Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / video / pxafb.c
blob274bc93ab7d8497fe604ca9043498da3e5cdd52a
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
33 #include <linux/fb.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/ioport.h>
37 #include <linux/cpufreq.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/err.h>
42 #include <linux/completion.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
46 #include <asm/hardware.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/div64.h>
50 #include <asm/arch/pxa-regs.h>
51 #include <asm/arch/pxa2xx-gpio.h>
52 #include <asm/arch/bitfield.h>
53 #include <asm/arch/pxafb.h>
56 * Complain if VAR is out of range.
58 #define DEBUG_VAR 1
60 #include "pxafb.h"
62 /* Bits which should not be set in machine configuration structures */
63 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
64 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
65 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
67 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
68 LCCR3_PCD | LCCR3_BPP)
70 static void (*pxafb_backlight_power)(int);
71 static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *);
73 static int pxafb_activate_var(struct fb_var_screeninfo *var,
74 struct pxafb_info *);
75 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
77 static inline unsigned long
78 lcd_readl(struct pxafb_info *fbi, unsigned int off)
80 return __raw_readl(fbi->mmio_base + off);
83 static inline void
84 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
86 __raw_writel(val, fbi->mmio_base + off);
89 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
91 unsigned long flags;
93 local_irq_save(flags);
95 * We need to handle two requests being made at the same time.
96 * There are two important cases:
97 * 1. When we are changing VT (C_REENABLE) while unblanking
98 * (C_ENABLE) We must perform the unblanking, which will
99 * do our REENABLE for us.
100 * 2. When we are blanking, but immediately unblank before
101 * we have blanked. We do the "REENABLE" thing here as
102 * well, just to be sure.
104 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
105 state = (u_int) -1;
106 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
107 state = C_REENABLE;
109 if (state != (u_int)-1) {
110 fbi->task_state = state;
111 schedule_work(&fbi->task);
113 local_irq_restore(flags);
116 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
118 chan &= 0xffff;
119 chan >>= 16 - bf->length;
120 return chan << bf->offset;
123 static int
124 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
125 u_int trans, struct fb_info *info)
127 struct pxafb_info *fbi = (struct pxafb_info *)info;
128 u_int val;
130 if (regno >= fbi->palette_size)
131 return 1;
133 if (fbi->fb.var.grayscale) {
134 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
135 return 0;
138 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
139 case LCCR4_PAL_FOR_0:
140 val = ((red >> 0) & 0xf800);
141 val |= ((green >> 5) & 0x07e0);
142 val |= ((blue >> 11) & 0x001f);
143 fbi->palette_cpu[regno] = val;
144 break;
145 case LCCR4_PAL_FOR_1:
146 val = ((red << 8) & 0x00f80000);
147 val |= ((green >> 0) & 0x0000fc00);
148 val |= ((blue >> 8) & 0x000000f8);
149 ((u32 *)(fbi->palette_cpu))[regno] = val;
150 break;
151 case LCCR4_PAL_FOR_2:
152 val = ((red << 8) & 0x00fc0000);
153 val |= ((green >> 0) & 0x0000fc00);
154 val |= ((blue >> 8) & 0x000000fc);
155 ((u32 *)(fbi->palette_cpu))[regno] = val;
156 break;
159 return 0;
162 static int
163 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
164 u_int trans, struct fb_info *info)
166 struct pxafb_info *fbi = (struct pxafb_info *)info;
167 unsigned int val;
168 int ret = 1;
171 * If inverse mode was selected, invert all the colours
172 * rather than the register number. The register number
173 * is what you poke into the framebuffer to produce the
174 * colour you requested.
176 if (fbi->cmap_inverse) {
177 red = 0xffff - red;
178 green = 0xffff - green;
179 blue = 0xffff - blue;
183 * If greyscale is true, then we convert the RGB value
184 * to greyscale no matter what visual we are using.
186 if (fbi->fb.var.grayscale)
187 red = green = blue = (19595 * red + 38470 * green +
188 7471 * blue) >> 16;
190 switch (fbi->fb.fix.visual) {
191 case FB_VISUAL_TRUECOLOR:
193 * 16-bit True Colour. We encode the RGB value
194 * according to the RGB bitfield information.
196 if (regno < 16) {
197 u32 *pal = fbi->fb.pseudo_palette;
199 val = chan_to_field(red, &fbi->fb.var.red);
200 val |= chan_to_field(green, &fbi->fb.var.green);
201 val |= chan_to_field(blue, &fbi->fb.var.blue);
203 pal[regno] = val;
204 ret = 0;
206 break;
208 case FB_VISUAL_STATIC_PSEUDOCOLOR:
209 case FB_VISUAL_PSEUDOCOLOR:
210 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
211 break;
214 return ret;
218 * pxafb_bpp_to_lccr3():
219 * Convert a bits per pixel value to the correct bit pattern for LCCR3
221 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
223 int ret = 0;
224 switch (var->bits_per_pixel) {
225 case 1: ret = LCCR3_1BPP; break;
226 case 2: ret = LCCR3_2BPP; break;
227 case 4: ret = LCCR3_4BPP; break;
228 case 8: ret = LCCR3_8BPP; break;
229 case 16: ret = LCCR3_16BPP; break;
231 return ret;
234 #ifdef CONFIG_CPU_FREQ
236 * pxafb_display_dma_period()
237 * Calculate the minimum period (in picoseconds) between two DMA
238 * requests for the LCD controller. If we hit this, it means we're
239 * doing nothing but LCD DMA.
241 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
244 * Period = pixclock * bits_per_byte * bytes_per_transfer
245 * / memory_bits_per_pixel;
247 return var->pixclock * 8 * 16 / var->bits_per_pixel;
249 #endif
252 * Select the smallest mode that allows the desired resolution to be
253 * displayed. If desired parameters can be rounded up.
