proper prototype for signals_init()
[linux-2.6/openmoko-kernel/knife-kernel.git] / mm / shmem.c
blob0f246c44a5744ec5aac0930c7896923e96bcb215
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC 0x01021994
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN VM_READ
71 #define SHMEM_TRUNCATE VM_WRITE
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT 64
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 SGP_READ, /* don't exceed i_size, don't allocate page */
82 SGP_CACHE, /* don't exceed i_size, may allocate page */
83 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
84 SGP_WRITE, /* may exceed i_size, may allocate page */
87 static int shmem_getpage(struct inode *inode, unsigned long idx,
88 struct page **pagep, enum sgp_type sgp, int *type);
90 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
93 * The above definition of ENTRIES_PER_PAGE, and the use of
94 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95 * might be reconsidered if it ever diverges from PAGE_SIZE.
97 * Mobility flags are masked out as swap vectors cannot move
99 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
100 PAGE_CACHE_SHIFT-PAGE_SHIFT);
103 static inline void shmem_dir_free(struct page *page)
105 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
108 static struct page **shmem_dir_map(struct page *page)
110 return (struct page **)kmap_atomic(page, KM_USER0);
113 static inline void shmem_dir_unmap(struct page **dir)
115 kunmap_atomic(dir, KM_USER0);
118 static swp_entry_t *shmem_swp_map(struct page *page)
120 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
123 static inline void shmem_swp_balance_unmap(void)
126 * When passing a pointer to an i_direct entry, to code which
127 * also handles indirect entries and so will shmem_swp_unmap,
128 * we must arrange for the preempt count to remain in balance.
129 * What kmap_atomic of a lowmem page does depends on config
130 * and architecture, so pretend to kmap_atomic some lowmem page.
132 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
135 static inline void shmem_swp_unmap(swp_entry_t *entry)
137 kunmap_atomic(entry, KM_USER1);
140 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
142 return sb->s_fs_info;
146 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
147 * for shared memory and for shared anonymous (/dev/zero) mappings
148 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
149 * consistent with the pre-accounting of private mappings ...
151 static inline int shmem_acct_size(unsigned long flags, loff_t size)
153 return (flags & VM_ACCOUNT)?
154 security_vm_enough_memory(VM_ACCT(size)): 0;
157 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
159 if (flags & VM_ACCOUNT)
160 vm_unacct_memory(VM_ACCT(size));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow huge sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags)
171 return (flags & VM_ACCOUNT)?
172 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
175 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
177 if (!(flags & VM_ACCOUNT))
178 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 static const struct super_operations shmem_ops;
182 static const struct address_space_operations shmem_aops;
183 static const struct file_operations shmem_file_operations;
184 static const struct inode_operations shmem_inode_operations;
185 static const struct inode_operations shmem_dir_inode_operations;
186 static const struct inode_operations shmem_special_inode_operations;
187 static struct vm_operations_struct shmem_vm_ops;
189 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
190 .ra_pages = 0, /* No readahead */
191 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
192 .unplug_io_fn = default_unplug_io_fn,
195 static LIST_HEAD(shmem_swaplist);
196 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 static void shmem_free_blocks(struct inode *inode, long pages)
200 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
201 if (sbinfo->max_blocks) {
202 spin_lock(&sbinfo->stat_lock);
203 sbinfo->free_blocks += pages;
204 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
205 spin_unlock(&sbinfo->stat_lock);
209 static int shmem_reserve_inode(struct super_block *sb)
211 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
212 if (sbinfo->max_inodes) {
213 spin_lock(&sbinfo->stat_lock);
214 if (!sbinfo->free_inodes) {
215 spin_unlock(&sbinfo->stat_lock);
216 return -ENOSPC;
218 sbinfo->free_inodes--;
219 spin_unlock(&sbinfo->stat_lock);
221 return 0;
224 static void shmem_free_inode(struct super_block *sb)
226 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
227 if (sbinfo->max_inodes) {
228 spin_lock(&sbinfo->stat_lock);
229 sbinfo->free_inodes++;
230 spin_unlock(&sbinfo->stat_lock);
235 * shmem_recalc_inode - recalculate the size of an inode
237 * @inode: inode to recalc
239 * We have to calculate the free blocks since the mm can drop
240 * undirtied hole pages behind our back.
242 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
243 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
245 * It has to be called with the spinlock held.
247 static void shmem_recalc_inode(struct inode *inode)
249 struct shmem_inode_info *info = SHMEM_I(inode);
250 long freed;
252 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
253 if (freed > 0) {
254 info->alloced -= freed;
255 shmem_unacct_blocks(info->flags, freed);
256 shmem_free_blocks(inode, freed);
261 * shmem_swp_entry - find the swap vector position in the info structure
263 * @info: info structure for the inode
264 * @index: index of the page to find
265 * @page: optional page to add to the structure. Has to be preset to
266 * all zeros
268 * If there is no space allocated yet it will return NULL when
269 * page is NULL, else it will use the page for the needed block,
270 * setting it to NULL on return to indicate that it has been used.
272 * The swap vector is organized the following way:
274 * There are SHMEM_NR_DIRECT entries directly stored in the
275 * shmem_inode_info structure. So small files do not need an addional
276 * allocation.
278 * For pages with index > SHMEM_NR_DIRECT there is the pointer
279 * i_indirect which points to a page which holds in the first half
280 * doubly indirect blocks, in the second half triple indirect blocks:
282 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
283 * following layout (for SHMEM_NR_DIRECT == 16):
285 * i_indirect -> dir --> 16-19
286 * | +-> 20-23
288 * +-->dir2 --> 24-27
289 * | +-> 28-31
290 * | +-> 32-35
291 * | +-> 36-39
293 * +-->dir3 --> 40-43
294 * +-> 44-47
295 * +-> 48-51
296 * +-> 52-55
298 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
300 unsigned long offset;
301 struct page **dir;
302 struct page *subdir;
304 if (index < SHMEM_NR_DIRECT) {
305 shmem_swp_balance_unmap();
306 return info->i_direct+index;
308 if (!info->i_indirect) {
309 if (page) {
310 info->i_indirect = *page;
311 *page = NULL;
313 return NULL; /* need another page */
316 index -= SHMEM_NR_DIRECT;
317 offset = index % ENTRIES_PER_PAGE;
318 index /= ENTRIES_PER_PAGE;
319 dir = shmem_dir_map(info->i_indirect);
321 if (index >= ENTRIES_PER_PAGE/2) {
322 index -= ENTRIES_PER_PAGE/2;
323 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
324 index %= ENTRIES_PER_PAGE;
325 subdir = *dir;
326 if (!subdir) {
327 if (page) {
328 *dir = *page;
329 *page = NULL;
331 shmem_dir_unmap(dir);
332 return NULL; /* need another page */
334 shmem_dir_unmap(dir);
335 dir = shmem_dir_map(subdir);
338 dir += index;
339 subdir = *dir;
340 if (!subdir) {
341 if (!page || !(subdir = *page)) {
342 shmem_dir_unmap(dir);
343 return NULL; /* need a page */
345 *dir = subdir;
346 *page = NULL;
348 shmem_dir_unmap(dir);
349 return shmem_swp_map(subdir) + offset;
352 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
354 long incdec = value? 1: -1;
356 entry->val = value;
357 info->swapped += incdec;
358 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
359 struct page *page = kmap_atomic_to_page(entry);
360 set_page_private(page, page_private(page) + incdec);
365 * shmem_swp_alloc - get the position of the swap entry for the page.
366 * If it does not exist allocate the entry.
368 * @info: info structure for the inode
369 * @index: index of the page to find
370 * @sgp: check and recheck i_size? skip allocation?
372 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
374 struct inode *inode = &info->vfs_inode;
375 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
376 struct page *page = NULL;
377 swp_entry_t *entry;
379 if (sgp != SGP_WRITE &&
380 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
381 return ERR_PTR(-EINVAL);
383 while (!(entry = shmem_swp_entry(info, index, &page))) {
384 if (sgp == SGP_READ)
385 return shmem_swp_map(ZERO_PAGE(0));
387 * Test free_blocks against 1 not 0, since we have 1 data
388 * page (and perhaps indirect index pages) yet to allocate:
389 * a waste to allocate index if we cannot allocate data.
