Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / include / asm-m68knommu / dma.h
blob939a0205621712c1416af8036d02ff2a33c2ff12
1 #ifndef _M68K_DMA_H
2 #define _M68K_DMA_H 1
4 //#define DMA_DEBUG 1
7 #ifdef CONFIG_COLDFIRE
8 /*
9 * ColdFire DMA Model:
10 * ColdFire DMA supports two forms of DMA: Single and Dual address. Single
11 * address mode emits a source address, and expects that the device will either
12 * pick up the data (DMA READ) or source data (DMA WRITE). This implies that
13 * the device will place data on the correct byte(s) of the data bus, as the
14 * memory transactions are always 32 bits. This implies that only 32 bit
15 * devices will find single mode transfers useful. Dual address DMA mode
16 * performs two cycles: source read and destination write. ColdFire will
17 * align the data so that the device will always get the correct bytes, thus
18 * is useful for 8 and 16 bit devices. This is the mode that is supported
19 * below.
21 * AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000
22 * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
24 * AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000
25 * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
27 * APR/18/2002 : added proper support for MCF5272 DMA controller.
28 * Arthur Shipkowski (art@videon-central.com)
31 #include <asm/coldfire.h>
32 #include <asm/mcfsim.h>
33 #include <asm/mcfdma.h>
36 * Set number of channels of DMA on ColdFire for different implementations.
38 #if defined(CONFIG_M5249) || defined(CONFIG_M5307) || defined(CONFIG_M5407) || \
39 defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
40 #define MAX_M68K_DMA_CHANNELS 4
41 #elif defined(CONFIG_M5272)
42 #define MAX_M68K_DMA_CHANNELS 1
43 #elif defined(CONFIG_M532x)
44 #define MAX_M68K_DMA_CHANNELS 0
45 #else
46 #define MAX_M68K_DMA_CHANNELS 2
47 #endif
49 extern unsigned int dma_base_addr[MAX_M68K_DMA_CHANNELS];
50 extern unsigned int dma_device_address[MAX_M68K_DMA_CHANNELS];
52 #if !defined(CONFIG_M5272)
53 #define DMA_MODE_WRITE_BIT 0x01 /* Memory/IO to IO/Memory select */
54 #define DMA_MODE_WORD_BIT 0x02 /* 8 or 16 bit transfers */
55 #define DMA_MODE_LONG_BIT 0x04 /* or 32 bit transfers */
56 #define DMA_MODE_SINGLE_BIT 0x08 /* single-address-mode */
58 /* I/O to memory, 8 bits, mode */
59 #define DMA_MODE_READ 0
60 /* memory to I/O, 8 bits, mode */
61 #define DMA_MODE_WRITE 1
62 /* I/O to memory, 16 bits, mode */
63 #define DMA_MODE_READ_WORD 2
64 /* memory to I/O, 16 bits, mode */
65 #define DMA_MODE_WRITE_WORD 3
66 /* I/O to memory, 32 bits, mode */
67 #define DMA_MODE_READ_LONG 4
68 /* memory to I/O, 32 bits, mode */
69 #define DMA_MODE_WRITE_LONG 5
70 /* I/O to memory, 8 bits, single-address-mode */
71 #define DMA_MODE_READ_SINGLE 8
72 /* memory to I/O, 8 bits, single-address-mode */
73 #define DMA_MODE_WRITE_SINGLE 9
74 /* I/O to memory, 16 bits, single-address-mode */
75 #define DMA_MODE_READ_WORD_SINGLE 10
76 /* memory to I/O, 16 bits, single-address-mode */
77 #define DMA_MODE_WRITE_WORD_SINGLE 11
78 /* I/O to memory, 32 bits, single-address-mode */
79 #define DMA_MODE_READ_LONG_SINGLE 12
80 /* memory to I/O, 32 bits, single-address-mode */
81 #define DMA_MODE_WRITE_LONG_SINGLE 13
83 #else /* CONFIG_M5272 is defined */
85 /* Source static-address mode */
86 #define DMA_MODE_SRC_SA_BIT 0x01
87 /* Two bits to select between all four modes */
88 #define DMA_MODE_SSIZE_MASK 0x06
89 /* Offset to shift bits in */
90 #define DMA_MODE_SSIZE_OFF 0x01
91 /* Destination static-address mode */
92 #define DMA_MODE_DES_SA_BIT 0x10
93 /* Two bits to select between all four modes */
94 #define DMA_MODE_DSIZE_MASK 0x60
95 /* Offset to shift bits in */
96 #define DMA_MODE_DSIZE_OFF 0x05
97 /* Size modifiers */
98 #define DMA_MODE_SIZE_LONG 0x00
99 #define DMA_MODE_SIZE_BYTE 0x01
100 #define DMA_MODE_SIZE_WORD 0x02
101 #define DMA_MODE_SIZE_LINE 0x03
104 * Aliases to help speed quick ports; these may be suboptimal, however. They
105 * do not include the SINGLE mode modifiers since the MCF5272 does not have a
106 * mode where the device is in control of its addressing.