255 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
256 struct fb_var_screeninfo *var)
258 struct pxafb_mode_info *mode = NULL;
259 struct pxafb_mode_info *modelist = mach->modes;
260 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
261 unsigned int i;
263 for (i = 0; i < mach->num_modes; i++) {
264 if (modelist[i].xres >= var->xres &&
265 modelist[i].yres >= var->yres &&
266 modelist[i].xres < best_x &&
267 modelist[i].yres < best_y &&
268 modelist[i].bpp >= var->bits_per_pixel) {
269 best_x = modelist[i].xres;
270 best_y = modelist[i].yres;
271 mode = &modelist[i];
275 return mode;
278 static void pxafb_setmode(struct fb_var_screeninfo *var,
279 struct pxafb_mode_info *mode)
281 var->xres = mode->xres;
282 var->yres = mode->yres;
283 var->bits_per_pixel = mode->bpp;
284 var->pixclock = mode->pixclock;
285 var->hsync_len = mode->hsync_len;
286 var->left_margin = mode->left_margin;
287 var->right_margin = mode->right_margin;
288 var->vsync_len = mode->vsync_len;
289 var->upper_margin = mode->upper_margin;
290 var->lower_margin = mode->lower_margin;
291 var->sync = mode->sync;
292 var->grayscale = mode->cmap_greyscale;
293 var->xres_virtual = var->xres;
294 var->yres_virtual = var->yres;
298 * pxafb_check_var():
299 * Get the video params out of 'var'. If a value doesn't fit, round it up,
300 * if it's too big, return -EINVAL.
302 * Round up in the following order: bits_per_pixel, xres,
303 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
304 * bitfields, horizontal timing, vertical timing.
306 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
308 struct pxafb_info *fbi = (struct pxafb_info *)info;
309 struct pxafb_mach_info *inf = fbi->dev->platform_data;
311 if (var->xres < MIN_XRES)
312 var->xres = MIN_XRES;
313 if (var->yres < MIN_YRES)
314 var->yres = MIN_YRES;
316 if (inf->fixed_modes) {
317 struct pxafb_mode_info *mode;
319 mode = pxafb_getmode(inf, var);
320 if (!mode)
321 return -EINVAL;
322 pxafb_setmode(var, mode);
323 } else {
324 if (var->xres > inf->modes->xres)
325 return -EINVAL;
326 if (var->yres > inf->modes->yres)
327 return -EINVAL;
328 if (var->bits_per_pixel > inf->modes->bpp)
329 return -EINVAL;
332 var->xres_virtual =
333 max(var->xres_virtual, var->xres);
334 var->yres_virtual =
335 max(var->yres_virtual, var->yres);
338 * Setup the RGB parameters for this display.
340 * The pixel packing format is described on page 7-11 of the
341 * PXA2XX Developer's Manual.
343 if (var->bits_per_pixel == 16) {
344 var->red.offset = 11; var->red.length = 5;
345 var->green.offset = 5; var->green.length = 6;
346 var->blue.offset = 0; var->blue.length = 5;
347 var->transp.offset = var->transp.length = 0;
348 } else {
349 var->red.offset = var->green.offset = 0;
350 var->blue.offset = var->transp.offset = 0;
351 var->red.length = 8;
352 var->green.length = 8;
353 var->blue.length = 8;
354 var->transp.length = 0;
357 #ifdef CONFIG_CPU_FREQ
358 pr_debug("pxafb: dma period = %d ps\n",
359 pxafb_display_dma_period(var));
360 #endif
362 return 0;
365 static inline void pxafb_set_truecolor(u_int is_true_color)
367 /* do your machine-specific setup if needed */
371 * pxafb_set_par():
372 * Set the user defined part of the display for the specified console
374 static int pxafb_set_par(struct fb_info *info)
376 struct pxafb_info *fbi = (struct pxafb_info *)info;
377 struct fb_var_screeninfo *var = &info->var;
379 if (var->bits_per_pixel == 16)
380 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
381 else if (!fbi->cmap_static)
382 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
383 else {
385 * Some people have weird ideas about wanting static
386 * pseudocolor maps. I suspect their user space
387 * applications are broken.
389 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
392 fbi->fb.fix.line_length = var->xres_virtual *
393 var->bits_per_pixel / 8;
394 if (var->bits_per_pixel == 16)
395 fbi->palette_size = 0;
396 else
397 fbi->palette_size = var->bits_per_pixel == 1 ?
398 4 : 1 << var->bits_per_pixel;
400 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
403 * Set (any) board control register to handle new color depth
405 pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
407 if (fbi->fb.var.bits_per_pixel == 16)
408 fb_dealloc_cmap(&fbi->fb.cmap);
409 else
410 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
412 pxafb_activate_var(var, fbi);
414 return 0;
418 * pxafb_blank():
419 * Blank the display by setting all palette values to zero. Note, the
420 * 16 bpp mode does not really use the palette, so this will not
421 * blank the display in all modes.
423 static int pxafb_blank(int blank, struct fb_info *info)
425 struct pxafb_info *fbi = (struct pxafb_info *)info;
426 int i;
428 switch (blank) {
429 case FB_BLANK_POWERDOWN:
430 case FB_BLANK_VSYNC_SUSPEND:
431 case FB_BLANK_HSYNC_SUSPEND:
432 case FB_BLANK_NORMAL:
433 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
434 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
435 for (i = 0; i < fbi->palette_size; i++)
436 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
438 pxafb_schedule_work(fbi, C_DISABLE);
439 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
440 break;
442 case FB_BLANK_UNBLANK:
443 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
444 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
445 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
446 fb_set_cmap(&fbi->fb.cmap, info);
447 pxafb_schedule_work(fbi, C_ENABLE);
449 return 0;
452 static int pxafb_mmap(struct fb_info *info,
453 struct vm_area_struct *vma)
455 struct pxafb_info *fbi = (struct pxafb_info *)info;
456 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
458 if (off < info->fix.smem_len) {
459 vma->vm_pgoff += fbi->video_offset / PAGE_SIZE;
460 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
461 fbi->map_dma, fbi->map_size);
463 return -EINVAL;
466 static struct fb_ops pxafb_ops = {
467 .owner = THIS_MODULE,
468 .fb_check_var = pxafb_check_var,
469 .fb_set_par = pxafb_set_par,
470 .fb_setcolreg = pxafb_setcolreg,
471 .fb_fillrect = cfb_fillrect,
472 .fb_copyarea = cfb_copyarea,
473 .fb_imageblit = cfb_imageblit,
474 .fb_blank = pxafb_blank,
475 .fb_mmap = pxafb_mmap,
479 * Calculate the PCD value from the clock rate (in picoseconds).