391 if (sbinfo->max_blocks) {
392 spin_lock(&sbinfo->stat_lock);
393 if (sbinfo->free_blocks <= 1) {
394 spin_unlock(&sbinfo->stat_lock);
395 return ERR_PTR(-ENOSPC);
397 sbinfo->free_blocks--;
398 inode->i_blocks += BLOCKS_PER_PAGE;
399 spin_unlock(&sbinfo->stat_lock);
402 spin_unlock(&info->lock);
403 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
404 if (page)
405 set_page_private(page, 0);
406 spin_lock(&info->lock);
408 if (!page) {
409 shmem_free_blocks(inode, 1);
410 return ERR_PTR(-ENOMEM);
412 if (sgp != SGP_WRITE &&
413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
414 entry = ERR_PTR(-EINVAL);
415 break;
417 if (info->next_index <= index)
418 info->next_index = index + 1;
420 if (page) {
421 /* another task gave its page, or truncated the file */
422 shmem_free_blocks(inode, 1);
423 shmem_dir_free(page);
425 if (info->next_index <= index && !IS_ERR(entry))
426 info->next_index = index + 1;
427 return entry;
431 * shmem_free_swp - free some swap entries in a directory
433 * @dir: pointer to the directory
434 * @edir: pointer after last entry of the directory
435 * @punch_lock: pointer to spinlock when needed for the holepunch case
437 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
438 spinlock_t *punch_lock)
440 spinlock_t *punch_unlock = NULL;
441 swp_entry_t *ptr;
442 int freed = 0;
444 for (ptr = dir; ptr < edir; ptr++) {
445 if (ptr->val) {
446 if (unlikely(punch_lock)) {
447 punch_unlock = punch_lock;
448 punch_lock = NULL;
449 spin_lock(punch_unlock);
450 if (!ptr->val)
451 continue;
453 free_swap_and_cache(*ptr);
454 *ptr = (swp_entry_t){0};
455 freed++;
458 if (punch_unlock)
459 spin_unlock(punch_unlock);
460 return freed;
463 static int shmem_map_and_free_swp(struct page *subdir, int offset,
464 int limit, struct page ***dir, spinlock_t *punch_lock)
466 swp_entry_t *ptr;
467 int freed = 0;
469 ptr = shmem_swp_map(subdir);
470 for (; offset < limit; offset += LATENCY_LIMIT) {
471 int size = limit - offset;
472 if (size > LATENCY_LIMIT)
473 size = LATENCY_LIMIT;
474 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
475 punch_lock);
476 if (need_resched()) {
477 shmem_swp_unmap(ptr);
478 if (*dir) {
479 shmem_dir_unmap(*dir);
480 *dir = NULL;
482 cond_resched();
483 ptr = shmem_swp_map(subdir);
486 shmem_swp_unmap(ptr);
487 return freed;
490 static void shmem_free_pages(struct list_head *next)
492 struct page *page;
493 int freed = 0;
495 do {
496 page = container_of(next, struct page, lru);
497 next = next->next;
498 shmem_dir_free(page);
499 freed++;
500 if (freed >= LATENCY_LIMIT) {
501 cond_resched();
502 freed = 0;
504 } while (next);
507 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
509 struct shmem_inode_info *info = SHMEM_I(inode);
510 unsigned long idx;
511 unsigned long size;
512 unsigned long limit;
513 unsigned long stage;
514 unsigned long diroff;
515 struct page **dir;
516 struct page *topdir;
517 struct page *middir;
518 struct page *subdir;
519 swp_entry_t *ptr;
520 LIST_HEAD(pages_to_free);
521 long nr_pages_to_free = 0;
522 long nr_swaps_freed = 0;
523 int offset;
524 int freed;
525 int punch_hole;
526 spinlock_t *needs_lock;
527 spinlock_t *punch_lock;
528 unsigned long upper_limit;
530 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
531 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
532 if (idx >= info->next_index)
533 return;
535 spin_lock(&info->lock);
536 info->flags |= SHMEM_TRUNCATE;
537 if (likely(end == (loff_t) -1)) {
538 limit = info->next_index;
539 upper_limit = SHMEM_MAX_INDEX;
540 info->next_index = idx;
541 needs_lock = NULL;
542 punch_hole = 0;
543 } else {
544 if (end + 1 >= inode->i_size) { /* we may free a little more */
545 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
546 PAGE_CACHE_SHIFT;
547 upper_limit = SHMEM_MAX_INDEX;
548 } else {
549 limit = (end + 1) >> PAGE_CACHE_SHIFT;
550 upper_limit = limit;
552 needs_lock = &info->lock;
553 punch_hole = 1;
556 topdir = info->i_indirect;
557 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
558 info->i_indirect = NULL;
559 nr_pages_to_free++;
560 list_add(&topdir->lru, &pages_to_free);
562 spin_unlock(&info->lock);
564 if (info->swapped && idx < SHMEM_NR_DIRECT) {
565 ptr = info->i_direct;
566 size = limit;
567 if (size > SHMEM_NR_DIRECT)
568 size = SHMEM_NR_DIRECT;
569 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
573 * If there are no indirect blocks or we are punching a hole
574 * below indirect blocks, nothing to be done.
576 if (!topdir || limit <= SHMEM_NR_DIRECT)
577 goto done2;
580 * The truncation case has already dropped info->lock, and we're safe
581 * because i_size and next_index have already been lowered, preventing
582 * access beyond. But in the punch_hole case, we still need to take
583 * the lock when updating the swap directory, because there might be
584 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
585 * shmem_writepage. However, whenever we find we can remove a whole
586 * directory page (not at the misaligned start or end of the range),
587 * we first NULLify its pointer in the level above, and then have no
588 * need to take the lock when updating its contents: needs_lock and
589 * punch_lock (either pointing to info->lock or NULL) manage this.
592 upper_limit -= SHMEM_NR_DIRECT;
593 limit -= SHMEM_NR_DIRECT;
594 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
595 offset = idx % ENTRIES_PER_PAGE;
596 idx -= offset;
598 dir = shmem_dir_map(topdir);
599 stage = ENTRIES_PER_PAGEPAGE/2;
600 if (idx < ENTRIES_PER_PAGEPAGE/2) {
601 middir = topdir;
602 diroff = idx/ENTRIES_PER_PAGE;
603 } else {
604 dir += ENTRIES_PER_PAGE/2;
605 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
606 while (stage <= idx)
607 stage += ENTRIES_PER_PAGEPAGE;
608 middir = *dir;
609 if (*dir) {
610 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
611 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
612 if (!diroff && !offset && upper_limit >= stage) {
613 if (needs_lock) {
614 spin_lock(needs_lock);
615 *dir = NULL;
616 spin_unlock(needs_lock);
617 needs_lock = NULL;
618 } else
619 *dir = NULL;
620 nr_pages_to_free++;
621 list_add(&middir->lru, &pages_to_free);
623 shmem_dir_unmap(dir);
624 dir = shmem_dir_map(middir);
625 } else {
626 diroff = 0;
627 offset = 0;
628 idx = stage;
632 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
633 if (unlikely(idx == stage)) {
634 shmem_dir_unmap(dir);
635 dir = shmem_dir_map(topdir) +
636 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
637 while (!*dir) {
638 dir++;
639 idx += ENTRIES_PER_PAGEPAGE;
640 if (idx >= limit)
641 goto done1;
643 stage = idx + ENTRIES_PER_PAGEPAGE;
644 middir = *dir;
645 if (punch_hole)
646 needs_lock = &info->lock;
647 if (upper_limit >= stage) {
648 if (needs_lock) {
649 spin_lock(needs_lock);
650 *dir = NULL;
651 spin_unlock(needs_lock);
652 needs_lock = NULL;
653 } else
654 *dir = NULL;
655 nr_pages_to_free++;
656 list_add(&middir->lru, &pages_to_free);
658 shmem_dir_unmap(dir);
659 cond_resched();
660 dir = shmem_dir_map(middir);
661 diroff = 0;
663 punch_lock = needs_lock;
664 subdir = dir[diroff];
665 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
666 if (needs_lock) {
667 spin_lock(needs_lock);
668 dir[diroff] = NULL;
669 spin_unlock(needs_lock);
670 punch_lock = NULL;
671 } else
672 dir[diroff] = NULL;
673 nr_pages_to_free++;
674 list_add(&subdir->lru, &pages_to_free);
676 if (subdir && page_private(subdir) /* has swap entries */) {
677 size = limit - idx;
678 if (size > ENTRIES_PER_PAGE)
679 size = ENTRIES_PER_PAGE;
680 freed = shmem_map_and_free_swp(subdir,
681 offset, size, &dir, punch_lock);
682 if (!dir)
683 dir = shmem_dir_map(middir);
684 nr_swaps_freed += freed;
685 if (offset || punch_lock) {
686 spin_lock(&info->lock);
687 set_page_private(subdir,
688 page_private(subdir) - freed);
689 spin_unlock(&info->lock);
690 } else
691 BUG_ON(page_private(subdir) != freed);
693 offset = 0;
695 done1:
696 shmem_dir_unmap(dir);
697 done2:
698 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
700 * Call truncate_inode_pages again: racing shmem_unuse_inode
701 * may have swizzled a page in from swap since vmtruncate or
702 * generic_delete_inode did it, before we lowered next_index.
703 * Also, though shmem_getpage checks i_size before adding to
704 * cache, no recheck after: so fix the narrow window there too.
706 * Recalling truncate_inode_pages_range and unmap_mapping_range
707 * every time for punch_hole (which never got a chance to clear
708 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
709 * yet hardly ever necessary: try to optimize them out later.
