2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The IP fragmentation functionality.
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
53 static int sysctl_ipfrag_max_dist __read_mostly
= 64;
57 struct inet_skb_parm h
;
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
63 /* Describe an entry in the "incomplete datagrams" queue. */
65 struct inet_frag_queue q
;
74 struct inet_peer
*peer
;
77 static struct inet_frags ip4_frags
;
79 int ip_frag_nqueues(struct net
*net
)
81 return net
->ipv4
.frags
.nqueues
;
84 int ip_frag_mem(struct net
*net
)
86 return atomic_read(&net
->ipv4
.frags
.mem
);
89 static int ip_frag_reasm(struct ipq
*qp
, struct sk_buff
*prev
,
90 struct net_device
*dev
);
92 struct ip4_create_arg
{
97 static unsigned int ipqhashfn(__be16 id
, __be32 saddr
, __be32 daddr
, u8 prot
)
99 return jhash_3words((__force u32
)id
<< 16 | prot
,
100 (__force u32
)saddr
, (__force u32
)daddr
,
101 ip4_frags
.rnd
) & (INETFRAGS_HASHSZ
- 1);
104 static unsigned int ip4_hashfn(struct inet_frag_queue
*q
)
108 ipq
= container_of(q
, struct ipq
, q
);
109 return ipqhashfn(ipq
->id
, ipq
->saddr
, ipq
->daddr
, ipq
->protocol
);
112 static int ip4_frag_match(struct inet_frag_queue
*q
, void *a
)
115 struct ip4_create_arg
*arg
= a
;
117 qp
= container_of(q
, struct ipq
, q
);
118 return (qp
->id
== arg
->iph
->id
&&
119 qp
->saddr
== arg
->iph
->saddr
&&
120 qp
->daddr
== arg
->iph
->daddr
&&
121 qp
->protocol
== arg
->iph
->protocol
&&
122 qp
->user
== arg
->user
);
125 /* Memory Tracking Functions. */
126 static __inline__
void frag_kfree_skb(struct netns_frags
*nf
,
127 struct sk_buff
*skb
, int *work
)
130 *work
-= skb
->truesize
;
131 atomic_sub(skb
->truesize
, &nf
->mem
);
135 static void ip4_frag_init(struct inet_frag_queue
*q
, void *a
)
137 struct ipq
*qp
= container_of(q
, struct ipq
, q
);
138 struct ip4_create_arg
*arg
= a
;
140 qp
->protocol
= arg
->iph
->protocol
;
141 qp
->id
= arg
->iph
->id
;
142 qp
->saddr
= arg
->iph
->saddr
;
143 qp
->daddr
= arg
->iph
->daddr
;
144 qp
->user
= arg
->user
;
145 qp
->peer
= sysctl_ipfrag_max_dist
?
146 inet_getpeer(arg
->iph
->saddr
, 1) : NULL
;
149 static __inline__
void ip4_frag_free(struct inet_frag_queue
*q
)
153 qp
= container_of(q
, struct ipq
, q
);
155 inet_putpeer(qp
->peer
);
159 /* Destruction primitives. */
161 static __inline__
void ipq_put(struct ipq
*ipq
)
163 inet_frag_put(&ipq
->q
, &ip4_frags
);
166 /* Kill ipq entry. It is not destroyed immediately,
167 * because caller (and someone more) holds reference count.
169 static void ipq_kill(struct ipq
*ipq
)
171 inet_frag_kill(&ipq
->q
, &ip4_frags
);
174 /* Memory limiting on fragments. Evictor trashes the oldest
175 * fragment queue until we are back under the threshold.
