
468 asd_disable_ints(asd_ha
);
470 err
= asd_init_seqs(asd_ha
);
472 asd_printk("couldn't init seqs for %s\n",
473 pci_name(asd_ha
->pcidev
));
477 err
= asd_start_seqs(asd_ha
);
479 asd_printk("coudln't start seqs for %s\n",
480 pci_name(asd_ha
->pcidev
));
487 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
489 static int max_devs
= 0;
490 module_param_named(max_devs
, max_devs
, int, S_IRUGO
);
491 MODULE_PARM_DESC(max_devs
, "\n"
492 "\tMaximum number of SAS devices to support (not LUs).\n"
493 "\tDefault: 2176, Maximum: 65663.\n");
495 static int max_cmnds
= 0;
496 module_param_named(max_cmnds
, max_cmnds
, int, S_IRUGO
);
497 MODULE_PARM_DESC(max_cmnds
, "\n"
498 "\tMaximum number of commands queuable.\n"
499 "\tDefault: 512, Maximum: 66047.\n");
501 static void asd_extend_devctx_ocm(struct asd_ha_struct
*asd_ha
)
503 unsigned long dma_addr
= OCM_BASE_ADDR
;
506 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
507 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, (dma_addr_t
) dma_addr
);
508 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
510 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
511 asd_ha
->hw_prof
.max_ddbs
+= MAX_DEVS
;
514 static int asd_extend_devctx(struct asd_ha_struct
*asd_ha
)
516 dma_addr_t dma_handle
;
517 unsigned long dma_addr
;
521 asd_extend_devctx_ocm(asd_ha
);
523 asd_ha
->hw_prof
.ddb_ext
= NULL
;
524 if (max_devs
<= asd_ha
->hw_prof
.max_ddbs
|| max_devs
> 0xFFFF) {
525 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
529 size
= (max_devs
- asd_ha
->hw_prof
.max_ddbs
+ 1) * ASD_DDB_SIZE
;
531 asd_ha
->hw_prof
.ddb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
532 if (!asd_ha
->hw_prof
.ddb_ext
) {
533 asd_printk("couldn't allocate memory for %d devices\n",
535 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
538 dma_handle
= asd_ha
->hw_prof
.ddb_ext
->dma_handle
;
539 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_DDB_SIZE
);
540 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
541 dma_handle
= (dma_addr_t
) dma_addr
;
542 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, dma_handle
);
543 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
545 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
547 asd_ha
->hw_prof
.max_ddbs
= max_devs
;
552 static int asd_extend_cmdctx(struct asd_ha_struct
*asd_ha
)
554 dma_addr_t dma_handle
;
555 unsigned long dma_addr
;
559 asd_ha
->hw_prof
.scb_ext
= NULL
;
560 if (max_cmnds
<= asd_ha
->hw_prof
.max_scbs
|| max_cmnds
> 0xFFFF) {
561 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
565 size
= (max_cmnds
- asd_ha
->hw_prof
.max_scbs
+ 1) * ASD_SCB_SIZE
;
567 asd_ha
->hw_prof
.scb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
568 if (!asd_ha
->hw_prof
.scb_ext
) {
569 asd_printk("couldn't allocate memory for %d commands\n",
571 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
574 dma_handle
= asd_ha
->hw_prof
.scb_ext
->dma_handle
;
575 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_SCB_SIZE
);
576 dma_addr
-= asd_ha
->hw_prof
.max_scbs
* ASD_SCB_SIZE
;
577 dma_handle
= (dma_addr_t
) dma_addr
;
578 asd_write_reg_addr(asd_ha
, CMDCTXBASE
, dma_handle
);
579 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
581 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
583 asd_ha