711 truncate_inode_pages_range(inode->i_mapping, start, end);
712 if (punch_hole)
713 unmap_mapping_range(inode->i_mapping, start,
714 end - start, 1);
717 spin_lock(&info->lock);
718 info->flags &= ~SHMEM_TRUNCATE;
719 info->swapped -= nr_swaps_freed;
720 if (nr_pages_to_free)
721 shmem_free_blocks(inode, nr_pages_to_free);
722 shmem_recalc_inode(inode);
723 spin_unlock(&info->lock);
726 * Empty swap vector directory pages to be freed?
728 if (!list_empty(&pages_to_free)) {
729 pages_to_free.prev->next = NULL;
730 shmem_free_pages(pages_to_free.next);
734 static void shmem_truncate(struct inode *inode)
736 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
739 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
741 struct inode *inode = dentry->d_inode;
742 struct page *page = NULL;
743 int error;
745 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
746 if (attr->ia_size < inode->i_size) {
748 * If truncating down to a partial page, then
749 * if that page is already allocated, hold it
750 * in memory until the truncation is over, so
751 * truncate_partial_page cannnot miss it were
752 * it assigned to swap.
754 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
755 (void) shmem_getpage(inode,
756 attr->ia_size>>PAGE_CACHE_SHIFT,
757 &page, SGP_READ, NULL);
758 if (page)
759 unlock_page(page);
762 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
763 * detect if any pages might have been added to cache
764 * after truncate_inode_pages. But we needn't bother
765 * if it's being fully truncated to zero-length: the
766 * nrpages check is efficient enough in that case.
768 if (attr->ia_size) {
769 struct shmem_inode_info *info = SHMEM_I(inode);
770 spin_lock(&info->lock);
771 info->flags &= ~SHMEM_PAGEIN;
772 spin_unlock(&info->lock);
777 error = inode_change_ok(inode, attr);
778 if (!error)
779 error = inode_setattr(inode, attr);
780 #ifdef CONFIG_TMPFS_POSIX_ACL
781 if (!error && (attr->ia_valid & ATTR_MODE))
782 error = generic_acl_chmod(inode, &shmem_acl_ops);
783 #endif
784 if (page)
785 page_cache_release(page);
786 return error;
789 static void shmem_delete_inode(struct inode *inode)
791 struct shmem_inode_info *info = SHMEM_I(inode);
793 if (inode->i_op->truncate == shmem_truncate) {
794 truncate_inode_pages(inode->i_mapping, 0);
795 shmem_unacct_size(info->flags, inode->i_size);
796 inode->i_size = 0;
797 shmem_truncate(inode);
798 if (!list_empty(&info->swaplist)) {
799 mutex_lock(&shmem_swaplist_mutex);
800 list_del_init(&info->swaplist);
801 mutex_unlock(&shmem_swaplist_mutex);
804 BUG_ON(inode->i_blocks);
805 shmem_free_inode(inode->i_sb);
806 clear_inode(inode);
809 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
811 swp_entry_t *ptr;
813 for (ptr = dir; ptr < edir; ptr++) {
814 if (ptr->val == entry.val)
815 return ptr - dir;
817 return -1;
820 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
822 struct inode *inode;
823 unsigned long idx;
824 unsigned long size;
825 unsigned long limit;
826 unsigned long stage;
827 struct page **dir;
828 struct page *subdir;
829 swp_entry_t *ptr;
830 int offset;
831 int error;
833 idx = 0;
834 ptr = info->i_direct;
835 spin_lock(&info->lock);
836 if (!info->swapped) {
837 list_del_init(&info->swaplist);
838 goto lost2;
840 limit = info->next_index;
841 size = limit;
842 if (size > SHMEM_NR_DIRECT)
843 size = SHMEM_NR_DIRECT;
844 offset = shmem_find_swp(entry, ptr, ptr+size);
845 if (offset >= 0)
846 goto found;
847 if (!info->i_indirect)
848 goto lost2;
850 dir = shmem_dir_map(info->i_indirect);
851 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
853 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
854 if (unlikely(idx == stage)) {
855 shmem_dir_unmap(dir-1);
856 if (cond_resched_lock(&info->lock)) {
857 /* check it has not been truncated */
858 if (limit > info->next_index) {
859 limit = info->next_index;
860 if (idx >= limit)
861 goto lost2;
864 dir = shmem_dir_map(info->i_indirect) +
865 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
866 while (!*dir) {
867 dir++;
868 idx += ENTRIES_PER_PAGEPAGE;
869 if (idx >= limit)
870 goto lost1;
872 stage = idx + ENTRIES_PER_PAGEPAGE;
873 subdir = *dir;
874 shmem_dir_unmap(dir);
875 dir = shmem_dir_map(subdir);
877 subdir = *dir;
878 if (subdir && page_private(subdir)) {
879 ptr = shmem_swp_map(subdir);
880 size = limit - idx;
881 if (size > ENTRIES_PER_PAGE)
882 size = ENTRIES_PER_PAGE;
883 offset = shmem_find_swp(entry, ptr, ptr+size);
884 shmem_swp_unmap(ptr);
885 if (offset >= 0) {
886 shmem_dir_unmap(dir);
887 goto found;
891 lost1:
892 shmem_dir_unmap(dir-1);
893 lost2:
894 spin_unlock(&info->lock);
895 return 0;
896 found:
897 idx += offset;
898 inode = igrab(&info->vfs_inode);
899 spin_unlock(&info->lock);
902 * Move _head_ to start search for next from here.
903 * But be careful: shmem_delete_inode checks list_empty without taking
904 * mutex, and there's an instant in list_move_tail when info->swaplist
905 * would appear empty, if it were the only one on shmem_swaplist. We
906 * could avoid doing it if inode NULL; or use this minor optimization.
908 if (shmem_swaplist.next != &info->swaplist)
909 list_move_tail(&shmem_swaplist, &info->swaplist);
910 mutex_unlock(&shmem_swaplist_mutex);
912 error = 1;
913 if (!inode)
914 goto out;
915 error = radix_tree_preload(GFP_KERNEL);
916 if (error)
917 goto out;
918 error = 1;
920 spin_lock(&info->lock);
921 ptr = shmem_swp_entry(info, idx, NULL);
922 if (ptr && ptr->val == entry.val)
923 error = add_to_page_cache(page, inode->i_mapping,
924 idx, GFP_NOWAIT);
925 if (error == -EEXIST) {
926 struct page *filepage = find_get_page(inode->i_mapping, idx);
927 error = 1;
928 if (filepage) {
930 * There might be a more uptodate page coming down
931 * from a stacked writepage: forget our swappage if so.
933 if (PageUptodate(filepage))
934 error = 0;
935 page_cache_release(filepage);
938 if (!error) {
939 delete_from_swap_cache(page);
940 set_page_dirty(page);
941 info->flags |= SHMEM_PAGEIN;
942 shmem_swp_set(info, ptr, 0);
943 swap_free(entry);
944 error = 1; /* not an error, but entry was found */
946 if (ptr)
947 shmem_swp_unmap(ptr);
948 spin_unlock(&info->lock);
949 radix_tree_preload_end();
950 out:
951 unlock_page(page);
952 page_cache_release(page);
953 iput(inode); /* allows for NULL */
954 return error;
958 * shmem_unuse() search for an eventually swapped out shmem page.
960 int shmem_unuse(swp_entry_t entry, struct page *page)
962 struct list_head *p, *next;
963 struct shmem_inode_info *info;
964 int found = 0;
966 mutex_lock(&shmem_swaplist_mutex);
967 list_for_each_safe(p, next, &shmem_swaplist) {
968 info = list_entry(p, struct shmem_inode_info, swaplist);
969 found = shmem_unuse_inode(info, entry, page);
970 cond_resched();
971 if (found)
972 goto out;
974 mutex_unlock(&shmem_swaplist_mutex);
975 out: return found; /* 0 or 1 or -ENOMEM */
979 * Move the page from the page cache to the swap cache.
981 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
983 struct shmem_inode_info *info;
984 swp_entry_t *entry, swap;
985 struct address_space *mapping;
986 unsigned long index;
987 struct inode *inode;
989 BUG_ON(!PageLocked(page));
990 mapping = page->mapping;
991 index = page->index;
992 inode = mapping->host;
993 info = SHMEM_I(inode);
994 if (info->flags & VM_LOCKED)
995 goto redirty;
996 if (!total_swap_pages)
997 goto redirty;
1000 * shmem_backing_dev_info's capabilities prevent regular writeback or
1001 * sync from ever calling shmem_writepage; but a stacking filesystem
1002 * may use the ->writepage of its underlying filesystem, in which case
1003 * tmpfs should write out to swap only in response to memory pressure,
1004 * and not for pdflush or sync. However, in those cases, we do still
1005 * want to check if there's a redundant swappage to be discarded.
