Linux 2.6.26-rc5
[linux-2.6/openmoko-kernel/knife-kernel.git] / net / xfrm / xfrm_algo.c
blob23a2cc04b8cdb5f4a9f215643bfc1df130800322
1 /*
2 * xfrm algorithm interface
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
26 * Algorithms supported by IPsec. These entries contain properties which
27 * are used in key negotiation and xfrm processing, and are used to verify
28 * that instantiated crypto transforms have correct parameters for IPsec
29 * purposes.
31 static struct xfrm_algo_desc aead_list[] = {
33 .name = "rfc4106(gcm(aes))",
35 .uinfo = {
36 .aead = {
37 .icv_truncbits = 64,
41 .desc = {
42 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43 .sadb_alg_ivlen = 8,
44 .sadb_alg_minbits = 128,
45 .sadb_alg_maxbits = 256
49 .name = "rfc4106(gcm(aes))",
51 .uinfo = {
52 .aead = {
53 .icv_truncbits = 96,
57 .desc = {
58 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59 .sadb_alg_ivlen = 8,
60 .sadb_alg_minbits = 128,
61 .sadb_alg_maxbits = 256
65 .name = "rfc4106(gcm(aes))",
67 .uinfo = {
68 .aead = {
69 .icv_truncbits = 128,
73 .desc = {
74 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75 .sadb_alg_ivlen = 8,
76 .sadb_alg_minbits = 128,
77 .sadb_alg_maxbits = 256
81 .name = "rfc4309(ccm(aes))",
83 .uinfo = {
84 .aead = {
85 .icv_truncbits = 64,
89 .desc = {
90 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91 .sadb_alg_ivlen = 8,
92 .sadb_alg_minbits = 128,
93 .sadb_alg_maxbits = 256
97 .name = "rfc4309(ccm(aes))",
99 .uinfo = {
100 .aead = {
101 .icv_truncbits = 96,
105 .desc = {
106 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107 .sadb_alg_ivlen = 8,
108 .sadb_alg_minbits = 128,
109 .sadb_alg_maxbits = 256
113 .name = "rfc4309(ccm(aes))",
115 .uinfo = {
116 .aead = {
117 .icv_truncbits = 128,
121 .desc = {
122 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123 .sadb_alg_ivlen = 8,
124 .sadb_alg_minbits = 128,
125 .sadb_alg_maxbits = 256
130 static struct xfrm_algo_desc aalg_list[] = {
132 .name = "digest_null",
134 .uinfo = {
135 .auth = {
136 .icv_truncbits = 0,
137 .icv_fullbits = 0,
141 .desc = {
142 .sadb_alg_id = SADB_X_AALG_NULL,
143 .sadb_alg_ivlen = 0,
144 .sadb_alg_minbits = 0,
145 .sadb_alg_maxbits = 0
149 .name = "hmac(md5)",
150 .compat = "md5",
152 .uinfo = {
153 .auth = {
154 .icv_truncbits = 96,
155 .icv_fullbits = 128,
159 .desc = {
160 .sadb_alg_id = SADB_AALG_MD5HMAC,
161 .sadb_alg_ivlen = 0,
162 .sadb_alg_minbits = 128,
163 .sadb_alg_maxbits = 128
167 .name = "hmac(sha1)",
168 .compat = "sha1",
170 .uinfo = {
171 .auth = {
172 .icv_truncbits = 96,
173 .icv_fullbits = 160,
177 .desc = {
178 .sadb_alg_id = SADB_AALG_SHA1HMAC,
179 .sadb_alg_ivlen = 0,
180 .sadb_alg_minbits = 160,
181 .sadb_alg_maxbits = 160
185 .name = "hmac(sha256)",
186 .compat = "sha256",
188 .uinfo = {
189 .auth = {
190 .icv_truncbits = 96,
191 .icv_fullbits = 256,
195 .desc = {
196 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
197 .sadb_alg_ivlen = 0,
198 .sadb_alg_minbits = 256,
199 .sadb_alg_maxbits = 256
203 .name = "hmac(rmd160)",
204 .compat = "rmd160",
206 .uinfo = {
207 .auth = {
208 .icv_truncbits = 96,
209 .icv_fullbits = 160,
213 .desc = {
214 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
215 .sadb_alg_ivlen = 0,
216 .sadb_alg_minbits = 160,
217 .sadb_alg_maxbits = 160
221 .name = "xcbc(aes)",
223 .uinfo = {
224 .auth = {
225 .icv_truncbits = 96,
226 .icv_fullbits = 128,
230 .desc = {
231 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
232 .sadb_alg_ivlen = 0,
233 .sadb_alg_minbits = 128,
234 .sadb_alg_maxbits = 128
239 static struct xfrm_algo_desc ealg_list[] = {
241 .name = "ecb(cipher_null)",
242 .compat = "cipher_null",
244 .uinfo = {
245 .encr = {
246 .blockbits = 8,
247 .defkeybits = 0,
251 .desc = {