109 /* I/O to memory, 8 bits, mode */
110 #define DMA_MODE_READ ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
111 /* memory to I/O, 8 bits, mode */
112 #define DMA_MODE_WRITE ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
113 /* I/O to memory, 16 bits, mode */
114 #define DMA_MODE_READ_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
115 /* memory to I/O, 16 bits, mode */
116 #define DMA_MODE_WRITE_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
117 /* I/O to memory, 32 bits, mode */
118 #define DMA_MODE_READ_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
119 /* memory to I/O, 32 bits, mode */
120 #define DMA_MODE_WRITE_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
122 #endif /* !defined(CONFIG_M5272) */
124 #if !defined(CONFIG_M5272)
125 /* enable/disable a specific DMA channel */
126 static __inline__ void enable_dma(unsigned int dmanr)
128 volatile unsigned short *dmawp;
130 #ifdef DMA_DEBUG
131 printk("enable_dma(dmanr=%d)\n", dmanr);
132 #endif
134 dmawp = (unsigned short *) dma_base_addr[dmanr];
135 dmawp[MCFDMA_DCR] |= MCFDMA_DCR_EEXT;
138 static __inline__ void disable_dma(unsigned int dmanr)
140 volatile unsigned short *dmawp;
141 volatile unsigned char *dmapb;
143 #ifdef DMA_DEBUG
144 printk("disable_dma(dmanr=%d)\n", dmanr);
145 #endif
147 dmawp = (unsigned short *) dma_base_addr[dmanr];
148 dmapb = (unsigned char *) dma_base_addr[dmanr];
150 /* Turn off external requests, and stop any DMA in progress */
151 dmawp[MCFDMA_DCR] &= ~MCFDMA_DCR_EEXT;
152 dmapb[MCFDMA_DSR] = MCFDMA_DSR_DONE;
156 * Clear the 'DMA Pointer Flip Flop'.
157 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
158 * Use this once to initialize the FF to a known state.
159 * After that, keep track of it. :-)
160 * --- In order to do that, the DMA routines below should ---
161 * --- only be used while interrupts are disabled! ---
163 * This is a NOP for ColdFire. Provide a stub for compatibility.
165 static __inline__ void clear_dma_ff(unsigned int dmanr)
169 /* set mode (above) for a specific DMA channel */
170 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
173 volatile unsigned char *dmabp;
174 volatile unsigned short *dmawp;
176 #ifdef DMA_DEBUG
177 printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
178 #endif
180 dmabp = (unsigned char *) dma_base_addr[dmanr];
181 dmawp = (unsigned short *) dma_base_addr[dmanr];
183 // Clear config errors
184 dmabp[MCFDMA_DSR] = MCFDMA_DSR_DONE;
186 // Set command register
187 dmawp[MCFDMA_DCR] =
188 MCFDMA_DCR_INT | // Enable completion irq
189 MCFDMA_DCR_CS | // Force one xfer per request
190 MCFDMA_DCR_AA | // Enable auto alignment
191 // single-address-mode
192 ((mode & DMA_MODE_SINGLE_BIT) ? MCFDMA_DCR_SAA : 0) |
193 // sets s_rw (-> r/w) high if Memory to I/0
194 ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_S_RW : 0) |
195 // Memory to I/O or I/O to Memory
196 ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_SINC : MCFDMA_DCR_DINC) |
197 // 32 bit, 16 bit or 8 bit transfers
198 ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_SSIZE_WORD :
199 ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_SSIZE_LONG :
200 MCFDMA_DCR_SSIZE_BYTE)) |
201 ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_DSIZE_WORD :
202 ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_DSIZE_LONG :
203 MCFDMA_DCR_DSIZE_BYTE));
205 #ifdef DEBUG_DMA
206 printk("%s(%d): dmanr=%d DSR[%x]=%x DCR[%x]=%x\n", __FILE__, __LINE__,
207 dmanr, (int) &dmabp[MCFDMA_DSR], dmabp[MCFDMA_DSR],
208 (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR]);
209 #endif
212 /* Set transfer address for specific DMA channel */
213 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
215 volatile unsigned short *dmawp;
216 volatile unsigned int *dmalp;
218 #ifdef DMA_DEBUG
219 printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
220 #endif
222 dmawp = (unsigned short *) dma_base_addr[dmanr];
223 dmalp = (unsigned int *) dma_base_addr[dmanr];
225 // Determine which address registers are used for memory/device accesses
226 if (dmawp[MCFDMA_DCR] & MCFDMA_DCR_SINC) {
227 // Source incrementing, must be memory
228 dmalp[MCFDMA_SAR] = a;
229 // Set dest address, must be device
230 dmalp[MCFDMA_DAR] = dma_device_address[dmanr];
231 } else {
232 // Destination incrementing, must be memory
233 dmalp[MCFDMA_DAR] = a;
234 // Set source address, must be device
235 dmalp[MCFDMA_SAR] = dma_device_address[dmanr];
238 #ifdef DEBUG_DMA
239 printk("%s(%d): dmanr=%d DCR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
240 __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR],
241 (int) &dmalp[MCFDMA_SAR], dmalp[MCFDMA_SAR],
242 (int) &dmalp[MCFDMA_DAR], dmalp[MCFDMA_DAR]);
243 #endif
247 * Specific for Coldfire - sets device address.