480 * We take account of the PPCR clock setting.
481 * From PXA Developer's Manual:
483 * PixelClock = LCLK
484 * -------------
485 * 2 ( PCD + 1 )
487 * PCD = LCLK
488 * ------------- - 1
489 * 2(PixelClock)
491 * Where:
492 * LCLK = LCD/Memory Clock
493 * PCD = LCCR3[7:0]
495 * PixelClock here is in Hz while the pixclock argument given is the
496 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
498 * The function get_lclk_frequency_10khz returns LCLK in units of
499 * 10khz. Calling the result of this function lclk gives us the
500 * following
502 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
503 * -------------------------------------- - 1
506 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
508 static inline unsigned int get_pcd(struct pxafb_info *fbi,
509 unsigned int pixclock)
511 unsigned long long pcd;
513 /* FIXME: Need to take into account Double Pixel Clock mode
514 * (DPC) bit? or perhaps set it based on the various clock
515 * speeds */
516 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
517 pcd *= pixclock;
518 do_div(pcd, 100000000 * 2);
519 /* no need for this, since we should subtract 1 anyway. they cancel */
520 /* pcd += 1; */ /* make up for integer math truncations */
521 return (unsigned int)pcd;
525 * Some touchscreens need hsync information from the video driver to
526 * function correctly. We export it here. Note that 'hsync_time' and
527 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
528 * of the hsync period in seconds.
530 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
532 unsigned long htime;
534 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
535 fbi->hsync_time = 0;
536 return;
539 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
541 fbi->hsync_time = htime;
544 unsigned long pxafb_get_hsync_time(struct device *dev)
546 struct pxafb_info *fbi = dev_get_drvdata(dev);
548 /* If display is blanked/suspended, hsync isn't active */
549 if (!fbi || (fbi->state != C_ENABLE))
550 return 0;
552 return fbi->hsync_time;
554 EXPORT_SYMBOL(pxafb_get_hsync_time);
556 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
557 unsigned int offset, size_t size)
559 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
560 unsigned int dma_desc_off, pal_desc_off;
562 if (dma < 0 || dma >= DMA_MAX)
563 return -EINVAL;
565 dma_desc = &fbi->dma_buff->dma_desc[dma];
566 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
568 dma_desc->fsadr = fbi->screen_dma + offset;
569 dma_desc->fidr = 0;
570 dma_desc->ldcmd = size;
572 if (pal < 0 || pal >= PAL_MAX) {
573 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
574 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
575 } else {
576 pal_desc = &fbi->dma_buff->pal_desc[dma];
577 pal_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[pal]);
579 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
580 pal_desc->fidr = 0;
582 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
583 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
584 else
585 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
587 pal_desc->ldcmd |= LDCMD_PAL;
589 /* flip back and forth between palette and frame buffer */
590 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
591 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
592 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
595 return 0;
598 #ifdef CONFIG_FB_PXA_SMARTPANEL
599 static int setup_smart_dma(struct pxafb_info *fbi)
601 struct pxafb_dma_descriptor *dma_desc;
602 unsigned long dma_desc_off, cmd_buff_off;
604 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
605 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
606 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
608 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
609 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
610 dma_desc->fidr = 0;
611 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
613 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
614 return 0;
617 int pxafb_smart_flush(struct fb_info *info)
619 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
620 uint32_t prsr;
621 int ret = 0;
623 /* disable controller until all registers are set up */
624 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
626 /* 1. make it an even number of commands to align on 32-bit boundary
627 * 2. add the interrupt command to the end of the chain so we can
628 * keep track of the end of the transfer
631 while (fbi->n_smart_cmds & 1)
632 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
634 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
635 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
636 setup_smart_dma(fbi);
638 /* continue to execute next command */
639 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
640 lcd_writel(fbi, PRSR, prsr);
642 /* stop the processor in case it executed "wait for sync" cmd */
643 lcd_writel(fbi, CMDCR, 0x0001);
645 /* don't send interrupts for fifo underruns on channel 6 */
646 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
648 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
649 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
650 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
651 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
652 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
654 /* begin sending */
655 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
657 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
658 pr_warning("%s: timeout waiting for command done\n",
659 __func__);
660 ret = -ETIMEDOUT;
663 /* quick disable */
664 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
665 lcd_writel(fbi, PRSR, prsr);
666 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
667 lcd_writel(fbi, FDADR6, 0);
668 fbi->n_smart_cmds = 0;
669 return ret;
672 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
674 int i;
675 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
677 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
678 for (i = 0; i < n_cmds; i++) {
679 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
680 pxafb_smart_flush(info);
682 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds++;
685 return 0;
688 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
690 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
691 return (t == 0) ? 1 : t;
694 static void setup_smart_timing(struct pxafb_info *fbi,
695 struct fb_var_screeninfo *var)
697 struct pxafb_mach_info *inf = fbi->dev->platform_data;
698 struct pxafb_mode_info *mode = &inf->modes[0];
699 unsigned long lclk = clk_get_rate(fbi->clk);
700 unsigned t1, t2, t3, t4;
702 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
703 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
704 t3 = mode->op_hold_time;
705 t4 = mode->cmd_inh_time;
707 fbi->reg_lccr1 =
708 LCCR1_DisWdth(var->xres) |
709 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
710 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
711 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
713 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
714 fbi->reg_lccr3 = LCCR3_PixClkDiv(__smart_timing(t4, lclk));
716 /* FIXME: make this configurable */
717 fbi->reg_cmdcr = 1;
720 static int pxafb_smart_thread(void *arg)
722 struct pxafb_info *fbi = arg;
723 struct pxafb_mach_info *inf = fbi->dev->platform_data;
725 if (!fbi || !inf->smart_update) {
726 pr_err("%s: not properly initialized, thread terminated\n",
727 __func__);
728 return -EINVAL;
731 pr_debug("%s(): task starting\n", __func__);
733 set_freezable();
734 while (!kthread_should_stop()) {
736 if (try_to_freeze())
737 continue;
739 if (fbi->state == C_ENABLE) {
740 inf->smart_update(&fbi->fb);
741 complete(&fbi->refresh_done);
744 set_current_state(TASK_INTERRUPTIBLE);
745 schedule_timeout(30 * HZ / 1000);
748 pr_debug("%s(): task ending\n", __func__);
749 return 0;
752 static int pxafb_smart_init(struct pxafb_info *fbi)
754 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
755 "lcd_refresh");
756 if (IS_ERR(fbi->smart_thread)) {
757 printk(KERN_ERR "%s: unable to create kernel thread\n",
758 __func__);
759 return PTR_ERR(fbi->smart_thread);
761 return 0;
763 #else
764 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
766 return 0;
769 int pxafb_smart_flush(struct fb_info *info)
771 return 0;
773 #endif /* CONFIG_FB_SMART_PANEL */
775 static void setup_parallel_timing(struct pxafb_info *fbi,
776 struct fb_var_screeninfo *var)
778 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
780 fbi->reg_lccr1 =
781 LCCR1_DisWdth(var->xres) +
782 LCCR1_HorSnchWdth(var->hsync_len) +
783 LCCR1_BegLnDel(var->left_margin) +
784 LCCR1_EndLnDel(var->right_margin);
787 * If we have a dual scan LCD, we need to halve
788 * the YRES parameter.