1007 if (wbc->for_reclaim)
1008 swap = get_swap_page();
1009 else
1010 swap.val = 0;
1012 spin_lock(&info->lock);
1013 if (index >= info->next_index) {
1014 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1015 goto unlock;
1017 entry = shmem_swp_entry(info, index, NULL);
1018 if (entry->val) {
1020 * The more uptodate page coming down from a stacked
1021 * writepage should replace our old swappage.
1023 free_swap_and_cache(*entry);
1024 shmem_swp_set(info, entry, 0);
1026 shmem_recalc_inode(inode);
1028 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1029 remove_from_page_cache(page);
1030 shmem_swp_set(info, entry, swap.val);
1031 shmem_swp_unmap(entry);
1032 if (list_empty(&info->swaplist))
1033 inode = igrab(inode);
1034 else
1035 inode = NULL;
1036 spin_unlock(&info->lock);
1037 swap_duplicate(swap);
1038 BUG_ON(page_mapped(page));
1039 page_cache_release(page); /* pagecache ref */
1040 set_page_dirty(page);
1041 unlock_page(page);
1042 if (inode) {
1043 mutex_lock(&shmem_swaplist_mutex);
1044 /* move instead of add in case we're racing */
1045 list_move_tail(&info->swaplist, &shmem_swaplist);
1046 mutex_unlock(&shmem_swaplist_mutex);
1047 iput(inode);
1049 return 0;
1052 shmem_swp_unmap(entry);
1053 unlock:
1054 spin_unlock(&info->lock);
1055 swap_free(swap);
1056 redirty:
1057 set_page_dirty(page);
1058 if (wbc->for_reclaim)
1059 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1060 unlock_page(page);
1061 return 0;
1064 #ifdef CONFIG_NUMA
1065 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1067 char *nodelist = strchr(value, ':');
1068 int err = 1;
1070 if (nodelist) {
1071 /* NUL-terminate policy string */
1072 *nodelist++ = '\0';
1073 if (nodelist_parse(nodelist, *policy_nodes))
1074 goto out;
1075 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1076 goto out;
1078 if (!strcmp(value, "default")) {
1079 *policy = MPOL_DEFAULT;
1080 /* Don't allow a nodelist */
1081 if (!nodelist)
1082 err = 0;
1083 } else if (!strcmp(value, "prefer")) {
1084 *policy = MPOL_PREFERRED;
1085 /* Insist on a nodelist of one node only */
1086 if (nodelist) {
1087 char *rest = nodelist;
1088 while (isdigit(*rest))
1089 rest++;
1090 if (!*rest)
1091 err = 0;
1093 } else if (!strcmp(value, "bind")) {
1094 *policy = MPOL_BIND;
1095 /* Insist on a nodelist */
1096 if (nodelist)
1097 err = 0;
1098 } else if (!strcmp(value, "interleave")) {
1099 *policy = MPOL_INTERLEAVE;
1101 * Default to online nodes with memory if no nodelist
1103 if (!nodelist)
1104 *policy_nodes = node_states[N_HIGH_MEMORY];
1105 err = 0;
1107 out:
1108 /* Restore string for error message */
1109 if (nodelist)
1110 *--nodelist = ':';
1111 return err;
1114 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1115 struct shmem_inode_info *info, unsigned long idx)
1117 struct vm_area_struct pvma;
1118 struct page *page;
1120 /* Create a pseudo vma that just contains the policy */
1121 pvma.vm_start = 0;
1122 pvma.vm_pgoff = idx;
1123 pvma.vm_ops = NULL;
1124 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1125 page = swapin_readahead(entry, gfp, &pvma, 0);
1126 mpol_free(pvma.vm_policy);
1127 return page;
1130 static struct page *shmem_alloc_page(gfp_t gfp,
1131 struct shmem_inode_info *info, unsigned long idx)
1133 struct vm_area_struct pvma;
1134 struct page *page;
1136 /* Create a pseudo vma that just contains the policy */
1137 pvma.vm_start = 0;
1138 pvma.vm_pgoff = idx;
1139 pvma.vm_ops = NULL;
1140 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1141 page = alloc_page_vma(gfp, &pvma, 0);
1142 mpol_free(pvma.vm_policy);
1143 return page;
1145 #else
1146 static inline int shmem_parse_mpol(char *value, int *policy,
1147 nodemask_t *policy_nodes)
1149 return 1;
1152 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1153 struct shmem_inode_info *info, unsigned long idx)
1155 return swapin_readahead(entry, gfp, NULL, 0);
1158 static inline struct page *shmem_alloc_page(gfp_t gfp,
1159 struct shmem_inode_info *info, unsigned long idx)
1161 return alloc_page(gfp);
1163 #endif
1166 * shmem_getpage - either get the page from swap or allocate a new one
1168 * If we allocate a new one we do not mark it dirty. That's up to the
1169 * vm. If we swap it in we mark it dirty since we also free the swap
1170 * entry since a page cannot live in both the swap and page cache
1172 static int shmem_getpage(struct inode *inode, unsigned long idx,
1173 struct page **pagep, enum sgp_type sgp, int *type)
1175 struct address_space *mapping = inode->i_mapping;
1176 struct shmem_inode_info *info = SHMEM_I(inode);
1177 struct shmem_sb_info *sbinfo;
1178 struct page *filepage = *pagep;
1179 struct page *swappage;
1180 swp_entry_t *entry;
1181 swp_entry_t swap;
1182 gfp_t gfp;
1183 int error;
1185 if (idx >= SHMEM_MAX_INDEX)
1186 return -EFBIG;
1188 if (type)
1189 *type = 0;
1192 * Normally, filepage is NULL on entry, and either found
1193 * uptodate immediately, or allocated and zeroed, or read
1194 * in under swappage, which is then assigned to filepage.
1195 * But shmem_readpage (required for splice) passes in a locked
1196 * filepage, which may be found not uptodate by other callers
1197 * too, and may need to be copied from the swappage read in.
1199 repeat:
1200 if (!filepage)
1201 filepage = find_lock_page(mapping, idx);
1202 if (filepage && PageUptodate(filepage))
1203 goto done;
1204 error = 0;
1205 gfp = mapping_gfp_mask(mapping);
1206 if (!filepage) {
1208 * Try to preload while we can wait, to not make a habit of
1209 * draining atomic reserves; but don't latch on to this cpu.
1211 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1212 if (error)
1213 goto failed;
1214 radix_tree_preload_end();
1217 spin_lock(&info->lock);
1218 shmem_recalc_inode(inode);
1219 entry = shmem_swp_alloc(info, idx, sgp);
1220 if (IS_ERR(entry)) {
1221 spin_unlock(&info->lock);
1222 error = PTR_ERR(entry);
1223 goto failed;
1225 swap = *entry;
1227 if (swap.val) {
1228 /* Look it up and read it in.. */
1229 swappage = lookup_swap_cache(swap);
1230 if (!swappage) {
1231 shmem_swp_unmap(entry);
1232 /* here we actually do the io */
1233 if (type && !(*type & VM_FAULT_MAJOR)) {
1234 __count_vm_event(PGMAJFAULT);
1235 *type |= VM_FAULT_MAJOR;
1237 spin_unlock(&info->lock);
1238 swappage = shmem_swapin(swap, gfp, info, idx);
1239 if (!swappage) {
1240 spin_lock(&info->lock);
1241 entry = shmem_swp_alloc(info, idx, sgp);
1242 if (IS_ERR(entry))
1243 error = PTR_ERR(entry);
1244 else {
1245 if (entry->val == swap.val)
1246 error = -ENOMEM;
1247 shmem_swp_unmap(entry);
1249 spin_unlock(&info->lock);
1250 if (error)
1251 goto failed;
1252 goto repeat;
1254 wait_on_page_locked(swappage);
1255 page_cache_release(swappage);
1256 goto repeat;
1259 /* We have to do this with page locked to prevent races */
1260 if (TestSetPageLocked(swappage)) {
1261 shmem_swp_unmap(entry);
1262 spin_unlock(&info->lock);
1263 wait_on_page_locked(swappage);
1264 page_cache_release(swappage);
1265 goto repeat;
1267 if (PageWriteback(swappage)) {
1268 shmem_swp_unmap(entry);
1269 spin_unlock(&info->lock);
1270 wait_on_page_writeback(swappage);
1271 unlock_page(swappage);
1272 page_cache_release(swappage);
1273 goto repeat;
1275 if (!PageUptodate(swappage)) {
1276 shmem_swp_unmap(entry);
1277 spin_unlock(&info->lock);
1278 unlock_page(swappage);
1279 page_cache_release(swappage);
1280 error = -EIO;
1281 goto failed;
1284 if (filepage) {
1285 shmem_swp_set(info, entry, 0);
1286 shmem_swp_unmap(entry);
1287 delete_from_swap_cache(swappage);
1288 spin_unlock(&info->lock);
1289 copy_highpage(filepage, swappage);
1290 unlock_page(swappage);
1291 page_cache_release(swappage);
1292 flush_dcache_page(filepage);
1293 SetPageUptodate(filepage);
1294 set_page_dirty(filepage);
1295 swap_free(swap);
1296 } else if (!(error = add_to_page_cache(
1297 swappage, mapping, idx, GFP_NOWAIT))) {
1298 info->flags |= SHMEM_PAGEIN;
1299 shmem_swp_set(info, entry, 0);
1300 shmem_swp_unmap(entry);
1301 delete_from_swap_cache(swappage);
1302 spin_unlock(&info->lock);
1303 filepage = swappage;
1304 set_page_dirty(filepage);
1305 swap_free(swap);
1306 } else {
1307 shmem_swp_unmap(entry);
1308 spin_unlock(&info->lock);
1309 unlock_page(swappage);
1310 page_cache_release(swappage);
1311 goto repeat;
1313 } else if (sgp == SGP_READ && !filepage) {
1314 shmem_swp_unmap(entry);
1315 filepage = find_get_page(mapping, idx);