248 * Should be called after the mode set call, and before set DMA address.
250 static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
252 #ifdef DMA_DEBUG
253 printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
254 #endif
256 dma_device_address[dmanr] = a;
260 * NOTE 2: "count" represents _bytes_.
262 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
264 volatile unsigned short *dmawp;
266 #ifdef DMA_DEBUG
267 printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
268 #endif
270 dmawp = (unsigned short *) dma_base_addr[dmanr];
271 dmawp[MCFDMA_BCR] = (unsigned short)count;
275 * Get DMA residue count. After a DMA transfer, this
276 * should return zero. Reading this while a DMA transfer is
277 * still in progress will return unpredictable results.
278 * Otherwise, it returns the number of _bytes_ left to transfer.
280 static __inline__ int get_dma_residue(unsigned int dmanr)
282 volatile unsigned short *dmawp;
283 unsigned short count;
285 #ifdef DMA_DEBUG
286 printk("get_dma_residue(dmanr=%d)\n", dmanr);
287 #endif
289 dmawp = (unsigned short *) dma_base_addr[dmanr];
290 count = dmawp[MCFDMA_BCR];
291 return((int) count);
293 #else /* CONFIG_M5272 is defined */
296 * The MCF5272 DMA controller is very different than the controller defined above
297 * in terms of register mapping. For instance, with the exception of the 16-bit
298 * interrupt register (IRQ#85, for reference), all of the registers are 32-bit.
300 * The big difference, however, is the lack of device-requested DMA. All modes
301 * are dual address transfer, and there is no 'device' setup or direction bit.
302 * You can DMA between a device and memory, between memory and memory, or even between
303 * two devices directly, with any combination of incrementing and non-incrementing
304 * addresses you choose. This puts a crimp in distinguishing between the 'device
305 * address' set up by set_dma_device_addr.
307 * Therefore, there are two options. One is to use set_dma_addr and set_dma_device_addr,
308 * which will act exactly as above in -- it will look to see if the source is set to
309 * autoincrement, and if so it will make the source use the set_dma_addr value and the
310 * destination the set_dma_device_addr value. Otherwise the source will be set to the
311 * set_dma_device_addr value and the destination will get the set_dma_addr value.
313 * The other is to use the provided set_dma_src_addr and set_dma_dest_addr functions
314 * and make it explicit. Depending on what you're doing, one of these two should work
315 * for you, but don't mix them in the same transfer setup.
318 /* enable/disable a specific DMA channel */
319 static __inline__ void enable_dma(unsigned int dmanr)
321 volatile unsigned int *dmalp;
323 #ifdef DMA_DEBUG
324 printk("enable_dma(dmanr=%d)\n", dmanr);
325 #endif
327 dmalp = (unsigned int *) dma_base_addr[dmanr];
328 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_EN;
331 static __inline__ void disable_dma(unsigned int dmanr)
333 volatile unsigned int *dmalp;
335 #ifdef DMA_DEBUG
336 printk("disable_dma(dmanr=%d)\n", dmanr);
337 #endif
339 dmalp = (unsigned int *) dma_base_addr[dmanr];
341 /* Turn off external requests, and stop any DMA in progress */
342 dmalp[MCFDMA_DMR] &= ~MCFDMA_DMR_EN;
343 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
347 * Clear the 'DMA Pointer Flip Flop'.
348 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
349 * Use this once to initialize the FF to a known state.
350 * After that, keep track of it. :-)
351 * --- In order to do that, the DMA routines below should ---
352 * --- only be used while interrupts are disabled! ---
354 * This is a NOP for ColdFire. Provide a stub for compatibility.