790 lines_per_panel = var->yres;
791 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
792 lines_per_panel /= 2;
794 fbi->reg_lccr2 =
795 LCCR2_DisHght(lines_per_panel) +
796 LCCR2_VrtSnchWdth(var->vsync_len) +
797 LCCR2_BegFrmDel(var->upper_margin) +
798 LCCR2_EndFrmDel(var->lower_margin);
800 fbi->reg_lccr3 = fbi->lccr3 |
801 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
802 LCCR3_HorSnchH : LCCR3_HorSnchL) |
803 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
804 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
806 if (pcd) {
807 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
808 set_hsync_time(fbi, pcd);
813 * pxafb_activate_var():
814 * Configures LCD Controller based on entries in var parameter.
815 * Settings are only written to the controller if changes were made.
817 static int pxafb_activate_var(struct fb_var_screeninfo *var,
818 struct pxafb_info *fbi)
820 u_long flags;
821 size_t nbytes;
823 #if DEBUG_VAR
824 if (!(fbi->lccr0 & LCCR0_LCDT)) {
825 if (var->xres < 16 || var->xres > 1024)
826 printk(KERN_ERR "%s: invalid xres %d\n",
827 fbi->fb.fix.id, var->xres);
828 switch (var->bits_per_pixel) {
829 case 1:
830 case 2:
831 case 4:
832 case 8:
833 case 16:
834 break;
835 default:
836 printk(KERN_ERR "%s: invalid bit depth %d\n",
837 fbi->fb.fix.id, var->bits_per_pixel);
838 break;
841 if (var->hsync_len < 1 || var->hsync_len > 64)
842 printk(KERN_ERR "%s: invalid hsync_len %d\n",
843 fbi->fb.fix.id, var->hsync_len);
844 if (var->left_margin < 1 || var->left_margin > 255)
845 printk(KERN_ERR "%s: invalid left_margin %d\n",
846 fbi->fb.fix.id, var->left_margin);
847 if (var->right_margin < 1 || var->right_margin > 255)
848 printk(KERN_ERR "%s: invalid right_margin %d\n",
849 fbi->fb.fix.id, var->right_margin);
850 if (var->yres < 1 || var->yres > 1024)
851 printk(KERN_ERR "%s: invalid yres %d\n",
852 fbi->fb.fix.id, var->yres);
853 if (var->vsync_len < 1 || var->vsync_len > 64)
854 printk(KERN_ERR "%s: invalid vsync_len %d\n",
855 fbi->fb.fix.id, var->vsync_len);
856 if (var->upper_margin < 0 || var->upper_margin > 255)
857 printk(KERN_ERR "%s: invalid upper_margin %d\n",
858 fbi->fb.fix.id, var->upper_margin);
859 if (var->lower_margin < 0 || var->lower_margin > 255)
860 printk(KERN_ERR "%s: invalid lower_margin %d\n",
861 fbi->fb.fix.id, var->lower_margin);
863 #endif
864 /* Update shadow copy atomically */
865 local_irq_save(flags);
867 #ifdef CONFIG_FB_PXA_SMARTPANEL
868 if (fbi->lccr0 & LCCR0_LCDT)
869 setup_smart_timing(fbi, var);
870 else
871 #endif
872 setup_parallel_timing(fbi, var);
874 fbi->reg_lccr0 = fbi->lccr0 |
875 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
876 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
878 fbi->reg_lccr3 |= pxafb_bpp_to_lccr3(var);
880 nbytes = var->yres * fbi->fb.fix.line_length;
882 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) {
883 nbytes = nbytes / 2;
884 setup_frame_dma(fbi, DMA_LOWER, PAL_NONE, nbytes, nbytes);
887 if ((var->bits_per_pixel >= 16) || (fbi->lccr0 & LCCR0_LCDT))
888 setup_frame_dma(fbi, DMA_BASE, PAL_NONE, 0, nbytes);
889 else
890 setup_frame_dma(fbi, DMA_BASE, PAL_BASE, 0, nbytes);
892 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
893 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
894 local_irq_restore(flags);
897 * Only update the registers if the controller is enabled
898 * and something has changed.
900 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
901 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
902 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
903 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
904 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
905 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))
906 pxafb_schedule_work(fbi, C_REENABLE);
908 return 0;
912 * NOTE! The following functions are purely helpers for set_ctrlr_state.
913 * Do not call them directly; set_ctrlr_state does the correct serialisation
914 * to ensure that things happen in the right way 100% of time time.