177 static void ip_evictor(struct net
*net
)
181 evicted
= inet_frag_evictor(&net
->ipv4
.frags
, &ip4_frags
);
183 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS
, evicted
);
187 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
189 static void ip_expire(unsigned long arg
)
193 qp
= container_of((struct inet_frag_queue
*) arg
, struct ipq
, q
);
195 spin_lock(&qp
->q
.lock
);
197 if (qp
->q
.last_in
& INET_FRAG_COMPLETE
)
202 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT
);
203 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS
);
205 if ((qp
->q
.last_in
& INET_FRAG_FIRST_IN
) && qp
->q
.fragments
!= NULL
) {
206 struct sk_buff
*head
= qp
->q
.fragments
;
209 net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
210 /* Send an ICMP "Fragment Reassembly Timeout" message. */
211 if ((head
->dev
= dev_get_by_index(net
, qp
->iif
)) != NULL
) {
212 icmp_send(head
, ICMP_TIME_EXCEEDED
, ICMP_EXC_FRAGTIME
, 0);
217 spin_unlock(&qp
->q
.lock
);
221 /* Find the correct entry in the "incomplete datagrams" queue for
222 * this IP datagram, and create new one, if nothing is found.
224 static inline struct ipq
*ip_find(struct net
*net
, struct iphdr
*iph
, u32 user
)
226 struct inet_frag_queue
*q
;
227 struct ip4_create_arg arg
;
232 hash
= ipqhashfn(iph
->id
, iph
->saddr
, iph
->daddr
, iph
->protocol
);
234 q
= inet_frag_find(&net
->ipv4
.frags
, &ip4_frags
, &arg
, hash
);
238 return container_of(q
, struct ipq
, q
);
241 LIMIT_NETDEBUG(KERN_ERR
"ip_frag_create: no memory left !\n");
245 /* Is the fragment too far ahead to be part of ipq? */
246 static inline int ip_frag_too_far(struct ipq
*qp
)
248 struct inet_peer
*peer
= qp
->peer
;
249 unsigned int max
= sysctl_ipfrag_max_dist
;
250 unsigned int start
, end
;
258 end
= atomic_inc_return(&peer
->rid
);
261 rc
= qp
->q
.fragments
&& (end
- start
) > max
;
264 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS
);
270 static int ip_frag_reinit(struct ipq
*qp
)
274 if (!mod_timer(&qp
->q
.timer
, jiffies
+ qp
->q
.net
->timeout
)) {
275 atomic_inc(&qp
->q
.refcnt
);
279 fp
= qp
->q
.fragments
;
281 struct sk_buff
*xp
= fp
->next
;
282 frag_kfree_skb(qp
->q
.net
, fp
, NULL
);
289 qp
->q
.fragments
= NULL
;
295 /* Add new segment to existing queue. */
296 static int ip_frag_queue(struct ipq
*qp
, struct sk_buff
*skb
)
298 struct sk_buff
*prev
, *next
;
299 struct net_device
*dev
;
304 if (qp
->q
.last_in
& INET_FRAG_COMPLETE
)
307 if (!(IPCB(skb
)->flags
& IPSKB_FRAG_COMPLETE
) &&
308 unlikely(ip_frag_too_far(qp
)) &&
309 unlikely(err
= ip_frag_reinit(qp
))) {
314 offset
= ntohs(ip_hdr(skb
)->frag_off
);
315 flags
= offset
& ~IP_OFFSET
;
317 offset
<<= 3; /* offset is in 8-byte chunks */
318 ihl
= ip_hdrlen(skb
);
320 /* Determine the position of this fragment. */
321 end
= offset
+ skb
->len
- ihl
;
324 /* Is this the final fragment? */
325 if ((flags
& IP_MF
) == 0) {
326 /* If we already have some bits beyond end
327 * or have different end, the segment is corrrupted.