252 .sadb_alg_id = SADB_EALG_NULL,
253 .sadb_alg_ivlen = 0,
254 .sadb_alg_minbits = 0,
255 .sadb_alg_maxbits = 0
259 .name = "cbc(des)",
260 .compat = "des",
262 .uinfo = {
263 .encr = {
264 .blockbits = 64,
265 .defkeybits = 64,
269 .desc = {
270 .sadb_alg_id = SADB_EALG_DESCBC,
271 .sadb_alg_ivlen = 8,
272 .sadb_alg_minbits = 64,
273 .sadb_alg_maxbits = 64
277 .name = "cbc(des3_ede)",
278 .compat = "des3_ede",
280 .uinfo = {
281 .encr = {
282 .blockbits = 64,
283 .defkeybits = 192,
287 .desc = {
288 .sadb_alg_id = SADB_EALG_3DESCBC,
289 .sadb_alg_ivlen = 8,
290 .sadb_alg_minbits = 192,
291 .sadb_alg_maxbits = 192
295 .name = "cbc(cast128)",
296 .compat = "cast128",
298 .uinfo = {
299 .encr = {
300 .blockbits = 64,
301 .defkeybits = 128,
305 .desc = {
306 .sadb_alg_id = SADB_X_EALG_CASTCBC,
307 .sadb_alg_ivlen = 8,
308 .sadb_alg_minbits = 40,
309 .sadb_alg_maxbits = 128
313 .name = "cbc(blowfish)",
314 .compat = "blowfish",
316 .uinfo = {
317 .encr = {
318 .blockbits = 64,
319 .defkeybits = 128,
323 .desc = {
324 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
325 .sadb_alg_ivlen = 8,
326 .sadb_alg_minbits = 40,
327 .sadb_alg_maxbits = 448
331 .name = "cbc(aes)",
332 .compat = "aes",
334 .uinfo = {
335 .encr = {
336 .blockbits = 128,
337 .defkeybits = 128,
341 .desc = {
342 .sadb_alg_id = SADB_X_EALG_AESCBC,
343 .sadb_alg_ivlen = 8,
344 .sadb_alg_minbits = 128,
345 .sadb_alg_maxbits = 256
349 .name = "cbc(serpent)",
350 .compat = "serpent",
352 .uinfo = {
353 .encr = {
354 .blockbits = 128,
355 .defkeybits = 128,
359 .desc = {
360 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
361 .sadb_alg_ivlen = 8,
362 .sadb_alg_minbits = 128,
363 .sadb_alg_maxbits = 256,
367 .name = "cbc(camellia)",
369 .uinfo = {
370 .encr = {
371 .blockbits = 128,
372 .defkeybits = 128,
376 .desc = {
377 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
378 .sadb_alg_ivlen = 8,
379 .sadb_alg_minbits = 128,
380 .sadb_alg_maxbits = 256
384 .name = "cbc(twofish)",
385 .compat = "twofish",
387 .uinfo = {
388 .encr = {
389 .blockbits = 128,
390 .defkeybits = 128,
394 .desc = {
395 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
396 .sadb_alg_ivlen = 8,
397 .sadb_alg_minbits = 128,
398 .sadb_alg_maxbits = 256
402 .name = "rfc3686(ctr(aes))",
404 .uinfo = {
405 .encr = {
406 .blockbits = 128,
407 .defkeybits = 160, /* 128-bit key + 32-bit nonce */
411 .desc = {
412 .sadb_alg_id = SADB_X_EALG_AESCTR,
413 .sadb_alg_ivlen = 8,
414 .sadb_alg_minbits = 128,
415 .sadb_alg_maxbits = 256
420 static struct xfrm_algo_desc calg_list[] = {
422 .name = "deflate",
423 .uinfo = {
424 .comp = {
425 .threshold = 90,
428 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
431 .name = "lzs",
432 .uinfo = {
433 .comp = {
434 .threshold = 90,
437 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
440 .name = "lzjh",
441 .uinfo = {
442 .comp = {
443 .threshold = 50,
446 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
450 static inline int aead_entries(void)
452 return ARRAY_SIZE(aead_list);
455 static inline int aalg_entries(void)
457 return ARRAY_SIZE(aalg_list);
460 static inline int ealg_entries(void)
462 return ARRAY_SIZE(ealg_list);
465 static inline int calg_entries(void)
467 return ARRAY_SIZE(calg_list);
470 struct xfrm_algo_list {
471 struct xfrm_algo_desc *algs;
472 int entries;
473 u32 type;
474 u32 mask;
477 static const struct xfrm_algo_list xfrm_aead_list = {
478 .algs = aead_list,
479 .entries = ARRAY_SIZE(aead_list),
480 .type = CRYPTO_ALG_TYPE_AEAD,
481 .mask = CRYPTO_ALG_TYPE_MASK,
484 static const struct xfrm_algo_list xfrm_aalg_list = {
485 .algs = aalg_list,
486 .entries = ARRAY_SIZE(aalg_list),
487 .type = CRYPTO_ALG_TYPE_HASH,
488 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