915 * -- rmk
917 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
919 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
921 if (pxafb_backlight_power)
922 pxafb_backlight_power(on);
925 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
927 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
929 if (pxafb_lcd_power)
930 pxafb_lcd_power(on, &fbi->fb.var);
933 static void pxafb_setup_gpio(struct pxafb_info *fbi)
935 int gpio, ldd_bits;
936 unsigned int lccr0 = fbi->lccr0;
939 * setup is based on type of panel supported
942 /* 4 bit interface */
943 if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
944 (lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
945 (lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
946 ldd_bits = 4;
948 /* 8 bit interface */
949 else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
950 ((lccr0 & LCCR0_SDS) == LCCR0_Dual ||
951 (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
952 ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
953 (lccr0 & LCCR0_PAS) == LCCR0_Pas &&
954 (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
955 ldd_bits = 8;
957 /* 16 bit interface */
958 else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
959 ((lccr0 & LCCR0_SDS) == LCCR0_Dual ||
960 (lccr0 & LCCR0_PAS) == LCCR0_Act))
961 ldd_bits = 16;
963 else {
964 printk(KERN_ERR "pxafb_setup_gpio: unable to determine "
965 "bits per pixel\n");
966 return;
969 for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
970 pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
971 pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
972 pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
973 pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
974 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
977 static void pxafb_enable_controller(struct pxafb_info *fbi)
979 pr_debug("pxafb: Enabling LCD controller\n");
980 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
981 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
982 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
983 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
984 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
985 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
987 /* enable LCD controller clock */
988 clk_enable(fbi->clk);
990 if (fbi->lccr0 & LCCR0_LCDT)
991 return;
993 /* Sequence from 11.7.10 */
994 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
995 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
996 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
997 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
999 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1000 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1001 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1004 static void pxafb_disable_controller(struct pxafb_info *fbi)
1006 uint32_t lccr0;
1008 #ifdef CONFIG_FB_PXA_SMARTPANEL
1009 if (fbi->lccr0 & LCCR0_LCDT) {
1010 wait_for_completion_timeout(&fbi->refresh_done,
1011 200 * HZ / 1000);
1012 return;
1014 #endif
1016 /* Clear LCD Status Register */
1017 lcd_writel(fbi, LCSR, 0xffffffff);
1019 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1020 lcd_writel(fbi, LCCR0, lccr0);
1021 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1023 wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1025 /* disable LCD controller clock */
1026 clk_disable(fbi->clk);
1030 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1032 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1034 struct pxafb_info *fbi = dev_id;
1035 unsigned int lccr0, lcsr = lcd_readl(fbi, LCSR);
1037 if (lcsr & LCSR_LDD) {
1038 lccr0 = lcd_readl(fbi, LCCR0);
1039 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1040 complete(&fbi->disable_done);
1043 #ifdef CONFIG_FB_PXA_SMARTPANEL
1044 if (lcsr & LCSR_CMD_INT)
1045 complete(&fbi->command_done);
1046 #endif
1048 lcd_writel(fbi, LCSR, lcsr);
1049 return IRQ_HANDLED;
1053 * This function must be called from task context only, since it will
1054 * sleep when disabling the LCD controller, or if we get two contending
1055 * processes trying to alter state.
1057 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1059 u_int old_state;
1061 down(&fbi->ctrlr_sem);
1063 old_state = fbi->state;
1066 * Hack around fbcon initialisation.
1068 if (old_state == C_STARTUP && state == C_REENABLE)
1069 state = C_ENABLE;
1071 switch (state) {
1072 case C_DISABLE_CLKCHANGE:
1074 * Disable controller for clock change. If the
1075 * controller is already disabled, then do nothing.
1077 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1078 fbi->state = state;
1079 /* TODO __pxafb_lcd_power(fbi, 0); */
1080 pxafb_disable_controller(fbi);
1082 break;
1084 case C_DISABLE_PM:
1085 case C_DISABLE:
1087 * Disable controller
1089 if (old_state != C_DISABLE) {
1090 fbi->state = state;
1091 __pxafb_backlight_power(fbi, 0);
1092 __pxafb_lcd_power(fbi, 0);
1093 if (old_state != C_DISABLE_CLKCHANGE)
1094 pxafb_disable_controller(fbi);
1096 break;
1098 case C_ENABLE_CLKCHANGE:
1100 * Enable the controller after clock change. Only
1101 * do this if we were disabled for the clock change.
1103 if (old_state == C_DISABLE_CLKCHANGE) {
1104 fbi->state = C_ENABLE;
1105 pxafb_enable_controller(fbi);
1106 /* TODO __pxafb_lcd_power(fbi, 1); */
1108 break;
1110 case C_REENABLE:
1112 * Re-enable the controller only if it was already
1113 * enabled. This is so we reprogram the control
1114 * registers.
1116 if (old_state == C_ENABLE) {
1117 __pxafb_lcd_power(fbi, 0);
1118 pxafb_disable_controller(fbi);
1119 pxafb_setup_gpio(fbi);
1120 pxafb_enable_controller(fbi);
1121 __pxafb_lcd_power(fbi, 1);
1123 break;
1125 case C_ENABLE_PM:
1127 * Re-enable the controller after PM. This is not
1128 * perfect - think about the case where we were doing
1129 * a clock change, and we suspended half-way through.
1131 if (old_state != C_DISABLE_PM)
1132 break;
1133 /* fall through */
1135 case C_ENABLE:
1137 * Power up the LCD screen, enable controller, and
1138 * turn on the backlight.
1140 if (old_state != C_ENABLE) {
1141 fbi->state = C_ENABLE;
1142 pxafb_setup_gpio(fbi);
1143 pxafb_enable_controller(fbi);
1144 __pxafb_lcd_power(fbi, 1);
1145 __pxafb_backlight_power(fbi, 1);
1147 break;
1149 up(&fbi->ctrlr_sem);
1153 * Our LCD controller task (which is called when we blank or unblank)
1154 * via keventd.
1156 static void pxafb_task(struct work_struct *work)
1158 struct pxafb_info *fbi =
1159 container_of(work, struct pxafb_info, task);
1160 u_int state = xchg(&fbi->task_state, -1);
1162 set_ctrlr_state(fbi, state);
1165 #ifdef CONFIG_CPU_FREQ
1167 * CPU clock speed change handler. We need to adjust the LCD timing
1168 * parameters when the CPU clock is adjusted by the power management
1169 * subsystem.