->hw_prof
.max_scbs
= max_cmnds
;
589 * asd_init_ctxmem -- initialize context memory
590 * asd_ha: pointer to host adapter structure
592 * This function sets the maximum number of SCBs and
593 * DDBs which can be used by the sequencer. This is normally
594 * 512 and 128 respectively. If support for more SCBs or more DDBs
595 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
596 * initialized here to extend context memory to point to host memory,
597 * thus allowing unlimited support for SCBs and DDBs -- only limited
600 static int asd_init_ctxmem(struct asd_ha_struct
*asd_ha
)
604 asd_get_max_scb_ddb(asd_ha
);
605 asd_extend_devctx(asd_ha
);
606 asd_extend_cmdctx(asd_ha
);
608 /* The kernel wants bitmaps to be unsigned long sized. */
609 bitmap_bytes
= (asd_ha
->hw_prof
.max_ddbs
+7)/8;
610 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
611 asd_ha
->hw_prof
.ddb_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
612 if (!asd_ha
->hw_prof
.ddb_bitmap
)
614 spin_lock_init(&asd_ha
->hw_prof
.ddb_lock
);
619 int asd_init_hw(struct asd_ha_struct
*asd_ha
)
624 err
= asd_init_sw(asd_ha
);
628 err
= pci_read_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
, &v
);
630 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
631 pci_name(asd_ha
->pcidev
));
634 pci_write_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
,
637 asd_printk("couldn't disable split completion timer of %s\n",
638 pci_name(asd_ha
->pcidev
));
642 err
= asd_read_ocm(asd_ha
);
644 asd_printk("couldn't read ocm(%d)\n", err
);
645 /* While suspicios, it is not an error that we
646 * couldn't read the OCM. */
649 err
= asd_read_flash(asd_ha
);
651 asd_printk("couldn't read flash(%d)\n", err
);
652 /* While suspicios, it is not an error that we
653 * couldn't read FLASH memory.
657 asd_init_ctxmem(asd_ha
);
659 if (asd_get_user_sas_addr(asd_ha
)) {
660 asd_printk("No SAS Address provided for %s\n",
661 pci_name(asd_ha
->pcidev
));
666 asd_propagate_sas_addr(asd_ha
);
668 err
= asd_init_phys(asd_ha
);
670 asd_printk("couldn't initialize phys for %s\n",
671 pci_name(asd_ha
->pcidev
));
675 asd_init_ports(asd_ha
);
677 err
= asd_init_scbs(asd_ha
);
679 asd_printk("couldn't initialize scbs for %s\n",
680 pci_name(asd_ha
->pcidev
));
684 err
= asd_init_dl(asd_ha
);
686 asd_printk("couldn't initialize the done list:%d\n",
691 err
= asd_init_escbs(asd_ha
);
693 asd_printk("couldn't initialize escbs\n");
697 err
= asd_init_chip(asd_ha
);
699 asd_printk("couldn't init the chip\n");
706 /* ---------- Chip reset ---------- */
709 * asd_chip_reset -- reset the host adapter, etc
710 * @asd_ha: pointer to host adapter structure of interest
712 * Called from the ISR. Hard reset the chip. Let everything
713 * timeout. This should be no different than hot-unplugging the
714 * host adapter. Once everything times out we'll init the chip with
715 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
718 static void asd_chip_reset(struct asd_ha_struct
*asd_ha
)
720 struct sas_ha_struct
*sas_ha
= &asd_ha
->sas_ha
;
722 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha
->pcidev
));
723 asd_chip_hardrst(asd_ha
);
724 sas_ha
->notify_ha_event(sas_ha
, HAE_RESET
);
727 /* ---------- Done List Routines ---------- */
729 static void asd_dl_tasklet_handler(unsigned long data
)