1316 if (filepage &&
1317 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1318 spin_unlock(&info->lock);
1319 wait_on_page_locked(filepage);
1320 page_cache_release(filepage);
1321 filepage = NULL;
1322 goto repeat;
1324 spin_unlock(&info->lock);
1325 } else {
1326 shmem_swp_unmap(entry);
1327 sbinfo = SHMEM_SB(inode->i_sb);
1328 if (sbinfo->max_blocks) {
1329 spin_lock(&sbinfo->stat_lock);
1330 if (sbinfo->free_blocks == 0 ||
1331 shmem_acct_block(info->flags)) {
1332 spin_unlock(&sbinfo->stat_lock);
1333 spin_unlock(&info->lock);
1334 error = -ENOSPC;
1335 goto failed;
1337 sbinfo->free_blocks--;
1338 inode->i_blocks += BLOCKS_PER_PAGE;
1339 spin_unlock(&sbinfo->stat_lock);
1340 } else if (shmem_acct_block(info->flags)) {
1341 spin_unlock(&info->lock);
1342 error = -ENOSPC;
1343 goto failed;
1346 if (!filepage) {
1347 spin_unlock(&info->lock);
1348 filepage = shmem_alloc_page(gfp, info, idx);
1349 if (!filepage) {
1350 shmem_unacct_blocks(info->flags, 1);
1351 shmem_free_blocks(inode, 1);
1352 error = -ENOMEM;
1353 goto failed;
1356 spin_lock(&info->lock);
1357 entry = shmem_swp_alloc(info, idx, sgp);
1358 if (IS_ERR(entry))
1359 error = PTR_ERR(entry);
1360 else {
1361 swap = *entry;
1362 shmem_swp_unmap(entry);
1364 if (error || swap.val || 0 != add_to_page_cache_lru(
1365 filepage, mapping, idx, GFP_NOWAIT)) {
1366 spin_unlock(&info->lock);
1367 page_cache_release(filepage);
1368 shmem_unacct_blocks(info->flags, 1);
1369 shmem_free_blocks(inode, 1);
1370 filepage = NULL;
1371 if (error)
1372 goto failed;
1373 goto repeat;
1375 info->flags |= SHMEM_PAGEIN;
1378 info->alloced++;
1379 spin_unlock(&info->lock);
1380 clear_highpage(filepage);
1381 flush_dcache_page(filepage);
1382 SetPageUptodate(filepage);
1383 if (sgp == SGP_DIRTY)
1384 set_page_dirty(filepage);
1386 done:
1387 *pagep = filepage;
1388 return 0;
1390 failed:
1391 if (*pagep != filepage) {
1392 unlock_page(filepage);
1393 page_cache_release(filepage);
1395 return error;
1398 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1400 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1401 int error;
1402 int ret;
1404 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1405 return VM_FAULT_SIGBUS;
1407 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1408 if (error)
1409 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1411 mark_page_accessed(vmf->page);
1412 return ret | VM_FAULT_LOCKED;
1415 #ifdef CONFIG_NUMA
1416 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1418 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1419 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1422 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1423 unsigned long addr)
1425 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1426 unsigned long idx;
1428 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1429 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1431 #endif
1433 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1435 struct inode *inode = file->f_path.dentry->d_inode;
1436 struct shmem_inode_info *info = SHMEM_I(inode);
1437 int retval = -ENOMEM;
1439 spin_lock(&info->lock);
1440 if (lock && !(info->flags & VM_LOCKED)) {
1441 if (!user_shm_lock(inode->i_size, user))
1442 goto out_nomem;
1443 info->flags |= VM_LOCKED;
1445 if (!lock && (info->flags & VM_LOCKED) && user) {
1446 user_shm_unlock(inode->i_size, user);
1447 info->flags &= ~VM_LOCKED;
1449 retval = 0;
1450 out_nomem:
1451 spin_unlock(&info->lock);
1452 return retval;
1455 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1457 file_accessed(file);
1458 vma->vm_ops = &shmem_vm_ops;
1459 vma->vm_flags |= VM_CAN_NONLINEAR;
1460 return 0;
1463 static struct inode *
1464 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1466 struct inode *inode;
1467 struct shmem_inode_info *info;
1468 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1470 if (shmem_reserve_inode(sb))
1471 return NULL;
1473 inode = new_inode(sb);
1474 if (inode) {
1475 inode->i_mode = mode;
1476 inode->i_uid = current->fsuid;
1477 inode->i_gid = current->fsgid;
1478 inode->i_blocks = 0;
1479 inode->i_mapping->a_ops = &shmem_aops;
1480 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1481 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1482 inode->i_generation = get_seconds();
1483 info = SHMEM_I(inode);
1484 memset(info, 0, (char *)inode - (char *)info);
1485 spin_lock_init(&info->lock);
1486 INIT_LIST_HEAD(&info->swaplist);
1488 switch (mode & S_IFMT) {
1489 default:
1490 inode->i_op = &shmem_special_inode_operations;
1491 init_special_inode(inode, mode, dev);
1492 break;
1493 case S_IFREG:
1494 inode->i_op = &shmem_inode_operations;
1495 inode->i_fop = &shmem_file_operations;
1496 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1497 &sbinfo->policy_nodes);
1498 break;
1499 case S_IFDIR:
1500 inc_nlink(inode);
1501 /* Some things misbehave if size == 0 on a directory */
1502 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1503 inode->i_op = &shmem_dir_inode_operations;
1504 inode->i_fop = &simple_dir_operations;
1505 break;
1506 case S_IFLNK:
1508 * Must not load anything in the rbtree,
1509 * mpol_free_shared_policy will not be called.
1511 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1512 NULL);
1513 break;
1515 } else
1516 shmem_free_inode(sb);
1517 return inode;
1520 #ifdef CONFIG_TMPFS
1521 static const struct inode_operations shmem_symlink_inode_operations;
1522 static const struct inode_operations shmem_symlink_inline_operations;
1525 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1526 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1527 * below the loop driver, in the generic fashion that many filesystems support.
1529 static int shmem_readpage(struct file *file, struct page *page)
1531 struct inode *inode = page->mapping->host;
1532 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1533 unlock_page(page);
1534 return error;
1537 static int
1538 shmem_write_begin(struct file *file, struct address_space *mapping,
1539 loff_t pos, unsigned len, unsigned flags,
1540 struct page **pagep, void **fsdata)
1542 struct inode *inode = mapping->host;
1543 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1544 *pagep = NULL;
1545 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1548 static int
1549 shmem_write_end(struct file *file, struct address_space *mapping,
1550 loff_t pos, unsigned len, unsigned copied,
1551 struct page *page, void *fsdata)
1553 struct inode *inode = mapping->host;
1555 if (pos + copied > inode->i_size)
1556 i_size_write(inode, pos + copied);
1558 unlock_page(page);
1559 set_page_dirty(page);
1560 page_cache_release(page);
1562 return copied;
1565 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1567 struct inode *inode = filp->f_path.dentry->d_inode;
1568 struct address_space *mapping = inode->i_mapping;
1569 unsigned long index, offset;
1570 enum sgp_type sgp = SGP_READ;
1573 * Might this read be for a stacking filesystem? Then when reading
1574 * holes of a sparse file, we actually need to allocate those pages,
1575 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1577 if (segment_eq(get_fs(), KERNEL_DS))
1578 sgp = SGP_DIRTY;
1580 index = *ppos >> PAGE_CACHE_SHIFT;
1581 offset = *ppos & ~PAGE_CACHE_MASK;
1583 for (;;) {
1584 struct page *page = NULL;
1585 unsigned long end_index, nr, ret;
1586 loff_t i_size = i_size_read(inode);
1588 end_index = i_size >> PAGE_CACHE_SHIFT;
1589 if (index > end_index)
1590 break;
1591 if (index == end_index) {
1592 nr = i_size & ~PAGE_CACHE_MASK;
1593 if (nr <= offset)
1594 break;
1597 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1598 if (desc->error) {
1599 if (desc->error == -EINVAL)
1600 desc->error = 0;
1601 break;
1603 if (page)
1604 unlock_page(page);
1607 * We must evaluate after, since reads (unlike writes)
1608 * are called without i_mutex protection against truncate
1610 nr = PAGE_CACHE_SIZE;
1611 i_size = i_size_read(inode);
1612 end_index = i_size >> PAGE_CACHE_SHIFT;
1613 if (index == end_index) {
1614 nr = i_size & ~PAGE_CACHE_MASK;
1615 if (nr <= offset) {
1616 if (page)
1617 page_cache_release(page);
1618 break;
1621 nr -= offset;
1623 if (page) {
1625 * If users can be writing to this page using arbitrary
1626 * virtual addresses, take care about potential aliasing
1627 * before reading the page on the kernel side.