1171 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1173 static int
1174 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1176 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1177 /* TODO struct cpufreq_freqs *f = data; */
1178 u_int pcd;
1180 switch (val) {
1181 case CPUFREQ_PRECHANGE:
1182 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1183 break;
1185 case CPUFREQ_POSTCHANGE:
1186 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1187 set_hsync_time(fbi, pcd);
1188 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1189 LCCR3_PixClkDiv(pcd);
1190 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1191 break;
1193 return 0;
1196 static int
1197 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1199 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1200 struct fb_var_screeninfo *var = &fbi->fb.var;
1201 struct cpufreq_policy *policy = data;
1203 switch (val) {
1204 case CPUFREQ_ADJUST:
1205 case CPUFREQ_INCOMPATIBLE:
1206 pr_debug("min dma period: %d ps, "
1207 "new clock %d kHz\n", pxafb_display_dma_period(var),
1208 policy->max);
1209 /* TODO: fill in min/max values */
1210 break;
1212 return 0;
1214 #endif
1216 #ifdef CONFIG_PM
1218 * Power management hooks. Note that we won't be called from IRQ context,
1219 * unlike the blank functions above, so we may sleep.
1221 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
1223 struct pxafb_info *fbi = platform_get_drvdata(dev);
1225 set_ctrlr_state(fbi, C_DISABLE_PM);
1226 return 0;
1229 static int pxafb_resume(struct platform_device *dev)
1231 struct pxafb_info *fbi = platform_get_drvdata(dev);
1233 set_ctrlr_state(fbi, C_ENABLE_PM);
1234 return 0;
1236 #else
1237 #define pxafb_suspend NULL
1238 #define pxafb_resume NULL
1239 #endif
1242 * pxafb_map_video_memory():
1243 * Allocates the DRAM memory for the frame buffer. This buffer is
1244 * remapped into a non-cached, non-buffered, memory region to
1245 * allow palette and pixel writes to occur without flushing the
1246 * cache. Once this area is remapped, all virtual memory
1247 * access to the video memory should occur at the new region.
1249 static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
1252 * We reserve one page for the palette, plus the size
1253 * of the framebuffer.
1255 fbi->video_offset = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
1256 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + fbi->video_offset);
1257 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1258 &fbi->map_dma, GFP_KERNEL);
1260 if (fbi->map_cpu) {
1261 /* prevent initial garbage on screen */
1262 memset(fbi->map_cpu, 0, fbi->map_size);
1263 fbi->fb.screen_base = fbi->map_cpu + fbi->video_offset;
1264 fbi->screen_dma = fbi->map_dma + fbi->video_offset;
1267 * FIXME: this is actually the wrong thing to place in
1268 * smem_start. But fbdev suffers from the problem that
1269 * it needs an API which doesn't exist (in this case,
1270 * dma_writecombine_mmap)
1272 fbi->fb.fix.smem_start = fbi->screen_dma;
1273 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
1275 fbi->dma_buff = (void *) fbi->map_cpu;
1276 fbi->dma_buff_phys = fbi->map_dma;
1277 fbi->palette_cpu = (u16 *) fbi->dma_buff->palette;
1279 #ifdef CONFIG_FB_PXA_SMARTPANEL
1280 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1281 fbi->n_smart_cmds = 0;
1282 #endif
1285 return fbi->map_cpu ? 0 : -ENOMEM;
1288 static void pxafb_decode_mode_info(struct pxafb_info *fbi,
1289 struct pxafb_mode_info *modes,
1290 unsigned int num_modes)
1292 unsigned int i, smemlen;
1294 pxafb_setmode(&fbi->fb.var, &modes[0]);
1296 for (i = 0; i < num_modes; i++) {
1297 smemlen = modes[i].xres * modes[i].yres * modes[i].bpp / 8;
1298 if (smemlen > fbi->fb.fix.smem_len)
1299 fbi->fb.fix.smem_len = smemlen;
1303 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1304 struct pxafb_mach_info *inf)
1306 unsigned int lcd_conn = inf->lcd_conn;
1308 fbi->cmap_inverse = inf->cmap_inverse;
1309 fbi->cmap_static = inf->cmap_static;
1311 switch (lcd_conn & 0xf) {
1312 case LCD_TYPE_MONO_STN:
1313 fbi->lccr0 = LCCR0_CMS;
1314 break;
1315 case LCD_TYPE_MONO_DSTN:
1316 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1317 break;
1318 case LCD_TYPE_COLOR_STN:
1319 fbi->lccr0 = 0;
1320 break;
1321 case LCD_TYPE_COLOR_DSTN:
1322 fbi->lccr0 = LCCR0_SDS;
1323 break;
1324 case LCD_TYPE_COLOR_TFT:
1325 fbi->lccr0 = LCCR0_PAS;
1326 break;
1327 case LCD_TYPE_SMART_PANEL:
1328 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1329 break;
1330 default:
1331 /* fall back to backward compatibility way */
1332 fbi->lccr0 = inf->lccr0;
1333 fbi->lccr3 = inf->lccr3;
1334 fbi->lccr4 = inf->lccr4;
1335 goto decode_mode;
1338 if (lcd_conn == LCD_MONO_STN_8BPP)
1339 fbi->lccr0 |= LCCR0_DPD;
1341 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1342 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1343 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1345 decode_mode:
1346 pxafb_decode_mode_info(fbi, inf->modes, inf->num_modes);
1349 static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
1351 struct pxafb_info *fbi;
1352 void *addr;
1353 struct pxafb_mach_info *inf = dev->platform_data;
1355 /* Alloc the pxafb_info and pseudo_palette in one step */
1356 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1357 if (!fbi)
1358 return NULL;
1360 memset(fbi, 0, sizeof(struct pxafb_info));
1361 fbi->dev = dev;
1363 fbi->clk = clk_get(dev, "LCDCLK");
1364 if (IS_ERR(fbi->clk)) {
1365 kfree(fbi);
1366 return NULL;
1369 strcpy(fbi->fb.fix.id, PXA_NAME);
1371 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1372 fbi->fb.fix.type_aux = 0;
1373 fbi->fb.fix.xpanstep = 0;
1374 fbi->fb.fix.ypanstep = 0;
1375 fbi->fb.fix.ywrapstep = 0;
1376 fbi->fb.fix.accel = FB_ACCEL_NONE;
1378 fbi->fb.var.nonstd = 0;
1379 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1380 fbi->fb.var.height = -1;
1381 fbi->fb.var.width = -1;
1382 fbi->fb.var.accel_flags = 0;
1383 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1385 fbi->fb.fbops = &pxafb_ops;
1386 fbi->fb.flags = FBINFO_DEFAULT;
1387 fbi->fb.node = -1;
1389 addr = fbi;
1390 addr = addr + sizeof(struct pxafb_info);