491 static const struct xfrm_algo_list xfrm_ealg_list = {
492 .algs = ealg_list,
493 .entries = ARRAY_SIZE(ealg_list),
494 .type = CRYPTO_ALG_TYPE_BLKCIPHER,
495 .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
498 static const struct xfrm_algo_list xfrm_calg_list = {
499 .algs = calg_list,
500 .entries = ARRAY_SIZE(calg_list),
501 .type = CRYPTO_ALG_TYPE_COMPRESS,
502 .mask = CRYPTO_ALG_TYPE_MASK,
505 static struct xfrm_algo_desc *xfrm_find_algo(
506 const struct xfrm_algo_list *algo_list,
507 int match(const struct xfrm_algo_desc *entry, const void *data),
508 const void *data, int probe)
510 struct xfrm_algo_desc *list = algo_list->algs;
511 int i, status;
513 for (i = 0; i < algo_list->entries; i++) {
514 if (!match(list + i, data))
515 continue;
517 if (list[i].available)
518 return &list[i];
520 if (!probe)
521 break;
523 status = crypto_has_alg(list[i].name, algo_list->type,
524 algo_list->mask);
525 if (!status)
526 break;
528 list[i].available = status;
529 return &list[i];
531 return NULL;
534 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
535 const void *data)
537 return entry->desc.sadb_alg_id == (unsigned long)data;
540 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
542 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
543 (void *)(unsigned long)alg_id, 1);
545 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
547 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
549 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
550 (void *)(unsigned long)alg_id, 1);
552 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
554 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
556 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
557 (void *)(unsigned long)alg_id, 1);
559 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
561 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
562 const void *data)
564 const char *name = data;
566 return name && (!strcmp(name, entry->name) ||
567 (entry->compat && !strcmp(name, entry->compat)));
570 struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
572 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
573 probe);
575 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
577 struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
579 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
580 probe);
582 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
584 struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
586 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
587 probe);
589 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
591 struct xfrm_aead_name {
592 const char *name;
593 int icvbits;
596 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
597 const void *data)
599 const struct xfrm_aead_name *aead = data;
600 const char *name = aead->name;
602 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
603 !strcmp(name, entry->name);
606 struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
608 struct xfrm_aead_name data = {
609 .name = name,
610 .icvbits = icv_len,
613 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
614 probe);
616 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
618 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
620 if (idx >= aalg_entries())
621 return NULL;
623 return &aalg_list[idx];
625 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
627 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
629 if (idx >= ealg_entries())
630 return NULL;
632 return &ealg_list[idx];
634 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
637 * Probe for the availability of crypto algorithms, and set the available
638 * flag for any algorithms found on the system. This is typically called by
639 * pfkey during userspace SA add, update or register.