731 struct asd_ha_struct
*asd_ha
= (struct asd_ha_struct
*) data
;
732 struct asd_seq_data
*seq
= &asd_ha
->seq
;
736 struct done_list_struct
*dl
= &seq
->dl
[seq
->dl_next
];
737 struct asd_ascb
*ascb
;
739 if ((dl
->toggle
& DL_TOGGLE_MASK
) != seq
->dl_toggle
)
743 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
744 ascb
= asd_tc_index_find(seq
, (int)le16_to_cpu(dl
->index
));
745 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
746 if (unlikely(!ascb
)) {
747 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
749 } else if (ascb
->scb
->header
.opcode
== EMPTY_SCB
) {
751 } else if (!ascb
->uldd_timer
&& !del_timer(&ascb
->timer
)) {
754 spin_lock_irqsave(&seq
->pend_q_lock
, flags
);
755 list_del_init(&ascb
->list
);
757 spin_unlock_irqrestore(&seq
->pend_q_lock
, flags
);
759 ascb
->tasklet_complete(ascb
, dl
);
762 seq
->dl_next
= (seq
->dl_next
+ 1) & (ASD_DL_SIZE
-1);
764 seq
->dl_toggle
^= DL_TOGGLE_MASK
;
768 /* ---------- Interrupt Service Routines ---------- */
771 * asd_process_donelist_isr -- schedule processing of done list entries
772 * @asd_ha: pointer to host adapter structure
774 static void asd_process_donelist_isr(struct asd_ha_struct
*asd_ha
)
776 tasklet_schedule(&asd_ha
->seq
.dl_tasklet
);
780 * asd_com_sas_isr -- process device communication interrupt (COMINT)
781 * @asd_ha: pointer to host adapter structure
783 static void asd_com_sas_isr(struct asd_ha_struct
*asd_ha
)
785 u32 comstat
= asd_read_reg_dword(asd_ha
, COMSTAT
);
787 /* clear COMSTAT int */
788 asd_write_reg_dword(asd_ha
, COMSTAT
, 0xFFFFFFFF);
790 if (comstat
& CSBUFPERR
) {
791 asd_printk("%s: command/status buffer dma parity error\n",
792 pci_name(asd_ha
->pcidev
));
793 } else if (comstat
& CSERR
) {
795 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
797 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
798 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
799 pci_name(asd_ha
->pcidev
),
801 asd_read_reg_dword(asd_ha
, CSDMAADR
),
802 asd_read_reg_dword(asd_ha
, CSDMAADR
+4));
803 asd_printk("CSBUFFER:\n");
804 for (i
= 0; i
< 8; i
++) {
805 asd_printk("%08x %08x %08x %08x\n",
806 asd_read_reg_dword(asd_ha
, CSBUFFER
),
807 asd_read_reg_dword(asd_ha
, CSBUFFER
+4),
808 asd_read_reg_dword(asd_ha
, CSBUFFER
+8),
809 asd_read_reg_dword(asd_ha
, CSBUFFER
+12));
811 asd_dump_seq_state(asd_ha
, 0);
812 } else if (comstat
& OVLYERR
) {
813 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
814 dmaerr
= (dmaerr
>> 8) & 0xFF;
815 asd_printk("%s: overlay dma error:0x%x\n",
816 pci_name(asd_ha
->pcidev
),
819 asd_chip_reset(asd_ha
);
822 static void asd_arp2_err(struct asd_ha_struct
*asd_ha
, u32 dchstatus
)
824 static const char *halt_code
[256] = {
825 "UNEXPECTED_INTERRUPT0",
826 "UNEXPECTED_INTERRUPT1",
827 "UNEXPECTED_INTERRUPT2",
828 "UNEXPECTED_INTERRUPT3",
829 "UNEXPECTED_INTERRUPT4",
830 "UNEXPECTED_INTERRUPT5",
831 "UNEXPECTED_INTERRUPT6",
832 "UNEXPECTED_INTERRUPT7",
833 "UNEXPECTED_INTERRUPT8",
834 "UNEXPECTED_INTERRUPT9",
835 "UNEXPECTED_INTERRUPT10",
836 [11 ... 19] = "unknown[11,19]",
837 "NO_FREE_SCB_AVAILABLE",
838 "INVALID_SCB_OPCODE",
839 "INVALID_MBX_OPCODE",
842 "ATA_TAG_TABLE_FAULT",
843 "ATA_TAG_MASK_FAULT",
844 "BAD_LINK_QUEUE_STATE",
845 "DMA2CHIM_QUEUE_ERROR",
846 "EMPTY_SCB_LIST_FULL",
848 "IN_USE_SCB_ON_FREE_LIST",