329 if (end
< qp
->q
.len
||
330 ((qp
->q
.last_in
& INET_FRAG_LAST_IN
) && end
!= qp
->q
.len
))
332 qp
->q
.last_in
|= INET_FRAG_LAST_IN
;
337 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
)
338 skb
->ip_summed
= CHECKSUM_NONE
;
340 if (end
> qp
->q
.len
) {
341 /* Some bits beyond end -> corruption. */
342 if (qp
->q
.last_in
& INET_FRAG_LAST_IN
)
351 if (pskb_pull(skb
, ihl
) == NULL
)
354 err
= pskb_trim_rcsum(skb
, end
- offset
);
358 /* Find out which fragments are in front and at the back of us
359 * in the chain of fragments so far. We must know where to put
360 * this fragment, right?
363 for (next
= qp
->q
.fragments
; next
!= NULL
; next
= next
->next
) {
364 if (FRAG_CB(next
)->offset
>= offset
)
369 /* We found where to put this one. Check for overlap with
370 * preceding fragment, and, if needed, align things so that
371 * any overlaps are eliminated.
374 int i
= (FRAG_CB(prev
)->offset
+ prev
->len
) - offset
;
382 if (!pskb_pull(skb
, i
))
384 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
)
385 skb
->ip_summed
= CHECKSUM_NONE
;
391 while (next
&& FRAG_CB(next
)->offset
< end
) {
392 int i
= end
- FRAG_CB(next
)->offset
; /* overlap is 'i' bytes */
395 /* Eat head of the next overlapped fragment
396 * and leave the loop. The next ones cannot overlap.
398 if (!pskb_pull(next
, i
))
400 FRAG_CB(next
)->offset
+= i
;
402 if (next
->ip_summed
!= CHECKSUM_UNNECESSARY
)
403 next
->ip_summed
= CHECKSUM_NONE
;
406 struct sk_buff
*free_it
= next
;
408 /* Old fragment is completely overridden with
416 qp
->q
.fragments
= next
;
418 qp
->q
.meat
-= free_it
->len
;
419 frag_kfree_skb(qp
->q
.net
, free_it
, NULL
);
423 FRAG_CB(skb
)->offset
= offset
;
425 /* Insert this fragment in the chain of fragments. */
430 qp
->q
.fragments
= skb
;
434 qp
->iif
= dev
->ifindex
;
437 qp
->q
.stamp
= skb
->tstamp
;
438 qp
->q
.meat
+= skb
->len
;
439 atomic_add(skb
->truesize
, &qp
->q
.net
->mem
);
441 qp
->q
.last_in
|= INET_FRAG_FIRST_IN
;
443 if (qp
->q
.last_in
== (INET_FRAG_FIRST_IN
| INET_FRAG_LAST_IN
) &&
444 qp
->q
.meat
== qp
->q
.len
)
445 return ip_frag_reasm(qp
, prev
, dev
);
447 write_lock(&ip4_frags
.lock
);
448 list_move_tail(&qp
->q
.lru_list
, &qp
->q
.net
->lru_list
);
449 write_unlock(&ip4_frags
.lock
);
458 /* Build a new IP datagram from all its fragments. */
460 static int ip_frag_reasm(struct ipq
*qp
, struct sk_buff
*prev
,
461 struct net_device
*dev
)
464 struct sk_buff
*fp
, *head
= qp
->q
.fragments
;
471 /* Make the one we just received the head. */
474 fp
= skb_clone(head
, GFP_ATOMIC
);
478 fp
->next
= head
->next
;
481 skb_morph(head
, qp
->q
.fragments
);
482 head
->next
= qp
->q
.fragments
->next
;
484 kfree_skb(qp
->q
.fragments
);
485 qp
->q
.fragments
= head
;
488 BUG_TRAP(head
!= NULL
);
489 BUG_TRAP(FRAG_CB(head
)->offset
== 0);
491 /* Allocate a new buffer for the datagram. */
492 ihlen
= ip_hdrlen(head
);
493 len
= ihlen