1629 if (mapping_writably_mapped(mapping))
1630 flush_dcache_page(page);
1632 * Mark the page accessed if we read the beginning.
1634 if (!offset)
1635 mark_page_accessed(page);
1636 } else {
1637 page = ZERO_PAGE(0);
1638 page_cache_get(page);
1642 * Ok, we have the page, and it's up-to-date, so
1643 * now we can copy it to user space...
1645 * The actor routine returns how many bytes were actually used..
1646 * NOTE! This may not be the same as how much of a user buffer
1647 * we filled up (we may be padding etc), so we can only update
1648 * "pos" here (the actor routine has to update the user buffer
1649 * pointers and the remaining count).
1651 ret = actor(desc, page, offset, nr);
1652 offset += ret;
1653 index += offset >> PAGE_CACHE_SHIFT;
1654 offset &= ~PAGE_CACHE_MASK;
1656 page_cache_release(page);
1657 if (ret != nr || !desc->count)
1658 break;
1660 cond_resched();
1663 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1664 file_accessed(filp);
1667 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1669 read_descriptor_t desc;
1671 if ((ssize_t) count < 0)
1672 return -EINVAL;
1673 if (!access_ok(VERIFY_WRITE, buf, count))
1674 return -EFAULT;
1675 if (!count)
1676 return 0;
1678 desc.written = 0;
1679 desc.count = count;
1680 desc.arg.buf = buf;
1681 desc.error = 0;
1683 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1684 if (desc.written)
1685 return desc.written;
1686 return desc.error;
1689 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1691 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1693 buf->f_type = TMPFS_MAGIC;
1694 buf->f_bsize = PAGE_CACHE_SIZE;
1695 buf->f_namelen = NAME_MAX;
1696 spin_lock(&sbinfo->stat_lock);
1697 if (sbinfo->max_blocks) {
1698 buf->f_blocks = sbinfo->max_blocks;
1699 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1701 if (sbinfo->max_inodes) {
1702 buf->f_files = sbinfo->max_inodes;
1703 buf->f_ffree = sbinfo->free_inodes;
1705 /* else leave those fields 0 like simple_statfs */
1706 spin_unlock(&sbinfo->stat_lock);
1707 return 0;
1711 * File creation. Allocate an inode, and we're done..
1713 static int
1714 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1716 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1717 int error = -ENOSPC;
1719 if (inode) {
1720 error = security_inode_init_security(inode, dir, NULL, NULL,
1721 NULL);
1722 if (error) {
1723 if (error != -EOPNOTSUPP) {
1724 iput(inode);
1725 return error;
1728 error = shmem_acl_init(inode, dir);
1729 if (error) {
1730 iput(inode);
1731 return error;
1733 if (dir->i_mode & S_ISGID) {
1734 inode->i_gid = dir->i_gid;
1735 if (S_ISDIR(mode))
1736 inode->i_mode |= S_ISGID;
1738 dir->i_size += BOGO_DIRENT_SIZE;
1739 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1740 d_instantiate(dentry, inode);
1741 dget(dentry); /* Extra count - pin the dentry in core */
1743 return error;
1746 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1748 int error;
1750 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1751 return error;
1752 inc_nlink(dir);
1753 return 0;
1756 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1757 struct nameidata *nd)
1759 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1763 * Link a file..
1765 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1767 struct inode *inode = old_dentry->d_inode;
1768 int ret;
1771 * No ordinary (disk based) filesystem counts links as inodes;
1772 * but each new link needs a new dentry, pinning lowmem, and
1773 * tmpfs dentries cannot be pruned until they are unlinked.
1775 ret = shmem_reserve_inode(inode->i_sb);
1776 if (ret)
1777 goto out;
1779 dir->i_size += BOGO_DIRENT_SIZE;
1780 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1781 inc_nlink(inode);
1782 atomic_inc(&inode->i_count); /* New dentry reference */
1783 dget(dentry); /* Extra pinning count for the created dentry */
1784 d_instantiate(dentry, inode);
1785 out:
1786 return ret;
1789 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1791 struct inode *inode = dentry->d_inode;
1793 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1794 shmem_free_inode(inode->i_sb);
1796 dir->i_size -= BOGO_DIRENT_SIZE;
1797 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1798 drop_nlink(inode);
1799 dput(dentry); /* Undo the count from "create" - this does all the work */
1800 return 0;
1803 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1805 if (!simple_empty(dentry))
1806 return -ENOTEMPTY;
1808 drop_nlink(dentry->d_inode);
1809 drop_nlink(dir);
1810 return shmem_unlink(dir, dentry);
1814 * The VFS layer already does all the dentry stuff for rename,
1815 * we just have to decrement the usage count for the target if
1816 * it exists so that the VFS layer correctly free's it when it
1817 * gets overwritten.
1819 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1821 struct inode *inode = old_dentry->d_inode;
1822 int they_are_dirs = S_ISDIR(inode->i_mode);
1824 if (!simple_empty(new_dentry))
1825 return -ENOTEMPTY;
1827 if (new_dentry->d_inode) {
1828 (void) shmem_unlink(new_dir, new_dentry);
1829 if (they_are_dirs)
1830 drop_nlink(old_dir);
1831 } else if (they_are_dirs) {
1832 drop_nlink(old_dir);
1833 inc_nlink(new_dir);
1836 old_dir->i_size -= BOGO_DIRENT_SIZE;
1837 new_dir->i_size += BOGO_DIRENT_SIZE;
1838 old_dir->i_ctime = old_dir->i_mtime =
1839 new_dir->i_ctime = new_dir->i_mtime =
1840 inode->i_ctime = CURRENT_TIME;
1841 return 0;
1844 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1846 int error;
1847 int len;
1848 struct inode *inode;
1849 struct page *page = NULL;
1850 char *kaddr;
1851 struct shmem_inode_info *info;
1853 len = strlen(symname) + 1;
1854 if (len > PAGE_CACHE_SIZE)
1855 return -ENAMETOOLONG;
1857 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1858 if (!inode)
1859 return -ENOSPC;
1861 error = security_inode_init_security(inode, dir, NULL, NULL,
1862 NULL);
1863 if (error) {
1864 if (error != -EOPNOTSUPP) {
1865 iput(inode);
1866 return error;
1868 error = 0;
1871 info = SHMEM_I(inode);
1872 inode->i_size = len-1;
1873 if (len <= (char *)inode - (char *)info) {
1874 /* do it inline */
1875 memcpy(info, symname, len);
1876 inode->i_op = &shmem_symlink_inline_operations;
1877 } else {
1878 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1879 if (error) {
1880 iput(inode);
1881 return error;
1883 unlock_page(page);
1884 inode->i_op = &shmem_symlink_inode_operations;
1885 kaddr = kmap_atomic(page, KM_USER0);
1886 memcpy(kaddr, symname, len);
1887 kunmap_atomic(kaddr, KM_USER0);
1888 set_page_dirty(page);
1889 page_cache_release(page);
1891 if (dir->i_mode & S_ISGID)
1892 inode->i_gid = dir->i_gid;
1893 dir->i_size += BOGO_DIRENT_SIZE;
1894 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1895 d_instantiate(dentry, inode);
1896 dget(dentry);
1897 return 0;
1900 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1902 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1903 return NULL;
1906 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1908 struct page *page = NULL;
1909 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1910 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1911 if (page)
1912 unlock_page(page);
1913 return page;
1916 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1918 if (!IS_ERR(nd_get_link(nd))) {
1919 struct page *page = cookie;
1920 kunmap(page);
1921 mark_page_accessed(page);
1922 page_cache_release(page);
1926 static const struct inode_operations shmem_symlink_inline_operations = {
1927 .readlink = generic_readlink,
1928 .follow_link = shmem_follow_link_inline,
1931 static const struct inode_operations shmem_symlink_inode_operations = {
1932 .truncate = shmem_truncate,
1933 .readlink = generic_readlink,
1934 .follow_link = shmem_follow_link,
1935 .put_link = shmem_put_link,
1938 #ifdef CONFIG_TMPFS_POSIX_ACL
1940 * Superblocks without xattr inode operations will get security.* xattr
1941 * support from the VFS "for free". As soon as we have any other xattrs
1942 * like ACLs, we also need to implement the security.* handlers at
1943 * filesystem level, though.