849 "BAD_OPEN_WAIT_STATE",
850 "INVALID_STP_AFFILIATION",
853 "TOO_MANY_EMPTIES_NEEDED",
854 "EMPTY_REQ_QUEUE_ERROR",
855 "Q_MONIRTT_MGMT_ERROR",
856 "TARGET_MODE_FLOW_ERROR",
857 "DEVICE_QUEUE_NOT_FOUND",
858 "START_IRTT_TIMER_ERROR",
859 "ABORT_TASK_ILLEGAL_REQ",
860 [43 ... 255] = "unknown[43,255]"
863 if (dchstatus
& CSEQINT
) {
864 u32 arp2int
= asd_read_reg_dword(asd_ha
, CARP2INT
);
866 if (arp2int
& (ARP2WAITTO
|ARP2ILLOPC
|ARP2PERR
|ARP2CIOPERR
)) {
867 asd_printk("%s: CSEQ arp2int:0x%x\n",
868 pci_name(asd_ha
->pcidev
),
870 } else if (arp2int
& ARP2HALTC
)
871 asd_printk("%s: CSEQ halted: %s\n",
872 pci_name(asd_ha
->pcidev
),
873 halt_code
[(arp2int
>>16)&0xFF]);
875 asd_printk("%s: CARP2INT:0x%x\n",
876 pci_name(asd_ha
->pcidev
),
879 if (dchstatus
& LSEQINT_MASK
) {
881 u8 lseq_mask
= dchstatus
& LSEQINT_MASK
;
883 for_each_sequencer(lseq_mask
, lseq_mask
, lseq
) {
884 u32 arp2int
= asd_read_reg_dword(asd_ha
,
886 if (arp2int
& (ARP2WAITTO
| ARP2ILLOPC
| ARP2PERR
888 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
889 pci_name(asd_ha
->pcidev
),
891 /* XXX we should only do lseq reset */
892 } else if (arp2int
& ARP2HALTC
)
893 asd_printk("%s: LSEQ%d halted: %s\n",
894 pci_name(asd_ha
->pcidev
),
895 lseq
,halt_code
[(arp2int
>>16)&0xFF]);
897 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
898 pci_name(asd_ha
->pcidev
), lseq
,
902 asd_chip_reset(asd_ha
);
906 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
907 * @asd_ha: pointer to host adapter structure
909 static void asd_dch_sas_isr(struct asd_ha_struct
*asd_ha
)
911 u32 dchstatus
= asd_read_reg_dword(asd_ha
, DCHSTATUS
);
913 if (dchstatus
& CFIFTOERR
) {
914 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha
->pcidev
));
915 asd_chip_reset(asd_ha
);
917 asd_arp2_err(asd_ha
, dchstatus
);
921 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
922 * @asd_ha: pointer to host adapter structure
924 static void asd_rbi_exsi_isr(struct asd_ha_struct
*asd_ha
)
926 u32 stat0r
= asd_read_reg_dword(asd_ha
, ASISTAT0R
);
928 if (!(stat0r
& ASIERR
)) {
929 asd_printk("hmm, EXSI interrupted but no error?\n");
933 if (stat0r
& ASIFMTERR
) {
934 asd_printk("ASI SEEPROM format error for %s\n",
935 pci_name(asd_ha
->pcidev
));
936 } else if (stat0r
& ASISEECHKERR
) {
937 u32 stat1r
= asd_read_reg_dword(asd_ha
, ASISTAT1R
);
938 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
939 stat1r
& CHECKSUM_MASK
,
940 pci_name(asd_ha
->pcidev
));
942 u32 statr
= asd_read_reg_dword(asd_ha
, ASIERRSTATR
);
944 if (!(statr
& CPI2ASIMSTERR_MASK
)) {
945 ASD_DPRINTK("hmm, ASIERR?\n");
948 u32 addr
= asd_read_reg_dword(asd_ha
, ASIERRADDR
);
949 u32 data
= asd_read_reg_dword(asd_ha
, ASIERRDATAR
);
951 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
952 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
953 "master id: 0x%x, master err: 0x%x\n",
954 pci_name(asd_ha
->pcidev
),
956 (statr
& CPI2ASIBYTECNT_MASK
) >> 16,
957 (statr
& CPI2ASIBYTEEN_MASK
) >> 12,
958 (statr
& CPI2ASITARGERR_MASK
) >> 8,
959 (statr
& CPI2ASITARGMID_MASK
) >> 4,
960 (statr
& CPI2ASIMSTERR_MASK
));
963 asd_chip_reset(asd_ha
);
967 * asd_hst_pcix_isr -- process host interface interrupts
968 * @asd_ha: pointer to host adapter structure
970 * Asserted on PCIX errors: target abort, etc.