+ qp
->q
.len
;
499 /* Head of list must not be cloned. */
500 if (skb_cloned(head
) && pskb_expand_head(head
, 0, 0, GFP_ATOMIC
))
503 /* If the first fragment is fragmented itself, we split
504 * it to two chunks: the first with data and paged part
505 * and the second, holding only fragments. */
506 if (skb_shinfo(head
)->frag_list
) {
507 struct sk_buff
*clone
;
510 if ((clone
= alloc_skb(0, GFP_ATOMIC
)) == NULL
)
512 clone
->next
= head
->next
;
514 skb_shinfo(clone
)->frag_list
= skb_shinfo(head
)->frag_list
;
515 skb_shinfo(head
)->frag_list
= NULL
;
516 for (i
=0; i
<skb_shinfo(head
)->nr_frags
; i
++)
517 plen
+= skb_shinfo(head
)->frags
[i
].size
;
518 clone
->len
= clone
->data_len
= head
->data_len
- plen
;
519 head
->data_len
-= clone
->len
;
520 head
->len
-= clone
->len
;
522 clone
->ip_summed
= head
->ip_summed
;
523 atomic_add(clone
->truesize
, &qp
->q
.net
->mem
);
526 skb_shinfo(head
)->frag_list
= head
->next
;
527 skb_push(head
, head
->data
- skb_network_header(head
));
528 atomic_sub(head
->truesize
, &qp
->q
.net
->mem
);
530 for (fp
=head
->next
; fp
; fp
= fp
->next
) {
531 head
->data_len
+= fp
->len
;
532 head
->len
+= fp
->len
;
533 if (head
->ip_summed
!= fp
->ip_summed
)
534 head
->ip_summed
= CHECKSUM_NONE
;
535 else if (head
->ip_summed
== CHECKSUM_COMPLETE
)
536 head
->csum
= csum_add(head
->csum
, fp
->csum
);
537 head
->truesize
+= fp
->truesize
;
538 atomic_sub(fp
->truesize
, &qp
->q
.net
->mem
);
543 head
->tstamp
= qp
->q
.stamp
;
547 iph
->tot_len
= htons(len
);
548 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS
);
549 qp
->q
.fragments
= NULL
;
553 LIMIT_NETDEBUG(KERN_ERR
"IP: queue_glue: no memory for gluing "
560 "Oversized IP packet from " NIPQUAD_FMT
".\n",
563 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS
);
567 /* Process an incoming IP datagram fragment. */
568 int ip_defrag(struct sk_buff
*skb
, u32 user
)
573 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS
);
575 net
= skb
->dev
? dev_net(skb
->dev
) : dev_net(skb
->dst
->dev
);
576 /* Start by cleaning up the memory. */
577 if (atomic_read(&net
->ipv4
.frags
.mem
) > net
->ipv4
.frags
.high_thresh
)
580 /* Lookup (or create) queue header */
581 if ((qp
= ip_find(net
, ip_hdr(skb
), user
)) != NULL
) {
584 spin_lock(&qp
->q
.lock
);
586 ret
= ip_frag_queue(qp
, skb
);
588 spin_unlock(&qp
->q
.lock
);
593 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS
);
601 static struct ctl_table ip4_frags_ctl_table
[] = {
603 .ctl_name
= NET_IPV4_IPFRAG_HIGH_THRESH
,
604 .procname
= "ipfrag_high_thresh",
605 .data
= &init_net
.ipv4
.frags
.high_thresh
,
606 .maxlen
= sizeof(int),
608 .proc_handler
= &proc_dointvec
611 .ctl_name
= NET_IPV4_IPFRAG_LOW_THRESH
,
612 .procname
= "ipfrag_low_thresh",
613 .data
= &init_net
.ipv4
.frags
.low_thresh
,
614 .maxlen
= sizeof(int),
616 .proc_handler
= &proc_dointvec
619 .ctl_name
= NET_IPV4_IPFRAG_TIME
,
620 .procname