1946 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1947 size_t list_len, const char *name,
1948 size_t name_len)
1950 return security_inode_listsecurity(inode, list, list_len);
1953 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1954 void *buffer, size_t size)
1956 if (strcmp(name, "") == 0)
1957 return -EINVAL;
1958 return xattr_getsecurity(inode, name, buffer, size);
1961 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1962 const void *value, size_t size, int flags)
1964 if (strcmp(name, "") == 0)
1965 return -EINVAL;
1966 return security_inode_setsecurity(inode, name, value, size, flags);
1969 static struct xattr_handler shmem_xattr_security_handler = {
1970 .prefix = XATTR_SECURITY_PREFIX,
1971 .list = shmem_xattr_security_list,
1972 .get = shmem_xattr_security_get,
1973 .set = shmem_xattr_security_set,
1976 static struct xattr_handler *shmem_xattr_handlers[] = {
1977 &shmem_xattr_acl_access_handler,
1978 &shmem_xattr_acl_default_handler,
1979 &shmem_xattr_security_handler,
1980 NULL
1982 #endif
1984 static struct dentry *shmem_get_parent(struct dentry *child)
1986 return ERR_PTR(-ESTALE);
1989 static int shmem_match(struct inode *ino, void *vfh)
1991 __u32 *fh = vfh;
1992 __u64 inum = fh[2];
1993 inum = (inum << 32) | fh[1];
1994 return ino->i_ino == inum && fh[0] == ino->i_generation;
1997 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1998 struct fid *fid, int fh_len, int fh_type)
2000 struct inode *inode;
2001 struct dentry *dentry = NULL;
2002 u64 inum = fid->raw[2];
2003 inum = (inum << 32) | fid->raw[1];
2005 if (fh_len < 3)
2006 return NULL;
2008 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2009 shmem_match, fid->raw);
2010 if (inode) {
2011 dentry = d_find_alias(inode);
2012 iput(inode);
2015 return dentry;
2018 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2019 int connectable)
2021 struct inode *inode = dentry->d_inode;
2023 if (*len < 3)
2024 return 255;
2026 if (hlist_unhashed(&inode->i_hash)) {
2027 /* Unfortunately insert_inode_hash is not idempotent,
2028 * so as we hash inodes here rather than at creation
2029 * time, we need a lock to ensure we only try
2030 * to do it once
2032 static DEFINE_SPINLOCK(lock);
2033 spin_lock(&lock);
2034 if (hlist_unhashed(&inode->i_hash))
2035 __insert_inode_hash(inode,
2036 inode->i_ino + inode->i_generation);
2037 spin_unlock(&lock);
2040 fh[0] = inode->i_generation;
2041 fh[1] = inode->i_ino;
2042 fh[2] = ((__u64)inode->i_ino) >> 32;
2044 *len = 3;
2045 return 1;
2048 static const struct export_operations shmem_export_ops = {
2049 .get_parent = shmem_get_parent,
2050 .encode_fh = shmem_encode_fh,
2051 .fh_to_dentry = shmem_fh_to_dentry,
2054 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2055 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2056 int *policy, nodemask_t *policy_nodes)
2058 char *this_char, *value, *rest;
2060 while (options != NULL) {
2061 this_char = options;
2062 for (;;) {
2064 * NUL-terminate this option: unfortunately,
2065 * mount options form a comma-separated list,
2066 * but mpol's nodelist may also contain commas.
2068 options = strchr(options, ',');
2069 if (options == NULL)
2070 break;
2071 options++;
2072 if (!isdigit(*options)) {
2073 options[-1] = '\0';
2074 break;
2077 if (!*this_char)
2078 continue;
2079 if ((value = strchr(this_char,'=')) != NULL) {
2080 *value++ = 0;
2081 } else {
2082 printk(KERN_ERR
2083 "tmpfs: No value for mount option '%s'\n",
2084 this_char);
2085 return 1;
2088 if (!strcmp(this_char,"size")) {
2089 unsigned long long size;
2090 size = memparse(value,&rest);
2091 if (*rest == '%') {
2092 size <<= PAGE_SHIFT;
2093 size *= totalram_pages;
2094 do_div(size, 100);
2095 rest++;
2097 if (*rest)
2098 goto bad_val;
2099 *blocks = DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2100 } else if (!strcmp(this_char,"nr_blocks")) {
2101 *blocks = memparse(value,&rest);
2102 if (*rest)
2103 goto bad_val;
2104 } else if (!strcmp(this_char,"nr_inodes")) {
2105 *inodes = memparse(value,&rest);
2106 if (*rest)
2107 goto bad_val;
2108 } else if (!strcmp(this_char,"mode")) {
2109 if (!mode)
2110 continue;
2111 *mode = simple_strtoul(value,&rest,8);
2112 if (*rest)
2113 goto bad_val;
2114 } else if (!strcmp(this_char,"uid")) {
2115 if (!uid)
2116 continue;
2117 *uid = simple_strtoul(value,&rest,0);
2118 if (*rest)
2119 goto bad_val;
2120 } else if (!strcmp(this_char,"gid")) {
2121 if (!gid)
2122 continue;
2123 *gid = simple_strtoul(value,&rest,0);
2124 if (*rest)
2125 goto bad_val;
2126 } else if (!strcmp(this_char,"mpol")) {
2127 if (shmem_parse_mpol(value,policy,policy_nodes))
2128 goto bad_val;
2129 } else {
2130 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2131 this_char);
2132 return 1;
2135 return 0;
2137 bad_val:
2138 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2139 value, this_char);
2140 return 1;
2144 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2146 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2147 unsigned long max_blocks = sbinfo->max_blocks;
2148 unsigned long max_inodes = sbinfo->max_inodes;
2149 int policy = sbinfo->policy;
2150 nodemask_t policy_nodes = sbinfo->policy_nodes;
2151 unsigned long blocks;
2152 unsigned long inodes;
2153 int error = -EINVAL;
2155 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2156 &max_inodes, &policy, &policy_nodes))
2157 return error;
2159 spin_lock(&sbinfo->stat_lock);
2160 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2161 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2162 if (max_blocks < blocks)
2163 goto out;
2164 if (max_inodes < inodes)
2165 goto out;
2167 * Those tests also disallow limited->unlimited while any are in
2168 * use, so i_blocks will always be zero when max_blocks is zero;
2169 * but we must separately disallow unlimited->limited, because
2170 * in that case we have no record of how much is already in use.
2172 if (max_blocks && !sbinfo->max_blocks)
2173 goto out;
2174 if (max_inodes && !sbinfo->max_inodes)
2175 goto out;
2177 error = 0;
2178 sbinfo->max_blocks = max_blocks;
2179 sbinfo->free_blocks = max_blocks - blocks;
2180 sbinfo->max_inodes = max_inodes;
2181 sbinfo->free_inodes = max_inodes - inodes;
2182 sbinfo->policy = policy;
2183 sbinfo->policy_nodes = policy_nodes;
2184 out:
2185 spin_unlock(&sbinfo->stat_lock);
2186 return error;
2188 #endif
2190 static void shmem_put_super(struct super_block *sb)
2192 kfree(sb->s_fs_info);
2193 sb->s_fs_info = NULL;
2196 static int shmem_fill_super(struct super_block *sb,
2197 void *data, int silent)
2199 struct inode *inode;
2200 struct dentry *root;
2201 int mode = S_IRWXUGO | S_ISVTX;
2202 uid_t uid = current->fsuid;
2203 gid_t gid = current->fsgid;
2204 int err = -ENOMEM;
2205 struct shmem_sb_info *sbinfo;
2206 unsigned long blocks = 0;
2207 unsigned long inodes = 0;
2208 int policy = MPOL_DEFAULT;
2209 nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2211 #ifdef CONFIG_TMPFS
2213 * Per default we only allow half of the physical ram per
2214 * tmpfs instance, limiting inodes to one per page of lowmem;
2215 * but the internal instance is left unlimited.