972 static void asd_hst_pcix_isr(struct asd_ha_struct
*asd_ha
)
978 pci_read_config_word(asd_ha
->pcidev
, PCI_STATUS
, &status
);
979 pci_read_config_dword(asd_ha
->pcidev
, PCIX_STATUS
, &pcix_status
);
980 pci_read_config_dword(asd_ha
->pcidev
, ECC_CTRL_STAT
, &ecc_status
);
982 if (status
& PCI_STATUS_DETECTED_PARITY
)
983 asd_printk("parity error for %s\n", pci_name(asd_ha
->pcidev
));
984 else if (status
& PCI_STATUS_REC_MASTER_ABORT
)
985 asd_printk("master abort for %s\n", pci_name(asd_ha
->pcidev
));
986 else if (status
& PCI_STATUS_REC_TARGET_ABORT
)
987 asd_printk("target abort for %s\n", pci_name(asd_ha
->pcidev
));
988 else if (status
& PCI_STATUS_PARITY
)
989 asd_printk("data parity for %s\n", pci_name(asd_ha
->pcidev
));
990 else if (pcix_status
& RCV_SCE
) {
991 asd_printk("received split completion error for %s\n",
992 pci_name(asd_ha
->pcidev
));
993 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
994 /* XXX: Abort task? */
996 } else if (pcix_status
& UNEXP_SC
) {
997 asd_printk("unexpected split completion for %s\n",
998 pci_name(asd_ha
->pcidev
));
999 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
1002 } else if (pcix_status
& SC_DISCARD
)
1003 asd_printk("split completion discarded for %s\n",
1004 pci_name(asd_ha
->pcidev
));
1005 else if (ecc_status
& UNCOR_ECCERR
)
1006 asd_printk("uncorrectable ECC error for %s\n",
1007 pci_name(asd_ha
->pcidev
));
1008 asd_chip_reset(asd_ha
);
1012 * asd_hw_isr -- host adapter interrupt service routine
1014 * @dev_id: pointer to host adapter structure
1016 * The ISR processes done list entries and level 3 error handling.