1391 fbi->fb.pseudo_palette = addr;
1393 fbi->state = C_STARTUP;
1394 fbi->task_state = (u_char)-1;
1396 pxafb_decode_mach_info(fbi, inf);
1398 init_waitqueue_head(&fbi->ctrlr_wait);
1399 INIT_WORK(&fbi->task, pxafb_task);
1400 init_MUTEX(&fbi->ctrlr_sem);
1401 init_completion(&fbi->disable_done);
1402 #ifdef CONFIG_FB_PXA_SMARTPANEL
1403 init_completion(&fbi->command_done);
1404 init_completion(&fbi->refresh_done);
1405 #endif
1407 return fbi;
1410 #ifdef CONFIG_FB_PXA_PARAMETERS
1411 static int __init parse_opt_mode(struct device *dev, const char *this_opt)
1413 struct pxafb_mach_info *inf = dev->platform_data;
1415 const char *name = this_opt+5;
1416 unsigned int namelen = strlen(name);
1417 int res_specified = 0, bpp_specified = 0;
1418 unsigned int xres = 0, yres = 0, bpp = 0;
1419 int yres_specified = 0;
1420 int i;
1421 for (i = namelen-1; i >= 0; i--) {
1422 switch (name[i]) {
1423 case '-':
1424 namelen = i;
1425 if (!bpp_specified && !yres_specified) {
1426 bpp = simple_strtoul(&name[i+1], NULL, 0);
1427 bpp_specified = 1;
1428 } else
1429 goto done;
1430 break;
1431 case 'x':
1432 if (!yres_specified) {
1433 yres = simple_strtoul(&name[i+1], NULL, 0);
1434 yres_specified = 1;
1435 } else
1436 goto done;
1437 break;
1438 case '0' ... '9':
1439 break;
1440 default:
1441 goto done;
1444 if (i < 0 && yres_specified) {
1445 xres = simple_strtoul(name, NULL, 0);
1446 res_specified = 1;
1448 done:
1449 if (res_specified) {
1450 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1451 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1453 if (bpp_specified)
1454 switch (bpp) {
1455 case 1:
1456 case 2:
1457 case 4:
1458 case 8:
1459 case 16:
1460 inf->modes[0].bpp = bpp;
1461 dev_info(dev, "overriding bit depth: %d\n", bpp);
1462 break;
1463 default:
1464 dev_err(dev, "Depth %d is not valid\n", bpp);
1465 return -EINVAL;
1467 return 0;
1470 static int __init parse_opt(struct device *dev, char *this_opt)
1472 struct pxafb_mach_info *inf = dev->platform_data;
1473 struct pxafb_mode_info *mode = &inf->modes[0];
1474 char s[64];
1476 s[0] = '\0';
1478 if (!strncmp(this_opt, "mode:", 5)) {
1479 return parse_opt_mode(dev, this_opt);
1480 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1481 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1482 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1483 } else if (!strncmp(this_opt, "left:", 5)) {
1484 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1485 sprintf(s, "left: %u\n", mode->left_margin);
1486 } else if (!strncmp(this_opt, "right:", 6)) {
1487 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1488 sprintf(s, "right: %u\n", mode->right_margin);
1489 } else if (!strncmp(this_opt, "upper:", 6)) {
1490 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1491 sprintf(s, "upper: %u\n", mode->upper_margin);
1492 } else if (!strncmp(this_opt, "lower:", 6)) {
1493 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1494 sprintf(s, "lower: %u\n", mode->lower_margin);
1495 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1496 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1497 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1498 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1499 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1500 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1501 } else if (!strncmp(this_opt, "hsync:", 6)) {
1502 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1503 sprintf(s, "hsync: Active Low\n");
1504 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1505 } else {
1506 sprintf(s, "hsync: Active High\n");
1507 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1509 } else if (!strncmp(this_opt, "vsync:", 6)) {
1510 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1511 sprintf(s, "vsync: Active Low\n");
1512 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1513 } else {
1514 sprintf(s, "vsync: Active High\n");
1515 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1517 } else if (!strncmp(this_opt, "dpc:", 4)) {
1518 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1519 sprintf(s, "double pixel clock: false\n");
1520 inf->lccr3 &= ~LCCR3_DPC;
1521 } else {
1522 sprintf(s, "double pixel clock: true\n");
1523 inf->lccr3 |= LCCR3_DPC;
1525 } else if (!strncmp(this_opt, "outputen:", 9)) {
1526 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1527 sprintf(s, "output enable: active low\n");
1528 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1529 } else {
1530 sprintf(s, "output enable: active high\n");
1531 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1533 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1534 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1535 sprintf(s, "pixel clock polarity: falling edge\n");
1536 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1537 } else {
1538 sprintf(s, "pixel clock polarity: rising edge\n");
1539 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1541 } else if (!strncmp(this_opt, "color", 5)) {
1542 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1543 } else if (!strncmp(this_opt, "mono", 4)) {
1544 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1545 } else if (!strncmp(this_opt, "active", 6)) {
1546 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1547 } else if (!strncmp(this_opt, "passive", 7)) {
1548 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1549 } else if (!strncmp(this_opt, "single", 6)) {
1550 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1551 } else if (!strncmp(this_opt, "dual", 4)) {
1552 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1553 } else if (!strncmp(this_opt, "4pix", 4)) {
1554 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1555 } else if (!strncmp(this_opt, "8pix", 4)) {
1556 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1557 } else {
1558 dev_err(dev, "unknown option: %s\n", this_opt);
1559 return -EINVAL;
1562 if (s[0] != '\0')
1563 dev_info(dev, "override %s", s);
1565 return 0;
1568 static int __init pxafb_parse_options(struct device *dev, char *options)
1570 char *this_opt;
1571 int ret;