2217 if (!(sb->s_flags & MS_NOUSER)) {
2218 blocks = totalram_pages / 2;
2219 inodes = totalram_pages - totalhigh_pages;
2220 if (inodes > blocks)
2221 inodes = blocks;
2222 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2223 &inodes, &policy, &policy_nodes))
2224 return -EINVAL;
2226 sb->s_export_op = &shmem_export_ops;
2227 #else
2228 sb->s_flags |= MS_NOUSER;
2229 #endif
2231 /* Round up to L1_CACHE_BYTES to resist false sharing */
2232 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2233 L1_CACHE_BYTES), GFP_KERNEL);
2234 if (!sbinfo)
2235 return -ENOMEM;
2237 spin_lock_init(&sbinfo->stat_lock);
2238 sbinfo->max_blocks = blocks;
2239 sbinfo->free_blocks = blocks;
2240 sbinfo->max_inodes = inodes;
2241 sbinfo->free_inodes = inodes;
2242 sbinfo->policy = policy;
2243 sbinfo->policy_nodes = policy_nodes;
2245 sb->s_fs_info = sbinfo;
2246 sb->s_maxbytes = SHMEM_MAX_BYTES;
2247 sb->s_blocksize = PAGE_CACHE_SIZE;
2248 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2249 sb->s_magic = TMPFS_MAGIC;
2250 sb->s_op = &shmem_ops;
2251 sb->s_time_gran = 1;
2252 #ifdef CONFIG_TMPFS_POSIX_ACL
2253 sb->s_xattr = shmem_xattr_handlers;
2254 sb->s_flags |= MS_POSIXACL;
2255 #endif
2257 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2258 if (!inode)
2259 goto failed;
2260 inode->i_uid = uid;
2261 inode->i_gid = gid;
2262 root = d_alloc_root(inode);
2263 if (!root)
2264 goto failed_iput;
2265 sb->s_root = root;
2266 return 0;
2268 failed_iput:
2269 iput(inode);
2270 failed:
2271 shmem_put_super(sb);
2272 return err;
2275 static struct kmem_cache *shmem_inode_cachep;
2277 static struct inode *shmem_alloc_inode(struct super_block *sb)
2279 struct shmem_inode_info *p;
2280 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2281 if (!p)
2282 return NULL;
2283 return &p->vfs_inode;
2286 static void shmem_destroy_inode(struct inode *inode)
2288 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2289 /* only struct inode is valid if it's an inline symlink */
2290 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2292 shmem_acl_destroy_inode(inode);
2293 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2296 static void init_once(struct kmem_cache *cachep, void *foo)
2298 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2300 inode_init_once(&p->vfs_inode);
2301 #ifdef CONFIG_TMPFS_POSIX_ACL
2302 p->i_acl = NULL;
2303 p->i_default_acl = NULL;
2304 #endif
2307 static int init_inodecache(void)
2309 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2310 sizeof(struct shmem_inode_info),
2311 0, SLAB_PANIC, init_once);
2312 return 0;
2315 static void destroy_inodecache(void)
2317 kmem_cache_destroy(shmem_inode_cachep);
2320 static const struct address_space_operations shmem_aops = {
2321 .writepage = shmem_writepage,
2322 .set_page_dirty = __set_page_dirty_no_writeback,
2323 #ifdef CONFIG_TMPFS
2324 .readpage = shmem_readpage,
2325 .write_begin = shmem_write_begin,
2326 .write_end = shmem_write_end,
2327 #endif
2328 .migratepage = migrate_page,
2331 static const struct file_operations shmem_file_operations = {
2332 .mmap = shmem_mmap,
2333 #ifdef CONFIG_TMPFS
2334 .llseek = generic_file_llseek,
2335 .read = shmem_file_read,
2336 .write = do_sync_write,
2337 .aio_write = generic_file_aio_write,
2338 .fsync = simple_sync_file,
2339 .splice_read = generic_file_splice_read,
2340 .splice_write = generic_file_splice_write,
2341 #endif
2344 static const struct inode_operations shmem_inode_operations = {
2345 .truncate = shmem_truncate,
2346 .setattr = shmem_notify_change,
2347 .truncate_range = shmem_truncate_range,
2348 #ifdef CONFIG_TMPFS_POSIX_ACL
2349 .setxattr = generic_setxattr,
2350 .getxattr = generic_getxattr,
2351 .listxattr = generic_listxattr,
2352 .removexattr = generic_removexattr,
2353 .permission = shmem_permission,
2354 #endif
2358 static const struct inode_operations shmem_dir_inode_operations = {
2359 #ifdef CONFIG_TMPFS
2360 .create = shmem_create,
2361 .lookup = simple_lookup,
2362 .link = shmem_link,
2363 .unlink = shmem_unlink,
2364 .symlink = shmem_symlink,
2365 .mkdir = shmem_mkdir,
2366 .rmdir = shmem_rmdir,
2367 .mknod = shmem_mknod,
2368 .rename = shmem_rename,
2369 #endif
2370 #ifdef CONFIG_TMPFS_POSIX_ACL
2371 .setattr = shmem_notify_change,
2372 .setxattr = generic_setxattr,
2373 .getxattr = generic_getxattr,
2374 .listxattr = generic_listxattr,
2375 .removexattr = generic_removexattr,
2376 .permission = shmem_permission,
2377 #endif
2380 static const struct inode_operations shmem_special_inode_operations = {
2381 #ifdef CONFIG_TMPFS_POSIX_ACL
2382 .setattr = shmem_notify_change,
2383 .setxattr = generic_setxattr,
2384 .getxattr = generic_getxattr,
2385 .listxattr = generic_listxattr,
2386 .removexattr = generic_removexattr,
2387 .permission = shmem_permission,
2388 #endif
2391 static const struct super_operations shmem_ops = {
2392 .alloc_inode = shmem_alloc_inode,
2393 .destroy_inode = shmem_destroy_inode,
2394 #ifdef CONFIG_TMPFS
2395 .statfs = shmem_statfs,
2396 .remount_fs = shmem_remount_fs,
2397 #endif
2398 .delete_inode = shmem_delete_inode,
2399 .drop_inode = generic_delete_inode,
2400 .put_super = shmem_put_super,
2403 static struct vm_operations_struct shmem_vm_ops = {
2404 .fault = shmem_fault,
2405 #ifdef CONFIG_NUMA
2406 .set_policy = shmem_set_policy,
2407 .get_policy = shmem_get_policy,
2408 #endif
2412 static int shmem_get_sb(struct file_system_type *fs_type,
2413 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2415 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2418 static struct file_system_type tmpfs_fs_type = {
2419 .owner = THIS_MODULE,
2420 .name = "tmpfs",
2421 .get_sb = shmem_get_sb,
2422 .kill_sb = kill_litter_super,
2424 static struct vfsmount *shm_mnt;
2426 static int __init init_tmpfs(void)
2428 int error;
2430 error = bdi_init(&shmem_backing_dev_info);
2431 if (error)
2432 goto out4;
2434 error = init_inodecache();
2435 if (error)
2436 goto out3;
2438 error = register_filesystem(&tmpfs_fs_type);
2439 if (error) {
2440 printk(KERN_ERR "Could not register tmpfs\n");
2441 goto out2;
2444 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2445 tmpfs_fs_type.name, NULL);
2446 if (IS_ERR(shm_mnt)) {
2447 error = PTR_ERR(shm_mnt);
2448 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2449 goto out1;
2451 return 0;
2453 out1:
2454 unregister_filesystem(&tmpfs_fs_type);
2455 out2:
2456 destroy_inodecache();
2457 out3:
2458 bdi_destroy(&shmem_backing_dev_info);
2459 out4:
2460 shm_mnt = ERR_PTR(error);
2461 return error;
2463 module_init(init_tmpfs)
2466 * shmem_file_setup - get an unlinked file living in tmpfs
2468 * @name: name for dentry (to be seen in /proc/<pid>/maps
2469 * @size: size to be set for the file
2472 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2474 int error;
2475 struct file *file;
2476 struct inode *inode;
2477 struct dentry *dentry, *root;
2478 struct qstr this;
2480 if (IS_ERR(shm_mnt))
2481 return (void *)shm_mnt;
2483 if (size < 0 || size > SHMEM_MAX_BYTES)
2484 return ERR_PTR(-EINVAL);
2486 if (shmem_acct_size(flags, size))
2487 return ERR_PTR(-ENOMEM);
2489 error = -ENOMEM;
2490 this.name = name;
2491 this.len = strlen(name);
2492 this.hash = 0; /* will go */
2493 root = shm_mnt->mnt_root;
2494 dentry = d_alloc(root, &this);
2495 if (!dentry)
2496 goto put_memory;
2498 error = -ENFILE;
2499 file = get_empty_filp();
2500 if (!file)
2501 goto put_dentry;
2503 error = -ENOSPC;
2504 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2505 if (!inode)
2506 goto close_file;
2508 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2509 d_instantiate(dentry, inode);
2510 inode->i_size = size;
2511 inode->i_nlink = 0; /* It is unlinked */
2512 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2513 &shmem_file_operations);
2514 return file;
2516 close_file:
2517 put_filp(file);
2518 put_dentry:
2519 dput(dentry);
2520 put_memory:
2521 shmem_unacct_size(flags, size);
2522 return ERR_PTR(error);
2526 * shmem_zero_setup - setup a shared anonymous mapping
2528 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2530 int shmem_zero_setup(struct vm_area_struct *vma)
2532 struct file *file;
2533 loff_t size = vma->vm_end - vma->vm_start;
2535 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2536 if (IS_ERR(file))
2537 return PTR_ERR(file);
2539 if (vma->vm_file)
2540 fput(vma->vm_file);
2541 vma->vm_file = file;
2542 vma->vm_ops = &shmem_vm_ops;
2543 return 0;