1018 irqreturn_t
asd_hw_isr(int irq
, void *dev_id
)
1020 struct asd_ha_struct
*asd_ha
= dev_id
;
1021 u32 chimint
= asd_read_reg_dword(asd_ha
, CHIMINT
);
1026 asd_write_reg_dword(asd_ha
, CHIMINT
, chimint
);
1027 (void) asd_read_reg_dword(asd_ha
, CHIMINT
);
1029 if (chimint
& DLAVAIL
)
1030 asd_process_donelist_isr(asd_ha
);
1031 if (chimint
& COMINT
)
1032 asd_com_sas_isr(asd_ha
);
1033 if (chimint
& DEVINT
)
1034 asd_dch_sas_isr(asd_ha
);
1035 if (chimint
& INITERR
)
1036 asd_rbi_exsi_isr(asd_ha
);
1037 if (chimint
& HOSTERR
)
1038 asd_hst_pcix_isr(asd_ha
);
1043 /* ---------- SCB handling ---------- */
1045 static struct asd_ascb
*asd_ascb_alloc(struct asd_ha_struct
*asd_ha
,
1048 extern struct kmem_cache
*asd_ascb_cache
;
1049 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1050 struct asd_ascb
*ascb
;
1051 unsigned long flags
;
1053 ascb
= kmem_cache_zalloc(asd_ascb_cache
, gfp_flags
);
1056 ascb
->dma_scb
.size
= sizeof(struct scb
);
1057 ascb
->dma_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
,
1059 &ascb
->dma_scb
.dma_handle
);
1060 if (!ascb
->dma_scb
.vaddr
) {
1061 kmem_cache_free(asd_ascb_cache
, ascb
);
1064 memset(ascb
->dma_scb
.vaddr
, 0, sizeof(struct scb
));
1065 asd_init_ascb(asd_ha
, ascb
);
1067 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
1068 ascb
->tc_index
= asd_tc_index_get(seq
, ascb
);
1069 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
1070 if (ascb
->tc_index
== -1)
1073 ascb
->scb
->header
.index
= cpu_to_le16((u16
)ascb
->tc_index
);
1078 dma_pool_free(asd_ha
->scb_pool
, ascb
->dma_scb
.vaddr
,
1079 ascb
->dma_scb
.dma_handle
);
1080 kmem_cache_free(asd_ascb_cache
, ascb
);
1081 ASD_DPRINTK("no index for ascb\n");
1086 * asd_ascb_alloc_list -- allocate a list of aSCBs
1087 * @asd_ha: pointer to host adapter structure
1088 * @num: pointer to integer number of aSCBs
1089 * @gfp_flags: GFP_ flags.
1091 * This is the only function which is used to allocate aSCBs.
1092 * It can allocate one or many. If more than one, then they form
1093 * a linked list in two ways: by their list field of the ascb struct
1094 * and by the next_scb field of the scb_header.
1096 * Returns NULL if no memory was available, else pointer to a list
1097 * of ascbs. When this function returns, @num would be the number
1098 * of SCBs which were not able to be allocated, 0 if all requested
1099 * were able to be allocated.
1101 struct asd_ascb
*asd_ascb_alloc_list(struct asd_ha_struct
1105 struct asd_ascb
*first
= NULL
;
1107 for ( ; *num
> 0; --*num
) {
1108 struct asd_ascb
*ascb
= asd_ascb_alloc(asd_ha
, gfp_flags
);
1115 struct asd_ascb
*last
= list_entry(first
->list
.prev
,
1118 list_add_tail(&ascb
->list
, &first
->list
);
1119 last
->scb
->header
.next_scb
=
1120 cpu_to_le64(((u64
)ascb
->dma_scb
.dma_handle
));
1128 * asd_swap_head_scb -- swap the head scb
1129 * @asd_ha: pointer to host adapter structure
1130 * @ascb: pointer to the head of an ascb list
1132 * The sequencer knows the DMA address of the next SCB to be DMAed to
1133 * the host adapter, from initialization or from the last list DMAed.
1134 * seq->next_scb keeps the address of this SCB. The sequencer will
1135 * DMA to the host adapter this list of SCBs. But the head (first
1136 * element) of this list is not known to the sequencer. Here we swap
1137 * the head of the list with the known SCB (memcpy()).
1138 * Only one memcpy() is required per list so it is in our interest
1139 * to keep the list of SCB as long as possible so that the ratio
1140 * of number of memcpy calls to the number of SCB DMA-ed is as small
1143 * LOCKING: called with the pending list lock held.