1573 if (!options || !*options)
1574 return 0;
1576 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1578 /* could be made table driven or similar?... */
1579 while ((this_opt = strsep(&options, ",")) != NULL) {
1580 ret = parse_opt(dev, this_opt);
1581 if (ret)
1582 return ret;
1584 return 0;
1587 static char g_options[256] __devinitdata = "";
1589 #ifndef CONFIG_MODULES
1590 static int __devinit pxafb_setup_options(void)
1592 char *options = NULL;
1594 if (fb_get_options("pxafb", &options))
1595 return -ENODEV;
1597 if (options)
1598 strlcpy(g_options, options, sizeof(g_options));
1600 return 0;
1602 #else
1603 #define pxafb_setup_options() (0)
1605 module_param_string(options, g_options, sizeof(g_options), 0);
1606 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1607 #endif
1609 #else
1610 #define pxafb_parse_options(...) (0)
1611 #define pxafb_setup_options() (0)
1612 #endif
1614 static int __init pxafb_probe(struct platform_device *dev)
1616 struct pxafb_info *fbi;
1617 struct pxafb_mach_info *inf;
1618 struct resource *r;
1619 int irq, ret;
1621 dev_dbg(&dev->dev, "pxafb_probe\n");
1623 inf = dev->dev.platform_data;
1624 ret = -ENOMEM;
1625 fbi = NULL;
1626 if (!inf)
1627 goto failed;
1629 ret = pxafb_parse_options(&dev->dev, g_options);
1630 if (ret < 0)
1631 goto failed;
1633 #ifdef DEBUG_VAR
1634 /* Check for various illegal bit-combinations. Currently only
1635 * a warning is given. */
1637 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
1638 dev_warn(&dev->dev, "machine LCCR0 setting contains "
1639 "illegal bits: %08x\n",
1640 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
1641 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
1642 dev_warn(&dev->dev, "machine LCCR3 setting contains "
1643 "illegal bits: %08x\n",
1644 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
1645 if (inf->lccr0 & LCCR0_DPD &&
1646 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
1647 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
1648 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
1649 dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is "
1650 "only valid in passive mono"
1651 " single panel mode\n");
1652 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
1653 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1654 dev_warn(&dev->dev, "Dual panel only valid in passive mode\n");
1655 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1656 (inf->modes->upper_margin || inf->modes->lower_margin))
1657 dev_warn(&dev->dev, "Upper and lower margins must be 0 in "
1658 "passive mode\n");
1659 #endif
1661 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
1662 inf->modes->xres,
1663 inf->modes->yres,
1664 inf->modes->bpp);
1665 if (inf->modes->xres == 0 ||
1666 inf->modes->yres == 0 ||
1667 inf->modes->bpp == 0) {
1668 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
1669 ret = -EINVAL;
1670 goto failed;
1672 pxafb_backlight_power = inf->pxafb_backlight_power;
1673 pxafb_lcd_power = inf->pxafb_lcd_power;
1674 fbi = pxafb_init_fbinfo(&dev->dev);
1675 if (!fbi) {
1676 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
1677 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
1678 ret = -ENOMEM;
1679 goto failed;
1682 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
1683 if (r == NULL) {
1684 dev_err(&dev->dev, "no I/O memory resource defined\n");
1685 ret = -ENODEV;
1686 goto failed;
1689 r = request_mem_region(r->start, r->end - r->start + 1, dev->name);
1690 if (r == NULL) {
1691 dev_err(&dev->dev, "failed to request I/O memory\n");
1692 ret = -EBUSY;
1693 goto failed;
1696 fbi->mmio_base = ioremap(r->start, r->end - r->start + 1);
1697 if (fbi->mmio_base == NULL) {
1698 dev_err(&dev->dev, "failed to map I/O memory\n");
1699 ret = -EBUSY;
1700 goto failed_free_res;
1703 /* Initialize video memory */
1704 ret = pxafb_map_video_memory(fbi);
1705 if (ret) {
1706 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
1707 ret = -ENOMEM;
1708 goto failed_free_io;
1711 irq = platform_get_irq(dev, 0);
1712 if (irq < 0) {
1713 dev_err(&dev->dev, "no IRQ defined\n");
1714 ret = -ENODEV;
1715 goto failed_free_mem;
1718 ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
1719 if (ret) {
1720 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
1721 ret = -EBUSY;
1722 goto failed_free_mem;
1725 #ifdef CONFIG_FB_PXA_SMARTPANEL
1726 ret = pxafb_smart_init(fbi);
1727 if (ret) {
1728 dev_err(&dev->dev, "failed to initialize smartpanel\n");
1729 goto failed_free_irq;
1731 #endif
1733 * This makes sure that our colour bitfield
1734 * descriptors are correctly initialised.
1736 pxafb_check_var(&fbi->fb.var, &fbi->fb);
1737 pxafb_set_par(&fbi->fb);
1739 platform_set_drvdata(dev, fbi);
1741 ret = register_framebuffer(&fbi->fb);
1742 if (ret < 0) {
1743 dev_err(&dev->dev,
1744 "Failed to register framebuffer device: %d\n", ret);
1745 goto failed_free_irq;
1748 #ifdef CONFIG_CPU_FREQ
1749 fbi->freq_transition.notifier_call = pxafb_freq_transition;
1750 fbi->freq_policy.notifier_call = pxafb_freq_policy;
1751 cpufreq_register_notifier(&fbi->freq_transition,
1752 CPUFREQ_TRANSITION_NOTIFIER);
1753 cpufreq_register_notifier(&fbi->freq_policy,
1754 CPUFREQ_POLICY_NOTIFIER);
1755 #endif
1758 * Ok, now enable the LCD controller
1760 set_ctrlr_state(fbi, C_ENABLE);
1762 return 0;
1764 failed_free_irq:
1765 free_irq(irq, fbi);
1766 failed_free_res:
1767 release_mem_region(r->start, r->end - r->start + 1);
1768 failed_free_io:
1769 iounmap(fbi->mmio_base);
1770 failed_free_mem:
1771 dma_free_writecombine(&dev->dev, fbi->map_size,
1772 fbi->map_cpu, fbi->map_dma);
1773 failed:
1774 platform_set_drvdata(dev, NULL);
1775 kfree(fbi);
1776 return ret;
1779 static struct platform_driver pxafb_driver = {
1780 .probe = pxafb_probe,
1781 .suspend = pxafb_suspend,
1782 .resume = pxafb_resume,
1783 .driver = {
1784 .name = "pxa2xx-fb",
1788 static int __devinit pxafb_init(void)
1790 if (pxafb_setup_options())
1791 return -EINVAL;
1793 return platform_driver_register(&pxafb_driver);
1796 module_init(pxafb_init);
1798 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1799 MODULE_LICENSE("GPL");