641 void xfrm_probe_algs(void)
643 int i, status;
645 BUG_ON(in_softirq());
647 for (i = 0; i < aalg_entries(); i++) {
648 status = crypto_has_hash(aalg_list[i].name, 0,
649 CRYPTO_ALG_ASYNC);
650 if (aalg_list[i].available != status)
651 aalg_list[i].available = status;
654 for (i = 0; i < ealg_entries(); i++) {
655 status = crypto_has_blkcipher(ealg_list[i].name, 0,
656 CRYPTO_ALG_ASYNC);
657 if (ealg_list[i].available != status)
658 ealg_list[i].available = status;
661 for (i = 0; i < calg_entries(); i++) {
662 status = crypto_has_comp(calg_list[i].name, 0,
663 CRYPTO_ALG_ASYNC);
664 if (calg_list[i].available != status)
665 calg_list[i].available = status;
668 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
670 int xfrm_count_auth_supported(void)
672 int i, n;
674 for (i = 0, n = 0; i < aalg_entries(); i++)
675 if (aalg_list[i].available)
676 n++;
677 return n;
679 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
681 int xfrm_count_enc_supported(void)
683 int i, n;
685 for (i = 0, n = 0; i < ealg_entries(); i++)
686 if (ealg_list[i].available)
687 n++;
688 return n;
690 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
692 /* Move to common area: it is shared with AH. */
694 int skb_icv_walk(const struct sk_buff *skb, struct hash_desc *desc,
695 int offset, int len, icv_update_fn_t icv_update)
697 int start = skb_headlen(skb);
698 int i, copy = start - offset;
699 int err;
700 struct scatterlist sg;
702 /* Checksum header. */
703 if (copy > 0) {
704 if (copy > len)
705 copy = len;
707 sg_init_one(&sg, skb->data + offset, copy);
709 err = icv_update(desc, &sg, copy);
710 if (unlikely(err))
711 return err;
713 if ((len -= copy) == 0)
714 return 0;
715 offset += copy;
718 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
719 int end;
721 BUG_TRAP(start <= offset + len);
723 end = start + skb_shinfo(skb)->frags[i].size;
724 if ((copy = end - offset) > 0) {
725 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
727 if (copy > len)
728 copy = len;
730 sg_init_table(&sg, 1);
731 sg_set_page(&sg, frag->page, copy,
732 frag->page_offset + offset-start);
734 err = icv_update(desc, &sg, copy);
735 if (unlikely(err))
736 return err;
738 if (!(len -= copy))
739 return 0;
740 offset += copy;
742 start = end;
745 if (skb_shinfo(skb)->frag_list) {
746 struct sk_buff *list = skb_shinfo(skb)->frag_list;
748 for (; list; list = list->next) {
749 int end;
751 BUG_TRAP(start <= offset + len);
753 end = start + list->len;
754 if ((copy = end - offset) > 0) {
755 if (copy > len)
756 copy = len;
757 err = skb_icv_walk(list, desc, offset-start,
758 copy, icv_update);
759 if (unlikely(err))
760 return err;
761 if ((len -= copy) == 0)
762 return 0;
763 offset += copy;
765 start = end;
768 BUG_ON(len);
769 return 0;
771 EXPORT_SYMBOL_GPL(skb_icv_walk);
773 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
775 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
777 if (tail != skb) {
778 skb->data_len += len;
779 skb->len += len;
781 return skb_put(tail, len);
783 EXPORT_SYMBOL_GPL(pskb_put);
784 #endif