1145 static void asd_swap_head_scb(struct asd_ha_struct
*asd_ha
,
1146 struct asd_ascb
*ascb
)
1148 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1149 struct asd_ascb
*last
= list_entry(ascb
->list
.prev
,
1152 struct asd_dma_tok t
= ascb
->dma_scb
;
1154 memcpy(seq
->next_scb
.vaddr
, ascb
->scb
, sizeof(*ascb
->scb
));
1155 ascb
->dma_scb
= seq
->next_scb
;
1156 ascb
->scb
= ascb
->dma_scb
.vaddr
;
1158 last
->scb
->header
.next_scb
=
1159 cpu_to_le64(((u64
)seq
->next_scb
.dma_handle
));
1163 * asd_start_timers -- (add and) start timers of SCBs
1164 * @list: pointer to struct list_head of the scbs
1165 * @to: timeout in jiffies
1167 * If an SCB in the @list has no timer function, assign the default
1168 * one, then start the timer of the SCB. This function is
1169 * intended to be called from asd_post_ascb_list(), just prior to
1170 * posting the SCBs to the sequencer.
1172 static void asd_start_scb_timers(struct list_head
*list
)
1174 struct asd_ascb
*ascb
;
1175 list_for_each_entry(ascb
, list
, list
) {
1176 if (!ascb
->uldd_timer
) {
1177 ascb
->timer
.data
= (unsigned long) ascb
;
1178 ascb
->timer
.function
= asd_ascb_timedout
;
1179 ascb
->timer
.expires
= jiffies
+ AIC94XX_SCB_TIMEOUT
;
1180 add_timer(&ascb
->timer
);
1186 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1187 * @asd_ha: pointer to a host adapter structure
1188 * @ascb: pointer to the first aSCB in the list
1189 * @num: number of aSCBs in the list (to be posted)
1191 * See queueing comment in asd_post_escb_list().
1193 * Additional note on queuing: In order to minimize the ratio of memcpy()
1194 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1196 * Two cases are possible:
1197 * A) can_queue >= num,
1198 * B) can_queue < num.
1199 * Case A: we can send the whole batch at once. Increment "pending"
1200 * in the beginning of this function, when it is checked, in order to
1201 * eliminate races when this function is called by multiple processes.
1202 * Case B: should never happen if the managing layer considers
1205 int asd_post_ascb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1208 unsigned long flags
;
1212 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1213 can_queue
= asd_ha
->hw_prof
.max_scbs
- asd_ha
->seq
.pending
;
1214 if (can_queue
>= num
)
1215 asd_ha
->seq
.pending
+= num
;
1220 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1221 asd_printk("%s: scb queue full\n", pci_name(asd_ha
->pcidev
));
1222 return -SAS_QUEUE_FULL
;
1225 asd_swap_head_scb(asd_ha
, ascb
);
1227 __list_add(&list
, ascb
->list
.prev
, &ascb
->list
);
1229 asd_start_scb_timers(&list
);
1231 asd_ha
->seq
.scbpro
+= num
;
1232 list_splice_init(&list
, asd_ha
->seq
.pend_q
.prev
);
1233 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1234 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1240 * asd_post_escb_list -- post a list of 1 or more empty scb
1241 * @asd_ha: pointer to a host adapter structure
1242 * @ascb: pointer to the first empty SCB in the list
1243 * @num: number of aSCBs in the list (to be posted)
1245 * This is essentially the same as asd_post_ascb_list, but we do not
1246 * increment pending, add those to the pending list or get indexes.
1247 * See asd_init_escbs() and asd_init_post_escbs().
1249 * Since sending a list of ascbs is a superset of sending a single
1250 * ascb, this function exists to generalize this. More specifically,
1251 * when sending a list of those, we want to do only a _single_
1252 * memcpy() at swap head, as opposed to for each ascb sent (in the
1253 * case of sending them one by one). That is, we want to minimize the
1254 * ratio of memcpy() operations to the number of ascbs sent. The same
1255 * logic applies to asd_post_ascb_list().