356 static __inline__ void clear_dma_ff(unsigned int dmanr)
360 /* set mode (above) for a specific DMA channel */
361 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
364 volatile unsigned int *dmalp;
365 volatile unsigned short *dmawp;
367 #ifdef DMA_DEBUG
368 printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
369 #endif
370 dmalp = (unsigned int *) dma_base_addr[dmanr];
371 dmawp = (unsigned short *) dma_base_addr[dmanr];
373 // Clear config errors
374 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
376 // Set command register
377 dmalp[MCFDMA_DMR] =
378 MCFDMA_DMR_RQM_DUAL | // Mandatory Request Mode setting
379 MCFDMA_DMR_DSTT_SD | // Set up addressing types; set to supervisor-data.
380 MCFDMA_DMR_SRCT_SD | // Set up addressing types; set to supervisor-data.
381 // source static-address-mode
382 ((mode & DMA_MODE_SRC_SA_BIT) ? MCFDMA_DMR_SRCM_SA : MCFDMA_DMR_SRCM_IA) |
383 // dest static-address-mode
384 ((mode & DMA_MODE_DES_SA_BIT) ? MCFDMA_DMR_DSTM_SA : MCFDMA_DMR_DSTM_IA) |
385 // burst, 32 bit, 16 bit or 8 bit transfers are separately configurable on the MCF5272
386 (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_DSTS_OFF) |
387 (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_SRCS_OFF);
389 dmawp[MCFDMA_DIR] |= MCFDMA_DIR_ASCEN; /* Enable completion interrupts */
391 #ifdef DEBUG_DMA
392 printk("%s(%d): dmanr=%d DMR[%x]=%x DIR[%x]=%x\n", __FILE__, __LINE__,
393 dmanr, (int) &dmalp[MCFDMA_DMR], dmabp[MCFDMA_DMR],
394 (int) &dmawp[MCFDMA_DIR], dmawp[MCFDMA_DIR]);
395 #endif
398 /* Set transfer address for specific DMA channel */
399 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
401 volatile unsigned int *dmalp;
403 #ifdef DMA_DEBUG
404 printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
405 #endif
407 dmalp = (unsigned int *) dma_base_addr[dmanr];
409 // Determine which address registers are used for memory/device accesses
410 if (dmalp[MCFDMA_DMR] & MCFDMA_DMR_SRCM) {
411 // Source incrementing, must be memory
412 dmalp[MCFDMA_DSAR] = a;
413 // Set dest address, must be device
414 dmalp[MCFDMA_DDAR] = dma_device_address[dmanr];
415 } else {
416 // Destination incrementing, must be memory
417 dmalp[MCFDMA_DDAR] = a;
418 // Set source address, must be device
419 dmalp[MCFDMA_DSAR] = dma_device_address[dmanr];
422 #ifdef DEBUG_DMA
423 printk("%s(%d): dmanr=%d DMR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
424 __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DMR], dmawp[MCFDMA_DMR],
425 (int) &dmalp[MCFDMA_DSAR], dmalp[MCFDMA_DSAR],
426 (int) &dmalp[MCFDMA_DDAR], dmalp[MCFDMA_DDAR]);
427 #endif
431 * Specific for Coldfire - sets device address.
432 * Should be called after the mode set call, and before set DMA address.
434 static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
436 #ifdef DMA_DEBUG
437 printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
438 #endif
440 dma_device_address[dmanr] = a;
444 * NOTE 2: "count" represents _bytes_.
446 * NOTE 3: While a 32-bit register, "count" is only a maximum 24-bit value.
448 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
450 volatile unsigned int *dmalp;
452 #ifdef DMA_DEBUG
453 printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
454 #endif
456 dmalp = (unsigned int *) dma_base_addr[dmanr];
457 dmalp[MCFDMA_DBCR] = count;
461 * Get DMA residue count. After a DMA transfer, this
462 * should return zero. Reading this while a DMA transfer is
463 * still in progress will return unpredictable results.
464 * Otherwise, it returns the number of _bytes_ left to transfer.
466 static __inline__ int get_dma_residue(unsigned int dmanr)
468 volatile unsigned int *dmalp;
469 unsigned int count;
471 #ifdef DMA_DEBUG
472 printk("get_dma_residue(dmanr=%d)\n", dmanr);
473 #endif
475 dmalp = (unsigned int *) dma_base_addr[dmanr];
476 count = dmalp[MCFDMA_DBCR];
477 return(count);
480 #endif /* !defined(CONFIG_M5272) */
481 #endif /* CONFIG_COLDFIRE */
483 #define MAX_DMA_CHANNELS 8
485 /* Don't define MAX_DMA_ADDRESS; it's useless on the m68k/coldfire and any
486 occurrence should be flagged as an error. */
487 /* under 2.4 it is actually needed by the new bootmem allocator */
488 #define MAX_DMA_ADDRESS PAGE_OFFSET
490 /* These are in kernel/dma.c: */
491 extern int request_dma(unsigned int dmanr, const char *device_id); /* reserve a DMA channel */
492 extern void free_dma(unsigned int dmanr); /* release it again */
494 #endif /* _M68K_DMA_H */