= "ipfrag_time",
621 .data
= &init_net
.ipv4
.frags
.timeout
,
622 .maxlen
= sizeof(int),
624 .proc_handler
= &proc_dointvec_jiffies
,
625 .strategy
= &sysctl_jiffies
628 .ctl_name
= NET_IPV4_IPFRAG_SECRET_INTERVAL
,
629 .procname
= "ipfrag_secret_interval",
630 .data
= &ip4_frags
.secret_interval
,
631 .maxlen
= sizeof(int),
633 .proc_handler
= &proc_dointvec_jiffies
,
634 .strategy
= &sysctl_jiffies
637 .procname
= "ipfrag_max_dist",
638 .data
= &sysctl_ipfrag_max_dist
,
639 .maxlen
= sizeof(int),
641 .proc_handler
= &proc_dointvec_minmax
,
647 static int ip4_frags_ctl_register(struct net
*net
)
649 struct ctl_table
*table
;
650 struct ctl_table_header
*hdr
;
652 table
= ip4_frags_ctl_table
;
653 if (net
!= &init_net
) {
654 table
= kmemdup(table
, sizeof(ip4_frags_ctl_table
), GFP_KERNEL
);
658 table
[0].data
= &net
->ipv4
.frags
.high_thresh
;
659 table
[1].data
= &net
->ipv4
.frags
.low_thresh
;
660 table
[2].data
= &net
->ipv4
.frags
.timeout
;
661 table
[3].mode
&= ~0222;
662 table
[4].mode
&= ~0222;
665 hdr
= register_net_sysctl_table(net
, net_ipv4_ctl_path
, table
);
669 net
->ipv4
.frags_hdr
= hdr
;
673 if (net
!= &init_net
)
679 static void ip4_frags_ctl_unregister(struct net
*net
)
681 struct ctl_table
*table
;
683 table
= net
->ipv4
.frags_hdr
->ctl_table_arg
;
684 unregister_net_sysctl_table(net
->ipv4
.frags_hdr
);
688 static inline int ip4_frags_ctl_register(struct net
*net
)
693 static inline void ip4_frags_ctl_unregister(struct net
*net
)
698 static int ipv4_frags_init_net(struct net
*net
)
701 * Fragment cache limits. We will commit 256K at one time. Should we
702 * cross that limit we will prune down to 192K. This should cope with
703 * even the most extreme cases without allowing an attacker to
704 * measurably harm machine performance.
706 net
->ipv4
.frags
.high_thresh
= 256 * 1024;
707 net
->ipv4
.frags
.low_thresh
= 192 * 1024;
709 * Important NOTE! Fragment queue must be destroyed before MSL expires.
710 * RFC791 is wrong proposing to prolongate timer each fragment arrival
713 net
->ipv4
.frags
.timeout
= IP_FRAG_TIME
;
715 inet_frags_init_net(&net
->ipv4
.frags
);
717 return ip4_frags_ctl_register(net
);
720 static void ipv4_frags_exit_net(struct net
*net
)
722 ip4_frags_ctl_unregister(net
);
723 inet_frags_exit_net(&net
->ipv4
.frags
, &ip4_frags
);
726 static struct pernet_operations ip4_frags_ops
= {
727 .init
= ipv4_frags_init_net
,
728 .exit
= ipv4_frags_exit_net
,
731 void __init
ipfrag_init(void)
733 register_pernet_subsys(&ip4_frags_ops
);
734 ip4_frags
.hashfn
= ip4_hashfn
;
735 ip4_frags
.constructor
= ip4_frag_init
;
736 ip4_frags
.destructor
= ip4_frag_free
;
737 ip4_frags
.skb_free
= NULL
;
738 ip4_frags
.qsize
= sizeof(struct ipq
);
739 ip4_frags
.match
= ip4_frag_match
;
740 ip4_frags
.frag_expire
= ip_expire
;
741 ip4_frags
.secret_interval
= 10 * 60 * HZ
;
742 inet_frags_init(&ip4_frags
);
745 EXPORT_SYMBOL(ip_defrag
);