1257 int asd_post_escb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1260 unsigned long flags
;
1262 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1263 asd_swap_head_scb(asd_ha
, ascb
);
1264 asd_ha
->seq
.scbpro
+= num
;
1265 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1266 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1271 /* ---------- LED ---------- */
1274 * asd_turn_led -- turn on/off an LED
1275 * @asd_ha: pointer to host adapter structure
1276 * @phy_id: the PHY id whose LED we want to manupulate
1277 * @op: 1 to turn on, 0 to turn off
1279 void asd_turn_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1281 if (phy_id
< ASD_MAX_PHYS
) {
1282 u32 v
= asd_read_reg_dword(asd_ha
, LmCONTROL(phy_id
));
1287 asd_write_reg_dword(asd_ha
, LmCONTROL(phy_id
), v
);
1292 * asd_control_led -- enable/disable an LED on the board
1293 * @asd_ha: pointer to host adapter structure
1294 * @phy_id: integer, the phy id
1295 * @op: integer, 1 to enable, 0 to disable the LED
1297 * First we output enable the LED, then we set the source
1298 * to be an external module.
1300 void asd_control_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1302 if (phy_id
< ASD_MAX_PHYS
) {
1305 v
= asd_read_reg_dword(asd_ha
, GPIOOER
);
1309 v
&= ~(1 << phy_id
);
1310 asd_write_reg_dword(asd_ha
, GPIOOER
, v
);
1312 v
= asd_read_reg_dword(asd_ha
, GPIOCNFGR
);
1316 v
&= ~(1 << phy_id
);
1317 asd_write_reg_dword(asd_ha
, GPIOCNFGR
, v
);
1321 /* ---------- PHY enable ---------- */
1323 static int asd_enable_phy(struct asd_ha_struct
*asd_ha
, int phy_id
)
1325 struct asd_phy
*phy
= &asd_ha
->phys
[phy_id
];
1327 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, INT_ENABLE_2
), 0);
1328 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, HOT_PLUG_DELAY
),
1329 HOTPLUG_DELAY_TIMEOUT
);
1331 /* Get defaults from manuf. sector */
1332 /* XXX we need defaults for those in case MS is broken. */
1333 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_0
),
1334 phy
->phy_desc
->phy_control_0
);
1335 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_1
),
1336 phy
->phy_desc
->phy_control_1
);
1337 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_2
),
1338 phy
->phy_desc
->phy_control_2
);
1339 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_3
),
1340 phy
->phy_desc
->phy_control_3
);
1342 asd_write_reg_dword(asd_ha
, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id
),
1343 ASD_COMINIT_TIMEOUT
);
1345 asd_write_reg_addr(asd_ha
, LmSEQ_TX_ID_ADDR_FRAME(phy_id
),
1346 phy
->id_frm_tok
->dma_handle
);
1348 asd_control_led(asd_ha
, phy_id
, 1);
1353 int asd_enable_phys(struct asd_ha_struct
*asd_ha
, const u8 phy_mask
)
1358 struct asd_ascb
*ascb
;
1359 struct asd_ascb
*ascb_list
;
1362 asd_printk("%s called with phy_mask of 0!?\n", __FUNCTION__
);
1366 for_each_phy(phy_mask
, phy_m
, i
) {
1368 asd_enable_phy(asd_ha
, i
);
1372 ascb_list
= asd_ascb_alloc_list(asd_ha
, &k
, GFP_KERNEL
);
1374 asd_printk("no memory for control phy ascb list\n");
1380 for_each_phy(phy_mask
, phy_m
, i
) {
1381 asd_build_control_phy(ascb
, i
, ENABLE_PHY
);
1382 ascb
= list_entry(ascb
->list
.next
, struct asd_ascb
, list
);
1384 ASD_DPRINTK("posting %d control phy scbs\n", num
);
1385 k
= asd_post_ascb_list(asd_ha
, ascb_list
, num
);
1387 asd_ascb_free_list(ascb_list
);